

[image: Implementing Laravel (TR) Türkçe Çevirisi]

 Implementing Laravel (TR) Türkçe Çevirisi

 Chris Fidao ve Sinan Eldem

 Bu kitap şu adreste satılmaktadır http://leanpub.com/implementinglaravel-tr

 Bu versiyon şu tarihte yayımlandı 27.09.2013

 [image: publisher's logo]

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2013 Chris Fidao ve Sinan Eldem

İçindekiler

 	
 Ana Kavramlar

 	
 Konteyner

 	
 Temel Kullanım

 	
 Daha İlerisi

 	
 Inversion of Control (Devrik Kontrol)

 	
 Gerçek Dünya Kullanımı

 	
 Bağımlılık Enjeksiyonu

 	
 Bağımlılık Enjeksiyonu Nedir?

 	
 Controller Bağımlılıklarının Eklenmesi

 	
 Bağımlılıklar Olarak Interface’ler

 	
 Neden Bağımlılık Enjeksiyonu?

 	
 Özet

Ana Kavramlar

Bu kitap boyunca, Laravel’in en güçlü özelliklerinin bir kısmından yararlanacağız.

Konuya geçmeden önce, en azından Laravel’in konteynerinin ve onun Bağımlılık Enjeksiyonu kullanımını bizim için ne kadar kolaylaştırdığının bilinmesi önemlidir.

Bu bölüm Laravel’in konteynerini, “Inversion of Control” kullanımını ve Bağımlılık Enjeksiyonunu kapsayacak.

Konteyner

Illuminate\Foundation\Application sınıfı bütün Laravel’i birbirine bağlar. Bu sınıf bir konteynerdir - veriler, nesneler, sınıflar ve hatta closure’lar “içerebilir”.

Temel Kullanım

Konteynerin nasıl çalıştığını görmek için, routes dosyamızda bir eksersiz üzerinden çalışalım.

Laravel’in konteyneri ArrayAccess interface’ini implemente eder ve bu yüzden ona bir dizi gibi erişebileceğimizi biliyoruz. Ona ilişkisel bir dizi gibi nasıl ulaşabileceğimizi görelim.

 Dosya: app/routes.php

1 Route::get('/container', function()
2 {
3 	// Application olgusunu elde et
4 	$app = App::getFacadeRoot();
5
6 	$app['bir_dizi'] = array('foo' => 'bar');
7
8 	var_dump($app['bir_dizi']);
9 });

/container rotasına gittiğimizde, şu sonucu alacağız:

1 array (size=1)
2 	'foo' => string 'bar' (length=3)

Yani, Applicationun nitelikleri ve metodları olan bir sınıf olmakla birlikte, aynı zamanda bir dizi olarak ulaşılabilir olduğunu da görüyoruz!

 	
 [image: warning]
 	
 Facade’lar

 App::getFacadeRoot() metodunun ne yaptığı kafanızı karıştırdı mı? App sınıfı bir Facade’dır. Bu bize onu her yerde kullanma, ona statik bir tarzda erişme imkanı verir. Buna karşın gerçekte static bir sınıf değildir. getFacadeRoot metodu sınıfın gerçek olgusunu getirecektir ki bu örnekte onu bir dizi olarak kullanabilmemiz için ihtiyacımız olan şeydir.

 Illuminate\Support\Facades aduzayındaki bu ve diğer Facade’lara bakın.

Daha İlerisi

Şimdi konteyneri biraz süsleyelim ve bir closure atayalım:

 Dosya: app/routes.php

 1 Route::get('/container', function()
 2 {
 3 	// Application olgusunu elde et
 4 	$app = App::getFacadeRoot();
 5
 6 	$app['selam_ver'] = function()
 7 	{
 8 		return "Merhaba, Dünya!";
 9 	};
10
11 	return $app['selam_ver'];
12 });

/container rotamızı tekrar çalıştıralım ve şunu göreceğiz:

1 Merhaba, Dünya!

Bu görünüşte basit olsa da gerçekte oldukça güçlüdür. Bu, aslında, ayrı Illuminate paketlerinin Laravel frameworkü oluşturmak için bir diğeriyle nasıl etkileştiğinin temelidir.

İlerde, çeşitli Illuminate paketleri arasında zamk gibi etkiyen Service Providerlarının öğeleri konteynere nasıl bağladığını göreceğiz.

Inversion of Control (Devrik Kontrol)

Laravel’in Container sınıfı sadece bir dizi kılığına bürünmekten çok daha fazlasına sahiptir. Aynı zamanda bir Inversion of Control (IoC) konteyneri olarak da işlev görebilir.

Inversion of Control, bizim bir sınıf veya interface’i nasıl implemente ettiğimizi tanımlamamız için bir tekniktir. Örneğin, uygulamamızın eğer bir FalanInterface bağımlılığı varsa ve biz onu implemente eden bir SomutFalan sınıfını kullanmak istiyorsak, bu implementasyonu tanımladığımız yer IoC konteyneridir.

Bir kez daha /container rotamızı kullanarak, bunun nasıl çalıştığını basit bir örnekle görelim.

İlk olarak, birkaç sınıf - bir interface ve onu implemente eden bir sınıf - oluşturacağız. Basit olması bakımından doğruca app/routes.php dosyasına gidebiliriz:

 Dosya: app/routes.php

 1 interface GreetableInterface {
 2
 3 public function greet();
 4
 5 }
 6
 7 class HelloWorld implements GreetableInterface {
 8
 9 public function greet()
10 {
11 return 'Merhaba, Dünya!';
12 }
13 }

Şimdi, bu sınıfları kulanmak için konteynerimizle ne yapabileceğimizi görelim. Önce “binding (bağlama)” kavramına gireceğiz.

 Dosya: app/routes.php

 1 Route::get('/container', function()
 2 {
 3 // Application olgusunu elde et
 4 $app = App::getFacadeRoot();
 5
 6 $app->bind('GreetableInterface', function()
 7 {
 8 return new HelloWorld;
 9 });
10
11 $greeter = $app->make('GreetableInterface');
12
13 return $greeter->greet();
14 });

Dizi şeklinde erişilebilir $app['GreetableInterface'] kullanmak yerine bind() metodunu kullandık.

Bu, Laravel’in IoC konteynerinin, GreetableInterface istenen her zamanda HelloWorld sınıfının döndürülmesi amacıyla kullanılmasıdır.

Bu yolla, implementasyonları “takas” edebiliyoruz! Örneğin, HelloWorld yerine bir GoodbyeCruelWorld implementasyonu yapabilirim ve GreetableInterface istendiği zaman konteynerin bunu döndürmesine karar verebilirim.

Bu, uygulamamızda sürdürülebilirliğe götürür. Konteyneri kullanarak, bir konumdaki implementasyonlarımızı, uygulama kodumuzun diğer alanlarını etkilemeksizin (ideal olarak) takas edebiliriz.

Gerçek Dünya Kullanımı

Tüm bu bağlamalarımızı uygulamanızda nereye koyacaksınız? Eğer start.php, filters.php, routes.php ve diğer bootstrap dosyalarınızı bağlamalarla doldurup karıştırmak istemiyorsanız, bu durumda Service Provider (Hizmet Sağlayıcı) sınıflarını kullanabilirsiniz.

Service Providerları özel olarak Laravel’in konteynerine bağlamaları kayda geçirmek için oluşturulurlar. Aslında, neredeyse tüm Illuminate paketleri sadece bu işi yapan bir Service Provider kullanmaktadır.

Hizmet Sağlayıcılarının bir Illuminate paketi içinde nasıl kullanıldığının bir örneğini görelim. Pagination paketini inceleyeceğiz.

Öncelikle, Pagination Service Provider’in register() metodu şöyledir:

 Illuminate\Pagination\PaginationServiceProvider.php

 1 public function register()
 2 {
 3 $this->app['paginator'] = $this->app->share(function($app)
 4 {
 5 $paginator = new Environment(
 6 $app['request'],
 7 $app['view'],
 8 $app['translator']
 9);
10
11 $paginator->setViewName(
12 $app['config']['view.pagination']
13);
14
15 return $paginator;
16 });
17 }

 	
 [image: information]
 	
 Bu register() metodu app/config/app.php dosyası içinde belirtilen her Service Provider’ı üzerinde otomatik olarak çağrılmaktadır.

Pekiyi, bu register() metodunda neler yapılıyor? Birincisi ve en önemlisi, “paginator” olgusunu konteynere kayda geçiriyor. Bu, uygulamanın her yerinde $app['paginator'] ve App::make('paginator') kulllanılabilmesini sağlıyor.

Daha sonra, tıpkı ‘selam_ver’ örneğinde yaptığımız gibi, bir closure’un sonucu olarak döndürülmek üzere ‘paginator’ olgusunu tanımlıyor.

 	
 [image: warning]
 	
 $this->app->share() kullanılması kafanızı karıştırmasın. Share metodu sadece closure’un bir singleton olarak kullanılması için bir yol sağlar, $this->app->instance('paginator', new Environment) çağırmak gibi bir şeydir.

Bu closure yeni bir Pagination\Environment nesnesi oluşturuyor, onun üzerinde bir yapılandırma değeri ayarlıyor ve onu döndürüyor.

Bu Hizmet Sağlayıcının diğer uygulama bağlamalarını kullandığı dikkatinizi çekmiş olmalı! Pagination\Environment sınıfı, oluşturucu metodunda açıkça bazı bağımlılıklar alıyor - bir request nesnesi $app['request'], bir view nesnesi $app['view'] ve bir translator $app['translator']. Neyse ki, bu bağlamalar Illuminate’in diğer paketlerinde oluşturulmuş olan çeşitli Service Providerlarda tanımlanmışlardır.

Çeşitli Illuminate paketlerinin birbirleriyle nasıl etkileşebildiğini de görebiliyoruz. Onlar uygulama konteynerine bağlanmış oldukları için, diğer paketlerde (veya kendi kodumuz içinde!) onları kullanabiliyoruz ve bizim kodumuzu spesifik bir sınıfa gerçekten bağlamamamız gerekmiyor.

Bağımlılık Enjeksiyonu

Konteynerin nasıl çalıştığını gördüğümüze göre, Laravel’de Bağımlılık Enjeksiyonunu uygulamak için onu nasıl kullanabileceğimize bakabiliriz.

Bağımlılık Enjeksiyonu Nedir?

Bağımlılık Enjeksiyonu bir sınıf bağımlılığını sınıf kodunun kendisi içindeki bir yerlerde başlatmak yerine, sınıf içine eklenmesi (enjekte edilmesi) eylemidir. Sıklıkla, bağımlılıklar bir oluşturucu metodun type-hinted (tip dayatmalı) parametreleri olarak tanımlanırlar.

Örneğin şu oluşturucu metodu ele alalım:

1 public function __construct(HelloWorld $greeter)
2 {
3 $this->greeter = $greeter;
4 }

Bir parametre olarak HelloWorld tip dayatması yapmakla, bir HelloWorld olgusunun sınıfımızın bir bağımlılığı olduğunu açıkça ifade ediyoruz.

Bu, direkt olgu başlatmanın karşıtıdır:

1 public function __construct()
2 {
3 $this->greeter = new HelloWorld;
4 }

 	
 [image: warning]
 	
 Kendi kendinize neden Bağımlılık Enjeksiyonu kullanılıyor diye soruyorsanız, bu Stack Overflow cevabı başlamak için harika bir yerdir. Aşağıdaki örneklerde onun bazı yararlarını anlatacağım.

Sonra da Laravel’in IoC konteynerini kullanan Bağımlılık Enjeksiyonu örneğini iş başında göreceğiz.

Controller Bağımlılıklarının Eklenmesi

Bu Laravelde çok sık kullanılan bir durumdur.

Normalde, bir controlleri oluşturucu metodunda bir sınıf bekleyecek şekilde ayarlarsak, bu sınıf oluşturulurken bağımlılıklarını da eklememiz gerekir. Ancak, bir Laravel controllerinde bir bağımlılık tanımladığımızda ne olur? Controlleri kendimiz başka bir yerde başlatmamız gerekecektir:

1 $crtl = new ContainerController(new HelloWorld);

Bu harika, ancak Laravel’de bir controlleri direkt olarak başlatmayız - bunu bizim için router halleder.

Bununla birlikte, biz yine de Laravel’in IoC konteynerini kullanmak suretiyle controller bağımlılıklarını enjekte edebiliriz!

Daha önce kullandığımız aynı GreetableInterface ve HelloWorld sınıflarını kullanarak, şimdi /container rotamızı bir controllere bağlamayı düşünelim:

 Dosya: app/routes.php

 1 interface GreetableInterface {
 2
 3 public function greet();
 4
 5 }
 6
 7 class HelloWorld implements GreetableInterface {
 8
 9 public function greet()
10 {
11 return 'Merhaba, Dünya!';
12 }
13 }
14
15 Route::get('/container', 'ContainerController@container);

Şimdi de yeni controllerimizde, oluşturucu metodunda bir parametre olarak HelloWorld ayarlayabiliriz:

 Dosya: app/controllers/ContainerController.php

 1 <?php
 2
 3 class ContainerController extends BaseController {
 4
 5 protected $greeter;
 6
 7 // Sınıf bağımlılığı: HelloWorld
 8 public function __construct(HelloWorld $greeter)
 9 {
10 $this->greeter = $greeter;
11 }
12
13 public function container()
14 {
15 return $this->greeter->greet();
16 }
17
18 }

Şimdi /container rotanıza gidin ve yine şunu göreceksiniz:

1 Merhaba, Dünya!

Ancak, dikkat ediniz, konteynere hiçbir şey BAĞLAMADIK. O sadece, controllere geçmiş olduğumuz HelloWorldun bir olgusunu “çalıştırdı”!

Bunun nedeni IoC konteynerinin bir controllerin oluşturucu metodunda ayarlanan herhangi bir bağımlılığı otomatik olarak çözümlemeye çalışmasıdır. Laravel belirtilen bağımlılığı bizim için enjekte edecektir!

Bağımlılıklar Olarak Interface’ler

Daha bitirmedik ama. Ne yapacağımızı şimdi görün!

Bir controller’in bağımlılığı olarak HelloWorld sınıfını belirtmek yerine GreetableInterface interface’ini belirtsek ne olacaktı ?

Controller kodunu şöyle yapsak:

 Dosya: app/controllers/ContainerController.php

 1 <?php
 2
 3 class ContainerController extends BaseController {
 4
 5 protected $greeter;
 6
 7 // Sınıf bağımlılığı: GreetableInterface
 8 public function __construct(GreetableInterface $greeter)
 9 {
10 $this->greeter = $greeter;
11 }
12
13 public function container()
14 {
15 echo $this->greeter->greet();
16 }
17
18 }

Bunu olduğu gibi çalıştırmayı denersek bir hata alırız:

1 Illuminate\Container\BindingResolutionException:
2 Target [GreetableInterface] is not instantiable (Hedef [GreetableInterface] başla\
3 tılamadı)

GreetableInterface sınıfı tabii ki başlatılamaz çünkü o bir interface’dir. Bununla birlikte, Laravel’in sınıf bağımlılığını çözmek için onu başlatma çabasına girdiğini görebiliyoruz.

Bunu düzeltelim - controller’imiz bir GreetableInterface olgusuna bağımlı olduğunu hissettiği zaman Laravel’in controller’e HelloWorld olgusu vermesi için konteynerin bind() metodunu kullanacağız:

 Dosya: app/routes.php

 1 interface GreetableInterface {
 2
 3 public function greet();
 4
 5 }
 6
 7 class HelloWorld implements GreetableInterface {
 8
 9 public function greet()
10 {
11 return 'Merhaba, Dünya!';
12 }
13 }
14
15 // GreetableInterface istendiğinde
16 // HelloWorld bağlamasını burada yapıyoruz!!
17 App::bind('GreetableInterface', 'HelloWorld');
18
19 Route::get('/container', 'ContainerController@container);

Şimdi /container rotanızı tekrar çalıştırırsanız, aynı şekilde yine Merhaba, Dünya! göreceksiniz!

 	
 [image: tip]
 	
 Dikkat ediniz, HelloWorld bağlamak için bir closure kullanmadık - İstediğiniz bir somut sınıfı basitçe bir string şeklinde geçebiliyorsunuz. Implentasyonunuzun kendi oluşturucu metoduna geçilmesi gereken kendi bağımlılıkları olduğu takdirde bir closure yararlı olacaktır.

Neden Bağımlılık Enjeksiyonu?

Bir bağımlılık olarak somut bir sınıf yerine neden bir interface belirtmek istiyoruz ki?

Oluşturucuya verilen bir sınıf bağımlılığının bir interface’in bir alt sınıfı olabilmesi için bunu istiyoruz. Bu sayede, - ihtiyacımız olan metod her zaman mevcut olacak - herhangi bir implementasyonu güvenle kullanabiliyoruz.

Özlü bir ifadeyle, uygulama kodumuzun diğer kısımlarını etkilemeksizin ilgili implementasyonu değiştirebiliriz.

İşte bir örnek. Gerçek uygulamalarda birçok kez yapmak zorunda kaldığım bir şey.

 	
 [image: warning]
 	
 Bu örneği kopyala yapıştır yapmayın. Konuyu temiz tutmak amacıyla, API keyleri için yapılandırma değişkenleri kullanımı gibi bazı detayları atladım çünkü.

Diyelim ki, uygulamamız Amazon’un AWS’sini kullanarak emailler gönderiyor. Bunu gerçekleştirmek için, bir Emailer interface ve bunu implemente eden bir AwsEmailer sınıfı tanımladık:

 1 interface Emailer {
 2
 3 public function send($to, $from, $subject, $message);
 4 }
 5
 6 class AwsEmailer implements Emailer {
 7
 8 protected $aws;
 9
10 public function __construct(AwsSDK $aws)
11 {
12 $this->aws = $aws;
13 }
14
15 public function send($to, $from, $subject, $message)
16 {
17 $this->aws->addTo($to)
18 ->setFrom($from)
19 ->setSubject($subject)
20 ->setMessage($message);
21 ->sendEmail();
22 }
23 }

Emailere AwsEmailer implementasyonunu bağlıyoruz:

1 App::bind('Emailer', function()
2 {
3 return new AwsEmailer(new AwsSDK);
4 });

Bir controller bağımlılık olarak Emailer interface’ini kullanıyor:

 Dosya: app/controllers/EmailController.php

 1 class EmailController extends BaseController {
 2
 3 protected $emailer;
 4
 5 // Sınıf bağımlılığı: Emailer
 6 public function __construct(Emailer $emailer)
 7 {
 8 $this->emailer = $emailer;
 9 }
10
11 public function email()
12 {
13 $this->emailer->send(
14 'ex-to@example.com',
15 'ex-from@example.com',
16 'Peanut Butter Jelly Time!',
17 "It's that time again! And so on!"
18);
19
20 return Redirect::to('/');
21 }
22
23 }

Bir süre geçtikten sonra uygulamamızın kapsamı büyüdü ve AWS’nin sağladığından daha fonksiyonel bir şeye ihtiyaç doğdu. Biraz araştırdıktan ve seçenekleri değerlendirdikten sonra SendGrid üzerinde karar kıldık.

Uygulamamızı SendGrid kullanacak şekilde değiştirmek için neler yapmamız gerekiyor? Interface’ler ve Laravel’in IoC konteynerini kullandığımız için, SendGrid’e geçiş çok kolaydır!

İlk olarak, Emailer interface’inin SendGrid kullanan bir implementasyonunu yapacağız!

 1 class SendGridEmailer implements Emailer {
 2
 3 protected $sendgrid;
 4
 5 public function __construct(SendGridSDK $sendgrid)
 6 {
 7 $this->sendgrid = $sendgrid;
 8 }
 9
10 public function send($to, $from, $subject, $message)
11 {
12 $mail = $this->sendgrid->mail->instance();
13
14 $mail->addTo($to)
15 ->setFrom($from)
16 ->setSubject($subject)
17 ->setText(strip_tags($message))
18 ->setHtml($message)
19 ->send();
20
21 $this->sendgrid->web->send($mail);
22 }
23 }

Sonra da, (ve son olarak!), uygulamamızı Aws yerine SendGrid kullanacak şekilde ayarlayacağız. IoC konteynerinde bind() metoduna bir çağrımız olması nedeniyle, yapacağımız tek değişiklik Emailerin implementasyonunu AwsEmailerden SendGridEmailere değiştirmektir:

 1 // Eskisi
 2 App::bind('Emailer', function()
 3 {
 4 return new AwsEmailer(new AwsSDK);
 5 });
 6
 7 // Yenisi
 8 App::bind('Emailer', function()
 9 {
10 return new SendGridEmailer(new SendGridSDK);
11 });

Dikkat ederseniz tüm bunları, uygulamamızın başka yerlerindeki kodun tek bir satırını değiştirmeksizin yaptık. Bir bağımlılık olarak Emailer interface kullanımına zorlamakla, enjekte edilecek bir sınıfta send() metodunun mevcut olması garanti altına alınmış oluyor.

Örneğimizde bunu görebiliyoruz. Implementasyonu AwsEmailerden SendGridEmailere değiştirdiğimiz zaman, controller bir değişiklik yapılmasına gerek kalmadan hala $this->emailer->send() metodunu çağırmaktadır.

Özet

Bağımlılık Enjeksiyonu ve Inversion of Control, Laravel geliştirmede tekrar tekrar kullanılan desenlerdir.

Gördüğünüz gibi, kodumuzu daha sürdürülebilir yapmak ve test edilebilirliğe yardımcı olması için birçok interface tanımlayacağız. Laravel’in IoC konteyneri bizim için bunu kolay bir hale getirmektedir.

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/leanpub_leanpub_logo.png
Leanpub

OEBPS/images/leanpub_information.png
1

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/title_page.jpg
Implementing
Laravel

YAZARLAR CHRIS FIDAO & SINAN ELDEM

