Shell Edit View Window Help

¢ =

100G 4 Sat9:27 pM Chris Fidao

Cacheinterface pho
namespace I'Iol\Sernte\(.("e,

'ce Cachelnterface {

Implementing
Larave

YAZARLAR CHRIS FIDAO & SINAN ELDEM

Implementing Laravel (TR) Turkge Cevirisi

Chris Fidao ve Sinan Eldem

Bu kitap su adreste satilmaktadir http://leanpub.com/implementinglaravel-tr

Bu versiyon su tarihte yayimlandi 2013-09-27

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 Chris Fidao ve Sinan Eldem

http://leanpub.com/implementinglaravel-tr
http://leanpub.com
http://leanpub.com/manifesto

Kitabi tweetleyin!

Chris Fidao ve Sinan Eldem’a kitabini su adresten Twitter tanitarak yardime: olun!
Kitap icin onerilen tweet:

Implementing Laravel Tiirkce Cevirisi http://leanpub.com/implementinglaravel-tr
#implementingLaravelTr #laravel @laraveltr

Kitap i¢in onerilen hashtag #implementingLaravelTr.
Kitap icin digerleri ne demis merak ediyorsaniz baglantiya tiklayarak hashtaglari arayabilirsiniz:

https://twitter.com/search/#implementingLaravel Tr

http://twitter.com
https://twitter.com/search/#implementingLaravelTr
https://twitter.com/search/#implementingLaravelTr

icindekiler

Ana Kavramlar

Konteyner e
Temel Kullanim e
Dahallerisi
Inversion of Control (Devrik Kontrol)
Gergek Diinya Kullanim1 000

Bagimlilik Enjeksiyonu L
Bagimlilik Enjeksiyonu Nedir?
Controller Bagimliliklarinin Eklenmesi o000
Bagimhiliklar Olarak Interface’ler. L.
Neden Bagimlilik Enjeksiyonu? o o L L
Ozet . . . o

Ana Kavramlar

Bu kitap boyunca, Laravel’in en giiclii 6zelliklerinin bir kismindan yararlanacagz.

Konuya ge¢meden once, en azindan Laravel’in konteynerinin ve onun Bagimlilik Enjeksiyonu
kullanimini bizim icin ne kadar kolaylastirdiginin bilinmesi 6nemlidir.

Bu boliim Laravel’in konteynerini, “Inversion of Control” kullanimini ve Bagimlilik Enjeksiyonunu
kapsayacak.

© 00 N O O b W N =

Konteyner

Illuminate\Foundation\Application sinifi biitiin Laravel’i birbirine baglar. Bu smif bir kontey-
nerdir - veriler, nesneler, siniflar ve hatta closure’lar “igerebilir”.

Temel Kullanim

Konteynerin nasil ¢alistigini gérmek icin, routes dosyamizda bir eksersiz tizerinden calisalim.

Laravel’in konteyneri ArrayAccess interface’ini implemente eder ve bu yiizden ona bir dizi gibi
erisebilecegimizi biliyoruz. Ona iliskisel bir dizi gibi nasil ulasabilecegimizi gérelim.

Dosya: app/routes.php

Route: :get('/container', function()

{
// Application olgusunu elde et
$app = App: :getFacadeRoot();
$app['bir_dizi'] = array('foo' => 'bar');
var_dump($app['bir_dizi']);

1)

/container rotasina gittigimizde, su sonucu alacagiz:

array (size=1)
"foo' => string 'bar' (length=3)

Yani, Applicationun nitelikleri ve metodlar: olan bir sinif olmakla birlikte, ayni zamanda bir dizi
olarak ulagilabilir oldugunu da gériiyoruz!

Facade'lar

App: :getFacadeRoot () metodunun ne yaptig1 kafanizi karistirdi mi? App sinifi bir Faca-
de’dir. Bu bize onu her yerde kullanma, ona statik bir tarzda erisme imkani verir. Buna
karsin gercekte static bir sinif degildir. getFacadeRoot metodu sinifin gergek olgusunu
getirecektir ki bu 6rnekte onu bir dizi olarak kullanabilmemiz i¢in ihtiyacimiz olan seydir.

Illuminate\Support\Facades aduzayindaki bu ve diger Facade’lara bakin.

© 00 N O O b W N =

SN
N N O

Konteyner 3

Daha ilerisi

Simdi konteyneri biraz siisleyelim ve bir closure atayalim:

Dosya: app/routes.php

Route: :get('/container', function()

{
// Application olgusunu elde et
$app = App: :getFacadeRoot();
$app['selam_ver'] = function()
{

return "Merhaba, Dinyal!";

}i
return $app['selam_ver'];

1)

/container rotamizi tekrar ¢alistiralim ve sunu gorecegiz:
Merhaba, Dunya!

Bu goriintiste basit olsa da gercekte oldukca giicliidiir. Bu, aslinda, ayr1 [lluminate paketlerinin
Laravel frameworki olusturmak icin bir digeriyle nasil etkilestiginin temelidir.

[lerde, cesitli Illuminate paketleri arasinda zamk gibi etkiyen Service Providerlarinin égeleri kontey-
nere nasil bagladigini gorecegiz.

Inversion of Control (Devrik Kontrol)

Laravel’in Container sinifi sadece bir dizi kiligina biirinmekten ¢ok daha fazlasina sahiptir. Ayni
zamanda bir Inversion of Control (IoC) konteyneri olarak da islev gorebilir.

Inversion of Control, bizim bir smif veya interface’i nasil implemente ettigimizi tanimlamamiz
icin bir tekniktir. Ornegin, uygulamamizin eger bir FalanInterface bagimlilifi varsa ve biz onu
implemente eden bir SomutFalan sinifini kullanmak istiyorsak, bu implementasyonu tanimladigimiz
yer loC konteyneridir.

Bir kez daha /container rotamizi kullanarak, bunun nasil calistigini basit bir 6rnekle gorelim.

[lk olarak, birkag sinif - bir interface ve onu implemente eden bir sinif - olusturacagiz. Basit olmasi
bakimindan dogruca app/routes.php dosyasina gidebiliriz:

O 00 = O O » wWw N =

_R
w N =~ O

©O© 0O I O O b w N =

I ==Y
B W N~

Konteyner 4

Dosya: app/routes.php

interface Greetablelnterface {

public function greet();

class HelloWorld implements Greetablelnterface {

public function greet()

{

return 'Merhaba, Dinya!';

Simdi, bu siiflar1 kulanmak igin konteynerimizle ne yapabilecegimizi gorelim. Once “binding
(baglama)” kavramina girecegiz.

Dosya: app/routes.php

Route: :get('/container', function()

{
// Application olgusunu elde et

$app = App::getFacadeRoot();

$app->bind('Greetablelnterface', function()
{

return new HelloWorld;

});

$greeter = $app->make('Greetablelnterface');

return $greeter->greet();

});

Dizi seklinde erigilebilir $app['GreetablelInter face'] kullanmak yerine bind() metodunu kullan-
dik.

Bu, Laravel’in IoC konteynerinin, GreetableInter face istenen her zamanda HelloWorld sinifinin
dondiiriilmesi amaciyla kullanilmasidir.

© 00 N O O b W N =

=Y
N O O b W N =~ O

Konteyner 5

Bu yolla, implementasyonlar1 “takas” edebiliyoruz! Ornegin, Hel lowWor 1d yerine bir GoodbyeCruelWorld
implementasyonu yapabilirim ve GreetablelInter face istendigi zaman konteynerin bunu dondiir-
mesine karar verebilirim.

Bu, uygulamamizda siirdiiriilebilirlige gotiiriir. Konteyneri kullanarak, bir konumdaki implemen-
tasyonlarimizi, uygulama kodumuzun diger alanlarimi etkilemeksizin (ideal olarak) takas edebiliriz.

Gercek Dunya Kullanimi

Tim bu baglamalarimizi uygulamanizda nereye koyacaksiniz? Eger start.php, filters.php,
routes.php ve diger bootstrap dosyalarinizi baglamalarla doldurup karistirmak istemiyorsaniz, bu
durumda Service Provider (Hizmet Saglayici) siniflarini kullanabilirsiniz.

Service Providerlar1 6zel olarak Laravel’in konteynerine baglamalari kayda gecirmek icin olus-
turulurlar. Aslinda, neredeyse tiim Illuminate paketleri sadece bu isi yapan bir Service Provider
kullanmaktadir.

Hizmet Saglayicilarinin bir I1luminate paketi icinde nasil kullanildiginin bir 6rnegini gorelim.
Pagination paketini inceleyecegiz.

Oncelikle, Pagination Service Provider’in register () metodu soyledir:

INluminate\Pagination\PaginationServiceProvider.php

public function register()

{
$this->app['paginator'] = $this->app->share(function($app)
{
$paginator = new Environment(
$app['request'],
$app['view'],
$app['translator']
);
$paginator->setViewName(
$app['config']['view.pagination']
);
return $paginator;
1)
}

Bu register() metodu app/config/app.php dosyasi i¢inde belirtilen her Service Provi-
der’1 izerinde otomatik olarak ¢agrilmaktadir.

Konteyner 6

Pekiyi, bu register () metodunda neler yapiliyor? Birincisi ve en 6nemlisi, “paginator” olgusunu
konteynere kayda geciriyor. Bu, uygulamanin her yerinde $app[' paginator'] ve App: :make('paginator")
kulllanilabilmesini sagliyor.

Daha sonra, tipki ‘selam_ver’ 6rneginde yaptigimiz gibi, bir closure’un sonucu olarak déondiirtilmek
tizere ‘paginator’ olgusunu tanimliyor.

ﬁ $this->app->share() kullanilmasi kafanizi karistirmasin. Share metodu sadece closure’'un
bir singleton olarak kullanilmasi i¢in bir yol saglar, $this->app->instance('paginator’,
new Environment) ¢agirmak gibi bir seydir.

Bu closure yeni bir Pagination\Environment nesnesi olusturuyor, onun tizerinde bir yapilandirma
degeri ayarliyor ve onu dondiiriiyor.

Bu Hizmet Saglayicinin diger uygulama baglamalarini kullandig: dikkatinizi cekmis olmali! Pagination\Environmer
sinifl, olusturucu metodunda acikga bazi bagimliliklar aliyor - bir request nesnesi $app['request '],

bir view nesnesi $app['view'] ve bir translator $app['translator']. Neyse ki, bu baglamalar

[lluminate’in diger paketlerinde olusturulmus olan ¢esitli Service Providerlarda tanimlanmaiglardir.

Cesitli Illuminate paketlerinin birbirleriyle nasil etkilesebildigini de gorebiliyoruz. Onlar uygulama
konteynerine baglanmis olduklari i¢in, diger paketlerde (veya kendi kodumuz i¢inde!) onlar: kulla-
nabiliyoruz ve bizim kodumuzu spesifik bir sinifa gercekten baglamamamiz gerekmiyor.

T N S

B W N -

Bagimlilik Enjeksiyonu

Konteynerin nasil ¢alistigini gordiigiimiize gore, Laravel’de Bagimlilik Enjeksiyonunu uygulamak
icin onu nasil kullanabilecegimize bakabiliriz.

Bagimlilik Enjeksiyonu Nedir?

Bagimlilik Enjeksiyonu bir sinif bagimliligini sinif kodunun kendisi i¢cindeki bir yerlerde baslatmak
yerine, sinif icine eklenmesi (enjekte edilmesi) eylemidir. Siklikla, bagimliliklar bir olusturucu
metodun type-hinted (tip dayatmali) parametreleri olarak tanimlanirlar.

Ornegin su olusturucu metodu ele alalim:

public function __construct(HelloWorld $greeter)

{

$this->greeter = $greeter;

Bir parametre olarak HelloWor1d tip dayatmas: yapmakla, bir HelloWor1d olgusunun sinifimizin bir
bagimlilig1 oldugunu agikca ifade ediyoruz.

Bu, direkt olgu baslatmanin karsitidir:

public function __construct()

{

$this->greeter = new HelloWorld;

0 Kendi kendinize neden Bagimlilik Enjeksiyonu kullaniliyor diye soruyorsaniz, bu Stack
Overflow cevabi' baglamak i¢in harika bir yerdir. Asagidaki 6rneklerde onun bazi yararla-
rin1 anlatacagim.

Sonra da Laravel’in IoC konteynerini kullanan Bagimlilik Enjeksiyonu 6rnegini is basinda gorecegiz.

"http://stackoverflow.com/questions/130794/what-is-dependency-injection

http://stackoverflow.com/questions/130794/what-is-dependency-injection
http://stackoverflow.com/questions/130794/what-is-dependency-injection
http://stackoverflow.com/questions/130794/what-is-dependency-injection

© 00 N O O & W N =

Y
g » W0 N =~ O

Bagimlilik Enjeksiyonu 8

Controller Bagimhliklarinin Eklenmesi

Bu Laravelde cok sik kullanilan bir durumdur.

Normalde, bir controlleri olusturucu metodunda bir sinif bekleyecek sekilde ayarlarsak, bu sinif olus-
turulurken bagimliliklarini da eklememiz gerekir. Ancak, bir Laravel controllerinde bir bagimlilik
tanimladigimizda ne olur? Controlleri kendimiz bagka bir yerde baslatmamiz gerekecektir:

$crtl = new ContainerController(new HelloWorld);

Bu harika, ancak Laravel’de bir controlleri direkt olarak baslatmayiz - bunu bizim i¢in router
halleder.

Bununla birlikte, biz yine de Laravel’in IoC konteynerini kullanmak suretiyle controller bagimlilik-
larini enjekte edebiliriz!

Daha once kullandigimiz ayni Greetablelnterface ve HelloWorld siniflarini kullanarak, simdi
/container rotamizi bir controllere baglamay1 diistinelim:

Dosya: app/routes.php

interface Greetablelnterface {

public function greet();

class HelloWorld implements Greetablelnterface {

public function greet()

{
return 'Merhaba, Dinya!';
}
}
Route: :get('/container', 'ContainerController@container);

Simdi de yeni controllerimizde, olusturucu metodunda bir parametre olarak HelloWorld ayarlaya-
biliriz:

© 00 N O O & W N =

= SN
0 I O O b 0N -~ O

Bagimlilik Enjeksiyonu 9

Dosya: app/controllers/ContainerController.php

<7php
class ContainerController extends BaseController {
protected $greeter;

// Sinif bagimliligi: HelloWorld
public function __construct(HelloWorld $greeter)

{
$this->greeter = $greeter;
}
public function container()
{
return $this->greeter->greet();
}

Simdi /container rotaniza gidin ve yine sunu goreceksiniz:
Merhaba, Dunya!

Ancak, dikkat ediniz, konteynere hicbir sey BAGLAMADIK. O sadece, controllere ge¢mis oldugu-
muz HelloWorldun bir olgusunu “caligtirdi”

Bunun nedeni IoC konteynerinin bir controllerin olusturucu metodunda ayarlanan herhangi bir
bagimlilig1 otomatik olarak ¢oziimlemeye calismasidir. Laravel belirtilen bagimlilig1 bizim i¢in
enjekte edecektir!

Bagimliliklar Olarak Interface’ler

Daha bitirmedik ama. Ne yapacagimizi simdi goriin!

Bir controller’in bagimlilig1 olarak HelloWor1d sinifini belirtmek yerine GreetableInterface inter-
face’ini belirtsek ne olacakt1 ?

Controller kodunu séyle yapsak:

© 00 N O O & W N =

= SN
0 I O O b 0N -~ O

Bagimlilik Enjeksiyonu 10

Dosya: app/controllers/ContainerController.php

<?php
class ContainerController extends BaseController {
protected $greeter;

// Sinif bagimliligi: Greetablelnterface
public function __construct(Greetablelnterface $greeter)

{
$this->greeter = $greeter;
}
public function container()
{
echo $this->greeter->greet();
}

Bunu oldugu gibi calistirmay1 denersek bir hata aliriz:

Il1luminate\Container\BindingResolutionException:
Target [Greetablelnterface] is not instantiable (Hedef [Greetablelnterface] basla\
tilamadi)

Greetablelnter face sinifi tabii ki baslatilamaz c¢iinki o bir interface’dir. Bununla birlikte, Laravel’in
simif bagimliligini ¢6zmek icin onu baslatma ¢abasina girdigini gorebiliyoruz.

Bunu diizeltelim - controller’imiz bir GreetableInterface olgusuna bagimli oldugunu hissettigi
zaman Laravel’in controller’e HelloWorld olgusu vermesi i¢in konteynerin bind() metodunu
kullanacagiz:

© 00 N O O b W N =

N O S S Y
O© 00 < O O b W N ~ O

Bagimlilik Enjeksiyonu 11

Dosya: app/routes.php

interface Greetablelnterface {

public function greet();

class HelloWorld implements Greetablelnterface {

public function greet()

{

return 'Merhaba, Dinya!';

// Greetablelnterface istendiginde
// HelloWorld baglamasini burada yapiyoruz!!
App::bind('Greetablelnterface', 'HelloWorld');

Route: :get('/container', 'ContainerController@container);

Simdi /container rotanizi tekrar ¢alistirirsaniz, ayni sekilde yine Merhaba, Dinya! goreceksiniz!

& Dikkat ediniz, Hel1loWor1ld baglamak igin bir closure kullanmadik - istediginiz bir somut

sinif1 basitce bir string seklinde gecebiliyorsunuz. Implentasyonunuzun kendi olusturucu

metoduna gecilmesi gereken kendi bagimliliklari oldugu takdirde bir closure yararh
olacaktur.

Neden Bagimlilik Enjeksiyonu?

Bir bagimlilik olarak somut bir sinif yerine neden bir interface belirtmek istiyoruz ki?

Olusturucuya verilen bir sinif bagimliliginin bir interface’in bir alt sinifi olabilmesi i¢in bunu istiyo-
ruz. Bu sayede, - ihtiyacimiz olan metod her zaman mevcut olacak - herhangi bir implementasyonu
givenle kullanabiliyoruz.

Ozli bir ifadeyle, uygulama kodumuzun diger kisimlarin etkilemeksizin ilgili implementasyo-
nu degistirebiliriz.

Iste bir 6rnek. Gercek uygulamalarda birgok kez yapmak zorunda kaldigim bir sey.

O 0 I O U » W N =~

I S
B W N SO

15
16
17
18
19
20
21
22
23

W N -

Bagimlilik Enjeksiyonu 12

ﬁ Bu 6rnegi kopyala yapistir yapmayin. Konuyu temiz tutmak amaciyla, API keyleri i¢in
yapilandirma degiskenleri kullanimi gibi bazi detaylar atladim ciinkd.

Diyelim ki, uygulamamiz Amazon’un AWS’sini kullanarak emailler gonderiyor. Bunu gerceklestir-
mek i¢in, bir Emailer interface ve bunu implemente eden bir AwsEmailer sinifi tanimladik:

interface Emailer {

public function send($to, $from, $subject, $message);

class AwsEmailer implements Emailer {
protected $aws;

public function __construct(AwsSDK $aws)

{
$this->aws = $aws;
}
public function send($to, $from, $subject, $message)
{
$this->aws->addTo($to)
->setFrom($£from)
->setSubject($subject)
->setMessage($message) ;
->sendEmail();
}

Emailere AwsEmailer implementasyonunu bagliyoruz:

App::bind('Emailer', function()
{

return new AwsEmailer(new AwsSDK);

});

Bir controller bagimlilik olarak Emailer interface’ini kullaniyor:

© 00 N O O & W N =

NN N N P R R | N sy
W N O © 00 N O O b W N~ 0O

Bagimlilik Enjeksiyonu 13

Dosya: app/controllers/EmailController.php

class EmailController extends BaseController {

protected $emailer;

// Sinif bagimliligi: Emailer
public function __construct(Emailer $emailer)

{
$this->emailer = $emailer;
}
public function email()
{
$this->emailer->send(
'ex-to@example.com',
'ex- from@example.com',
'"Peanut Butter Jelly Timel',
"It's that time again! And so on!"
);
return Redirect::to('/");
}

Bir siire gectikten sonra uygulamamizin kapsami biiytidii ve AWS’ nin sagladigindan daha fonksi-
yonel bir seye ihtiya¢ dogdu. Biraz arastirdiktan ve secenekleri degerlendirdikten sonra SendGrid
tizerinde karar kildik.

Uygulamamizi SendGrid kullanacak sekilde degistirmek icin neler yapmamiz gerekiyor? Interfa-
ce’ler ve Laravel’in IoC konteynerini kullandigimiz i¢in, SendGrid’e gegis ¢ok kolaydir!

Ilk olarak, Emailer interface’inin SendGrid kullanan bir implementasyonunu yapacagiz!

O 00 = O U B W N =~

[EEN
= o

Bagimlilik Enjeksiyonu 14

class SendCGridEmailer implements Emailer {

protected $sendgrid;

public function __construct(SendGridSDK $sendgrid)

{
$this->sendgrid = $sendgrid;
}
public function send($to, $from, $subject, $message)
{
$mail = $this->sendgrid->mail->instance();
$mail->addTo($to)
->setFrom($£from)
->setSubject($subject)
->setText(strip_tags($message))
->setHtml ($message)
->send();
$this->sendgrid->web->send($mail);
}

Sonra da, (ve son olarak!), uygulamamizi Aws yerine SendGrid kullanacak sekilde ayarlayacagiz.
IoC konteynerinde bind() metoduna bir ¢agrimiz olmasi nedeniyle, yapacagimiz tek degisiklik
Emailerin implementasyonunu AwsEmailerden SendCridEmailere degistirmektir:

// Eskisi
App::bind('Emailer', function()
{

return new AwsEmailer(new AwsSDK);

});

// Yenisi
App::bind('Emailer', function()
{

return new SendGridEmailer(new SendGridSDK);

});

Dikkat ederseniz tiim bunlari, uygulamamizin baska yerlerindeki kodun tek bir satirini degistir-
meksizin yaptik. Bir bagimlilik olarak Emailer interface kullanimina zorlamakla, enjekte edilecek
bir siifta send() metodunun mevcut olmasi garanti altina alinmis oluyor.

Bagimlilik Enjeksiyonu 15

Ornegimizde bunu goérebiliyoruz. Implementasyonu AwsEmailerden SendGridEmailere degistirdi-
gimiz zaman, controller bir degisiklik yapilmasina gerek kalmadan hala $this->emailer->send()
metodunu ¢agirmaktadir.

Ozet

Bagimlilik Enjeksiyonu ve Inversion of Control, Laravel gelistirmede tekrar tekrar kullanilan
desenlerdir.

Gordiginiz gibi, kodumuzu daha siirdiriilebilir yapmak ve test edilebilirlige yardimei olmasi
icin bircok interface tanimlayacagiz. Laravel’in IoC konteyneri bizim i¢in bunu kolay bir hale
getirmektedir.

	İçindekiler
	Ana Kavramlar
	Konteyner
	Temel Kullanım
	Daha İlerisi
	Inversion of Control (Devrik Kontrol)
	Gerçek Dünya Kullanımı

	Bağımlılık Enjeksiyonu
	Bağımlılık Enjeksiyonu Nedir?
	Controller Bağımlılıklarının Eklenmesi
	Bağımlılıklar Olarak Interface'ler
	Neden Bağımlılık Enjeksiyonu?
	Özet

