IMPLEMENTING QUANTLIB




Implementing QuantLib

Luigi Ballabio
This book is for sale at http://leanpub.com/implementingquantlib

This version was published on 2021-01-16

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2021 Luigi Ballabio


http://leanpub.com/implementingquantlib
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Luigi Ballabio by spreading the word about this book on Twitter!
The suggested hashtag for this book is #quantlib.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#quantlib


http://twitter.com
https://twitter.com/search?q=%23quantlib
https://twitter.com/search?q=%23quantlib

Also By Luigi Ballabio

QuantLib Python Cookbook
g% QuantLib
Implementing QuantLib DFIER


http://leanpub.com/u/lballabio
http://leanpub.com/quantlibpythoncookbook
http://leanpub.com/implementingquantlib-cn
http://leanpub.com/implementingquantlib-jp

Contents

1. Introduction . ... . .. . ... .. 1
2. Financial instruments and pricing engines . . . . . ... ... ... ... ... 4
2.1 The Instrumentclass . . . .. . ... . 4
2.1.1 Interface and requirements. . . . ... ... .. Lo oL 4

2.1.2 Implementation . .. ... ... ... ... ... 5

2.13 Example: interest-rate swap . . . ... ... .. ... ... oL 9

2.1.4 Further developments . . . . .. ... ... ... ... . .. . L. 13

2.2 Pricing engines . . . ... ... . ... 13
2.2.1 Example: plain-vanillaoption . . . .. ....... .. ... 0 L 20
A.Oddsandends . . ... ... ... . 26
Basic types . . . . .. 26
Date calculations . . . . . . . .. 27
Dates and periods . . . . . . . ... 27
Calendars . . . . . .. L 28
Day-count conventions . . ... ... ... ... ... 30
Schedules . . . . . . ... 31
Finance-related classes . . . . . . ... ... . ... 32
Market quUOtes . . . . . . . 33
Interestrates . . . .. ... ... 35
Indexes . . . . ... . 37
Exercisesand payoffs. . . . . . . .. ... 43
Math-related classes . . . . . . . ... 46
Interpolations . . . . ... ... .. 46
One-dimensional solvers. . . . . ... ... .. . ... ... . . 50
Optimizers . . . . . . . . 52
Statistics . . . . . . o L 56

Linear algebra . . . . . ... . .. 59

Global settings . . . . . ... ... 62
Utilities . . . . o 65
Smart pointersand handles . . . . .. ... ... L o 66
Errorreporting . . . .. . . . 69

Disposable objects . . . . . .. ... 71



CONTENTS

Design patterns . . . . . . .. .. 74
The Observer pattern . . . . . . ... .. 74

The Singleton pattern . . . . . ... ... 77

The Visitor pattern . . . . ... ... 78
B.Codeconventions . . . . ... ... .. ... 81
QuantLib license . . . . ... .. ... 83

Bibliography . . . . . . . .. 87



CONTENTS i

The author has used good faith effort in preparation of this book, but makes no expressed or implied
warranty of any kind and disclaims without limitation all responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein. Use of the information and instructions in this
book is at your own risk.

The cover image is in the public domain and available from the New York Public Library. The cover
font is Open Sans Condensed, released by Steve Matteson under the Apache License version 2.0.


http://digitalcollections.nypl.org/items/510d47dc-9bd7-a3d9-e040-e00a18064a99
https://twitter.com/SteveMatteson1
http://www.apache.org/licenses/LICENSE-2.0

1. Introduction

With the enthusiasm of youth, the QuantLib web site used to state that QuantLib aimed at becoming
“the standard free/open-source financial library” By interpreting such statement a bit loosely, one
might say that it has somewhat succeeded—albeit by employing the rather devious trick of being
the first, and thus for some time the only open-source financial library".

Standard or not, the project is thriving; at the time of this writing, each new release is downloaded
a few thousand times, there is a steady stream of contributions from users, and the library seems
to be used in the real world—as far as I can guess through the usual shroud of secrecy used in the
financial world. All in all, as a project administrator, I can declare myself a happy camper.

But all the more for that, the lack of proper documentation shows. Although a detailed class reference
is available (that was an easy task, since it can be generated automatically) it doesn’t let one see the
forest for the trees; so that a new user might get the impression that the QuantLib developers share
the views of the Bellman from Lewis Carroll’s Hunting of the Snark:

“What use are Mercator’s North Poles and Equators,
Tropics, Zones and Meridian Lines?”

So the Bellman would cry: and the crew would reply,
“They are merely conventional signs!”

The purpose of this book is to fill a part of the existing void. It is a report on the design and
implementation of QuantLib, alike in spirit—but, hopefully, with less frightening results—to the
How I did it book? prominently featured in Mel Brooks’ Young Frankenstein. If you are—or want to
be—a QuantLib user, you will find here useful information on the design of the library that might
not be readily apparent when reading the code. If you’re working in quantitative finance, even if
not using QuantLib, you can still read it as a field report on the design of a financial library. You
will find that it covers issues that you might also face, as well as some possible solutions and their
rationale. Based on your constraints, it is possible—even likely—that you will choose other solutions;
but you might profit from this discussion just the same.

In my descriptions, I'll also point out shortcomings in the current implementation; not to disparage
the library (I'm pretty much involved in it, after all) but for more useful purposes. On the one hand,
describing the existing pitfalls will help developers avoid them; on the other hand, it might show
how to improve the library. Indeed, it already happened that reviewing the code for this book caused
me to go back and modify it for the better.

'A few gentle users happened to refer to our library as “the QuantLib” As much as I like the expression, modesty and habit have so far
prevented me from using it.
?In this case, of course, it would be “How we did it”


http://quantlib.org/

Introduction 2

For reasons of both space and time, [ won’t be able to cover every aspect of the library. In the first
half of the book, I'll describe a few of the most important classes, such as those modeling financial
instruments and term structures; this will give you a view of the larger architecture of the library.
In the second half, I'll describe a few specialized frameworks, such as those used for creating Monte
Carlo or finite-differences models. Some of those are more polished than others; I hope that their
current shortcomings will be as interesting as their strong points.

The book is primarily aimed at users wanting to extend the library with their own instruments or
models; if you desire to do so, the description of the available class hierarchies and frameworks will
provide you with information about the hooks you need to integrate your code with QuantLib and
take advantage of its facilities. If you're not this kind of user, don’t close the book yet; you can find
useful information too. However, you might want to look at the QuantLib Python Cookbook instead.
It can be useful to C++ users, too.

And now, as is tradition, a few notes on the style and requirements of this book.

Knowledge of both C++ and quantitative finance is assumed. I've no pretense of being able to teach
you either one, and this book is thick enough already. Here, I just describe the implementation and
design of QuantLib; I'll leave it to other and better authors to describe the problem domain on one
hand, and the language syntax and tricks on the other.

As you already noticed, I'll write in the first person singular. True, it might look rather self-centered—
as a matter of fact, I hope you still haven’t put down the book in annoyance—but we would feel rather
pompous if we were to use the first person plural. The author of this book feels the same about using
the third person. After a bit of thinking, I opted for a less formal but more comfortable style (which,
as you noted, also includes a liberal use of contractions). For the same reason, I'll be addressing you
instead of the proverbial acute reader. The use of the singular will also help to avoid confusion; when
I use the plural, I describe work done by the QuantLib developers as a group.

I will describe the evolution of a design when it is interesting on its own, or relevant for the final
result. For the sake of clarity, in most cases I'll skip over the blind alleys and wrong turns taken;
put together design decisions which were made at different times; and only show the final design,
sometimes simplified. This will still leave me with plenty to say: in the words of the Alabama Shakes,
“why” is an awful lot of question.

I will point out the use of design patterns in the code I describe. Mind you, I'm not advocating
cramming your code with them; they should be applied when they’re useful, not for their own
sake.” However, QuantLib is now the result of several years of coding and refactoring, both based
on user feedback and new requirements being added over time. It is only natural that the design
evolved toward patterns.

®A more thorough exposition of this point can be found in Kerievsky, 2004.



Introduction 3

I will apply to the code listings in the book the same conventions used in the library and outlined
in appendix B. I will depart from them in one respect: due to the limitations on line length, I might
drop the std and boost namespaces from type names. When the listings need to be complemented
by diagrams, I will be using UML; for those not familiar with this language, a concise guide can be
found in Fowler, 2003.

And now, let’s dive.



2. Financial instruments and pricing
engines

The statement that a financial library must provide the means to price financial instruments would
certainly have appealed to Monsieur de La Palisse. However, that is only a part of the whole problem;
a financial library must also provide developers with the means to extend it by adding new pricing
functionality.

Foreseeable extensions are of two kinds, and the library must allow either one. On the one hand, it
must be possible to add new financial instruments; on the other hand, it must be feasible to add new
means of pricing an existing instrument. Both kinds have a number of requirements, or in pattern
jargon, forces that the solution must reconcile. This chapter details such requirements and describes
the design that allows QuantLib to satisfy them.

2.1 The Instrument class

In our domain, a financial instrument is a concept in its own right. For this reason alone, any self-
respecting object-oriented programmer will code it as a base class from which specific instruments
will be derived.

The idea, of course, is to be able to write code such as

for (i = portfolio.begin(); i != portfolio.end(); ++1)
totalNPV += i->NPV();

where we don’t have to care about the specific type of each instrument. However, this also prevents
us from knowing what arguments to pass to the NPV method, or even what methods to call. Therefore,
even the two seemingly harmless lines above tell us that we have to step back and think a bit about
the interface.

2.1.1 Interface and requirements

The broad variety of traded assets—which range from the simplest to the most exotic—implies that
any method specific to a given class of instruments (say, equity options) is bound not to make sense
for some other kind (say, interest-rate swaps). Thus, very few methods were singled out as generic
enough to belong to the Instrument interface. We limited ourselves to those returning its present
value (possibly with an associated error estimate) and indicating whether or not the instrument has
expired; since we can’t specify what arguments are needed,' the methods take none; any needed
input will have to be stored by the instrument. The resulting interface is shown in the listing below.

'Even fancy new C++11 stuff like variadic templates won’t help.



Financial instruments and pricing engines 5

Preliminary interface of the Instrument class.

class Instrument {
public:
virtual ~Instrument();
virtual Real NPV() const = 0;
virtual Real errorEstimate() const = 0;
virtual bool +isExpired() const = 0;

s

As is good practice, the methods were first declared as pure virtual ones; but—as Sportin’ Life
points out in Gershwin’s Porgy and Bess—it ain’t necessarily so. There might be some behavior
that can be coded in the base class. In order to find out whether this was the case, we had to analyze
what to expect from a generic financial instrument and check whether it could be implemented
in a generic way. Two such requirements were found at different times, and their implementation
changed during the development of the library; I present them here in their current form.

One is that a given financial instrument might be priced in different ways (e.g., with one or more
analytic formulas or numerical methods) without having to resort to inheritance. At this point, you
might be thinking “Strategy pattern”. It is indeed so; I devote section 2.2 to its implementation.

The second requirement came from the observation that the value of a financial instrument depends
on market data. Such data are by their nature variable in time, so that the value of the instrument
varies in turn; another cause of variability is that any single market datum can be provided by
different sources. We wanted financial instruments to maintain links to these sources so that, upon
different calls, their methods would access the latest values and recalculate the results accordingly;
also, we wanted to be able to transparently switch between sources and have the instrument treat
this as just another change of the data values.

We were also concerned with a potential loss of efficiency. For instance, we could monitor the value
of a portfolio in time by storing its instruments in a container, periodically poll their values, and add
the results. In a simple implementation, this would trigger recalculation even for those instruments
whose inputs did not change. Therefore, we decided to add to the instrument methods a caching
mechanism: one that would cause previous results to be stored and only recalculated when any of
the inputs change.

2.1.2 Implementation
The code managing the caching and recalculation of the instrument value was written for a generic
financial instrument by means of two design patterns.

When any of the inputs change, the instrument is notified by means of the Observer pattern (Gamma
et al, 1995). The pattern itself is briefly described® in appendix A; I describe here the participants.

*This does not excuse you from reading the Gang of Four book.



Financial instruments and pricing engines 6

Obviously enough, the instrument plays the role of the observer while the input data play that of
the observables. In order to have access to the new values after a change is notified, the observer
needs to maintain a reference to the object representing the input. This might suggest some kind of
smart pointer; however, the behavior of a pointer is not sufficient to fully describe our problem. As
[ already mentioned, a change might come not only from the fact that values from a data feed vary
in time; we might also want to switch to a different data feed. Storing a (smart) pointer would give
us access to the current value of the object pointed; but our copy of the pointer, being private to
the observer, could not be made to point to a different object. Therefore, what we need is the smart
equivalent of a pointer to pointer. This feature was implemented in QuantLib as a class template
and given the name of Handle. Again, details are given in appendix A; relevant to this discussion
is the fact that copies of a given Handle share a link to an object. When the link is made to point to
another object, all copies are notified and allow their holders to access the new pointee. Furthermore,
Handles forward any notifications from the pointed object to their observers.

Finally, classes were implemented which act as observable data and can be stored into Handles. The
most basic is the Quote class, representing a single varying market value. Other inputs for financial
instrument valuation can include more complex objects such as yield or volatility term structures.’?

Another problem was to abstract out the code for storing and recalculating cached results, while still
leaving it to derived classes to implement any specific calculations. In earlier versions of QuantLib,
the functionality was included in the Instrument class itself; later, it was extracted and coded into
another class—somewhat unsurprisingly called LazyObject—which is now reused in other parts of
the library. An outline of the class is shown in the following listing.

Outline of the LazyObject class.

class LazyObject : public virtual Observer,
public virtual Observable {
protected:
mutable bool calculated_;
virtual void performCalculations() const = 0}
public:
void update() { calculated_ = false; }
virtual void calculate() const {
if (!calculated_) {
calculated_ = true;
try {
performCalculations();
} catch (...) {
calculated_ = false;
throw;

}

*Most likely, such objects ultimately depend on Quote instances, e.g., a yield term structure might depend on the quoted deposit and swap
rates used for bootstrapping.




Financial instruments and pricing engines 7

s

The code is not overly complex. A boolean data member calculated_ is defined which keeps
track of whether results were calculated and still valid. The update method, which implements
the Observer interface and is called upon notification from observables, sets such boolean to false
and thus invalidates previous results.

The calculate method is implemented by means of the Template Method pattern (Gamma et
al, 1995), sometimes also called non-virtual interface. As explained in the Gang of Four book, the
constant part of the algorithm (in this case, the management of the cached results) is implemented
in the base class; the varying parts (here, the actual calculations) are delegated to a virtual method,
namely, performCalculations, which is called in the body of the base-class method. Therefore,
derived classes will only implement their specific calculations without having to care about caching:
the relevant code will be injected by the base class.

The logic of the caching is simple. If the current results are no longer valid, we let the derived class
perform the needed calculations and flag the new results as up to date. If the current results are
valid, we do nothing.

However, the implementation is not as simple. You might wonder why we had to insert a try
block setting calculated_ beforehand and a handler rolling back the change before throwing
the exception again. After all, we could have written the body of the algorithm more simply—for
instance, as in the following, seemingly equivalent code, that doesn’t catch and rethrow exceptions:

if (!calculated_) {
performCalculations();
calculated_ = true;

The reason is that there are cases (e.g., when the lazy object is a yield term structure which is
bootstrapped lazily) in which performCalculations happens to recursively call calculate. If
calculated_ were not set to true, the if condition would still hold and performCalculations
would be called again, leading to infinite recursion. Setting such flag to true prevents this from
happening; however, care must now be taken to restore it to false if an exception is thrown. The
exception is then rethrown so that it can be caught by the installed error handlers.

A few more methods are provided in LazyObject which enable users to prevent or force a
recalculation of the results. They are not discussed here. If you're interested, you can heed the advice
often given by master Obi-Wan Kenobi: “Read the source, Luke”

Aside: const or not const?

It might be of interest to explain why NPV_ is declared as mutable, as this is an issue which often



Financial instruments and pricing engines 8

arises when implementing caches or lazy calculations. The crux of the matter is that the NPV method
is logically a const one: calculating the value of an instrument does not modify it. Therefore, a user
is entitled to expect that such a method can be called on a const instance. In turn, the constness of
NPV forces us to declare calculate and performCalculations as const, too. However, our choice
of calculating results lazily and storing them for later use makes it necessary to assign to one or more
data members in the body of such methods. The tension is solved by declaring cached variables as
mutable; this allows us (and the developers of derived classes) to fulfill both requirements, namely,
the constness of the NPV method and the lazy assignment to data members.

Also, it should be noted that the C++11 standard now requires const methods to be thread-safe;
that is, two threads calling const members at the same time should not incur in race conditions (to
learn all about it, see Sutter, 2013). To make the code conform to the new standard, we should protect
updates to mutable members with a mutex. This would likely require some changes in design.

The Instrument class inherits from LazyObject. In order to implement the interface outlined
earlier, it decorates the calculate method with code specific to financial instruments. The resulting
method is shown in the listing below, together with other bits of supporting code.

Excerpt of the Instrument class.

class Instrument : public LazyObject {
protected:
mutable Real NPV_;
public:
Real NPV() const {
calculate();
return NPV_;
}
void calculate() const {
if (isExpired()) {
setupExpired();

calculated_ = true;
} else {
LazyObject::calculate();
}
}
virtual void setupExpired() const {
NPV_ = 0.0;
}

s

Once again, the added code follows the Template Method pattern to delegate instrument-specific
calculations to derived classes. The class defines an NPV_ data member to store the result of the



Financial instruments and pricing engines 9

calculation; derived classes can declare other data members to store specific results.* The body of
the calculate method calls the virtual isExpired method to check whether the instrument is
an expired one. If this is the case, it calls another virtual method, namely, setupExpired, which
has the responsibility of giving meaningful values to the results; its default implementation sets
NPV_ to 0 and can be called by derived classes. The calculated_ flag is then set to true. If the
instrument is not expired, the calculate method of LazyObject is called instead, which in turn
will call performCalculations as needed. This imposes a contract on the latter method, namely, its
implementations in derived classes are required to set NPV_ (as well as any other instrument-specific
data member) to the result of the calculations. Finally, the NPV method ensures that calculate is
called before returning the answer.

2.1.3 Example: interest-rate swap

I end this section by showing how a specific financial instrument can be implemented based on the
described facilities.

The chosen instrument is the interest-rate swap. As you surely know, it is a contract which consists
in exchanging periodic cash flows. The net present value of the instrument is calculated by adding
or subtracting the discounted cash-flow amounts depending on whether the cash flows are paid or
received.

Not surprisingly, the swap is implemented® as a new class deriving from Instrument. Its outline is
shown in the following listing.

Partial interface of the Swap class.

class Swap : public Instrument {
public:

Swap (const vector<shared_ptr<CashFlow> >& firstlLeg,
const vector<shared_ptr<CashFlow> >& secondlLeg,
const Handle<YieldTermStructure>& termStructure);

bool isExpired() const;

Real firstLegBPS() const;

Real secondLegBPS() const;

protected:

// methods

void setupExpired() const;

void performCalculations() const;

// data members

vector<shared_ptr<CashFlow> > firstlLeg_, secondLeg_;

Handle<YieldTermStructure> termStructure_;

mutable Real firstLegBPS_, secondLegBPS_;

+s

“The Instrument class also defines an errorEstimate_ member, which is omitted here for clarity of exposition. The discussion of
NPV_ applies to both.
*The implementation shown in this section is somewhat outdated. However, I'm still using it here since it provides a simpler example.




Financial instruments and pricing engines

It contains as data members the objects needed for the calculations—namely, the cash flows on the
first and second leg and the yield term structure used to discount their amounts—and two variables
used to store additional results. Furthermore, it declares methods implementing the Instrument
interface and others returning the swap-specific results. The class diagram of Swap and the related

classes is shown in the figure below.

«notifies»

Observer

i

LazyObject

Observable

calculated_: bool

1

* + +

calculate()
update()
performCalculations()

— Handle [<J> CashFlow

pointee

Instrument

NPV_: Real
errorEstimate_: Real

| YieldTermStructure

#H B+ + + | HH

NPV ()

errorEstimate()
isExpired()
performCalculations()
setupExpired()

]

termStructure_

Swap

firstLegNPV_
secondLegNPV_

> firstLeg_

H H o+

isExpired()
performCalculations()
setupExpired()

secondLeg_

The fitting of the class to the Instrument framework is done in three steps, the third being optional

Class diagram of the swap class.



Financial instruments and pricing engines

depending on the derived class; the relevant methods are shown in the next listing.

Partial implementation of the Swap class.

Swap: :Swap(const vector<shared_ptr<CashFlow> >& firstLeg,
const vector<shared_ptr<CashFlow> >& secondlLeg,
const Handle<YieldTermStructure>& termStructure)

firstLeg_(firstLeg), secondLeg_(secondlLeg),
termStructure_(termStructure) {
registerWith(termStructure_);
vector<shared_ptr<CashFlow> >::iterator 1ij;
for (i = firstLeg_.begin(); i!= firstLeg_.end(); ++i)
registerWith(*i);
for (i = secondlLeg_.begin(); i!= secondLeg_.end(); ++1)
registerWith(*1i);

bool Swap::isExpired() const {
Date settlement = termStructure_->referenceDate();
vector<shared_ptr<CashFlow> >::const_iterator 1;
for (i = firstLeg_.begin(); i!= firstLeg_.end(); ++i)
if (! (*i)->hasOccurred(settlement))
return false;
for (i = secondLeg_.begin(); i!= secondLeg_.end(); ++1)
if (! (*i)->hasOccurred(settlement))
return false;
return true;

void Swap::setupExpired() const {
Instrument: :setupExpired();
firstLegBPS_= secondLegBPS_ = 0.0;

void Swap::performCalculations() const {
NPV_ = - Cashflows::npv(firstLeg_,**xtermStructure_)
+ Cashflows: :npv(secondLeg_,**termStructure_);
errorEstimate_ = Null<Real>();

firstLegBPS_ = - Cashflows::bps(firstLeg_, **termStructure_);
secondLegBPS_ = Cashflows: :bps(secondLeg_, **xtermStructure_);

Real Swap::firstLegBPS() const {



Financial instruments and pricing engines 12

calculate();
return firstLegBPS_;

Real Swap::secondLegBPS() const {
calculate();
return secondLegBPS_;

The first step is performed in the class constructor, which takes as arguments (and copies into the
corresponding data members) the two sequences of cash flows to be exchanged and the yield term
structure to be used for discounting their amounts. The step itself consists in registering the swap
as an observer of both the cash flows and the term structure. As previously explained, this enables
them to notify the swap and trigger its recalculation each time a change occurs.

The second step is the implementation of the required interface. The logic of the isExpired method
is simple enough; its body loops over the stored cash flows checking their payment dates. As soon as
it finds a payment which still has not occurred, it reports the swap as not expired. If none is found, the
instrument has expired. In this case, the setupExpired method will be called. Its implementation
calls the base-class one, thus taking care of the data members inherited from Instrument; it then
sets to 0 the swap-specific results.

Aside: handles and shared pointers.

You might wonder why the Swap constructor accepts the discount curve as a handle and the cash
flows as simple shared pointers. The reason is that we might decide to switch to a different curve
(which can be done by means of the handle) whereas the cash flows are part of the definition of the
swap and are thus immutable.

The last required method is performCalculations. The calculation is performed by calling two
external functions from the Cashflows class.® The first one, namely, npv, is a straightforward
translation of the algorithm outlined above: it cycles on a sequence of cash flows adding the
discounted amount of its future cash flows. We set the NPV_ variable to the difference of the results
from the two legs. The second one, bps, calculates the basis-point sensitivity (BPS) of a sequence of
cash flows. We call it once per leg and store the results in the corresponding data members. Since the
result carries no numerical error, the errorEstimate_ variable is set to Null<Real> () —a specific
floating-point value which is used as a sentinel value indicating an invalid number.’

The third and final step only needs to be performed if—as in this case—the class defines additional

°If you happen to feel slightly cheated, consider that the point of this example is to show how to package calculations into a class—not to
show how to implement the calculations. Your curiosity will be satisfied in a later chapter devoted to cash flows and related functions.

"NaN might be a better choice, but the means of detecting it are not portable. Another possibility still to be investigated would be to use
boost: :optional.



Financial instruments and pricing engines 13

results. It consists in writing corresponding methods (here, firstLegBPS and secondLegBPS) which
ensure that the calculations are (lazily) performed before returning the stored results.

The implementation is now complete. Having been written on top of the Instrument class, the Swap
class will benefit from its code. Thus, it will automatically cache and recalculate results according
to notifications from its inputs—even though no related code was written in Swap except for the
registration calls.

2.1.4 Further developments

You might have noticed a shortcoming in my treatment of the previous example and of the
Instrument class in general. Albeit generic, the Swap class we implemented cannot manage interest-
rate swaps in which the two legs are paid in different currencies. A similar problem would arise if
you wanted to add the values of two instruments whose values are not in the same currency; you
would have to convert manually one of the values to the currency of the other before adding them
together.

Such problems stem from a single weakness of the implementation: we used the Real type (i.e., a
simple floating-point number) to represent the value of an instrument or a cash flow. Therefore,
such results miss the currency information which is attached to them in the real world.

The weakness might be removed if we were to express such results by means of the Money class.
Instances of such class contain currency information; moreover, depending on user settings, they
are able to automatically perform conversion to a common currency upon addition or subtraction.

However, this would be a major change, affecting a large part of the code base in a number of ways.
Therefore, it will need some serious thinking before we tackle it (if we do tackle it at all).

Another (and more subtle) shortcoming is that the Swap class fails to distinguish explicitly between
two components of the abstraction it represents. Namely, there is no clear separation between the
data specifying the contract (the cash-flow specification) and the market data used to price the
instrument (the current discount curve).

The solution is to store in the instrument only the first group of data (i.e., those that would be in its
term sheet) and keep the market data elsewhere.® The means to do this are the subject of the next
section.

2.2 Pricing engines

We now turn to the second of the requirements I stated in the previous section. For any given
instrument, it is not always the case that a unique pricing method exists; moreover, one might want
to use multiple methods for different reasons. Let’s take the classic textbook example—the European
equity option. One might want to price it by means of the analytic Black-Scholes formula in order to

®Beside being conceptually clearer, this would prove useful to external functions implementing serialization and deserialization of the
instrument—for instance, to and from the FpML format.


http://www.fpml.org/

Financial instruments and pricing engines 14

retrieve implied volatilities from market prices; by means of a stochastic volatility model in order to
calibrate the latter and use it for more exotic options; by means of a finite-difference scheme in order
to compare the results with the analytic ones and validate one’s finite-difference implementation;
or by means of a Monte Carlo model in order to use the European option as a control variate for a
more exotic one.

Therefore, we want it to be possible for a single instrument to be priced in different ways. Of course,
it is not desirable to give different implementations of the performCalculations method, as this
would force one to use different classes for a single instrument type. In our example, we would end
up with a base EuropeanOption class from which AnalyticEuropeanOption, McEuropeanOption
and others would be derived. This is wrong in at least two ways. On a conceptual level, it would
introduce different entities when a single one is needed: a European option is a European option is a
European option, as Gertrude Stein said. On a usability level, it would make it impossible to switch
pricing methods at run-time.

The solution is to use the Strategy pattern, i.e., to let the instrument take an object encapsulating the
computation to be performed. We called such an object a pricing engine. A given instrument would
be able to take any one of a number of available engines (of course corresponding to the instrument
type), pass the chosen engine the needed arguments, have it calculate the value of the instrument and
any other desired quantities, and fetch the results. Therefore, the performCalculations method
would be implemented roughly as follows:

void SomeInstrument::performCalculations() const {
NPV_ = engine_->calculate(argl, arg2, ... , argN);

where we assumed that a virtual calculate method is defined in the engine interface and
implemented in the concrete engines.

Unfortunately, the above approach won’t work as such. The problem is, we want to implement the
dispatching code just once, namely, in the Instrument class. However, that class doesn’t know the
number and type of arguments; different derived classes are likely to have data members differing
wildly in both number and type. The same goes for the returned results; for instance, an interest-rate
swap might return fair values for its fixed rate and floating spread, while the ubiquitous European
option might return any number of Greeks.

An interface passing explicit arguments to the engine through a method, as the one outlined above,
would thus lead to undesirable consequences. Pricing engines for different instruments would have
different interfaces, which would prevent us from defining a single base class; therefore, the code
for calling the engine would have to be replicated in each instrument class. This way madness lies.

The solution we chose was that arguments and results be passed and received from the engines
by means of opaque structures aptly called arguments and results. Two structures derived from
those and augmenting them with instrument-specific data will be stored in any pricing engine; an
instrument will write and read such data in order to exchange information with the engine.



Financial instruments and pricing engines 15

The listing below shows the interface of the resulting PricingEngine class, as well as its inner
argument and results classes and a helper GenericEngine class template. The latter implements
most of the PricingEngine interface, leaving only the implementation of the calculate method
to developers of specific engines. The arguments and results classes were given methods which
ease their use as drop boxes for data: arguments: :validate is to be called after input data are
written to ensure that their values lie in valid ranges, while results: : reset is to be called before
the engine starts calculating in order to clean previous results.

Interface of PricingEngine and of related classes.

class PricingEngine : public Observable {
public:
class arguments;
class results;
virtual ~PricingEngine() {}
virtual arguments* getArguments() const = 0}
virtual const results* getResults() const = 0}
virtual void reset() const = 0;
virtual void calculate() const = 0;

s

class PricingEngine::arguments {
public:
virtual ~arguments() {}
virtual void validate() const = 0;

s

class PricingEngine::results {
public:
virtual ~results() {}
virtual void reset() = 0;

s

// ArgumentsType must inherit from arguments;
// ResultType from results.
template<class ArgumentsType, class ResultsType>
class GenericEngine : public PricingEngine {
public:
PricingEngine: :arguments* getArguments() const {
return &arguments_;
}
const PricingEngine::results* getResults() const {
return &results_;



Financial instruments and pricing engines 16

void reset() const { results_.reset(); }
protected:
mutable ArgumentsType arguments_;
mutable ResultsType results_;
s

Armed with our new classes, we can now write a generic performCalculation method. Besides
the already mentioned Strategy pattern, we will use the Template Method pattern to allow any given
instrument to fill the missing bits. The resulting implementation is shown in the next listing. Note
that an inner class Instrument: : result was defined; it inherits from PricingEngine: :results
and contains the results that have to be provided for any instrument’

Excerpt of the Instrument class.

class Instrument : public LazyObject {
public:
class results;
virtual void performCalculations() const {
QL_REQUIRE(engine_, "null pricing engine');
engine_->reset();
setupArguments(engine_->getArguments());
engine_->getArguments()->validate();
engine_->calculate();
fetchResults(engine_->getResults());
}
virtual void setupArguments(
PricingEngine::arguments*) const {
QL_FAIL("setupArguments() not implemented");
}
virtual void fetchResults(
const PricingEngine::results* r) const {
const Instrument::resultsx results =
dynamic_cast<const Valuex>(r);

QL_ENSURE(results != 0, "no results returned");
NPV_ = results->value;
errorEstimate_ = results->errorEstimate;
}
template <class T> T result(const string& tag) const;
protected:

shared_ptr<PricingEngine> engine_;

s

°The Instrument::results class also contains a std: :map where pricing engines can store additional results. The relevant code is here
omitted for clarity.



Financial instruments and pricing engines 17

class Instrument::
: public virtual PricingEngine::results {
public:
Value() { reset(); 1}
void reset() {
value = errorEstimate = Null<Real>();
}
Real value;
Real errorEstimate;

s

As for performCalculation, the actual work is split between a number of collaborating classes—
the instrument, the pricing engine, and the arguments and results classes. The dynamics of such a
collaboration (described in the following paragraphs) might be best understood with the help of the
UML sequence diagram shown in the first of the next two figures; the static relationship between
the classes (and a possible concrete instrument) is shown in the second.



Financial instruments and pricing engines

Instrument I

| arguments I

NPV () !

N
>

[]

<

calculate()

| PricingEngine I
|

[to be calculated]:

:' isExpired()

T_' performCalculations()

reset() | |

i reset()
|
getArguments() :
- |
|
€ ——-—==-==--- ﬂ I
I I
setupArguments(args) :
- «writes» !
| ; ;
validate() |

calculate()

A

getResults() |

«reads»

I
I
I
«writes»

Y
[J--————— e~

I
1
fetchResults(results)

<

«reads»

Y

Sequence diagram of the interplay between instruments and pricing engines.

18



Financial instruments and pricing engines 19

Instrument
+ isExpired() PricingEngine
# performCalculations() < + calculate()
# setupExpired() + getArguments()
# setupArguments() + getResults()
i eSS ) PricingEngine:: PricingEngine::
A arguments results
+ validate() + reset()
A 1A 3 |
AR
GenericEngine ~ |
- A arguments_
- R results_

-+

getArguments(): Ax
getResults(): R#*

A

-+

Instrument::
results
+ value: Real

+ reset()

VanillaOption A

+ isExpired() Vanlllantlon::

# setupExpired() engine

# setupArguments () + calculate()

# fetchResults() _ . _ _
VanillaOption:: VanillaOption::

arguments results

+ validate() + reset()

Class diagram of Instrument, PricingEngine, and related classes including a derived instrument class.

A call to the NPV method of the instrument eventually triggers (if the instrument is not expired
and the relevant quantities need to be calculated) a call to its performCalculations method. Here
is where the interplay between instrument and pricing engine begins. First of all, the instrument
verifies that an engine is available, aborting the calculation if this is not the case. If one is found,
the instrument prompts it to reset itself. The message is forwarded to the instrument-specific result
structure by means of its reset method; after it executes, the structure is a clean slate ready for
writing the new results.

At this point, the Template Method pattern enters the scene. The instrument asks the pricing engine



Financial instruments and pricing engines 20

for its argument structure, which is returned as a pointer to arguments. The pointer is then passed to
the instrument’s setupArguments method, which acts as the variable part in the pattern. Depending
on the specific instrument, such method verifies that the passed argument is of the correct type and
proceeds to fill its data members with the correct values. Finally, the arguments are asked to perform
any needed checks on the newly-written values by calling the validate method.

The stage is now ready for the Strategy pattern. Its arguments set, the chosen engine is asked to
perform its specific calculations, implemented in its calculate method. During the processing, the
engine will read the inputs it needs from its argument structure and write the corresponding outputs
into its results structure.

After the engine completes its work, the control returns to the Instrument instance and the
Template Method pattern continues unfolding. The called method, fetchResults, must now ask
the engine for the results, downcast them to gain access to the contained data, and copy such values
into its own data members. The Instrument class defines a default implementation which fetches
the results common to all instruments; derived classes might extend it to read specific results.

Aside: impure virtual methods.

Upon looking at the final implementation of the Instrument class, you might wonder why
the setupArguments method is defined as throwing an exception rather than declared as a
pure virtual method. The reason is not to force developers of new instruments to implement a
meaningless method, were they to decide that some of their classes should simply override the
performCalculation method.

2.2.1 Example: plain-vanilla option

At this point, an example is necessary. A word of warning, though: although a class exists in
QuantLib which implements plain-vanilla options—i.e., simple call and put equity options with
either European, American or Bermudan exercise—such class is actually the lowermost leaf of a
deep class hierarchy. Having the Instrument class at its root, such hierarchy specializes it first
with an Option class, then again with a OneAssetOption class generalizing options on a single
underlying, passing through another class or two until it finally defines the vanillaOption class
we are interested in.

There are good reasons for this; for instance, the code in the OneAssetOption class can naturally
be reused for, say, Asian options, while that in the Option class lends itself for reuse when
implementing all kinds of basket options. Unfortunately, this causes the code for pricing a plain
option to be spread among all the members of the described inheritance chain, which would not
make for an extremely clear example. Therefore, I will describe a simplified VanillaOption class
with the same implementation as the one in the library, but inheriting directly from the Instrument
class; all code implemented in the intermediate classes will be shown as if it were implemented in
the example class rather than inherited.



Financial instruments and pricing engines 21

The listing below shows the interface of our vanilla-option class. It declares the required methods
from the Instrument interface, as well as accessors for additional results, namely, the greeks of
the options; as pointed out in the previous section, the corresponding data members are declared as
mutable so that their values can be set in the logically constant calculate method.

Interface of the vanillaOption class.

class VanillaOption : public Instrument {
public:
// accessory classes
class arguments;
class results;
class engine;
// constructor
VanillaOption(const shared_ptr<Payoff>&,
const shared_ptr<Exercise>&);
// implementation of dinstrument method
bool isExpired() const;
void setupArguments(Arguments*) const;
void fetchResults(const Results*) const;
// accessors for option-specific results
Real delta() const;
Real gamma() const;
Real theta() const;
// ...more greeks
protected:

void setupExpired() const;
// option data
shared_ptr<Payoff> payoff_;
shared_ptr<Exercise> exercise_;
// specific results
mutable Real delta_;
mutable Real gamma_;
mutable Real theta_;
// ...more

15

Besides its own data and methods, VanillaOption declares a number of accessory classes: that is,
the specific argument and result structures and a base pricing engine. They are defined as inner
classes to highlight the relationship between them and the option class; their interface is shown in
the next listing.



Financial instruments and pricing engines 22

Interface of the VanillaOption inner classes.

class VanillaOption::arguments
public PricingEngine::arguments {
public:
// constructor
arguments();
void validate() const;
shared_ptr<Payoff> payoff;
shared_ptr<Exercise> exercise;

+s

class Greeks : public virtual PricingEngine::results {
public:
Greeks();
Real delta, gamma;
Real theta;
Real vega;
Real rho, dividendRho;

}s

class VanillaOption::results : public Instrument::results,
public Greeks {
public:
void reset();

+s

class VanillaOption::engine
public GenericEngine<VanillaOption::arguments,
VanillaOption::results> {};

Two comments can be made on such accessory classes. The first is that, making an exception to what I
said in my introduction to the example, I didn’t declare all data members into the results class. This
was done in order to point out an implementation detail. One might want to define structures holding
a few related and commonly used results; such structures can then be reused by means of inheritance,
as exemplified by the Greeks structure that is here composed with Instrument: : results to obtain
the final structure. In this case, virtual inheritance from PricingEngine::results must be used
to avoid the infamous inheritance diamond (see, for instance, Stroustrup, 2013; the name is in the
index).

The second comment is that, as shown, it is sufficient to inherit from the class template GenericEngine
(instantiated with the right argument and result types) to provide a base class for instrument-specific
pricing engines. We will see that derived classes only need to implement their calculate method.



Financial instruments and pricing engines 23

We now turn to the implementation of the VanillaOption class, shown in the following listing.

Implementation of the vanillaoOption class.

VanillaOption: :VanillaOption(
const shared_ptr<StrikedTypePayoff>& payoff,
const shared_ptr<Exercise>& exercise)
payoff_(payoff), exercise_(exercise) {}

bool VanillaOption::isExpired() const {
Date today = Settings::instance().evaluationDate();
return exercise_->lastDate() < today;

void VanillaOption::setupExpired() const {
Instrument: :setupExpired();
delta_ = gamma_ = theta_ = ... = 0.0;

void VanillaOption::setupArguments(
PricingEngine: :arguments* args) const {
VanillaOption::arguments* arguments =
dynamic_cast<VanillaOption::argumentsx*>(args);
QL_REQUIRE(arguments != 0, "wrong argument type");
arguments->exercise = exercise_;
arguments->payoff = payoff_;

void VanillaOption::fetchResults(
const PricingEngine::results* r) const {
Instrument: :fetchResults(r);
const VanillaOption::results* results =
dynamic_cast<const VanillaOption::results*>(r);
QL_ENSURE(results != 0, "wrong result type");
delta_ = results->delta;
// other Greeks

Real VanillaOption::delta() const {
calculate();
QL_ENSURE (delta_ != Null<Real>(), "delta not given");
return delta_;




Financial instruments and pricing engines 24

Its constructor takes a few objects defining the instrument. Most of them will be described in later
chapters or in appendix A. For the time being, suffice to say that the payoff contains the strike
and type (i.e., call or put) of the option, and the exercise contains information on the exercise
dates and variety (i.e., European, American, or Bermudan). The passed arguments are stored in the
corresponding data members. Also, note that they do not include market data; those will be passed
elsewhere.

The methods related to expiration are straightforward; i sExpired checks whether the latest exercise
date is passed, while setupExpired calls the base-class implementation and sets the instrument-
specific data to 0.

The setupArguments and fetchResults methods are a bit more interesting. The former starts
by downcasting the generic argument pointer to the actual type required, raising an exception if
another type was passed; it then turns to the actual work. In some cases, the data members are
just copied verbatim into the corresponding argument slots. However, it might be the case that
the same calculations (say, converting dates into times) will be needed by a number of engines;
setupArguments provides a place to write them just once.

The fetchResults method is the dual of setupArguments. It also starts by downcasting the passed
results pointer; after verifying its actual type, it copies the results into his own data members.

Any method that returns additional results, such as delta, will do as NPV does: it will call calculate,
check that the corresponding result was cached (because any given engine might or might not be
able to calculate it) and return it.

The above implementation is everything we needed to have a working instrument—working, that is,
once it is set an engine which will perform the required calculations. Such an engine is sketched in
the listing below and implements the analytic Black-Scholes-Merton formula for European options.

Sketch of an engine for the VanillaOption class.

class AnalyticEuropeanEngine
: public VanillaOption::engine {
public:
AnalyticEuropeanEngine(
const shared_ptr<GeneralizedBlackScholesProcess>&

process)
process_(process) {
registerWith(process);
}
void calculate() const {
QL_REQUIRE(
arguments_.exercise->type() == Exercise::European,

"not an European option");
shared_ptr<PlainVanillaPayoff> payoff =
dynamic_pointer_cast<PlainVanillaPayoff>(
arguments_.payoff);



Financial instruments and pricing engines 25

QL_REQUIRE(process, "Black-Scholes process needed");
// other requirements

Real spot = process_->stateVariable()->value();
// other needed quantities

BlackCalculator black(payoff, forwardPrice,
stdDev, discount);

results_.value = black.value();
results_.delta = black.delta(spot);
// other greeks
}
private:
shared_ptr<GeneralizedBlackScholesProcess> process_;

}s

Its constructor takes (and registers itself with) a Black-Scholes stochastic process that contains
market-data information about the underlying including present value, risk-free rate, dividend yield,
and volatility. Once again, the actual calculations are hidden behind the interface of another class,
namely, the BlackCalculator class. However, the code has enough detail to show a few relevant
features.

The method starts by verifying a few preconditions. This might come as a surprise, since the
arguments of the calculations were already validated by the time the calculate method is called.
However, any given engine can have further requirements to be fulfilled before its calculations can
be performed. In the case of our engine, one such requirement is that the option is European and
that the payoff is a plain call/put one, which also means that the payoft will be cast down to the
needed class."

In the middle section of the method, the engine extracts from the passed arguments any information
not already presented in digested form. Shown here is the retrieval of the spot price of the underlying;
other quantities needed by the engine, e.g., the forward price of the underlying and the risk-free
discount factor at maturity, are also extracted.™

Finally, the calculation is performed and the results are stored in the corresponding slots of the
results structure. This concludes both the calculate method and the example.

dynamic_pointer_cast is the equivalent of dynamic_cast for shared pointers.
"You can find the full code of the engine in the QuantLib sources.



A. Odds and ends

A number of basic issues with the usage of QuantLib have been glossed over in the previous chapters,
in order not to undermine their readability (if any) with an accumulation of technical details; as
pointed out by Douglas Adams in the fourth book of its Hitchhiker trilogy,"

[An excessive amount of detail] is guff. It doesn’t advance the action. It makes for nice fat
books such as the American market thrives on, but it doesn’t actually get you anywhere.

This appendix provides a quick reference to some such issues. It is not meant to be exhaustive
nor systematic;*® if you need that kind of documentation, check the QuantLib reference manual,
available at the QuantLib web site.

Basic types

The library interfaces don’t use built-in types; instead, a number of typedefs are provided such
as Time, Rate, Integer, or Size. They are all mapped to basic types (we talked about using full-
featured types, possibly with range checking, but we dumped the idea). Furthermore, all floating-
point types are defined as Real, which in turn is defined as double. This makes it possible to change
all of them consistently by just changing Real.

In principle, this would allow one to choose the desired level of accuracy; but to this, the test-suite
answers “Fiddlesticks!” since it shows a few failures when Real is defined as float or long double.
The value of the typedefs is really in making the code more clear—and in allowing dimensional
analysis for those who, like me, were used to it in a previous life as a physicist; for instance,
expressions such as exp(r) or r+sxt can be immediately flagged as fishy if they are preceded
by Rate r, Spread s, and Time t.

Of course, all those fancy types are only aliases to double and the compiler doesn’t really distinguish
between them. It would nice if they had stronger typing; so that, for instance, one could overload a
method based on whether it is passed a price or a volatility.

One possibility would be the BOOST_STRONG_TYPEDEF macro, which is one of the bazillion utilities
provided by Boost. It is used as, say,

No, it’s not a mistake. It is an inaccurately-named trilogy of five books. It’s a long story.
Nor automatic, nor hydromatic. That would be the Grease Lightning.

26


http://quantlib.org/

A. Odds and ends 27

BOOST_STRONG_TYPEDEF (double, Time)
BOOST_STRONG_TYPEDEF (double, Rate)

and creates a corresponding proper class with appropriate conversions to and from the underlying
type. This would allow overloading methods, but has the drawbacks that not all conversions are
explicit. This would break backward compatibility and make things generally awkward.'*

Also, the classes defined by the macro overload all operators: you can happily add a time to a rate,
even though it doesn’t make sense (yes, dimensional analysis again). It would be nice if the type
system prevented this from compiling, while still allowing, for instance, to add a spread to a rate
yielding another rate or to multiply a rate by a time yielding a pure number.

How to do this in a generic way, and ideally with no run-time costs, was shown first by Barton and
Nackman, 1995; a variation of their idea is implemented in the Boost.Units library, and a simpler
one was implemented once by yours truly while still working in Physics."> However, that might be
overkill here; we don’t have to deal with all possible combinations of length, mass, time and so on.

The ideal compromise for a future library might be to implement wrapper classes (a la Boost strong
typedef) and to define explicitly which operators are allowed for which types. As usual, we're not
the first ones to have this problem: the idea has been floating around for a while, and at some point a
proposal was put forward (Brown, 2013) to add to C++ a new feature, called opaque typedefs, which
would have made it easier to define this kind of types.

A final note: among these types, there is at least one which is not determined on its own (like Rate or
Time) but depends on other types. The volatility of a price and the volatility of a rate have different
dimensions, and thus should have different types. In short, Volatility should be a template type.

Date calculations

Date calculations are among the basic tools of quantitative finance. As can be expected, QuantLib
provides a number of facilities for this task; I briefly describe some of them in the following
subsections.

Dates and periods

An instance of the Date class represents a specific day such as November 15th, 2014. This class
provides a number of methods for retrieving basic information such as the weekday, the day of the
month, or the year; static information such as the minimum and maximum date allowed (at this
time, January 1st, 1901 and December 31st, 2199, respectively) or whether or not a given year is a
leap year; or other information such as a date’s Excel-compatible serial number or whether or not a
given date is the last date of the month. The complete list of available methods and their interface

“For instance, a simple expression like Time t = 2.0; wouldn’t compile. You’d also have to write f (Time (1.5)) instead of just f(1.5),
even if f wasn’t overloaded.
I won’t explain it here, but go read it. It’s almost insanely cool.



A. Odds and ends 28

is documented in the reference manual. No time information is included (unless you enable an
experimental compilation switch).

Capitalizing on C++ features, the Date class also overloads a number of operators so that date algebra
can be written in a natural way; for example, one can write expressions such as ++d, which advances
the date d by one day; d + 2, which yields the date two days after the given date; d2 - d1, which
yields the number of days between the two dates; d - 3*Weeks, which yields the date three weeks
before the given date (and incidentally, features a member of the available TimeUnit enumeration,
the other members being Days, Months, and Years); or d1 < d2, which yields true if the first date
is earlier than the second one. The algebra implemented in the Date class works on calendar days;
neither bank holidays nor business-day conventions are taken into account.

The Period class models lengths of time such as two days, three weeks, or five years by storing
a TimeUnit and an integer. It provides a limited algebra and a partial ordering. For the non
mathematically inclined, this means that two Period instances might or might not be compared
to see which is the shorter; while it is clear that, say, 11 months are less than one year, it is not
possible to determine whether 60 days are more or less than two months without knowing which
two months. When the comparison cannot be decided, an exception is thrown.

And of course, even when the comparison seems obvious, we managed to sneak in a few surprises.
For instance, the comparison

Period(7,Days) == Period(1l,Weeks)

returns true. It seems correct, right? Hold that thought.

Calendars

Holidays and business days are the domain of the Calendar class. Several derived classes exist which
define holidays for a number of markets; the base class defines simple methods for determining
whether or not a date corresponds to a holiday or a business day, as well as more complex ones for
performing tasks such as adjusting a holiday to the nearest business day (where “nearest” can be
defined according to a number of business-day conventions, listed in the BusinessDayConvention
enumeration) or advancing a date by a given period or number of business days.

It might be interesting to see how the behavior of a calendar changes depending on the market
it describes. One way would have been to store in the Calendar instance the list of holidays for
the corresponding market; however, for maintainability we wanted to code the actual calendar
rules (such as “the fourth Thursday in November” or “December 25th of every year”) rather than
enumerating the resulting dates for a couple of centuries. Another obvious way would have been
to use polymorphism and the Template Method pattern; derived calendars would override the
isBusinessDay method, from which all others could be implemented. This is fine, but it has
the shortcoming that calendars would need to be passed and stored in shared_ptrs. The class is
conceptually simple, though, and is used frequently enough that we wanted users to instantiate it
and pass it around more easily—that is, without the added verbosity of dynamic allocation.



A. Odds and ends 29

The final solution was the one shown in the listing below. It is a variation of the pimpl idiom, also
reminiscent of the Strategy or Bridge patterns; these days, the cool kids might call it type erasure,
too (Becker,2007).

Outline of the Calendar class.

class Calendar {
protected:
class Impl {
public:
virtual ~Impl() {}
virtual bool isBusinessDay(const Date&) const = 0;
}s
shared_ptr<Impl> impl_;
public:
bool isBusinessDay(const Date& d) const {
return impl_->1isBusinessDay(d);
}
bool isHoliday(const Date& d) const {
return !disBusinessDay(d);
}
Date adjust(const Date& d,
BusinessDayConvention ¢ = Following) const {
// uses 1dsBusinessDay() plus some logic
}
Date advance(const Date& d,
const Period& period,
BusinessDayConvention ¢ = Following,
bool endOfMonth = false) const {
// uses 7disBusinessDay() and possibly adjust()
}

// more methods

s

Long story short: Calendar declares a polymorphic inner class Impl to which the implementation
of the business-day rules is delegated and stores a pointer to one of its instances. The non-
virtual isBusinessDay method of the Calendar class forwards to the corresponding method in
Calendar: :Imp1; following somewhat the Template Method pattern, the other Calendar methods
are also non-virtual and implemented (directly or indirectly) in terms of isBusinessDay.*

Coming back to this after all these years, though, I'm thinking that we might have implemented all
public methods in terms of isHoliday instead. Why? Because all calendars are defined by stating
which days are holidays (e.g., Christmas on December 25th in a lot of places, or MLK Day on the

*The same technique is used in a number of other classes, such as DayCounter in the next section or Parameter from chapter 5.



A. Odds and ends 30

third Monday in January in the United States). Having isBusinessDay in the Imp1 interface instead
forces all derived classes to negate that logic instead of implementing it directly. It’s like having them
implement isNotHoliday.

Derived calendar classes can provide specialized behavior by defining an inner class derived from
Calendar: :Imp1; their constructor will create a shared pointer to an Imp1l instance and store it in
the imp1_ data member of the base class. The resulting calendar can be safely copied by any class that
need to store a Calendar instance; even when sliced, it will maintain the correct behavior thanks to
the contained pointer to the polymorphic Imp1 class. Finally, we can note that instances of the same
derived calendar class can share the same Imp1l instance. This can be seen as an implementation of
the Flyweight pattern—bringing the grand total to about two and a half patterns for one deceptively
simple class.

Enough with the implementation of Calendar, and back to its behavior. Here’s the surprise I
mentioned in the previous section. Remember Period (1,Weeks) being equal to Period(7,Days)?
Except that for the advance method of a calendar, 7 days means 7 business days. Thus, we have
a situation in which two periods p1 and p2 are equal (that is, p1 == p2 returns true) but
calendar.advance(pl) differs from calendar.advance(p2). Yay, us.

I’'m not sure I have a good idea for a solution here. Since we want backwards compatibility, the
current uses of Days must keep working in the same way; so it’s not possible, say, to start interpreting
calendar.advance(7, Days) as 7 calendar days. One way out might be to keep the current
situation, introduce two new enumeration cases BusinessDays and CalendarDays that remove
the ambiguity, and deprecate Days. Another is to just remove the inconsistency by dictating that a
7-days period do not, in fact, equal one week; I'm not overly happy about this one.

As I said, no obvious solution. If you have any other suggestions, I'm all ears.

Day-count conventions

The DayCounter class provides the means to calculate the distance between two dates, either as a
number of days or a fraction of an year, according to different conventions. Derived classes such
as Actual360 or Thirty360 exist; they implement polymorphic behavior by means of the same
technique used by the Calendar class and described in the previous section.

Unfortunately, the interface has a bit of a rough edge. Instead of just taking two dates, the
yearFraction method is declared as

Time yearFraction(const Date&,
const Date&,
const Date& refPeriodStart = Date(),
const Date& refPeriodEnd = Date()) const;

The two optional dates are required by one specific day-count convention (namely, the ISMA
actual/actual convention) that requires a reference period to be specified besides the two input dates.



A. Odds and ends 31

To keep a common interface, we had to add the two additional dates to the signature of the method
for all day counters (most of which happily ignore them). This is not the only mischief caused by
this day counter; you’ll see another in the next section.

Schedules

The Schedule class, shown in the next listing, is used to generate sequences of coupon dates.

Interface of the Schedule class.

class Schedule {

s

public:

Schedule(const Date& effectiveDate,
const Date& terminationDate,
const Period& tenor,
const Calendar& calendar,
BusinessDayConvention convention,
BusinessDayConvention terminationDateConvention,
DateGeneration::Rule rule,
bool endOfMonth,
const Date& firstDate = Date(),
const Date& nextTolLastDate = Date());
Schedule(const std::vector<Date>&,
const Calendar& calendar = NullCalendar(),
BusinessDayConvention convention = Unadjusted,
/* “other optional parameters’ *x/);

Size size() const;

bool empty() const;

const Date& operator[](Size i) const;
const Date& at(Size i) const;
const_iterator begin() const;
const_diterator end() const;

const Calendar& calendar() const;
const Period& tenor() const;
bool isRegular(Size i) const;
Date previousDate(const Date& refDate) const;
Date nextDate(const Date& refDate) const;
// other 1dnspectors and utilities

Following practice and ISDA conventions, this class has to accept a lot of parameters; you can see
them as the argument list of its constructor. (Oh, and you’ll forgive me if I don’t go and explain all



A. Odds and ends 32

of them. I'm sure you can guess what they mean.) They’re probably too many, which is why the
library uses the Named Parameter Idiom (already described in chapter 4) to provide a less unwieldy
factory class. With its help, a schedule can be instantiated as

Schedule s = MakeSchedule().from(startDate).to(endDate)
.withFrequency(Semiannual)
.withCalendar (TARGET())
.withNextToLastDate(stubDate)
.backwards();

Other methods include on the one hand, inspectors for the stored data; and on the other hand,
methods to give the class a sequence interface, e.g., size, operator[], begin, and end.

The Schedule class has a second constructor, taking a precomputed vector of dates and a number of
optional parameters, which might be passed to help the library use the resulting schedule correctly.
Such information includes the date generation rule or whether the dates are aligned to the end of
the month, but mainly, you’ll probably need to pass the tenor and an isRegular vector of bools,
about which I need to spend a couple of words.

What does “regular” mean? The boolean isRegular (i) doesn’t refer to the i-th date, but to the
i-th interval; that is, the one between the i-th and (i+1)-th dates. When a schedule is built based
on a tenor, most intervals correspond to the passed tenor (and thus are regular) but the first and last
intervals might be shorter or longer depending on whether we passed an explicit first or next-to-last
date. We might do this, e.g., when we want to specify a short first coupon.

If we build the schedule with a precomputed set of dates, we don’t have the tenor information and we
can’t tell if a given interval is regular unless those pieces of information are passed to the schedule.”
In turn, this means that using that schedule to build a sequence of coupons (by passing it, say, to the
constructor of a fixed-rate bond) might give us the wrong result. And why, oh, why does the bond
needs this missing info in order to build the coupons? Again, because the day-count convention of
the bond might be ISMA actual/actual, which needs a reference period; and in order to calculate the
reference period, we need to know the coupon tenor. In absence of this information, all the bond
can do is assume that the coupon is regular, that is, that the distance between the passed start and
end dates of the coupon also corresponds to its tenor.

Finance-related classes

Given our domain, it is only to be expected that a number of classes directly model financial concepts.
A few such classes are described in this section.

"Well, we could use heuristics, but it could get ugly fast.



A. Odds and ends 33

Market quotes

There are at least two possibilities to model quoted values. One is to model quotes as a sequence of
static values, each with an associated timestamp, with the current value being the latest; the other
is to model the current value as a quoted value that changes dynamically.

Both views are useful; and in fact, both were implemented in the library. The first model corresponds
to the TimeSeries class, which I won’t describe in detail here; it is basically a map between dates
and values, with methods to retrieve values at given dates and to iterate on the existing values, and
it was never really used in other parts of the library. The second resulted in the Quote class, shown
in the following listing.

Interface of the Quote class.

class Quote : public virtual Observable {
public:
virtual ~Quote() {}
virtual Real value() const = 0;
virtual bool isValid() const = 0;

33

Its interface is slim enough. The class inherits from the Observable class, so that it can notify its
dependent objects when its value change. It declares the isValid method, that tells whether or not
the quote contains a valid value (as opposed to, say, no value, or maybe an expired value) and the
value method, which returns the current value.

These two methods are enough to provide the needed behavior. Any other object whose behavior or
value depends on market values (for example, the bootstrap helpers of chapter 2) can store handles
to the corresponding quotes and register with them as an observer. From that point onwards, it will
be able to access the current values at any time.

The library defines a number of quotes—that is, of implementations of the Quote interface. Some
of them return values which are derived from others; for instance, ImpliedStdDevQuote turns
option prices into implied-volatility values. Others adapt other objects; ForwardvValueQuote returns
forward index fixings as the underlying term structures change, while LastFixingQuote returns
the latest value in a time series.

At this time, only one implementation is an genuine source of external values; that would be the
SimpleQuote class, shown in the next listing.



A. Odds and ends 34

Implementation of the SimpleQuote class.

class SimpleQuote : public Quote {
public:
SimpleQuote(Real value = Null<Real>())
: value_(value) {}

Real value() const {
QL_REQUIRE(isValid(), "invalid SimpleQuote");
return value_;

bool -isValid() const {
return value_!=Null<Real>();

Real setValue(Real value) {
Real diff = value-value_;
if (diff != 0.0) {

value_ = value;
notifyObservers();
b
return diff;
}
private:

Real value_;

s

It is simple in the sense that it doesn’t implement any particular data-feed interface: new values are
set manually by calling the appropriate method. The latest value (possibly equal to Null<Real> ()
to indicate no value) is stored in a data member. The Quote interface is implemented by having
the value method return the stored value, and the isValid method checking whether it’s null. The
method used to feed new values is setValue; it takes the new value, notifies its observers if it differs
from the latest stored one, and returns the increment between the old and new values.*®

I'll conclude this post with a few short notes. The first is that the type of the quoted values is
constrained to Real. This has not been a limitation so far, and besides, it’s now too late to define
Quote as a class template; so it’s unlikely that this will ever change.

The second is that the original idea was that the Quote interface would act as an adapter to actual
data feeds, with different implementations calling the different API and allowing QuantLib to use

3The choice to return the latest increment is kind of unusual; the idiomatic choice in C and C++ would be to return the old value.



A. Odds and ends 35

them in a uniform way. So far, however, nobody provided such implementations; the closer we got
was to use data feeds in Excel and set their values to instances of SimpleQuote.

The last (and a bit longer) note is that the interface of SimpleQuote might be modified in future to
allow more advanced uses. When setting new values to a group of related quotes (say, the quotes
interest rates used for bootstrapping a curve) it would be better to only trigger a single notification
after all values are set, instead of having each quote send a notification when it’s updated. This
behavior would be both faster, since chains of notifications turn out to be quite the time sink, and
safer, since no observer would risk to recalculate after only a subset of the quotes are updated. The
change (namely, an additional silent parameter to setValue that would mute notifications when
equal to true) has already been implemented in a fork of the library, and could be added to QuantLib
too.

Interest rates

The InterestRate class (shown in the listing that follows) encapsulates general interest-rate
calculations. Instances of this class are built from a rate, a day-count convention, a compounding
convention, and a compounding frequency (note, though, that the value of the rate is always
annualized, whatever the frequency). This allows one to specify rates such as “5%, actual/365,
continuously compounded” or “2.5%, actual/360, semiannually compounded.” As can be seen, the
frequency is not always needed. I'll return to this later.

Outline of the InterestRate class.

enum Compounding { Simple, /] 1+rT
Compounded, /] (L+r)AT
Continuous, // eMrT}
SimpleThenCompounded

s

class InterestRate {
public:

InterestRate(Rate r,
const DayCounter&,
Compounding,
Frequency) ;

// inspectors

Rate rate() const;

const DayCounter& dayCounter();

Compounding compounding() const;

Frequency frequency() const;

// automatic conversion

operator Rate() const;

// implied discount factor and compounding after a given time



A. Odds and ends 36

// (or between two given dates)
DiscountFactor discountFactor(Time t) const;
DiscountFactor discountFactor(const Date& di,
const Date& d2) const;
Real compoundFactor(Time t) const;
Real compoundFactor(const Date& di,
const Date& d2) const;
// other calculations
static InterestRate impliedRate(Real compound,
const DayCounter&,
Compounding,
Frequency,
Time t);
// same with dates
InterestRate equivalentRate(Compounding,
Frequency,
Time t) const;
// same with dates

s

Besides the obvious inspectors, the class provides a number of methods. One is the conversion
operator to Rate, i.e., to double. On afterthought, this is kind of risky, as the converted value loses
any day-count and compounding information; this might allow, say, a simply-compounded rate to
slip undetected where a continuously-compounded one was expected. The conversion was added
for backward compatibility when the InterestRate class was first introduced; it might be removed
in a future revision of the library, dependent on the level of safety we want to force on users."

Other methods complete a basic set of calculations. The compoundFactor returns the unit amount
compounded for a time ¢ (or equivalently, between two dates d; and d») according to the given
interest rate; the discountFactor method returns the discount factor between two dates or for a
time, i.e., the reciprocal of the compound factor; the impliedRate method returns a rate that, given
a set of conventions, yields a given compound factor over a given time; and the equivalentRate
method converts a rate to an equivalent one with different conventions (that is, one that results in
the same compounded amount).

Like the InterestRate constructor, some of these methods take a compounding frequency. As
I mentioned, this doesn’t always make sense; and in fact, the Frequency enumeration has a
NoFrequency item just to cover this case.

Obviously, this is a bit of a smell. Ideally, the frequency should be associated only with those
compounding conventions that need it, and left out entirely for those (such as Simple and
Continuous) that don’t. If C++ supported it, we would write something like

There are different views on safety among the core developers, ranging from “babysit the user and don’t let him hurt himself” to “give
him his part of the inheritance, pat him on his back, and send him to find his place in the world.”



A. Odds and ends 37

enum Compounding { Simple,
Compounded (Frequency) ,
Continuous,
SimpleThenCompounded (Frequency)

s

which would be similar to algebraic data types in functional languages, or case classes in Scala;*
but unfortunately that’s not an option. To have something of this kind, we’d have to go for a full-
featured Strategy pattern and turn Compounding into a class hierarchy. That would probably be
overkill for the needs of this class, so we’re keeping both the enumeration and the smell.

Indexes

Like other classes such as Instrument and TermStructure, the Index class is a pretty wide
umbrella: it covers concepts such as interest-rate indexes, inflation indexes, stock indexes—you get
the drift.

Needless to say, the modeled entities are diverse enough that the Index class has very little interface
to call its own. As shown in the following listing, all its methods have to do with index fixings.

Interface of the Index class.

class Index : public Observable {
public:
virtual ~Index() {}
virtual std::string name() const = 0;
virtual Calendar fixingCalendar() const = 0}
virtual bool isValidFixingDate(const Date& fixingDate)
const = 0;
virtual Real fixing(const Date& fixingDate,
bool forecastTodaysFixing = false)
const = 0;
virtual void addFixing(const Date& fixingDate,
Real fixing,
bool forceOverwrite = false);
void clearFixings();

s

The isvalidFixingDate method tells us whether a fixing was (or will be made) on a given date; the
fixingCalendar method returns the calendar used to determine the valid dates; and the fixing
method retrieves a fixing for a past date or forecasts one for a future date. The remaining methods
deal specifically with past fixings: the name method, which returns an identifier that must be unique

*°Both support pattern matching on an object, which is like a neater switch on steroids. Go have a look when you have some time.



A. Odds and ends 38

for each index, is used to index (pun not intended) into a map of stored fixings; the addFixing
method stores a fixing (or many, in other overloads not shown here); and the clearFixing method
clears all stored fixings for the given index.

Why the map, and where is it in the Index class? Well, we started from the requirement that past
fixings should be shared rather than per-instance; if one stored, say, the 6-months Euribor fixing
for a date, we wanted the fixing to be visible to all instances of the same index,”* and not just
the particular one whose addFixing method we called. This was done by defining and using an
IndexManager singleton behind the curtains. Smelly? Sure, as all singletons. An alternative might
have been to define static class variables in each derived class to store the fixings; but that would
have forced us to duplicate them in each derived class with no real advantage (it would be as much
against concurrency as the singleton).

Since the returned index fixings might change (either because their forecast values depend on other
varying objects, or because a newly available fixing is added and replaces a forecast) the Index class
inherits from Observab'le so that instruments can register with its instances and be notified of such
changes.

At this time, Index doesn’t inherit from Observer, although its derived classes do (not surprisingly,
since forecast fixings will almost always depend on some observable market quote). This was not
an explicit design choice, but rather an artifact of the evolution of the code and might change in
future releases. However, even if we were to inherit Index from Observer, we would still be forced
to have some code duplication in derived classes, for a reason which is probably worth describing
in more detail.

[ already mentioned that fixings can change for two reasons. One is that the index depends on other
observables to forecast its fixings; in this case, it simply registers with them (this is done in each
derived class, as each class has different observables). The other reason is that a new fixing might
be made available, and that’s more tricky to handle. The fixing is stored by a call to addFixing on
a particular index instance, so it seems like no external notification would be necessary, and that
the index can just call the notifyObservers method to notify its observers; but that’s not the case.
As I said, the fixings is shared; if we store today’s 3-months Euribor fixing, it will be available to
all instances of such index, and thus we want all of them to be aware of the change. Moreover,
instruments and curves might have registered with any of those Index instances, so all of them
must send in turn a notification.

The solution is to have all instances of the same index communicate by means of a shared
object; namely, we used the same IndexManager singleton that stores all index fixings. As I said,
IndexManager maps unique index tags to sets of fixings; also, by making the sets instances of the
ObservableValue class, it provides the means to register and receive notification when one or more
fixings are added for a specific tag (this class is described later in this appendix. You don’t need the
details here).

All pieces are now in place. Upon construction, any Index instance will ask IndexManager for the

*'Note that by “instances of the same index” I mean here instances of the same specific index, not of the same class (which might
group different indexes); for instance, USDLibor (3*Months) and USDLibor (6xMonths) are not instances of the same index; two different
USDLibor (3*Months) are.



A. Odds and ends 39

shared observable corresponding to the tag returned by its name method. When we call addFixings
on, say, some particular 6-months Euribor index, the fixing will be stored into IndexManager; the
observable will send a notification to all 6-months Euribor indexes alive at that time; and all will be
well with the world.

However, C++ still throws a small wrench in our gears. Given the above, it would be tempting to
call

registerWith(IndexManager: :instance().notifier(name()));

in the Index constructor and be done with it. However, it wouldn’t work; for the reason that in
the constructor of the base class, the call to the virtual method name wouldn’t be polymorphic.*
From here stems the code duplication I mentioned a few paragraphs earlier; in order to work, the
above method call must be added to the constructor of each derived index class which implements or
overrides the name method. The Index class itself doesn’t have a constructor (apart from the default
one that the compiler provides).

As an example of a concrete class derived from Index, the next listing sketches the InterestRateIndex

class.

Sketch of the InterestRateIndex class.

class InterestRateIndex : public Index, public Observer {
public:

InterestRateIndex(const std::string& familyName,
const Period& tenor,
Natural settlementDays,
const Currency& currency,
const Calendar& fixingCalendar,
const DayCounter& dayCounter);

familyName_(familyName), tenor_(tenor), ... {
registerWith(Settings: :instance().evaluationDate());
registerWith(

IndexManager: :instance().notifier(name()));

std: :string name() const;

Calendar fixingCalendar() const;

bool isValidFixingDate(const Date& fixingDate) const {
return fixingCalendar().isBusinessDay(fixingDate);

}
Rate fixing(const Date& fixingDate,

*If you're not familiar with the darker corners of C++: when the constructor of a base class is executed, any data members defined in
derived classes are not yet built. Since any behavior specific to the derived class is likely to depend on such yet-not-existing data, C++ bails
out and uses the base-class implementation of any virtual method called in the base-class constructor body.



A. Odds and ends

bool forecastTodaysFixing = false) const;
void update() { notifyObservers(); }

std::string familyName() const;
Period tenor() const;
// other dinspectors

Date fixingDate(const Date& valueDate) const;

virtual Date valueDate(const Date& fixingDate) const;

virtual Date maturityDate(const Date& valueDate) const

protected:

virtual Rate forecastFixing(const Date& fixingDate)
const

std::string familyName_;

Period tenor_;

Natural fixingDays_;

Calendar fixingCalendar_;

Currency currency_;

DayCounter dayCounter_;

s

std::string InterestRateIndex::name() const {
std: :ostringstream out;
out << familyName_;
if (tenor_ == 1xDays) {
if (fixingDays_==0) out << "ON";
else if (fixingDays_==1) out << "TN";
else if (fixingDays_==2) out << "SN";
else out << jo::short_period(tenor_);
} else {
out << jo::short_period(tenor_);
}
out << " " << dayCounter_.name();
return out.str();

Rate InterestRateIndex::fixing(
const Date& d,
bool forecastTodaysFixing) const {
QL_REQUIRE(isValidFixingDate(d), ...);
Date today = Settings::instance().evaluationDate();
if (d < today) {
Rate pastFixing =

40



A. Odds and ends 41

IndexManager: :instance() .getHistory(name()) [d];
QL_REQUIRE (pastFixing != Null<Real>(), ...);
return pastFixing;

}
if (d == today && !forecastTodaysFixing) {
Rate pastFixing = ...;
if (pastFixing != Null<Real>())
return pastFixing;
}

return forecastFixing(d);

Date InterestRateIndex::valueDate(const Date& d) const {
QL_REQUIRE(isValidFixingDate(d) ...);
return fixingCalendar().advance(d, fixingDays_, Days);

As you might expect, such class defines a good deal of specific behavior besides what it inherits from
Index. To begin with, it inherits from Observer, too, since Index doesn’t. The InterestRateIndex
constructor takes the data needed to specify the index: a family name, as in “Euribor”, common
to different indexes of the same family such as, say, 3-months and 6-months Euribor; a tenor
that specifies a particular index in the family; and additional information such as the number of
settlement days, the index currency, the fixing calendar, and the day-count convention used for
accrual.

The passed data are, of course, copied into the corresponding data members; then the index registers
with a couple of observables. The first is the global evaluation date; this is needed because, as
I'll explain shortly, there’s a bit of date-specific behavior in the class that is triggered when an
instance is asked for today’s fixing. The second observable is the one which is contained inside
IndexManager and provides notifications when new fixings are stored. We can identify this
observable here: the InterestRateIndex class has all the information needed to determine the
index, so it can implement the name method and call it. However, this also means that classes
deriving from InterestRateIndex must not override name; since the overridden method would
not be called in the body of this constructor (as explained earlier), they would register with the
wrong notifier. Unfortunately, this can’t be enforced in C++, which doesn’t have a keyword like
final in Java or sealed in C#; but the alternative would be to require that all classes derived from
InterestRateIndex register with IndexManager, which is equally not enforceable, probably more
error-prone, and certainly less convenient.

The other methods defined in InterestRateIndex have different purposes. A few implement
the required Index and Observer interfaces; the simplest are update, which simply forwards
any notification, fixingCalendar, which returns a copy of the stored calendar instance, and
isValidFixingDate, which checks the date against the fixing calendar.



A. Odds and ends 42

The name method is a bit more complicated. It stitches together the family name, a short representa-
tion of the tenor, and the day-count convention to get an index name such as “Euribor 6M Act/360”
or “USD Libor 3M Act/360”; special tenors such as overnight, tomorrow-next and spot-next are
detected so that the corresponding acronyms are used.

The fixing method contains the most logic. First, the required fixing date is checked and an
exception is raised if no fixing was supposed to take place on it. Then, the fixing date is checked
against today’s date. If the fixing was in the past, it must be among those stored in the IndexManager
singleton; if not, an exception is raised since there’s no way we can forecast a past fixing. If today’s
fixing was requested, the index first tries looking for the fixing in the IndexManager and returns
it if found; otherwise, the fixing is not yet available. In this case, as well as for a fixing date in
the future, the index forecasts the value of the fixing; this is done by calling the forecastFixing
method, which is declared as purely virtual in this class and implemented in derived ones. The logic
in the fixing method is also the reason why, as I mentioned, the index registers with the evaluation
date; the behavior of the index depends on the value of today’s date, so it need to be notified when
it changes.

Finally, the InterestRateIndex class defines other methods that are not inherited from Index.
Most of them are inspectors that return stored data such as the family name or the tenor; a few
others deal with date calculations. The valueDate method takes a fixing date and returns the
starting date for the instrument that underlies the rate (for instance, the deposit underlying a LIBOR,
which for most currencies starts two business days after the fixing date); the maturityDate method
takes a value date and returns the maturity of the underlying instrument (e.g., the maturity of
the deposit); and the fixingDate method is the inverse of valueDate, taking a value date and
returning the corresponding fixing date. Some of these methods are virtual, so that their behavior
can be overridden; for instance, while the default behavior for valueDate is to advance the given
number of fixing days on the given calendar, LIBOR index mandates first to advance on the London
calendar, then to adjust the resulting date on the calendar corresponding to the index currency. For
some reason, fixingDate is not virtual; this is probably an oversight that should be fixed in a future
release.

Aside: how much generalization?

Some of the methods of the InterestRateIndex class were evidently designed with LIBOR in mind,
since that was the first index of that kind implemented in the library. On the one hand, this makes
the class less generic than one would like: for instance, if we were to decide that the 5-10 years swap-
rate spread were to be considered an interest-rate index in its own right, we would be hard-pressed
to fit it to the interface of the base class and its single tenor method. But on the other hand, it is
seldom wise to generalize an interface without having a couple of examples of classes that should
implement it; and a spread between two indexes (being just that; a spread, not an index) is probably
not one such class.




A. Odds and ends 43

Exercises and payoffs

I'll close this section with a couple of domain-related classes used in the definitions of a few
instruments.

First, the Exercise class, shown in the listing below.

Interface of the Exercise class and its derived classes.

class Exercise {
public:
enum Type {
American, Bermudan, European
}s
explicit Exercise(Type type);
virtual ~Exercise();
Type type() const;
Date date(Size index) const;
const std::vector<Date>& dates() const;
Date lastDate() const;
protected:
std::vector<Date> dates_;
Type type_;
+s

class EarlyExercise : public Exercise {
public:
EarlyExercise(Type type,
bool payoffAtExpiry = false);
bool payoffAtExpiry() const;
s

class AmericanExercise : public EarlyExercise {
public:
AmericanExercise(const Date& earliestDate,
const Date& latestDate,
bool payoffAtExpiry = false);
+s

class BermudanExercise : public EarlyExercise {
public:
BermudanExercise(const std::vector<Date>& dates,
bool payoffAtExpiry = false);
}s



A. Odds and ends 44

class EuropeanExercise : public Exercise {
public:
EuropeanExercise(const Date& date);

s

As you would expect, the base class declares methods to retrieve information on the date, or dates,
of the exercise. Quite a few of them, actually. There’s a dates method that returns the set of exercise
dates, a date method that returns the one at a particular index, and a convenience method lastDate
that, as you might have guessed, returns the last one; so there’s some redundancy there.”> Also,
there’s a type method that is leaving me scratching my head as I look at the code again.

The type method returns the kind of exercise, picking its value from a set (European, Bermudan,
or American) declared in an inner enumeration Exercise: : Type. This is not puzzling per se, but it
goes somewhat against what we did next, which is to use inheritance to declare AmericanExercise,
BermudanExercise, and EuropeanExercise classes. On the one hand, the use of a virtual
destructor in the base Exercise class seems to suggest that inheritance is the way to go if one
wants to define new kind of exercises. On the other hand, enumerating the kind of exercises in the
base class seems to go against this kind of extension, since inheriting a new exercise class would
also require one to add a new case to the enumeration. For inheritance, one can also argue that the
established idiom around the library is to pass around smart pointers to the Exercise class; and
against inheritance, that the class doesn’t define any virtual method except the destructor, and the
behavior of an instance of any derived class is only given by the value of the data members stored
in the base class. In short: it seems that, when we wrote this, we were even more confused than I
am now.

Were I to write it now, I'd probably keep the enumeration and make it a concrete class: the derived
classes might either create objects that can be safely sliced to become Exercise instances when
passed around, or they could be turned into functions returning Exercise instances directly. As
much as this might irk object-oriented purists, there are a number of places in the code where the
type of the exercise need to be checked, and having an enumeration is probably the pragmatic choice
when compared to using casts or some kind of visitor pattern. The absence of specific behavior in
derived classes seems another hint to me.

As I wrote this, it occurred to me that an exercise might also be an Event, as described in chapter
4. However, this doesn’t always match what the Exercise class models. In the case of a European
exercise, we could also model it as an Event instance; in the case of a Bermudan exercise, the
Exercise instance would probably correspond to a set of Event instances; and in the case of an
American exercise, what we’re really modeling here is an exercise range—and as a matter of fact,
the meaning of the interface also changes in this case, since the dates method no longer returns the
set of all possible exercise dates, but just the first and last date in the range. As often happens, the
small things that seem obvious turn out to be difficult to model soundly when looked up close.

* * *

*Lovers of encapsulation will probably prefer the version taking an index to the one returning a vector, since the latter reveals more than
necessary about the internal storage of the class.



A. Odds and ends 45

Onwards to the Payoff class, shown in the next listing together with a few of its derived classes.

Interface of the Payoff class and a few derived classes.

class Payoff : std::unary_function<Real,Real> {
public:
virtual ~Payoff() {}
virtual std::string name() const = 0;
virtual std::string description() const = 0;
virtual Real operator() (Real price) const = 0;
virtual void accept(AcyclicVisitor&);

s

class TypePayoff : public Payoff {
public:
Option: :Type optionType() const;
protected:
TypePayoff (Option: :Type type);
s

class FloatingTypePayoff : public TypePayoff {
public:
FloatingTypePayoff(Option::Type type);
Real operator () (Real price) const;
// more Payoff interface

s

class StrikedTypePayoff : public TypePayoff {
public:
Real strike() const;
// more Payoff interface
protected:
StrikedTypePayoff(Option::Type type,
Real strike);
}s

class PlainVanillaPayoff : public StrikedTypePayoff {
public:
PlainVanillaPayoff(Option::Type type,
Real strike);
Real operator () (Real price) const;
// more Payoff interface

s




A. Odds and ends 46

Its interface includes an operator (), returning the value of the payoff given the value of the
underlying, an accept method to support the Visitor pattern, and a couple of inspectors (name
and description) which can be used for reporting—and are probably one too many.

In hindsight, we tried to model the class before having a grasp of enough use cases. Unfortunately,
the resulting interface stuck. The biggest problem is the dependency of operator() on a single
underlying, which excludes payoffs based on multiple underlying values.** Another one is the over-
reliance on inheritance. For instance, we have a TypePayoff class that adds a type (Call or Put,
which again might be restrictive) and the corresponding inspector; a StrikedTypePayoff which
adds a strike; and, finally, PlainvanillaPayoff, which models a simple call or put payoff and ends
up removed from the Payoff class by three levels of inheritance: probably too many, considering
that this is used to implement a textbook option and will be looked up by people just starting with
the library.

Another misstep we might have made is to add a pointer to a Payoff instance to the Option class as
a data member, with the intent that it should contain the information about the payoff. This led us to
classes such as FloatingTypePayoff, also shown in the listing. It’s used in the implementation of
floating lookback options, and stores the information about the type (as in, call or put); but since the
strike is fixed at the maturity of the option, it can’t specify it and can’t implement the payoff with
the interface we specified. Its operator () throws an exception if invoked. In this case, we might as
well do without the payoff and just pass the type to the lookback option; that is, if its base Option
class didn’t expect a payoff.

Math-related classes

The library also needs some mathematical tools, besides those provided by the C++ standard library.
Here is a brief overview of some of them.

Interpolations

Interpolations belong to a kind of class which is not common in QuantLib: namely, the kind that
might be unsafe to use.

The base class, Interpolation, is shown in the listing below. It interpolates two underlying random-
access sequences of z and y values, and provides an operator () that returns the interpolated values
as well as a few other convenience methods. Like the Calendar class we saw in a previous section,
it implements polymorphic behavior by means of the pimpl idiom: it declares an inner Impl class
whose derived classes will implement specific interpolations and to which the Interpolation
class forwards its own method calls. Another inner class template, templateImpl, implements the
common machinery and stores the underlying data.

**This also constrains how we model payoffs based on multiple fixings of an underlying; for instance, Asian options are passed the payoff
for a plain option and the average of the fixings is done externally, before passing it to the payoff. One might want the whole process to be
described as “the payoff”.



A. Odds and ends

Sketch of the Interpolation class.

47

class Interpolation : public Extrapolator {
protected:
class Impl {
public:
virtual ~Impl() {}
virtual void update() = 0;
virtual Real xMin() const = 0;
virtual Real xMax() const = 0;
virtual Real value(Real) const = 0;
virtual Real primitive(Real) const = 0;
virtual Real derivative(Real) const = 0;
+s
template <class I1, class I2>
class templateImpl : public Impl {
public:
templateImpl(const I1& xBegin, const I1l& xEnd,
const I2& yBegin);
Real xMin() const;
Real xMax() const;
protected:
Size locate(Real x) const;
I1 xBegin_, xEnd_;
I2 yBegin_;
+s
shared_ptr<Impl> +impl_;
public:
typedef Real argument_type;
typedef Real result_type;
bool empty() const { return !impl_; }
Real operator () (Real x, bool extrapolate = false) const {
checkRange(x,extrapolate);
return impl_->value(x);
}
Real primitive(Real x, bool extrapolate = false) const;
Real derivative(Real x, bool extrapolate = false) const;
Real xMin() const;
Real xMax() const;
void update();
protected:
void checkRange(Real x, bool extrapolate) const;

s




A. Odds and ends 48

As you can see, templateImpl doesn’t copy the z and y values; instead, it just provides a kind
of view over them by storing iterators into the two sequences. This is what makes interpolations
unsafe: on the one hand, we have to make sure that the lifetime of an Interpolation instance
doesn’t exceed that of the underlying sequences, to avoid pointing into a destroyed object; and on
the other hand, any class that stores an interpolation instance will have to take special care of

copying.

The first requirement is not a big problem. An interpolation is seldom used on its own; it is usually
stored as a data member of some other class, together with its underlying data. This takes care of
the lifetime issues, as the interpolation and the data live and die together.

The second is not a big problem, either: but whereas the first issue is usually taken care of
automatically, this one requires some action on the part of the developer. As I said, the usual case
is to have an Interpolation instance stored in some class together with its data. The compiler-
generated copy constructor for the container class would make new copies of the underlying data,
which is correct; but it would also make a new copy of the interpolation that would still be pointing
at the original data (since it would store copies of the original iterators). This is, of course, not correct.

To avoid this, the developer of the host class needs to write a user-defined copy constructor that not
only copies the data, but also regenerates the interpolation so that it points to the new sequences—
which might not be so simple. An object holding an Interpolation instance can’t know its exact
type (which is hidden in the Imp1 class) and thus can’t just rebuild it to point somewhere else.

One way out of this would have been to give interpolations some kind of virtual clone method to
return a new one of the same type, or a virtual rebind method to change the underlying iterators
once copied. However, that wasn’t necessary, as most of the times we already have interpolation
traits laying around.

What’s that, you say? Well, it’s those Linear or LogL1inear classes I've been throwing around while
I was explaining interpolated term structures in chapter 3. An example is in the following listing,
together with its corresponding interpolation class.

Sketch of the LinearInterpolation class and of its traits class.

template <class I1, class I2>
class LinearInterpolationImpl
: public Interpolation::templateImpl<Il,I2> {
public:
LinearInterpolationImpl(const Il1& xBegin, const Il1& xEnd,
const I2& yBegin)
Interpolation: :templateImpl<I1l,I2>(xBegin, xEnd, yBegin),
primitiveConst_(xEnd-xBegin), s_(xEnd-xBegin) {}
void update();
Real value(Real x) const {
Size i = this->locate(x);
return this->yBegin_[i] + (x-this->xBegin_[i])*s_[i];



A. Odds and ends 49

Real primitive(Real x) const;

Real derivative(Real x) const;
private:

std: :vector<Real> primitiveConst_, s_;

s

class LinearInterpolation : public Interpolation {
public:
template <class I1, class I2>
LinearInterpolation(const I1& xBegin, const I1& xEnd,
const I2& yBegin) {

impl_ = shared_ptr<Interpolation::Impl>(
new LinearInterpolationImpl<Il,I2>(xBegin, xEnd,
yBegin));

impl_->update();

s

class Linear {
public:
template <class I1, class I2>
Interpolation interpolate(const I1& xBegin, const I1& xEnd,
const I2& yBegin) const {
return LinearInterpolation(xBegin, xEnd, yBegin);
}
static const bool global = false;
static const Size requiredPoints = 2;

s

The LinearInterpolation class doesn’t have a lot of logic: its only method is a template
constructor (the class itself is not a template) that instantiates an inner implementation class. The
latter inherits from templateImpl and is the one that does the heavy lifting, implementing the
actual interpolation formulas (with the help of methods, such as locate, defined in its base class).

The Linear traits class defines some static information, namely, that we need at least two points
for a linear interpolation, and that changing a point only affects the interpolation locally; and also
defines an interpolate method that can create an interpolation of a specific type from a set of
iterators into  and y. The latter method is implemented with the same interface by all traits (when
an interpolation, such as splines, needs more parameters, they are passed to the traits constructor
and stored) and is the one that’s going to help in our copying problem. If you look, for instance, at
the listing of the InterpolatedZeroCurve class back in chapter 3, you’ll see that we’re storing an
instance of the traits class (it’s called interpolator_ there) together with the interpolation and the
underlying data. If we do the same in any class that stores an interpolation, we’ll be able to use the



A. Odds and ends 50

traits to create a new one in the copy constructor.

Unfortunately, though, we have no way at this time to enforce writing a copy constructor in a
class that stores an interpolation, so its developer will have to remember it. We have no way, that
is, without making the Interpolation class non-copyable and thus also preventing useful idioms
(like returning an interpolation from a method, as traits do). In C++11, we’d solve this by making it
non-copyable and movable.

Aside: gordian knots

When implementing a class that stores an interpolation, an alternative to writing a copy constructor
would be to cut right through the problem and make the class non-copyable. It might be less of a
problem than it seems: such classes are usually term structures, and more often than not they’re
passed around inside shared_ptrs, which don’t require copying.

(True story: most curves have been non-copyable for a while before release 1.0, and nobody
complained much about it. Eventually, we reintroduced copying as a convenience, but I'm still not
sure it was necessary.)

A final note: the interpolation stores iterators into the original data, but this is not enough to keep
it up to date when any of the data changes. When this happens, its update method must be called
so that the interpolation can refresh its state; this is the responsibility of the class that contains
the interpolation and the data (and which, probably, is registered as an observer with whatever may
change.) This holds also for those interpolations, such as linear, that might just read the data directly:
depending on the implementation, they might precalculate some results and store them as state to be
kept updated. (The current LinearInterpolation implementation does this for the slopes between
the points, as well as the values of its primitive at the nodes.”” Depending on how frequently the
data are updated, this might be either an optimization or a pessimization.)

One-dimensional solvers

Solvers were used in the bootstrap routines described in chapter 3, the yield calculations mentioned
in chapter 4, and any code that needs a calculated value to match a target; i.e, that needs, given a
function f, to find the x such that f(z) = ¢ within a given accuracy.

The existing solvers will find the x such that f(z) = 0; of course, this doesn’t make them any less
generic, but it requires you to define the additional helper function g(z) = f(z) — ¢. There are a few
of them, all based on algorithms which were taken from Numerical Recipes in C (Press et al, 1992)
and duly reimplemented.*

**The presence of the primitive and derivative methods is a bit of implementation leak. They were required by interpolated interest-rate
curves in order to pass from zero rates to forwards and back.

?$This also goes for a few multi-dimensional optimizers. In that case, apart from the obvious copyright issues, we also rewrote them in
order to use idiomatic C++ and start indexing arrays from 0.



A. Odds and ends 51

The following listing shows the interface of the class template Solver1D, used as a base by the
available solvers.

Interface of the SolveriD class template and of a few derived classes.

template <class Impl>
class SolverlD : public CuriouslyRecurringTemplate<Impl> {
public:
template <class F>
Real solve(const F& f,
Real accuracy,
Real guess,
Real step) const;
template <class F>
Real solve(const F& f,
Real accuracy,
Real guess,
Real xMin,
Real xMax) const;
void setMaxEvaluations(Size evaluations);
void setlLowerBound(Real lowerBound);
void setUpperBound(Real upperBound);
s

class Brent : public SolverlD<Brent> {
public:
template <class F>
Real solveImpl(const F& f,
Real xAccuracy) const;

s

class Newton : public SolverlD<Newton> {
public:
template <class F>
Real solveImpl(const F& f,
Real xAccuracy) const;

s

It provides some boilerplate code, common to all of them: one overload of the solve method
looks for lower and upper values of x that bracket the solution, while the other checks that the
solution is actually bracketed by the passed minimum and maximum values. In both cases, the actual
calculation is delegated to the solveImpl method defined by the derived class and implementing a
specific algorithm. Other methods allow you to set constraints on the explored range, or the number
of function evaluations.



A. Odds and ends 52

The forwarding to solveImpl is implemented using the Curiously Recurring Template Pattern,
already described in chapter 7. When we wrote these classes, we were at the height of our template
craze (did I mention we even had an implementation of expression templates? (Veldhuizen, 2000))
so you might suspect that the choice was dictated by the fashion of that time. However, it wouldn’t
have been possible to use dynamic polymorphism. We wanted the solvers to work with any function
pointer or function object, and boost: : function wasn’t around yet, which forced us to use a
template method. Since the latter couldn’t be virtual, CRTP was the only way to put the boilerplate
code in the base class and let it call a method defined in derived ones.

A few notes to close this subsection. First: if you want to write a function that takes a solver, the
use of CRTP forces you to make it a template, which might be awkward. To be honest, most of the
times we didn’t bother and just hard-coded an explicit choice of solver. I won’t blame you if you do
the same. Second: most solvers only use the passed f by calling f (x), so they work with anything
that can be called as a function, but Newton and NewtonSafe also require that f.derivative(x) be
defined. This, too, might have been awkward if we used dynamic polymorphism. Third, and last: the
Solver1D interface doesn’t specify if the passed accuracy e should apply to z (that is, if the returned
7 should be within e of the true root) or to f(z) (that is, if f(#) should be within ¢ of 0). However, all
existing solvers treat it as the accuracy on z.

Optimizers

Multi-dimensional optimizers are more complex than 1-D solvers. In a nutshell, they find the set of
variables x for which the cost function f(x) returns its minimum value; but of course, there’s a bit
more to it.

Unlike solvers, optimizers don’t use templates. They inherit from the base class OptimizationMethod,
shown in the next listing.

Interface of the OptimizationMethod class.

class OptimizationMethod {
public:
virtual ~OptimizationMethod() {}
virtual EndCriteria::Type minimize(
Problem& P,
const EndCriteria& endCriteria) = 0;

s

Its only method, apart from the virtual destructor, is minimize. The method takes a reference to
a Problem instance, which in turn contains references to the function to minimize and to any
constraints, and performs the calculations; at the end of which, it has the problem of having too many
things to return. Besides the best-solution array X, it must return the reason for exiting the calculation
(did it converge, or are we returning our best guess after the maximum number of evaluations?) and
it would be nice to return f(x) as well, since it’s likely that it was already calculated.



A. Odds and ends 53

In the current implementation, the method returns the reason for exiting and stores the other results
inside the Probleminstance. This is also the reason for passing the problem as a non-const reference;
an alternative solution might have been to leave the Problem instance alone and to return all
required values in a structure, but I see how this might be seen as more cumbersome. On the other
hand, I see no reason for minimize itself to be non-const: my guess is that it was an oversight on
our part (I'll get back to this later).

Onward to the Problem class, shown in the listing below.

Interface of the Problem class.

class Problem {
public:
Problem(CostFunction& costFunction,
Constraint& constraint,
const Array& initialValue = Array());

Real value(const Array& x);

Disposable<Array> values(const Array& x);
void gradient(Array& grad_f, const Array& x);
// ... other calculations

Constraint& constraint() const;
// ... other dinspectors ...

const Array& currentValue();
Real functionValue() const;
void setCurrentValue(const Array& currentValue);
Integer functionEvaluation() const;
// ... other results
s

As I mentioned, it groups together arguments such as the cost function to minimize, the constraints,
and an optional guess. It provides methods that call the underlying cost function while keeping
track of the number of evaluation, and that I'll describe when talking about cost functions; a few
inspectors for its components; and methods to retrieve the results (as well as to set them; the latter
are used by the optimizers).

The problem (no pun intended) is that it takes and stores its components as non-const references.
I'll talk later about whether they might be const instead. The fact that they’re reference is an issue
in itself, since it puts the responsibility on client code to make sure that their lifetimes last at least
as much as that of the Problem instance.

In an alternative implementation in which the optimizer returned its results in a structure, the issue
might be moot: we might do away with the Problem class and pass its components directly to



A. Odds and ends 54

the minimize method. This would sidestep the lifetime issue, since they wouldn’t be stored. The
disadvantage would be that each optimizer would have to keep track of the number of function
evaluations, causing some duplication in the code base.

Also unlike for 1-D solvers, the cost function is not a template parameter for the minimization
method. It needs to inherit from the CostFunction class, shown in the next listing.

Interface of the CostFunction class.

class CostFunction {
public:
virtual ~CostFunction() {}

virtual Real value(const Array& x) const = 0;
virtual Array values(const Array& x) const = 0;

virtual void gradient(Array& grad, const Array& x) const;
virtual Real valueAndGradient(Array& grad,
const Array& x) const;
virtual void jacobian(Matrix &jac, const Array &x) const;
virtual Array valuesAndJacobian(Matrix &jac,
const Array &x) const;

s

Unsurprisingly, its interface declares the value method, which returns, well, the value of the
function for the given array of arguments;*’ but it also declares a values method returning an array,
which is a bit more surprising until you remember that optimizers are often used for calibrating over
a number of quotes. Whereas value returns the total error to minimize (let’s say, the sum of the
squares of the errors, or something like it), values returns the set of errors over each quote; there
are algorithms that can make use of this information to converge more quickly.

Other methods return the derivatives of the value, or the values, for use by some specific algorithms:
gradient calculates the derivative of value with respect to each variable and stores it in the
array passed as first argument, jacobian does the same for values filling a matrix, and the
valueAndGradient and valuesAndJacobian methods calculate both values and derivatives at the
same time for efficiency. They have a default implementation that calculates numerical derivatives;
but of course that’s costly, and derivative-based algorithms should only be used if you can override
the method with an analytic calculation.

A note: checking the interface of CostFunction shows that all its methods are declared as const,
so passing it as non-{const} reference to the Problem constructor was probably a goof. Changing
it to const would widen the contract of the constructor, so it should be possible without breaking
backward compatibility.

Finally, the Constraint class, shown in the following listing.

% Although you might be a bit surprised that it doesn’t declare operator () instead.



A. Odds and ends 55

Interface of the Constraint class.

class Constraint {
protected:
class Impl;
public:
bool test(const Array& p) const;
Array upperBound(const Array& params) const;
Array lowerBound(const Array& params) const;
Real update(Array& p,
const Array& direction,
Real beta);
Constraint(const shared_ptr<Impl>& impl =
shared_ptr<Impl>());
b

It works as a base class for constraints to be applied to the domain of the cost function; the library
also defines a few predefined ones, not shown here, as well as a CompositeConstraint class that
can be used to merge a number of them into a single one.

Its main method is test, which takes an array of variables and returns whether or not they satisty
the constraint; that is, if the array belongs to the domain we specified as valid. It also defines the
upperBound and lowerBound methods, which in theory should specify the maximum and minimum
value of the variables but in practice can’t always specify them correctly; think of the case in which
the domain is a circle, and you’ll see that there are cases in which z and y are both between their
upper and lower bounds but the resulting point is outside the domain.

A couple more notes. First, the Constraint class also defines an update method. It’s not const,
which would make sense if it updated the constraint; except it doesn’t. It takes an array of variables
and a direction, and extends the original array in the given direction until it satisfies the constraint.
It should have been const, it should have been named differently, and as the kids say I can’t even.
This might be fixed, though. Second, the class uses the pimpl idiom (see a previous section) and the
default constructor also takes an optional pointer to the implementation. Were I to write the class
today, I'd have a default constructor taking no arguments and an additional constructor taking the
implementation and declared as protected and to be used by derived classes only.

Some short final thoughts on the const-correctness of these classes. In summary: it’s not great, with
some methods that can be fixed and some others that can’t. For instance, changing the minimize
method would break backwards compatibility (since it’s a virtual method, and constness is part
of its signature) as well as a few optimizers, that call other methods from minimize and use data
members as a way to transfer information between methods.”® We could have avoided this if we
had put some more effort in reviewing code before version 1.0. Let this be a lesson for you, young
coders.

*8Some of them declare those data members as mutable, suggesting the methods might have been const in the past. As I write this, I
haven’t investigated this further.



A. Odds and ends 56

Statistics

The statistics classes were written mostly to collect samples from Monte Carlo simulations (you’ll
remember them from chapter 6). The full capabilities of the library are implemented as a series of
decorators, each one adding a layer of methods, instead of a monolith; as far as I can guess, that’s
because you can choose one of two classes at the bottom of the whole thing. A layered design gives
you the possibility to build more advanced capabilities just once, based on the common interface of
the bottom layer.

The first class you can choose, shown below, is called IncrementalStatistics, and has the
interface you would more or less expect: it can return the number of samples, their combined weight
in case they were weighed, and a number of statistics results.

Interface of the IncrementalStatisticsclass.

class IncrementalStatistics {
public:
typedef Real value_type;
IncrementalStatistics();

Size samples() const;

Real weightSum() const;

Real mean() const;

Real variance() const;

Real standardDeviation() const;
Real errorEstimate() const;

// skewness, kurtosis, min, max...

void add(Real value, Real weight = 1.0);
template <class DatalIterator>
void addSequence(Datalterator begin, Datalterator end);

s

Samples can be added one by one or as a sequence delimited by two iterators. The shtick of this
class is that it doesn’t store the data it gets passed, but instead it updates the statistics on the fly;
the idea was to save the memory that would be otherwise used for the storage, and in the year 2000
(when a computer might have 128 or 256 MB of RAM) it was a bigger concern than it is now. The
implementation used to be homegrown; nowadays it’s written in terms of the Boost accumulator
library.

The second class, GeneralStatistics, implements the same interface and adds a few other
methods, made possible by the fact that it stores (and thus can return) the passed data; for instance,
it can return percentiles or sort its data. It also provides a template expectationValue method that
can be used for bespoke calculations; if you're interested, there’s more on that in the aside at the
end of this section.



A. Odds and ends 57

Interface of the GeneralStatistics class.

class GeneralStatistics {
public:
// ... same as IncrementalStatistics

const std::vector<std::pair<Real,Real> >& data() const;

template <class Func, class Predicate>
std::pair<Real,Size>
expectationValue(const Func& f,

const Predicate& inRange) const;

Real percentile(Real y) const;
// ... other inspectors

void sort() const;
void reserve(Size n) const;

s

Next, the outer layers. The first ones add statistics associated with risk, like expected shortfall or
value at risk; the problem being that you usually need the whole set of samples for those. In the case of
incremental statistics, therefore, we have to forgo the exact calculation and look for approximations.
One possibility is to take the mean and variance of the samples, suppose they come from a Gaussian
distribution with the same moments, and get analytic results based on this assumption; that’s what
the GenericGaussianStatistics class does.

Interface of the GaussianStatistics class.

template<class S$>
class GenericGaussianStatistics : public S {
public:
typedef typename S::value_type value_type;
GenericGaussianStatistics() {}
GenericGaussianStatistics(const S& s) : S(s) {}

Real gaussianDownsideVariance() const;

Real gaussianDownsideDeviation() const;

Real gaussianRegret(Real target) const;

Real gaussianPercentile(Real percentile) const;

Real gaussianValueAtRisk(Real percentile) const;

Real gaussianExpectedShortfall(Real percentile) const;
// ... other measures

s



A. Odds and ends 58

typedef GenericGaussianStatistics<GeneralStatistics>
GaussianStatistics;

As I mentioned, and as you can see, it’s implemented as a decorator; it takes the class to decorate as
a template parameter, inherits from it so that it still has all the methods of its base class, and adds
the new methods. The library provides a default instantiation, GaussianStatistics, in which the
template parameter is GeneralStatistics. Yes, I would have expected the incremental version,
too, but there’s a reason for this; bear with me for a minute.

When the base class stores the full set of samples, we can write a decorator that calculates the actual
risk measures; that would be the GenericRiskStatistics class. As for the Gaussian statistics, I
won’t discuss the implementation (you can look them up in the library).

Interface of the RiskStatistics class.

template <class S>
class GenericRiskStatistics : public S {
public:
typedef typename S::value_type value_type;

Real downsideVariance() const;

Real downsideDeviation() const;

Real regret(Real target) const;

Real valueAtRisk(Real percentile) const;

Real expectedShortfall(Real percentile) const;
// ... other measures

s

typedef Gener-icRiskStatistics<GaussianStatistics>
RiskStatistics;

As you can see, the layers can be combined; the default instantiation provided by the library,
RiskStatistics, takes GaussianStatistics as its base and thus provides both Gaussian and
actual measures. This was also the reason why GeneralStatistics was used as the base for the
latter.

On top of it all, it’s possible to have other decorators; the library provides a few, but I won’t
show their code here. One is SequenceStatistics, that can be used when a sample is an array
instead of a single number, uses internally a vector of instances of scalar statistics classes, and
also adds the calculation of the correlation and covariance between the elements of the samples;
it is used, for instance, in the LIBOR market model, where each sample usually collects cash flows
at different times. Other two are ConvergenceStatistics and DiscrepancyStatistics; they
provide information on the properties of the sequence of samples, aren’t used anywhere else in the
library, but at least we had the decency of writing unit tests for both of them.



A. Odds and ends 59

Aside: extreme expectations.

Looking back at the GeneralStatistics class, I'm not sure if I should be proud or ashamed of it,
because—oh boy, I really went to town with generalization there.

It might have been the mathematics. It started with a straightforward implementation; but looking
at the formulas for the mean, the variance, and even some more complex one defined in other layers,
I saw that they all could be written (give or take some later adjustments) as

Powier f(@)wi

ZziGR Wi '

that is, the expected value of f(z) over some range R. For the mean, f(x) would be the identity
and R would be the full domain of the samples; for the variance, f(z) would be (z — z)* over the
same range; and so on. The result was a template expectationValue method that would take the
function f and the range R and return the corresponding result and the number of samples in the
range; most other methods are implemented by calling it with the relevant inputs. If you’re a bit
confused at first about the mean being implemented as

return expectationValue(identity<Real>(),
everywhere()).first;

then I can’t blame you. By the way, I must have been learning about functional programming at the
time; the range is passed as a function that takes a sample and return true or false depending on
whether it’s in the range, and everywhere above is one of a few small predefined helper functions
[ added to write this kind of code. It’s all fun and games until someone writes (z — 7)* as

compose (square<Real>(),
std::bind2nd(std: :minus<Real>(), mean()))

Self-snark aside: the above is very general and allows client code to create new calculations, but
probably caters a bit too much to the math-inclined and can make for cryptic code, so I'm not
sure that I stroke the right balance here. Replacing binds with lambdas in C++11 might certainly
help; we’ll see how this code turns out when we start using them. On the other hand, performance
shouldn’t be a problem: expectationValue is a template, and so are the functions like compose
and everywhere above, so the compiler can see their implementation and can probably inline them.
In that case, the result would be the simpler loop we might have written in a direct implementation
of the mean or variance formulas.

Linear algebra

I don’t have a lot to write about the current implementation of the Array and Matrix classes, shown
in the following listing.



A. Odds and ends

Sketch of the Array and Matrix classes.

60

class Array {

public:
explicit Array(Size size = 0);
// ... other constructors

Array(const Array&);

Array(const Disposable<Array>&);

Array& operator=(const Array&);

Array& operator=(const Disposable<Array>&);

const Array& operator+=(const Array&);
const Array& operator+=(Real);
// ... other operators

Real operator[](Size) const;
Real& operator[] (Size);

void swap(Array&);
// ... diterators and other utilities
private:
boost: :scoped_array<Real> data_;
Size n_;
b
Disposable<Array> operator+(const Array&, const Array&);
Disposable<Array> operator+(const Array&, Real);

// ... other operators and functions

class Matrix {

public:
Matrix(Size rows, Size columns);
// ... other constructors, assignment operators etc.

const_row_iterator operator[](Size) const;
row_iterator operator[](Size);
Real& operator () (Size i, Size j) const;

// ... dterators and other utilities

s

Disposable<Matrix> operator+(const Matrix&, const Matrix&);
// ... other operators and functions




A. Odds and ends 61

Their interface is what you would expect: constructors and assignment operators, element access (the
Array class provides the a[1] syntax; the Matrix class provides bothm[i][j] andm(i,3j), because
we aim to please), a bunch of arithmetic operators, all working element by element as usual,”” and a
few utilities. There are no methods for resizing, or for other operations suited for containers, because
this classes are not meant to be used as such; they’re mathematical utilities. Storage is provided by
a scoped_ptr, which manages the lifetime of the underlying memory.

In the case of Array, we also provide a few functions such as Abs, Log and their like; being
good citizens, we're not overloading the corresponding functions in namespace std because that’s
forbidden by the standard. More complex functionality (such as matricial square root, or various
decompositions) can be found in separate modules.

In short, a more or less straightforward implementation of arrays and matrices. The one thing which
is not obvious is the presence of the Disposab'le class template, which I'll describe in more detail
in a further section of this appendix; for the time being, let me just say that it’s a pre-C++11 attempt
at move semantics.

The idea was to try and reduce the abstraction penalty. Operator overloading is very convenient—
after all, ¢ = a+b is much easier to read than understand than add(a,b,c)—but doesn’t come for
free: declaring addition as

Array operator+(const Array& a, const Array& b);

means that the operator must create and return a new Array instance, that is, must allocate and
possibly copy its memory. When the number of operations increases, so does the overhead.

In the first versions of the library, we tried to mitigate the problem by using expression templates.
The idea (that I will only describe very roughly, so I suggest you read (Veldhuizen, 2000) for details)
is that operators don’t return an array, but some kind of parse tree holding references to the terms
of the expression; so, for instance, 2xa+b won’t actually perform any calculation but only create
a small structure with the relevant information. It is only when assigned that the expression is
unfolded; and at that point, the compiler would examine the whole thing and generate a single loop
that both calculates the result and copies it into the array being assigned.

The technique is still relevant today (possibly even more so, given the progress in compiler
technology) but we abandoned it after a few years. Not all compilers were able to process it, forcing
us to maintain both expression templates and the simpler implementation, and it was difficult to
read and maintain (compare the current declaration of operator+ with

VectorialExpression<
BinaryVectorialExpression<
Array::const_iterator, Array::const_iterator, Add> >
operator+(const Array& vl, const Array& v2);

*1t always bothered me that axb returns the element-wise product and not the dot product, but I seem to be alone among programmers.



A. Odds and ends 62

for a taste of what the code was like); therefore, when the C++ community started talking of move
semantics and some ideas for implementations began to appear, we took the hint and switched to
Disposable.

As 1 said, compilers progressed a lot during these years; nowadays, I'm guessing that all of
them would support an expression-template implementation, and the technique itself has probably
improved. However, if I were to write the code today (or if I started to change things) the question
might be whether to write classes such as Array or Matrix at all. At the very least, 'd consider
implementing them in terms of std: : valarray, which is supposed to provide facilities for just such
a task. In the end, though, I’d probably go for some existing library such as uBLAS: it is available in
Boost, it’s written by actual experts in numerical code, and we already use it in some parts of the
library for specialized calculations.

Global settings

The Settings class, outlined in the listing below, is a singleton (see later) that holds information
global to the whole library.

Outline of the Settings class.

class Settings : public Singleton<Settings> {
private:
class DateProxy : public ObservableValue<Date> {
DateProxy();
operator Date() const;

}s
// more implementation details
public:
DateProxy& evaluationDate();
const DateProxy& evaluationDate() const;
boost: :optional<bool>& +includeTodaysCashFlows() ;
boost: :optional<bool> -includeTodaysCashFlows() const;

s

Most of its data are flags that you can look up in the official documentation, or that you can simply
live without; the one piece of information that you’ll need to manage is the evaluation date, which
defaults to today’s date and is used for the pricing of instruments and the fixing of any other quantity.

This poses a challenge: instruments whose value can depend on the evaluation date must be notified
when the latter changes. This is done by returning the corresponding information indirectly, namely,
wrapped inside a proxy class; this can be seen from the signature of the relevant methods. The proxy



A. Odds and ends 63

inherits from the ObservableValue class template (outlined in the next listing) which is implicitly
convertible to Observable and overloads the assignment operator in order to notify any changes.
Finally, it allows automatic conversion of the proxy class to the wrapped value.

Outline of the ObservableValue class template.

template <class T>
class ObservableValue {
public:
// initialization and assignment
ObservableValue(const T& t)
: value(t), observable_(new Observable) {}
ObservableValue<T>& operator=(const T& t) {
value_ = t;
observable_->notifyObservers();
return x*this;
}
// implicit conversions
operator T() const { return value_; }
operator shared_ptr<Observable>() const {
return observable_;
}
private:
T value_;
shared_ptr<Observable> observable_;

s

This allows one to use the facility with a natural syntax. On the one hand, it is possible for an
observer to register with the evaluation date, as in:

registerWith(Settings::instance().evaluationDate());
on the other hand, it is possible to use the returned value just like a Date instance, as in:

Date d2 =
calendar.adjust(Settings::instance().evaluationDate());

which triggers an automatic conversion; and on the gripping hand, an assignment can be used for
setting the evaluation date, as in:

Settings::instance().evaluationDate() = d;



A. Odds and ends 64

which will cause all observers to be notified of the date change.

Of course, the elephant in the room is the fact that we have a global evaluation date at all. The
obvious drawback is that one can’t perform two parallel calculations with two different evaluation
dates, at least in the default library configuration; but while this is true, it is also not the whole story.
On the one hand, there’s a compilation flag that allows a program to have one distinct Settings
instance per thread (with a bit of work on the part of the user) but as we’ll see, this doesn’t solve all
the issues. On the other hand, the global data may cause unpleasantness even in a single-threaded
program: even if one wanted to evaluate just an instrument on a different date, the change will
trigger recalculation for every other instrument in the system when the evaluation date is set back
to its original value.

This clearly points (that is, quite a few smart people had the same idea when we talked about it)
to some kind of context class that should replace the global settings. But how would one select a
context for any given calculation?

It would be appealing to add a setContext method to the Instrument class, and to arrange things
so that during calculation the instrument propagates the context to its engine and in turn to any
term structures that need it. However, [ don’t think this can be implemented easily.

First, the instrument and its engine are not always aware of all the term structures that are involved
in the calculation. For instance, a swap contains a number of coupons, any of which might or might
not reference a forecast curve. We’re not going to reach them unless we add the relevant machinery
to all the classes involved. I'm not sure that we want to set a context to a coupon.

Second, and more important, setting the context for an engine would be a mutating operation.
Leaving it to the instrument during calculations would execute it at some point during the call
to its NPV method, which is supposed to be const. This would make it way too easy to trigger a race
condition; for instance with a harmless-looking operation such as using the same discount curve
for two instruments and evaluating them at different dates. If you have a minimum of experience
in parallel programming, you wouldn’t dream of, say, relinking the same handle in two concurrent
threads; but when the mutation is hidden inside a const method, you might not be aware of it. (But
wait, you say. Aren’t there other mutating operations possibly being done during the call to NPV?
Good catch: see the aside at the end of this section.)

So it seems that we have to set up the context before starting the calculation. This rules out driving
the whole thing from the instrument (because, again, we would be hiding the fact that setting a
context to an instrument could undo the work done by another that shared a term structure with
the first) and suggests that we’d have to set the context explicitly on the several term structures. On
the plus side, we no longer run the risk of a race in which we unknowingly try to set the same context
to the same object. The drawbacks are that our setup just got more complex, and that we’d have to
duplicate curves if we want to use them concurrently in different contexts: two parallel calculations



A. Odds and ends 65

on different dates would mean, for instance, two copies of the overnight curve for discounting. And
if we have to do this, we might as well manage with per-thread singletons.

Finally, I'm skipping over the scenario in which the context is passed but not saved. It would lead
to method calls like

termStructure->discount(t, context);

which would completely break caching, would cause discomfort to all parties involved, and if we
wanted stuff like this we’d write in Haskell.

To summarize: [ hate to close the section on a gloomy note, but all is not well. The global settings are
a limitation, but I don’t have a solution; and what’s worse, the possible changes increase complexity.
We would not only tell first-time users looking for the Black-Scholes formula that they needs term
structures, quotes, an instrument and an engine: we’d also put contexts in the mix. A little help here?

Aside: more mutations than in a B-movie.

Unfortunately, there are already a number of things that change during a call to the supposedly
const method Instrument: :NPV.

To begin with, there are the arguments and results structures inside the engine, which are read
and written during calculation and thus prevent the same engine to be used concurrently for
different instruments. This might be fixed by adding a lock to the engine (which would serialize
the calculations) or by changing the interface so that the engine’s calculate method takes the
arguments structure as a parameter and returns the results structure.

Then, there are the mutable data members of the instrument itself, which are written at the end of
the calculation. Whether this is a problem depends on the kind of calculations one’s doing. I suppose
that calculating the value of the instrument twice in concurrent threads might just result in the same
values being written twice.

The last one that comes to mind is a hidden mutation, and it’s probably the most dangerous. Trying
to use a term structure during the calculation might trigger its bootstrap, and two concurrent ones
would trash each other’s calculations. Due to the recursive nature of the bootstrap, I'm not even sure
how we could add a lock around it. So if you do decide to perform concurrent calculations (being
careful, setting up everything beforehand and using the same evaluation date) be sure to trigger a
full bootstrap of your curves before starting.

Utilities

In QuantLib, there are a number of classes and functions which don’t model a financial concept.
They are nuts and bolts, used to build some of the scaffolding for the rest of the library. This section
is devoted to some of these facilities.



A. Odds and ends 66

Smart pointers and handles

The use of run-time polymorphism dictates that many, if not most, objects be allocated on the heap.
This raises the problem of memory management—a problem solved in other languages by built-in
garbage collection, but left in C++ to the care of the developer.

I will not dwell on the many issues in memory management, especially since they are now mostly
a thing of the past. The difficulty of the task (especially in the presence of exceptions) was enough
to discourage manual management; therefore, ways were found to automate the process.

The weapons of choice in the C++ community came to be smart pointers: classes that act like built-in
pointers but that can take care of the survival of the pointed objects while they are still needed and
of their destruction when this is no longer the case. Several implementations of such classes exist
which use different techniques; we chose the smart pointers from the Boost libraries (most notably
shared_ptr, now included in the ANSI/ISO C++ standard). Don’t look for boost: :shared_ptr in
the library, though: the relevant classes are imported in an internal QuantLib namespace and used,
e.g., as ext::shared_ptr. This will allow us to switch to the C++11 implementation painlessly
when the time comes.

I won’t go into details on shared pointers; you can browse the Boost site for documentation. Here,
I'll just mention that their use in QuantLib completely automated memory management. Objects
are dynamically allocated all over the place; however, there is not one single delete statement in
all the tens of thousands of lines of which the library consists.

Pointers to pointers (if you need a quick refresher, see the aside at the end of the section for their
purpose and semantics) were also replaced by smart equivalents. We chose not to just use smart
pointers to smart pointers; on the one hand, because having to write

ext::shared_ptr<ext::shared_ptr<YieldTermStructure> >

gets tiresome very quickly—even in Emacs; on the other hand, because the inner shared_ptr
would have to be allocated dynamically, which just didn’t felt right; and on the gripping hand,
because it would make it difficult to implement observability. Instead, a class template called Handle
was provided for this purpose. Its implementation, shown in the listing that follows, relies on an
intermediate inner class called Link which stores a smart pointer. In turn, the Handle class stores
a smart pointer to a Link instance, decorated with methods that make it easier to use it. Since all
copies of a given handle share the same link, they are all given access to the new pointee when any
one of them is linked to a new object.



A. Odds and ends 67

Outline of the Handle class template.

template <class Type>
class Handle {
protected:
class Link : public Observable, public Observer {
public:
explicit Link(const shared_ptr<Type>& h =
shared_ptr<Type>());
void linkTo(const shared_ptr<Type>&);
bool empty() const;
void update() { notifyObservers(); }
private:

shared_ptr<Type> h_;

}s5

shared_ptr<Link<Type> > link_;

public:
explicit Handle(const shared_ptr<Type>& h =
shared_ptr<Type>());

const shared_ptr<Type>& operator->() const;

const shared_ptr<Type>& operator*() const;

bool empty() const;

operator shared_ptr<Observable>() const;

s

template <class Type>
class RelinkableHandle : public Handle<Type> {
public:
explicit RelinkableHandle(const shared_ptr<Type>& h =
shared_ptr<Type>());
void linkTo(const shared_ptr<Type>&);
}s

The contained shared_ptr<Link> also gives the handle the means to be observed by other classes.
The Link class is both an observer and an observable; it receives notifications from its pointee
and forwards them to its own observers, as well as sending its own notification each time it
is made to point to a different pointee. Handles take advantage of this behavior by defining an
automatic conversion to shared_ptr<Observable> which simply returns the contained link. Thus,

the statement

registerWith(h);

is legal and works as expected; the registered observer will receive notifications from both the link
and (indirectly) the pointed object.



A. Odds and ends 68

You might have noted that the means of relinking a handle (i.e., to have all its copies point to a
different object) were not given to the Handle class itself, but to a derived RelinkableHandle
class. The rationale for this is to provide control over which handle can be used for relinking—and
especially over which handle can’t. In the typical use case, a Handle instance will be instantiated
(say, to store a yield curve) and passed to a number of instruments, pricing engines, or other objects
that will store a copy of the handle and use it when needed. The point is that an object (or client
code getting hold of the handle, if the object exposes it via an inspector) must not be allowed to
relink the handle it stores, whatever the reason; doing so would affect a number of other object.*

The link should only be changed from the original handle—the main handle, if you like.

Given the frailty of human beings, we wanted this to be enforced by the compiler. Making the 1inkTo
method a const one and returning const handles from our inspectors wouldn’t work; client code
could simply make a copy to obtain a non-const handle. Therefore, we removed 1inkTo from the
Handle interface and added it to a derived class. The type system works nicely to our advantage. On
the one hand, we can instantiate the main handle as a RelinkableHandle and pass it to any object
expecting a Handle; automatic conversion from derived to base class will occur, leaving the object
with a sliced but fully functional handle. On the other hand, when a copy of a Handle instance is
returned from an inspector, there’s no way to downcast it to RelinkableHandle.

Aside: pointer semantics.

Storing a copy of a pointer in a class instance gives the holder access to the present value of the
pointee, as in the following code:

class Foo {
intx p;
public:
Foo(intx p) : p(p) {}
int value() { return *p; }

+s

int i=42;

int *p = &i;

Foo f(p);

cout << f.value(); // will print 42
i+t

cout << f.value(); // will print 43

However, the stored pointer (which is a copy of the original one) is not modified when the external
one is.

int i=42, j=0;
int *p = &i;

*°This is not as far-fetched as it might seem; we’ve been bitten by it.



A. Odds and ends 69

Foo f(p);

cout << f.value(); // will print 42

p = &j;

cout << f.value(); // will still print 42

As usual, the solution is to add another level of indirection. Modifying Foo so that it stores a pointer
to pointer gives the class both possibilities.

int i=42, j=0;

int *p = &i;

int *xpp = &p;

Foo f(pp);

cout << f.value(); // will print 42
i+t

cout << f.value(); // will print 43
p = &j;

cout << f.value(); // will print 0

Error reporting

There are a great many places in the library where some condition must be checked. Rather than
doing it as

if (i >= v.size())
throw Error("index out of range");

we wanted to express the intent more clearly, i.e., with a syntax like
require(i < v.size(), "index out of range");

where on the one hand, we write the condition to be satisfied and not its opposite; and on the other
hand, terms such as require, ensure, or assert—which have a somewhat canonical meaning in
programming—would tell whether we’re checking a precondition, a postcondition, or a programmer
error.

We provided the desired syntax with macros. “Get behind thee,” I hear you say. True, macros have
a bad name, and in fact they caused us a problem or two, as we’ll see below. But in this case,
functions had a big disadvantage: they evaluate all their arguments. Many times, we want to create
a moderately complex error message, such as



A. Odds and ends 70

require(i < v.size(),
"index " + to_string(i) + " out of range'");

If require were a function, the message would be built whether or not the condition is satisfied,
causing a performance hit that would not be acceptable. With a macro, the above is textually replaced
by something like

if (I(i < v.size()))
throw Error("index " + to_string(i) + " out of range");

which builds the message only if the condition is violated.

The next listing shows the current version of one of the macros, namely, QL_REQUIRE; the other
macros are defined in a similar way.

Definition of the QL_REQUIRE macro.

#define QL_REQUIRE(condition,message) \
if (!(condition)) { \
std::ostringstream _ql_msg_stream; \
_ql_msg_stream << message; \
throw QuantLib::Error(__FILE__,__LINE__, \
BOOST_CURRENT_FUNCTION, \
_ql_msg_stream.str()); \
} else

Its definition has a few more bells and whistles that might be expected. Firstly, we use an
ostringstream to build the message string. This allows one to use a syntax like

QL_REQUIRE(i < v.size(),
"jndex " << i << " out of range");

to build the message (you can see how that works by replacing the pieces in the macro body).
Secondly, the Error instance is passed the name of the current function as well as the line and
file where the error is thrown. Depending on a compilation flag, this information can be included
in the error message to help developers; the default behavior is to not include it, since it’s of little
utility for users. Lastly, you might be wondering why we added an else at the end of the macro.
That is due to a common macro pitfall, namely, its lack of a lexical scope. The else is needed by
code such as



A. Odds and ends 71

if (someCondition())

QL_REQUIRE(i < v.size(), "index out of bounds");
else

doSomethingElse();

Without the else in the macro, the above would not work as expected. Instead, the else in the code
would pair with the i f in the macro and the code would translate into

if (someCondition()) {
if (I(i < v.size()))
throw Error("index out of bounds");
else
doSomethingElse();

which has a different behavior.

As a final note, I have to describe a disadvantage of these macros. As they are now, they throw
exceptions that can only return their contained message; no inspector is defined for any other
relevant data. For instance, although an out-of-bounds message might include the passed index,
no other method in the exception returns the index as an integer. Therefore, the information can be
displayed to the user but would be unavailable to recovery code in catch clauses—unless one parses
the message, that is; but that is hardly worth the effort. There’s no planned solution at this time, so
drop us a line if you have one.

Disposable objects

The Disposable class template was an attempt to implement move semantics in C++03 code. To
give credit where it’s due, we took the idea and technique from an article by Andrei Alexandrescu
(Alexandrescu, 2003) in which he described how to avoid copies when returning temporaries.

The basic idea is the one that was starting to float around in those years and that was given its
final form in C++11: when passing a temporary object, copying it into another one is often less
efficient than swapping its contents with those of the target. You want to move a temporary vector?
Copy into the new object the pointer to its storage, instead of allocating a new one and copying the
elements. In modern C++, the language itself supports move semantics with the concept of rvalue
reference (Hinnant et al, 2006); the compiler knows when it’s dealing with a temporary, and we can
use std: :move in the few cases when we want to turn an object into one. In our implementation,
shown in the following listing, we don’t have such support; you'll see the consequences of this in a
minute.



A. Odds and ends 72

Implementation of the Disposable class template.

template <class T>
class Disposable : public T {
public:
Disposable(T& t) {
this->swap(t);
}
Disposable(const Disposable<T>& t) : T() {
this->swap(const_cast<Disposable<T>&>(t));
}
Disposable<T>& operator=(const Disposable<T>& t) {
this->swap(const_cast<Disposable<T>&>(t));
return xthis;

s

The class itself is not much to look at. It relies on the template argument implementing a swap
method; this is where any resource contained inside the class are swapped (hopefully in a cheap way)
instead of copied. The constructors and the assignment operator all use this to move stuff around
without copies—with a difference, depending on what is passed. When building a Disposable from
another one, we take it by const reference because we want the argument to bind to temporaries;
that’s what most disposables will be. This forces us to use a const_cast in the body, when it’s
time to call swap and take the resources from the disposable. When building a Disposable from
a non-disposable object, instead, we take is as a non-const reference; this is to prevent ourselves
from triggering unwanted destructive conversions and from finding ourselves with the empty husk
of an object when we thought to have a usable one. This, however, has a disadvantage; I'll get to it
in a minute.

The next listing shows how to retrofit Disposable to a class; Array, in this case.

Use of the Disposable class template in the Array class.

Array: :Array(const Disposable<Array>& from)
data_((Real*) (0)), n_(0) {
swap (const_cast<Disposable<Array>&> (from));

Array& Array::operator=(const Disposable<Array>& from) {
swap (const_cast<Disposable<Array>&>(from));
return xthis;

void Array::swap(Array& from) {



A. Odds and ends 73

data_.swap(from.data_);
std: :swap(n_,from.n_);

Asyou see, we need to add a constructor and an assignment operator taking a Disposable (in C++11,
they would be a move constructor and a move assignment operators taking an rvalue reference) as
well as the swap method that will be used in all of them. Again, the constructors take the Disposable
by const reference and cast it later, in order to bind to temporaries—although now that I think of
it, they could take it by copy, adding another cheap swap.

Finally, the way Disposable is used is by returning it from function, like in the following code:

Disposable<Array> ones(Size n) {
Array result(n, 1.0);
return result;

Array a = ones(10);

Returning the array causes it to be converted to Disposable, and assigning the returned object
causes its contents to be swapped into a.

Now, you might remember that I talked about a disadvantage when I showed you the Disposable
constructor being safe and taking an object by non-const reference. It’s that it can’t bind to
temporaries; therefore, the function above can’t be written more simply as:

Disposable<Array> ones(Size n) {
return Array(n, 1.0);

because that wouldn’t compile. This forces us to take the more verbose route and give the array a
name.*'

Nowadays, of course, we'd use rvalue references and move constructors and forget all about the
above. To tell the truth, I've a nagging suspicion that Disposable might be getting in the way of
the compiler and doing more harm than good. Do you know the best way to write code like the
above and avoid abstraction penalty in modern C++? It’s this one:

*'Well, it doesn’t actually force us, but writing return Disposable<Array>(Array(n, 10)) is even uglier than the alternative.



A. Odds and ends 74

Array ones(Size n) {
return Array(n, 1.0);

Array a = ones(10);

In C++17, the copies that might have been done when returning the array and when assigning it
are guaranteed to be elided (that is, the compiler will generate code that builds the returned array
directly inside the one we’re assigning); most recent compilers have been doing that for a while,
without waiting for the standard to bind them. It’s called RVO, for Return Value Optimization, and
using Disposable prevents it and thus might make the code slower instead of faster.

Design patterns

A few design patterns were implemented in QuantLib. You can refer to the Gang of Four book
(Gamma et al, 1995) for a description of such patterns; so why do I write about them? Well, as once
noted by G. K. Chesterton,

[ploets have been mysteriously silent on the subject of cheese

and the Gang was just as silent on a number of issues that come up when you write actual
implementations—through no fault of them, mind you. The variations are almost limitless, and they
were only four.

Thus, I will use this final section to point out a few ways in which our implementations were tailored
to the requirements of the library.

The Observer pattern

The use of the Observer pattern in the QuantLib library is widespread; you’ve seen it used in chapter
2 and chapter 3 to let financial instruments and term structures keep track of changes and recalculate
when needed.

Our version of the pattern (sketched in the next listing) is close enough to that described in the Gang
of Four book; but as I mentioned, there are questions and problems that weren’t discussed there.



A. Odds and ends 75

Sketch of the Observable and Observer classes.

class Observable {
friend class Observer;
public:
void notifyObservers() {
for (iterator i=observers_.begin();
il=observers_.end(); ++i) {
try {
(xi)->update();
} catch (std::exception& e) {
// store information for later

}
private:
void registerObserver (Observer* o) {
observers_.insert(o);
}
void unregisterObserver (Observerx);
list<Observer*> observers_;

s

class Observer {
public:
virtual ~Observer() {
for (iterator i=observables_.begin();
il=observables_.end(); ++1)
(*i)->unregisterObserver (this);
}
void registerWith(const shared_ptr<Observable>& o) {
o->registerObserver (this);
observables_.insert(o);
}
void unregisterWith(const shared_ptr<Observable>&);
virtual void update() = 0;
private:
list<shared_ptr<Observable> > observables_;

s

For instance: what information should we include in the notification? In our implementation, we
went for minimalism—all that an observer gets to know is that something changed. It would have
been possible to provide more information (e.g., by having the update method take the notifying



A. Odds and ends 76

observable as an argument) so that observers could select what to recalculate and save a few cycles;
but I don’t think that this feature was worth the added complexity.

Another question: what happens if an observer raises an exception from its update method? This
would happen when an observable is sending a notification, i.e., while the observable is iterating
over its observers, calling update on each one. If the exception were to propagate, the loop would
be aborted and a number of observers would not receive the notification—bad. Our solution was
to catch any such exception, complete the loop, and raise an exception at the end if anything went
wrong. This causes the original exceptions to be lost, which is not good either; however, we felt this
to be the lesser of the two evils.

Onwards to the third issue: that is, copy behavior. It is not very clear what should happen when
an observer or an observable are copied. Currently, what seemed a sensible choice is implemented:
on the one hand, copying an observable results in the copy not having any observer; on the other
hand, copying an observer results in the copy being registered with the same observables as the
original. However, other behaviors might be considered; as a matter of fact, the right choice might
be to inhibit copying altogether.

The big problems, however, were two. First: we obviously had to make sure that the lifetimes of
the observer and observables were managed properly, meaning that no notification should be sent
to an already deleted object. To do so, we had observers store shared pointers to their observables,
which ensures that no observable is deleted before an observer is done with it. The observers will
unregister with any observable before being deleted, which in turn makes it safe for observables to
store a list of raw pointers to their observers.

This, however, is only guaranteed to work in a single-threaded setting; and we are exporting
QuantLib bindings to C# and Java, where unfortunately there is always another thread where the
garbage collector is busy deleting stuff. Every once in a while, this caused random crashes as a
notification was sent to a half-deleted object. Once the problem was understood, it was fixed (hi,
Klaus); however, the fix slows down the code, so it’s inactive by default and can be enabled by a
compilation switch. Use it if you need the C# or Java bindings.

The second big problem is** that, like in the Jerry Lee Lewis” song, there’s a whole lotta notifyin’
going on. A change of date can easily trigger tens or hundreds of notifications; and even if most of
the update methods only set a flag and forward the call, the time adds up.

People using QuantLib in applications where calculation time is paramount, such as CVA/XVA (hi,
Peter) have worked around the problem by disabling notifications and recalculating explicitly. A
step towards reducing notification time would be to remove the middlemen, and shorten the chains
of notifications; however, this is not possible due to the ubiquitous presence of the Handle class in
the chains. Handles can be relinked, and thus chains of dependencies can change even after objects
are built.

In short, the problem is still not solved. You know where to find us if you have any bright ideas.

*2Notice that I didn’t say was.



A. Odds and ends 77

The Singleton pattern

The Gang of Four devoted the first part of their book to creational patterns. While logically sound,
this choice turned out to have an unfortunate side effect: all too often, overzealous programmers
would start to read the book and duly proceed to sprinkle their code with abstract factories and
singletons. Needless to say, this does less than intended for the clarity of the code.

You might suspect the same reason for the presence of a Singleton class template in QuantLib.
(Quite maliciously, I might add. Shame on you.) Fortunately, we can base our defense on version-
control logs; such class was added to the library later than, say, Observer (a behavioral pattern) or
Composite (a structural one).

Our default implementation is shown in the following listing.

Interface of the Singleton class template.

template <class T>
class Singleton : private noncopyable {
public:
static T& dinstance();
protected:
Singleton();
}s

#if defined(QL_ENABLE_SESSIONS)

// the definition must be provided by the user
Integer sessionId();

#endif

template <class T>
T& Singleton<T>::instance() {
static map<Integer, shared_ptr<T> > dinstances_;
#if defined(QL_ENABLE_SESSIONS)
Integer id = sessionId();
#else
Integer id = 0;
#endif
shared_ptr<T>& 1instance = instances_[1id];
if (!dinstance)
instance = shared_ptr<T>(new T);
return *instance;

It’s based on the Curiously Recurring Template Pattern, that I described in chapter 7; to be a singleton,
a class C needs to inherit from Singleton<C>, to provide a private constructor taking on arguments,



A. Odds and ends 78

and to make Singleton<C> a friend so that it can use it. You can see an example in the Settings
class.

As suggested by Scott Meyers (Meyers, 2005), the map holding the instances (bear with me) is defined
as a static variable inside the instance method. This prevents the so-called static initialization
order fiasco, in which the variable is used before being defined, and in C++11 it has the additional
guarantee that the initialization is thread-safe (even though that’s not the whole story, as we’ll see).

Now, you might have a few questions; e.g., why a map of instances if this is supposed to be a
singleton? Well, that’s because having a single instance might be limiting; for instance—no pun
intended—you might want to perform simultaneous calculations on different evaluation dates. Thus,
we tried to mitigate the problem by allowing one Singleton instance per thread. This is enabled
by a compilation flag, and causes the instance method to use the #1f branch in which it gets an id
from a sessionId function and uses it to index into the map. If you enable per-thread singletons,
you must also provide the latter function; it will probably be something like

Integer sessionId() {
return /*x “some unique thread id from your system API" %/ ;

}

in which you will identify the thread using the functions made available by your operating system
(or some threading library), turn the identifier into a unique integer, and return it. In turn, this will
cause the instance method to return a unique instance per each thread. If you don’t enable the
feature, instead, the id will always ever be 0 and you’ll always get the same instance. In this case,
you probably don’t want to use threads at all—and in the other case, you obviously do, but you have
to be careful anyway: see the discussion in the section on global settings.

You might also be asking yourself why I said that this is our default implementation. Nice catch.
There are others, which I won’t show here and which are enabled by a number of compilation flags.
On the one hand, it turned out that the static-variable implementation didn’t work when compiled
as managed C++ code under .NET (at least with older Visual Studio compilers), so in that case
we switch it with one in which the map is a static class variable. On the other hand, if you want
to use a global Singleton instance in a multi-threaded setting, you want to make sure that the
initialization of the Singleton instance is thread-safe (I'm talking about the instance itself, not the
map containing it; it’s where the new T is executed). This requires locks, mutexes and stuff, and
we don’t want to go near any of that in the default single-threaded setting; therefore, that code is
behind yet another compilation flag. You can look at it in the library, if you’re interested.

Your last question might be whether we should have a Singleton class at all—and it’s a tough one.
Again, I refer you to the previous discussion of global settings. At this time, much like democracy
according to Winston Churchill, it seems to be the worst solution except for all the others.

The Visitor pattern

Our implementation, shown in the next listing, follows the Acyclic Visitor pattern (Martin, 1997)
rather than the one in the Gang of Four book: we defined a degenerate AcyclicVisitor class, to be



A. Odds and ends 79

used in the interfaces, and a class template Visitor which defines the pure virtual visit method
for its template argument.

Interface of the AcyclicVisitor class and of the Visitor class template.

class AcyclicVisitor {
public:
virtual ~AcyclicVisitor() {}
}s5

template <class T>
class Visitor {
public:
virtual ~Visitor() {}
virtual void visit(T&) = 0;

s

The pattern also needs support from any class hierarchy that we want to be visitable; an example is
shown in the listing that follows.

Implementation of the Visitor pattern in a class hierarchy.

void Event::accept(AcyclicVisitor& v) {
Visitor<Event>* vl = dynamic_cast<Visitor<Event>*>(&v);
if (vl = 0)
vl->visit(xthis);
else
QL_FAIL("not an event visitor'");

void CashFlow: :accept(AcyclicVisitor& v) {
Visitor<CashFlow>* vl =
dynamic_cast<Visitor<CashFlow>*>(&v);
if (vl != 0)
vl->visit(xthis);
else
Event::accept(v);

void Coupon::accept(AcyclicVisitor& v) {
Visitor<Coupon>* vl = dynamic_cast<Visitor<Coupon>*>(&v);
if (vl = 0)
vli->visit(xthis);
else



A. Odds and ends 80

CashFlow: :accept(v);

Each of the classes in the hierarchy (or at least, those that we want to be specifically visitable)
need to define an accept method that takes a reference to AcyclicVisitor. Each of the methods
tries to cast the passed visitor to the specific Visitor instantiation for the corresponding class. A
successful cast means that the visitor defines a visit method taking this specific class, so we invoke
it. A failed cast means that we have to look for an fallback. If the class is not the root of the hierarchy
(like CashFlow or Coupon in the listing) we can call the base-class implementation of accept, which
in turn will try the cast. If we're at the root, like the Event class, we have no further fallback and
we raise an exception.”

Finally, a visitor is implemented as the BPSCalculator class in chapter 4. It inherits from
AcyclicVisitor, so that it can be passed to the various accept methods, as well as from an
instantiation of the Visitor template for each class for which it will provide a visit method. It
will be passed to the accept method of some instance, which will eventually call one of the visit
methods or raise an exception.

I already discussed the usefulness of the Visitor pattern in chapter 4, so I refer you to it (the
unsurprising summary: it depends). Therefore, I will only spend a couple of words on why we chose
Acyclic Visitor.

In short, the Gang-of-Four version of Visitor might be a bit faster, but it’s a lot more intrusive; in
particular, every time you add a new class to the visitable hierarchy you’re also forced to go and add
the corresponding visit method to each existing visitor (where by “forced” I mean that your code
wouldn’t compile if you didn’t). With Acyclic Visitor, you don’t need to do it; the accept method in
your new class will fail the cast and fallback to its base class.** Mind you, this is convenient but not
necessarily a good thing (like a lot of things in life, I might add): you should review existing visitors
anyway, check whether the fallback implementation makes sense for your class, and add a specific
one if it doesn’t. But I think that the disadvantage of not having the compiler warn you is more than
balanced by the advantage of not having to write a visit method for each cash-flow class when,
as in BPSCalculator, a couple will suffice.

%3 Another alternative would be to do nothing, but we preferred not to fail silently.
**In fact, you’re not even required to define an accept method; you could just inherit it. However, this would prevent visitors to target this
specific class.



B. Code conventions

Every programmer team has a number of conventions to be used while writing code. Whatever the
conventions (several exist, which provides a convenient casus belli for countless wars) adhering to
them helps all developers working on the same project,* as they make it easier to understand the
code; a reader familiar with their use can distinguish at a glance between a macro and a function,
or between a variable and a type name.

The following listing briefly illustrates the conventions used throughout the QuantLib library.
Following the advice in Sutter and Alexandrescu, 2004, we tried to reduce their number at a
minimum, enforcing only those conventions which enhance readability.

Mlustration of QuantLib code conventions.

#define SOME_MACRO
typedef double SomeType;

class SomeClass {
public:
typedef Realx -titerator;
typedef const Real* const_diterator;

}s

class AnotherClass {

public:
void method();
Real anotherMethod(Real x, Real y) const;
Real member() const; // getter, no "get"
void setMember (Real); // setter

private:
Real member_;
Integer anotherMember_;

+s

struct SomeStruct {
Real foo;
Integer bar;

+s

**However, the QuantLib developers are human. As such, they sometimes fail to follow the rules I am describing.

81



B. Code conventions 82

Size someFunction(Real parameter,
Real anotherParameter) {
Real localVariable 0.0;
if (condition) {
localVariable += 3.14159;
} else {
localVariable -= 2.71828;

}

return 42;

Macros are in all uppercase, with words separated by underscores. Type names start with a capital
and are in the so-called camel case; words are joined together and the first letter of each word
is capitalized. This applies to both type declarations such as SomeType and class names such as
SomeClass and AnotherClass. However, an exception is made for type declarations that mimic
those found in the C++ standard library; this can be seen in the declaration of the two iterator types
in SomeClass. The same exception might be made for inner classes.

About everything else (variables, function and method names, and parameters) are in camel case
and start with a lowercase character. Data members of a class follow the same convention, but are
given a trailing underscore; this makes it easier to distinguish them from local variables in the body
of a method (an exception is often made for public data members, especially in structs or struct-
like classes). Among methods, a further convention is used for getters and setters. Setter names are
created by adding a leading set to the member name and removing the trailing underscore. Getter
names equal the name of the returned data member without the trailing underscore; no leading get
is added. These conventions are exemplified in AnotherClass and SomeStruct.

A much less strict convention is that the opening brace after a function declaration or after an 1if,
else, for, while, or do keyword are on the same line as the preceding declaration or keyword;
this is shown in someFunction. Moreover, else keywords are on the same line as the preceding
closing brace; the same applies to the while ending a do statement. However, this is more a matter
of taste than of readability; therefore, developers are free to use their own conventions if they cannot
stand this one. The shown function exemplifies another convention aimed at improving readability,
namely, that function and method arguments should be aligned vertically if they do not fit a single
line.



QuantLib license

QuantLib is

« © 2000, 2001, 2002, 2003 RiSkMap srl

« © 2001, 2002, 2003 Nicolas Di Césaré

« © 2001, 2002, 2003 Sadruddin Rejeb

« © 2002, 2003, 2004 Decillion Pty(Ltd)

« © 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2014, 2015 Ferdinando
Ametrano

e © 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2014, 2016, 2017, 2018, 2019 StatPro
Italia srl

« © 2003, 2004, 2007 Neil Firth

« © 2003, 2004 Roman Gitlin

« © 2003 Niels Elken Sgnderby

+ © 2003 Kawanishi Tomoya

« © 2004 FIMAT Group

« © 2004 M-Dimension Consulting Inc.

e © 2004 Mike Parker

« © 2004 Walter Penschke

« © 2004 Gianni Piolanti

« © 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019
Klaus Spanderen

o © 2004 Jeff Yu

+ © 2005, 2006, 2008 Toyin Akin

« © 2005 Sercan Atalik

« © 2005, 2006 Theo Boafo

« © 2005, 2006, 2007, 2009 Piter Dias

« © 2005, 2013 Gary Kennedy

« © 2005, 2006, 2007 Joseph Wang

« © 2005 Charles Whitmore

« © 2006, 2007 Banca Profilo S.p.A.

e © 2006, 2007 Marco Bianchetti

+ © 2006 Yiping Chen

« © 2006 Warren Chou

e © 2006, 2007 Cristina Duminuco

« © 2006, 2007 Giorgio Facchinetti

e © 2006, 2007 Chiara Fornarola

83



QuantLib license 84

« © 2006 Silvia Frasson

« © 2006 Richard Gould

« © 2006, 2007, 2008, 2009, 2010 Mark Joshi

« © 2006, 2007, 2008 Allen Kuo

« © 2006, 2007, 2008, 2009, 2012 Roland Lichters

e © 2006, 2007 Katiuscia Manzoni

e © 2006, 2007 Mario Pucci

« © 2006, 2007 Frangois du Vignaud

« © 2007 Affine Group Limited

« © 2007 Richard Gomes

« © 2007, 2008 Laurent Hoffmann

. © 2007, 2008, 2009, 2010, 2011 Chris Kenyon

+ © 2007 Gang Liang

+ © 2008, 2009, 2014, 2015, 2016 Jose Aparicio

¢ © 2008 Yee Man Chan

« © 2008, 2011 Charles Chongseok Hyun

« © 2008 Piero Del Boca

+ © 2008 Paul Farrington

« © 2008 Lorella Fatone

e © 2008, 2009 Andreas Gaida

« © 2008 Marek Glowacki

« © 2008 Florent Grenier

¢ © 2008 Frank Hovermann

« © 2008 Simon Ibbotson

« © 2008 John Maiden

o © 2008 Francesca Mariani

« © 2008, 2009, 2010, 2011, 2012, 2014 Master IMAFA - Polytech’Nice Sophia - Université de Nice
Sophia Antipolis

« © 2008, 2009 Andrea Odetti

« © 2008 J. Erik Radmall

« © 2008 Maria Cristina Recchioni

+ © 2008, 2009, 2012, 2014 Ralph Schreyer

« © 2008 Roland Stamm

¢ © 2008 Francesco Zirilli

« © 2009 Nathan Abbott

« © 2009 Sylvain Bertrand

+ © 2009 Frédéric Degraeve

« © 2009 Dirk Eddelbuettel

+ © 2009 Bernd Engelmann

« © 2009, 2010, 2012 Liquidnet Holdings, Inc.

« © 2009 Bojan Nikolic

« © 2009, 2010 Dimitri Reiswich



QuantLib license

« © 2009 Sun Xiuxin

« © 2010 Kakhkhor Abdijalilov

+ © 2010 Hachemi Benyahia

« © 2010 Manas Bhatt

+ © 2010 DeriveXperts SAS

« © 2010, 2014 Cavit Hafizoglu

« © 2010 Michael Heckl

« © 2010 Slava Mazur

« © 2010, 2011, 2012, 2013 Andre Miemiec
¢ © 2010 Adrian O’ Neill

« © 2010 Robert Philipp

« © 2010 Alessandro Roveda

e © 2010 SunTrust Bank

« © 2011, 2013, 2014 Fabien Le Floc’h

« © 2012, 2013 Grzegorz Andruszkiewicz
+ © 2012, 2013, 2014, 2015, 2016, 2017, 2018 Peter Caspers
+ © 2012 Mateusz Kapturski

« © 2012 Simon Shakeshaft

« © 2012 Edouard Tallent

« © 2012 Samuel Tebege

» © 2013 BGC Partners L.P.

« © 2013, 2014 Cheng Li

e © 2013 Yue Tian

e © 2014, 2017 Francois Botha

« © 2014, 2015 Johannes Goettker-Schnetmann
¢ © 2014 Michal Kaut

e © 2014, 2015 Bernd Lewerenz

« © 2014, 2015, 2016 Paolo Mazzocchi

+ © 2014, 2015 Thema Consulting SA

« © 2014, 2015, 2016 Michael von den Driesch
¢ © 2015 Riccardo Barone

+ © 2015 CompatibL

. © 2015, 2016 Andres Hernandez

e © 2015 Dmitri Nesteruk

« © 2015 Maddalena Zanzi

« © 2016 Nicholas Bertocchi

« © 2016 Stefano Fondi

« © 2016, 2017 Fabrice Lecuyer

« © 2016, 2019 Eisuke Tani

« © 2017 BN Algorithms Ltd

e © 2017 Paul Giltinan

+ © 2017 Werner Kuerzinger

85



QuantLib license 86

+ © 2017 Oleg Kulkov

« © 2017 Joseph Jeisman

+ © 2018 Tom Anderson

+ © 2018 Alexey Indiryakov
+ © 2018 Jose Garcia

« © 2018 Matthias Groncki
+ © 2018 Matthias Lungwitz
+ © 2018 Sebastian Schlenkrich
+ © 2018 Roy Zywina

« © 2019 Aprexo Limited

« © 2019 Wojciech Slusarski

QuantLib includes code taken from Peter Jackel’s book “Monte Carlo Methods in Finance”.

QuantLib includes software developed by the University of Chicago, as Operator of Argonne
National Laboratory.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

« Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

« Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

« Neither the names of the copyright holders nor the names of the QuantLib Group and its
contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

This software is provided by the copyright holders and contributors “as is” and any express or
implied warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the copyright holders or
contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential
damages (including, but not limited to, procurement of substitute goods or services; loss of
use, data, or profits; or business interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or otherwise) arising in any
way out of the use of this software, even if advised of the possibility of such damage.



Bibliography

D. Abrahams, Want Speed? Pass by Value. In C++ Next, 2009.
D. Adams, So Long, and Thanks for all the Fish. 1984.
A. Alexandrescu, Move Constructors. In C/C++ Users Journal, February 2003.

F. Ametrano and M. Bianchetti, Everything You Always Wanted to Know About Multiple Interest
Rate Curve Bootstrapping but Were Afraid to Ask. SSRN working papers series n.2219548, 2013.

J. Barton and L.R. Nackman, Dimensional Analysis. In C++ Report, January 1995.
T. Becker, On the Tension Between Object-Oriented and Generic Programming in C++. 2007.
Boost C++ libraries. http://boost.org.

M. K. Bowen and R. Smith, Derivative formulae and errors for non-uniformly spaced points. In
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
volume 461, pages 1975-1997. The Royal Society, 2005.

D. Brigo and F. Mercurio, Interest Rate Models — Theory and Practice, 2nd edition. Springer, 2006.
Mel Brooks (director), Young Frankenstein. Twentieth Century Fox, 1974.

W.E. Brown, Toward Opaque Typedefs for C++1Y, v2. C++ Standards Committee Paper N3741, 2013.
L. Carroll, The Hunting of the Snark. 1876.

G.K. Chesterton, Alarms and Discursions. 1910.

M.P. Cline, G. Lomow and M. Girou, C++ FAQs, 2nd edition. Addison-Wesley, 1998.

J.O. Coplien, A Curiously Recurring Template Pattern.In S.B. Lippman, editor, C++ Gems. Cambridge
University Press, 1996.

C.S.L. de Graaf. Finite Difference Methods in Derivatives Pricing under Stochastic Volatility Models.
Master’s thesis, Mathematisch Instituut, Universiteit Leiden, 2012.

C. Dickens, Great Expectations. 1860.

P. Dimov, H.E. Hinnant and D. Abrahams, The Forwarding Problem: Arguments. C++ Standards
Committee Paper N1385, 2002.

M. Dindal (director), The Emperor’s New Groove. Walt Disney Pictures, 2000.

DJ. Dufty, Finite Difference Methods in Financial Engineering: A Partial Differential Equation
Approach. John Wiley and Sons, 2006.

M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd edition.

87


http://web.archive.org/web/20140113221447/http:/cpp-next.com/archive/2009/08/want-speed-pass-by-value/
http://web.archive.org/web/20190201142407/http://www.drdobbs.com/move-constructors/184403855
http://ssrn.com/abstract=2219548
http://ssrn.com/abstract=2219548
http://www.artima.com/cppsource/type_erasure.html
http://boost.org/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3741.pdf
http://www.gutenberg.org/ebooks/13
http://www.gutenberg.org/ebooks/9656
http://www.gutenberg.org/ebooks/1400
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2002/n1385.htm

Bibliography 88

Addison-Wesley, 2003.
M. Fowler, Fluent Interface. 2005.

M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

E. Gamma, R. Helm, R. Johnson and ]. Vlissides, Design Patterns: Element of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

P. Glasserman, Monte Carlo Methods in Financial Engineering. Springer, 2003.
D. Gregor, A Brief Introduction to Variadic Templates. C++ Standards Committee Paper N2087, 2006.

H.E. Hinnant, B. Stroustrup and B. Kozicki, A Brief Introduction to Rvalue References. C++ Standards
Committee Paper N2027, 2006.

A.Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman to Master. Addison-Wesley,
1999.

International Standards Organization, Programming Languages — C++. International Standard
ISO/IEC 14882:2014.

International Swaps and Derivatives Associations, Financial products Markup Language.

P. Jackel, Monte Carlo Methods in Finance. John Wiley and Sons, 2002.

J. Kerievsky, Refactoring to Patterns. Addison-Wesley, 2004.

R. Kleiser (director), Grease. Paramount Pictures, 1978.

H.P. Lovecraft, The Call of Cthulhu. 1928.

R.C. Martin, Acyclic Visitor. In Pattern Languages of Program Design 3. Addison-Wesley, 1997.
S. Meyers, Effective C++, 3rd edition. Addison-Wesley, 2005.

N.C. Myers, Traits: a new and useful template technique. In The C++ Report, June 1995.

G. Orwell, Animal Farm. 1945.

W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C, 2nd edition.
Cambridge University Press, 1992.

QuantLib. http://quantlib.org.
E. Queen, The Roman Hat Mystery. 1929.

V. Simonis and R. Weiss, Exploring Template Template Parameters. In Perspectives of System
Informatics, number 2244 in Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2001.

B. Stroustrup, The C++ Programming Language, 4th edition. Addison-Wesley, 2013.
H. Sutter, You don’t know const and mutable. In Sutter’s Mill, 2013.
H. Sutter and A. Alexandrescu, C++ Coding Standards. Addison-Wesley, 2004.

T. Veldhuizen, Techniques for Scientific C++. Indiana University Computer Science Technical Report


http://martinfowler.com/bliki/FluentInterface.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2087.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2027.html
http://www.fpml.org/
http://www.feedbooks.com/book/18/the-call-of-cthulhu
http://www.cantrip.org/traits.html
http://quantlib.org/
http://www.progdoc.de/papers/ttp/psi-ttp.pdf
http://herbsutter.com/2013/01/01/video-you-dont-know-const-and-mutable/

Bibliography

TR542, 2000.
H.G. Wells, The Shape of Things to Come. 1933.
P.G. Wodehouse, My Man Jeeves. 1919.

89


http://www.gutenberg.org/ebooks/8164

	Table of Contents
	Introduction
	Financial instruments and pricing engines
	The Instrument class
	Interface and requirements
	Implementation
	Example: interest-rate swap
	Further developments

	Pricing engines
	Example: plain-vanilla option


	A. Odds and ends
	Basic types
	Date calculations
	Dates and periods
	Calendars
	Day-count conventions
	Schedules

	Finance-related classes
	Market quotes
	Interest rates
	Indexes
	Exercises and payoffs

	Math-related classes
	Interpolations
	One-dimensional solvers
	Optimizers
	Statistics
	Linear algebra

	Global settings
	Utilities
	Smart pointers and handles
	Error reporting
	Disposable objects

	Design patterns
	The Observer pattern
	The Singleton pattern
	The Visitor pattern


	B. Code conventions
	QuantLib license
	Bibliography

