Intro to Software

Development

lakiv Kramarenko

Table of Contents

Introduction

About

Foreword

Part I - Frontend

Programming?
Web Development?
HTML
Web pages - as we, users, see them
Web pages - as a browser sees them
Code Editors
HTML Attributes
Adding Unique Style (CSS)
Adding custom styles to html page
CSS Rules
CSS Selectors
CSS properties
More examples. Font properties
Specifying selectors. Search for nested elements
DRY Principle. Cascade principle of CSS
User Agent Stylesheet. Browser's Inspector
Styling list element

Border

Margin, padding and CSS Box Model
Inspecting box model in the Inspector
Setting margin and padding
Grouping HTML elements with a "div" element
Separating "window" through background colors
Adjusing the box model's content dimensions
Aligning and centering elements
margin over margin-*
Working with shadows
Final code

HTML, CSS and Interactivity

Adding Functionality (JavaScript)
Preface
JavaScript code files
First JavaScript sub-program
Binding sub-programs to events
Binding JavaScript code to HTML code
Testing and fixing our implementation
Summary

Illiteracy elimination (JavaScript Terminology)
Preface
JavaScript Standards
Objects and their properties
Object methods
Calling a method
Passing arguments when calling methods with parameters
Method's return value

Named objects

Everything is an object in JavaScript

The "window" root object

Creating object-functions

Naming objects

Event handlers

Understanding the code. Summary

Naming code for readability and remembering DRY principle

A few words about Readability and Obviousness

Variable definition

DOM

JavaScript statements and semicolons
Completing Implementation (JavaScript)

Reviewing last implementation

Pressed keys and their numeric codes

The "if" statement

The "and" logical operator ("&&")

Using variables for DRY and Readability

Planning real "adding task" implementation

Creating new elements

Changing new element text

Adding created element to the actual DOM

Clearing text field

Something special about the "value" property

Testing

Fixing the "extra spaces" handling

Final acceptance testing

Conclusion

Intro to Software Development

Takiv Kramarenko

This book is an early access to an "Intro to Software Development" course. It gives an
introduction to programming by examples in Web Development using HTML, CSS, and
JavaScript. The book should be on strength for all — from kids to their parents, with the
only prerequisite to be a confident computer user. It should help to taste the development of
a small but real product and determine your desired role in IT - developer, tester, or maybe

somebody else;)

The book is available for free download and for donation based sale at

http://leanpub.com/intro-to-software-development.
Cover photo by Rafael Zamora.
This version was published on 2018-08-07.

© 2016-2018 Iakiv Kramarenko

Foreword

In 2015, I started to give paid offline and online IT courses (programming, test automation,
etc). I noticed a few things. Firstly, the majority of available courses on the market,
especially free ones, were too technical and complicated for students who start their way in
IT from the very beginning. Secondly, it was hard to decide which way to choose in IT -
management, business analysis, design, development, testing, etc. That was the time I started
to think on some course to give an introduction to the whole Software Development process,
be free, and be on strength for almost anybody - from kids to their parents without prior
deep knowledge in Information Technologies, with the only prerequisite - to be just a

confident computer user.

The idea was to create a course through each a student can build a real application from
scratch. Where each course lesson would represent one stage of the complete Software

Development process. As defined by en.wikipedia.org, Software Development —

is the process of conceiving, specifying, designing, programming, documenting,
testing, and bug fixing involved in creating and maintaining applications, frameworks,

or other software components.

I started to work on this course in 2016. The following lessons were thought to be included

in the course:

e Process

e Business Analysis

e Design

e Frontend Development
e Backend Development
e Test Automation

e Testing

e Deployment

A student was supposed to be introduced to each stage of the process by examples of
building a real web application from scratch - a tasks manager. Where each lesson shows

how to plan, analyze, design, develop and test basic features of the tasks manager, and then

through available exercises per lesson, a student would practice in extending the
functionality of the tasks manager by his own, with the help of available tips and tricks,

frequent questions and answers.

With the time I understood that the scope of the work to be done is tremendous. Especially
taking into account my load on other projects. Till now I have written a draft of the
"Process" lesson and completed the Frontend lesson without exercises. Probably I will
publish the draft of the "Process" lesson as a blog post. And this book, at least in the
begininng, is supposed to be a home for the "more programming-like" materials of the

course in the book-like format (the contents can change):

e Frontend Development (HTML, CSS, JavaSript)
e Quality Assurance Practices. Automation

e Deployment

e Backend Development

e Testing

The Frontend part is already available (without exercise). I plan to keep the book available
for free access and download at all times. But the progress of developing the next lessons,
and finally creating a complete course based on the book will depend on donations. The
more donations I collect, the less time I will have to spend on my other commercial projects,
and so have more time to work on this book and the course. Feel free to donate through the
book page at leanpub (http://leanpub.com/intro-to-software-development) or by sending

coins to my wallets:

Bitcoin - 1EyDGuW64YkJbZ8FW1yAkz6iLP8c6:Cjn

Ether - 0x7f2cAa79D1f1966d3CDd8295f8aF6028D66de00e

Programming?

"Programming" - a word we should all be familiar with. We all use home appliances, which
we program to perform needed actions in needed order. For example, we build a washing
program for washing machine: set timing, intensity, extra rinse, etc. Such different
configurations are the simplest forms of algorithms but we already can call ourselves -

"programmers". We even program our children, when educating them.
Computer programmers - do the same but on a much lower level.

Back to the washing machine. Who created that customizable washing profiles? That was
the programmers' job on the stage of building machine. For example, thanks to them we do
not think about how long it takes to heat the water. "Internal program" itself enable the
heater and turn it off when the specified temperature is reached. The program will also

change the water when needed, stop washing, and so on ...

So, in short, Programming - is the process of writing programs that describe predefined flow
of events in time and order of rules that must be satisfied to perform a specific task. The
final set of such "flows and rules" that defines a specific task or sub-task is also called an

algorithm.

And COMPUTER program can be defined as a collection of instructions or commands) for

a computer, that record algorithms with one of programming languages.

In our life we use different languages to communicate with citizens of different countries.
Also we use different language subsets like slangs to communicate on jurisprudence,
medicine or economics. We use different commands to home appliances, mobile devices,
etc. In the same way programmers use different programming languages and their

"additional subsets" - libraries - to communicate with a computer.
In modern computer programming, there are many areas defined by the type of programs:

e Game Development

Mobile Application Development

Desktop Application Development

Development of "Embedded Systems" - remember the washing machine?;)

e Web Development

e etc.

In the following chapters we are going to get familiar with programming on the the example

of "Web Development" ;)

Web Development?

Perhaps you know how to work with the standard program. Typically, you download it from
the Internet, install on your computer, open, and use it. What is a website? For us, it is
primarily a special program that does not require an installation. It's enough just to "open" it
in Browser by its "address", or in other words - "load" it in Browser. It can be opened
simultaneously by many users on different computers and browsers. For example, thousands
of people can use Facebook site simultaneously. It can give users the same or different
information depending on context, let users interact both with the program and with other
users which use the site. The website may consist of one or many "web pages", each of
which has its own "address". This program, that various users can "load" through Browser -
is called a web-client and, in fact, is only a "part" of a website. But there is the other part of
the "website" that we do not see, but that serves as the "brain" of the site that controls the
simultaneous operation of all user-downloaded web-clients, sends them by request the right
information, stores their data and lets them interact with each other. This "brain" is called a

web server.

This "intelligent" web site that consists of a client and a server - is called a "web

application".
Accordingly, there are two sub-areas in the development of web applications:

e Frontend Web Development (of client)

e Backend Web Development (of server)

Developers who do both (backend and frontend) are called "full stack" web developers.
However, due to the complexity of many of today's projects often backend and frontend

developers are two separate branches of specialists.

Let's start with a simpler and "closer" to the end user part — Frontend. We will create a small
web-client through which a user can create tasks. Later we will develop a web-server in
order to implement functionality that does not belong to Frontend. Such as saving tasks

between web site reloads and the ability to see created tasks from different computers.

It should be also noticed that we will not touch all the nuances of web development in this
course. We will not always follow the accurate terminology and will not use all the most
recent innovations. But we will use something from the "new world" if this simplifies the
explanation. Our goal - is not to study all programming for a limited time but get familiar
with the process of web development, learn how to program something real, and realize in

practice - how interesting it may be.

HTML

Web pages - as we, users, see them

At the beginning of developing our own web applications, we need to understand at a basic

level how "web pages" are implemented.

We are used to calling a "web page" everything that appears in Browser once a website is
loaded.

® ® [® TroopJs « TodoMvC X MepLmit KopUCTy...

&~ C [https://todomvc4tasj.herokuapp.com v E 0 & 0 @ =

a
vV b
1 item left All Active Completed Clear completed

TodoMVC web application

But for all these cute elements - edit fields, labels with text, buttons, checkboxes, links — we
have to thank browsers (Firefox, Chrome, Opera, Edge, Safari ...), which can represent the
inner implementation of pages in a clear to people form. In other words, browsers are
translators from "web application programming language" to "users language". Such

"translation" process may also be called "interpretation”.

Web pages - as a browser sees them

And here is how a web page looks like for the browser:

® ® [1ro0pJs TodoMvC x

C' [https://todomvcatasj.herokuapp.com

Back

Reload

- BT S —
Print... ISy s
Translate to English O De done’

(O AdBlock >

& Readability >

&7 Save To Pocket
View Saves

View Page Source

Inspect
2 items Teft All Active Completed

Selecting "View page source" from the page context menu

® ® [% TroopJs « TodoMvC % | [Y view-source:https:/jtodor X Mepwwmit kopucTy...

C [view-source:https://todomvcatasj.herokuapp... 17 & @ & O © =

2 <html lang="en" data-framework="troopjs">

3 <head>

4 <meta charset="utf-8">

5 <title>TroopJS * TodoMVC</title>

6 <link rel="stylesheet" href="bower_ components/todomvc-
common/base.css">

7 <link rel="stylesheet" href="css/app.css">

8 </head>

9 <body>

10 <section id="todoapp">

1 <header id="header">

12 <hl>todos</hl>

13 <input id="new-todo" disabled placeholder="What needs
to be done?" autofocus data-weave="troopjs-todos/widget/create">

14 </header>

15 <section id="main" data-weave="troopjs-todos/widget/display">

16 <input id="toggle-all" type="checkbox" data-

weave="troopjs-todos/widget/mark">
17 <label for="toggle-all">Mark all as complete</label>

18 <ul id="todo-list" data-weave="troopjs-
todos/widget/list">

19 </section>

20 <footer id="footer" data-weave="troopjs-
todos/widget/display">

21 <span id="todo-count" data-weave="troopjs-
todos/widget/count">1 item left

22 <ul id="filters" data-weave="troopjs-

TodoMVC page source

This "abracadabra" is written in Hyper Text Markup Language also known as HTML.

The word "hyper" means that we deal not just with the "linear" text, but with the text that
may contain links (called "hyperlinks") to other resources. Links may direct us to the same

page or to other pages with other addresses as well.
In order to understand the secret of this language, let's take a look on a simple example.

Probably, you've already paid attention that the web page, we loaded earlier, was related to
tasks. It is the task manager that allows us to create tasks, edit or delete them, mark tasks as
"done", filter them or clear. In fact, we get a full application in the browser, not just a web

page with information without the possibility to dynamically change it here and now.

One of the main goals of this tutorial is to practice in creation of similar web applications by

yourself.

And now we are going to start implementing our task manager main functionality - creating
new tasks by entering their text in a text field and after pressing Enter - display them in a list

below.

That's how a basic HTML code of our application might look like:

<html>
<head>
<title>Todos</title>
</head>
<body>
<input></input>

watch lesson</1i>
do homework</1li>

</body>
</html>

Look carefully at this structure. It is like a large cupboard that starts from <html> and ends
with </html> . As we see - identifiers of the beginning and the end of the "cupboard" - are
framed by special symbols - "less than" (<) and "greater than" (>). And in order to
distinguish the "end" from the "beginning" - the </ symbols are used instead of < in the

"end" case.

In the middle, "cupboard" has two main sections - head and body, which start with <head> ,

<body> and end with «</head> , </body> correspondingly.

head - acts as an "ID card" of our web page. In the sense that identifies the page with a set of
information about it. It has currently only one "shelf" - the name of our web page -

<title>Todos</ title> .
Body stores the content of our website with all its elements-boxes.
Such elements-boxes can be nested.

In our case, list items

watch lesson

do homework</1i>

that reflect tasks,

are nested in a single big box - « ... -which displays a list of tasks.

By the way, ul is deciphered as "unordered list".

And 1i - as "list item"

As we can see, the "box" may contain only text - such as list item watch lesson</1i>
And may contain nothing, as the input field: <input> </input>

In such cases, when the box contain nothing, we can just write <input /> .

All these "boxes" are officially called elements. Beginning identifier is called an opening

tag (e.g. «li>), and the ending identifier - closing tag (e.g. </1i>)

As you can see, all that makes HTML — are rules of placing information about our website

in nested "boxes" in order to organise it and reflect the corresponding structure of a page.

Let's take a look how the web page with the code will look like in a browser. To do this, let's

keep this code in a file with the extension html: index.html and open it in the browser:

| NON | index
4 v | Courier New ¢ | Regular Sj2o (vEER)I BB |I| U a >1..S 0 = v

L2 v
5 5 |

<html>
<head>
<title>Todos</title>
</head>
<body>
<input></input>

watch lesson</1i>
do homework</1li>

</body>
</html>]|
Saving html example in common text editor
©® ® /' Todos x yashaka

C' @ file:///Users/yashaka/projects/todosapp/index.html @ ¢

e watch lesson
¢ do homework

Opened html-file in the browser

That's it.

Perhaps you're thinking - why exactly "index"? Let it be one of your homework - reveal this

secret by yourself... Google will help you;)

Code Editors

Before we continue, let's find out what is the code editor.

Any code is essentially a text that can be edited in a word processor. But the code has its
own specifics in comparison with ordinary text. And as text editors have additional features
such as tips on grammar, rulers, etc. - so editors specialized in editing code have its own

special features to help in work with the code.

Here is the code of index.html opened in one of such code editors - Atom:

[NON] ¢ index.html — ~/projects/todosapp
v B todosapp index.html

B index.html <html>
<head>
<title>Todos</title>
</head>
<body>
<input/>

watch lesson
9 do homework
</ul_> o
</body>
</html>

index.html 9:27 LF UTF-8 HTML

index.html in the Atom editor

As you can see, reading of code is better because of the specific syntax highlighting. Now

eyes are not blurred due to "plain text" mixed with "tagged elements".

Another interesting thing about atom. There are many additional packages that can be
installed and that can make our life easier by extending basic functionality of the editor with

additional features. For example, it would be great to have a continuous "browser live view"

19

of our code - the ability to enable browser emulator that reflect, in response to any change,
how our code will look in the browser. Do we have such package for Atom? Don't know,

let's search.

Cmd-shit-p for macs or ctrl-shift-p for windows will open the "Command Palette" dialog

where we can search for and trigger any Atom feature.

About: View Release Notes

Application: About

Application: Add Project Folder

Application: Bring All Windows To Front

Application: Clear Project History

Application: Hide

Application: Hide Other Applications

Command Palette

20

Let's look for "install package".

[install package

Settings View: Install Packages And Themes

Settings View: Uninstall Packages

Settings View: View Installed Packages

Search for "install package"

Great, seems like "Settings View: Install Packages And Themes" is the place where we can
check available packages for Atom.

indexhtml | 4 settings
it Core

<> Editor

Keybindings

@ Packages

@ Themes

{13 Updates

=+ Install

[% Open Config Folder

Settings

@ Settings — ~/projects/todosapp

+ Install Packages

@ Packages are published to atom.io and are installed to
/Users/yashaka/.atom/packages

[Search packages] Themes

* Featured Packages

Hydrogen 1.10.1 4> 78,132

Run code and get results inline using Jupyter kernels like
IPython, 1Julia, and iTorch

m nteract &> Install

Settings>Install

Now let’s go to "Search packages" and search for "browser live view".

indexchtml | ¥ Settings

<2 Editor
Keybindings
@ Packages
9 Themes
“-15 Updates

=+ Install

[[% Open Config Folder

Settings

N
N

@ Settings — ~/projects/todosapp

+ Install Packages

@ Packages are published to atom.io and are installed to
/Users/yashaka/.atom/packages

[browser live viewi] Themes

dev-live-reload 0.47:1 4> 277,41
Live reload atom themes and packages.

atom 11 Disable
browser-plus 0.0.87 4> 112,5M

Browser Plus - Check FAQ

skandasoft & Install

Search for "browser live view"

Oh! Second item in the list is "browser-plus". If we click on its name, we get its public page

with more details about the package:

® ® % orowserplus x yashaka

C' | @ Secure https://atom.io/packages/browser-plus g

ﬁ ATOM Themes Documentation Blog Discuss E Signin

browser-plus
Browser Plus - Check FAQ

#browser #webbrowser #web view #web-view #html preview

skandasoft 10 0.0.87 < 112,584 199

E Repo i Bugs ud Versions &8 License

@ Flag as spam or malicious

BrowserPlus ~ Real Browser in ATOM!!

Here are some feature...

Live Preview
Back/Forward Button
DevTool

Refresh

History

Favorites

N o, O

Simple Plugin Framework - Jquery/ContextMenu based.

Browser-plus details

"Real Browser in ATOM"! And its first feature is "1. Live Preview". I think that it is what
we need. Let's install this package.

24

[NON) ¢ Settings — ~/projects/todosapp

index.html % Settings

41 core + Install Packages

<> Editor ® Packages are published to atom.io and are installed to
/Users/yashaka/.atom/packages

[browser live view] Themes

Keybindings

@ Packages
dev-live-reload 0.47.1 4> 277,411
@ Themes .
Live reload atom themes and packages.
4 Updates . atom 11 Disable
+ Install
[* Open Config Folder browser-plus 0.0.87 4> 112,51
Browser Plus - Check FAQ
skandasoft & Install
Settings

Installing "browser-plus" package

[JON) ¢ Settings — ~/projects/todosapp

indexchtml | ¥ Settings

............. ———

dsl 5 2 o

71+ Core ® Packages are published to atom.io and are installed to
/Users/yashaka/.atom/packages

<> Editor

browser live view Themes

Keybindings

D Packages dev-live-reload 0.47.1 &> 277,41
Live reload atom themes and packages.
 Themes iy 11 Disable
’fb Updates
=+ Install
browser-plus 0.0.87 4> 112,51

Browser Plus - Check FAQ
[% Open Config Folder

skandasoft

£} Settings = T Uninstall = 11 Disable

Settings

Installed "browser-plus" package

Now the "browser-plus" package is installed and we can toggle it using already known to us
"Command Palette" (pay attention that we can search the needed command just by first
letters of words from its name):

26

@ index.html — ~/projects/todosapp

(o]

Browser Plus: Open

Browser Plus: OpenCurrent

Browser Plus: History

Toggling "browser plus"

[JOX) ¢ Todos — ~/projects/todosapp
index.html Todos ‘
[U file:///Users
2 <head>
3 <title>Todos</title>
4
<t/)hzad> o watch lesson
£ R00CY o do homework
6 <input/>
7/
8 watch lesson
9 do homework</1li>
10
kil </body>
12 </html>
13
Todos

Toggled "browser plus"

In order to enable the "live preview" feature, we need to press the corresponding "lightning"

button:
@ @® ¢ Todos — ~/projects/todosapp
index.html Todos
<ntnl> PR R vile:///user<[EY
<head>
<title>Todos</title> m
<t/)hzad> o watch lesson
<body> ¢ do homework
<input/>

watch lesson</1li>
do homework

</body>
12 </html>
Todos

Toggling "live preview"

Now once saved any new change to the file (via cmd+s on the mac or ctrl+s on the

windows) the changes should be reflected in the browser emulator.

Let's, for example, add another task to the list. Here we can get familiar with one more
feature of Atom - autocomplete. Let's start adding new 1i element just by entering 1 and

i symbols (without tag symbols - < and >):

[NON) index.html — ~/projects/todosapp

index.htr ® Todos
<htnl> «» OB Ko [(ININSE o X|

<head>
<title>Todos</title>

=/ h:ad> o watch lesson

<body> ¢ do homework
<input/>

watch lesson</1li>
do homework

10 it
= 1i List Item
»1 link Link
<)
index.html* 10:9 LF UTF-8 HTML

Trigger autocomplete hints

Now press Tab or Enter keyboard key to finalize "autocomplete":

[NON) index.html — ~/projects/todosapp
index.htr @ Todos
<htnl> PR vile:///userE
<head>
<title>Todos</title>
head
<l/) Za = o watch lesson
Seblebe e do homework
<input/>

watch lesson</1li>
do homework</1li>

10 <lixk/li>

</body>
</html>
index.html* 10:11 LF UTF-8 HTML

Finalize autocomplete

The editor will add opening tag's symbols (< and >) and also will add the closing tag
automatically.

Now, on added text to the new task and hitted cmd+s on the Mac or ctrl+s on the Windows

(saving changes) we will see them reflected in the browser emulator too:

@ @® index.html — ~/projects/todosapp
index.htr ® Todos
<html> «» O fiIe:///Users
<head>
<title>Todos</title>
<t/)hzad> * watch lesson
<body> ¢ do homework
<input/>

watch lesson</1li>
do homework</1li>

10 watch next 1esson|</E>

</body>
</html>
index.html* 10:28 LF UTF-8 HTML

Change before save

[NON) ¢ Todos — ~/projects/todosapp

index.html Todos
htnl> «» O B Ko [IINNINSE & X|

<head>
<title>Todos</title>

</ hzad> o watch lesson

<b°IY> ¢ do homework
<input/> o watch next lesson

watch lesson</1li>
do homework</1li>

10 watch next lesson

</body>
</html>
Todos

Reflected change after save

Awesome! isn’t it? :)

HTML Attributes

Specific HTML tags exist not for all known to us elements.

For example, most elements that involve "feedback from a user" - like entered text, selected
checkbox or radiobutton, pressed button - they all can be implemented through the element

with the tag input .

We have already used the input element previously to represent text field where user can

enter text for a new task.

<html>
<head>
<title>Todos</title>
</head>
<body>
<input />

watch lesson</1i>
do homework«</1li>

</body>
</html>

Todos

€« » O .84 file:///Users/yashaka/projects/todosapp/index.html = X

« watch lesson
¢ do homework

Default input as edit field

Just for example, let's now also add checkboxes for each task to give an ability to complete

them or mark as "done":

<html>
<head>
<title>Todos</title>
</head>
<body>
<input />

<input />watch lesson

<input />do homework

</body>
</html>
Todos
€« » O b &4 file:///Users/yashaka/projects/todosapp/index.html & X
D watch lesson
. do homework

More “input” elements to complete tasks

But how do we indicate now that "input" elements for tasks should be checkboxes?

In such situations when we need to provide more information about an element, or in other

words - add some "identity" to our elements - then html attributes are used.

Attributes can be "general" that you can add to any element, and they can be "specific to
certain elements", i.e. it makes sense to add them only to elements of certain tags. The latter
regards, for example, the attribute type forthe input element. In our case the type

attribute allows us to precisely identify our input element as exactly checkbox:

<html>

<head>

<title>Todos</title>
</head>
<body>
<input />

<input type="checkbox" />watch lesson
<input type="checkbox" />do homework</1li>

</body>
</html>

Todos

fiIe:///Users/yashaka/projects/todosapp/index.html & X

. watch lesson
e [do homework

inputs as checkboxes

For better structure of our html markup and to identify more accurately each piece of task

functionality - let's put our tasks' text into its own elements - labels:

<html>
<head>
<title>Todos</title>
</head>
<body>
<input/>

<input type="checkbox" />
<label>watch lesson</label>
</1i>

<input type="checkbox" />
<label>do homework</label>
</1i>

</body>
</html>

Todos

file:///Users/yashaka/projects/todosapp/index.html = X

. watch lesson
. do homework

Labels

Now functionality "to complete a task" and functionality "to display the task text" are
reflected in the markup by separate elements. In the future this will allow us to find the
"needed functionality" in the code more conveniently and accurately. It is the same idea as

to put things in order in the cupboard - each in its proper place.

Let's now get familiar with some other attributes of "functional” type, which add important

"features" to our elements.
How do you like the idea to add some text to the text field to serve as a hint for a user?

Here's how we can do this using the attribute value of the input element:

<html>
<head>
<title>Todos</title>
</head>
<body>
<input value="to do ... ?" />

<input type="checkbox" />
<label>watch lesson</label>

<input type="checkbox" />
<label>do homework</label>
</1i>

</body>
</html>

Todos

fiIe:///Users/yashaka/projects/todosapp/index.html (= X

todo..?

. watch lesson
. do homework

Input with value

An "inverse relationship" works as well - if we enter a text into an edit box in the browser,
then this text will be stored in the value attribute. Although, yet we do not know how to
test this. But we'll return to this later — when we will use this feature in order to "spy" the
value of value attribute of the text field after user pressed Enter , and then add a new

task with the spied text to the list ;)

But wait, have written some text in the text field, now we are forcing the users to remove it

each time before entering their own...

There is an easy way to fix this. It turns out that there is another attribute - placeholder -

which is used exactly as a "user tip" that does not obstruct entering a new text:

<html>
<head>
<title>Todos</title>
</head>
<body>
<input placeholder="what needs to be done?" />

<input type="checkbox" />
<label>watch lesson</label>
</1i>

<input type="checkbox" />
<label>do homework</label>
</1i>

</body>
</html>

Todos

«>» 0 b &4 file:///Users/yashaka/projects/todosapp/index.html a8 X

D watch lesson
D do homework

Input with placeholder

So, with help of attributes we can provide the Browser with additional information about
some element. Browser is able to interpret a specific set of attributes and their values and is
able to change how an element is displayed on the page correspondingly. For example, if the

input element has the attribute type="checkbox" , then the Browser will display it as the
checkbox. But not for all our wishes about style of element representation or some
behaviour connected to it the predefined attributes with predefined set of valid values exist.
For example, it would be useful change the style of the input element for the "entering
new task text", so it is displayed in the center of the page. Even more useful would be to
teach it to react to the pressing Enter key creating the new task with entered text earlier.
For that we will have to write an additional code in additional files using another

"languages". This code will find proper elements and change their style and behaviour. We

will write this code later, and now let's think about the following. How such code can
quickly find the proper input element among other input elements? How to distinguish the

"text field" input element from the "checkbox" input element?

We could teach the program to seek "element input that is not a checkbox", but what if we

have another text field that displays the user's name who is assigned to this task?

<html>
<head>
<title>Todos</title>
</head>
<body>
<input placeholder="what needs to be done?" />
by
<input />

<input type="checkbox" />
<label>watch lesson</label>
</1i>

<input type="checkbox" />
<label>do homework</label>
</1i>

</body>
</html>

Todos

€« O .84 file:///Users/yashaka/projects/todosapp/index.html = X

by yashaka|

. watch lesson
. do homework

Two text inputs

How to distinguish two text fields now? Not a bad idea would be to use search of the style -

"find the element input with attribute placeholder of the value What needs to be done".
But what if our webpage supports 10 languages? Won't it be hard to list all options?

"Find the element input with attribute placeholder of the value 'What needs to be
done?" or 'O que precisa ser feito?", or 'LLJo nompi6Ho 3pobumu?’ or "T Ff A g

or ...

And we should notice that in the future our webpage can become more complicated and
probably more new input elements will be added. All this will more complicate finding
right element by our program "add a task by pressing Enter ".

To sum up - since we may have elements of the same type (i.e. with the same tag), but for

different purposes, we need a clear way of marking elements to distinguish them.
There are special attributes that exist specifically for such purpose:

e Attribute id thatis given to unique elements within a web page

e Attribute class thatis given to elements belonging to a certain group

Thanks to such attributes we are able to tie needed functionality to relevant elements within

the additional program, mentioned earlier.

So let's mark our input elements according to their roles:

<html>
<head>
<title>Todos</title>
</head>
<body>
<input id="new-todo" placeholder="what needs to be done?" />
by
<input id="assignee" />
<ul id="todo-list">

<input class="toggle" type="checkbox" />
<label>watch lesson</label>
</1i>

<input class="toggle" type="checkbox" />
<label>do homework</label>
</1i>

</body>
</html>

Now we always have a clear way to distinguish one text field from another. And even
collect a "sample" of checkboxes which are corresponded to class "toggle". This may be

useful to give them specific unique style.

Exactly with tuning our web-application style we will be busy in next chapter;)

Adding unique style (CSS)

Adding custom styles to html page

HTML allows us to structure the content of the page - to mark up it's data reflecting their

hierarchical nested structure.

<html>
<head>
<title>Todos</title>
</head>
<body>
<input id="new-todo" placeholder="what needs to be done?" />
by
<input id="assignee" />
<ul id="todo-list">

<input class="toggle" type="checkbox" />
<label>watch lessonc</label>
</1i>

<input class="toggle" type="checkbox" />
<label>do homework</label>
</1i>

</body>
</html>

The browser is able to visually represent this "structured data" with "default styles".

Todos

fiIe:///Users/yashaka/projects/todosapp/index.html (=] X

by
D watch lesson
. do homework

Browser renders default styles

Of course, it would be great to customize the style of visual representation of web pages data

to our taste.

This can be achieved using another web development tool - Cascading Style Sheets or
shortly CSS.

It is a special language that allows us to set css rules describing stylistic properties of the

elements.
Usually styles are described in separate files with extensions .css .

Before we write styles for our web application, let's simplify our HTML code... to the only
structure that is actually needed to implement functionality of "adding tasks", not more. This

will also make it easier to understand the overall process.

<html>
<head>
<title>Todos</title>
</head>
<body>
<input id="new-todo" placeholder="what needs to be done?" />
<ul id="todo-list">
watch lesson</1i>
do homework«

</body>
</html>

Todos

€« O b &4 file:///Users/yashaka/projects/todosapp/index.html [b4

o watch lesson
¢ do homework

Simplified code in browser

Now, within our project (we can toggle projects' tree view by "cmnd+\" for mac or "ctrl+\"

for windows) let's create a new file - style.css

[C] o ¢ Todos — ~/projects/todosapp
v M todosapp index.htm!

index.html
B indexhtm New Folder

Rename >Todos</title>

Duplicate

Delete

gofy id="new-todo" placeholder="what needs to be done?"/>
u

Paste .
watch lesson

Add Project Folder do homework</1i>
Remove Project Folder

Copy Full Path

Copy Project Path
Open In New Window
Search in Directory

Show in Finder

Todos

Creating new file through context menu from project's tree view

43

+ Enter the path for the new file.

I style.css

Setting new file name

v Bl todosapp index.html style.css

B index.html 1

B

New file created

For convenience let's close project's tree view (by "cmnd+\" for mac or "ctrl+\" for
windows) and move opened new file tab to a separate section within the code editor... by
"splitting the window down":

ece B style.css —
index.html style.css X

1 Close Tab
Close Other Tabs
Close Tabs to the Right
Close Tabs to the Left
Close Saved Tabs
Close All Tabs

\

Split Up
Split Left
Split Right

closing the "duplicate":

index.html style.css m

il
/Users/yashaka/projects/todosapp/style.css

| style.css

style.css 11

and finally adjusting tabs-size accroding to our taste:

ece Sl Todos — ~/projects/todosapp
Todos

style.css — todosapg

html a8 3

<hint file:///Users
<head>
<title>Todos</title>
</head>
l’ o « waich lesson
<body> « do homework
<input id="new-todo" placeholder="what needs to be done?"/>
<l
8 watch lesson
do homework</1i>

</body>
</html>

stylecss

Todos

We have not written any "style rules" yet but let's just link our "css" file to html page, so our
editor built-in browser can "apply" them continuously while writing and saving new code.

"Linking" is implemented via adding a special "register entry"

<link rel="stylesheet" href="style.css" />

in "our page passport" - the head section:

<html>
<head>
<title>Todos</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>
<input id="new-todo" placeholder="what needs to be done?" />
<ul id="todo-list">
watch lesson
do homework</1i>

</body>
</html>

CSS Rules

Well, let's start “decorating” our website :)
Let's start from a text field, don't you think it's too short?
Let's "stretch" it to the entire width of the page.
First, we are going to construct a style rule in an ordinary English language:
The element with id="new-todo" should have a width of all available space
Or in more precise "technical" language:
The element with id="new-todo" must have the width of 100% of available space

And here is the translation to the "CSS language":

[id = "new-todo"] {
width: 100%;

[XOX] style.css — ~/projects/todosapp

index.htm Todos
<ttt LR ile:///users)y: EXEIEA
<heaa>
<title>Todos</title>
<link rel="stylesheet" href="style.css">

« watch lesson

Scadz * do homework
<body>
<input id="new-todo" placeholder="what needs to be done?"/>
style.css
al
stylecss 11 LF UTF-8 CSS
Input with default length
[] @ [style.css — ~/projects/todosapp
index.htm Todos
e PR ile:///usersy-[EXEEA
<head>
<title>Todos</title>
<link rel="stylesheet" href="style.css">
« watch lesson
S/headz * do homework
<body>
<input id="new-todo" placeholder="what needs to be done?"/>
style.css

[id = "new-todo"] {
width: 100%;
5

style.css 3:2 LF UTF-8 CSS

Input with css 100% width

As we can see, the translation is quite clear:

—n

The element with id="new-todo" ...

[id = "new-todo"] {
width: 100%;

... must have ...

[id = "new-todo"] {
width: 100%;
}
... the width of 100% of available space
[id = "new-todo"] {
width: 100%;
}

CSS Selectors

The rule begins with a selector that determines the selection of elements to which the rule

will be applied:

[id="new-todo"] {
width: 100%;

In this case - the elements that have attribute id="new-todo" (we have only one of such
kind - especially for that we used the attribute for the unique identification of an element -
id).

Square brackets syntax ...
[id="new-todo"] {
width: 100%;
is a universal way of saying - "element or elements that have an attribute of the specific

value". For example, we could "find our element" also through selection by two attributes:

[id="new-todo"] [placeholder="What needs to be done?"] {
width: 100%;

Also, selector let us distinguish "search by attributes" from "search by element tag":

input[id="new-todo"] [placeholder="What needs to be done?"] {

width: 100%;

Now our selector says:

"find the item(s) with tag input , with the attribute id="new-todo" , and attribute

placeholder="What needs to be done?"

In any case, because id is a special attribute that is unique for the element on the page -

we can limit the search to be based only on selector by id attribute:

[id="new-todo"] {
width: 100%;

Moreover, it turns out that people so often search elements by the id attribute, that in CSS

a shortcut exists:

instead of
[id="new-todo"] {

width: 100%;
we can write

#new-todo {
width: 100%;

CSS properties

Let's continue analysing the syntax of CSS-rules...

The element with id="new-todo" must have the width of 100% of available space
#new-todo {
width: 100%;
After the selector - in the curved brackets - follows the block of rule definition:
#new-todo {
width: 100%;
that lists "stylistic" properties that should be "set" for found element or elements:

#new-todo {
width: 100%;

Properties in the list are defined according to the following syntax:

property's name

#new-todo {
width: 100%;

colon

#new-todo {
width: 100%;

value

#new—todo {
width: 100%;
semicolon

#new-todo {
width: 100%;

More examples. Font properties

Let's add more properties to the list;)

Increase font size to 24 pixels:

#new-todo {
width: 100%;

font-size: 24px;

Todos

€« » O b &4 file:///Users/yashaka/projects/todosapp/index.html

« watch lesson
¢ do homework

Make font italic:

#new-todo {
width: 100%;
font-size: 24px;

font-style: italic;

