

Implementing Laravel

Chris Fidao

This book is for sale at http://leanpub.com/implementinglaravel

This version was published on 2013-10-21

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 Chris Fidao

http://leanpub.com/implementinglaravel
http://leanpub.com
http://leanpub.com/manifesto

Contents

Core Concepts . 1

The Container . 2
Basic Usage . 2
Getting More Advanced . 3
Inversion of Control . 3
Real-World Usage . 5

Dependency Injection . 7
What is Dependency Injection? . 7
Adding Controller Dependencies . 7
Interfaces as Dependencies . 9
Why Dependency Injection? . 11
Wrapping Up . 14

Core Concepts

Throughout this book, we’ll be making use of some of Laravel’s more powerful features.

Before jumping in, it’s important to at least know about Laravel’s container and how it allows us to
more easily use Dependency Injection.

This chapter will cover Laravel’s container, its use of Inversion of Control, and Dependency
Injection.

The Container
The Illuminate\Foundation\Application class ties all of Laravel together. This class is a container
- it can “contain” data, objects, classes and even closures.

Basic Usage

To see how the container works, let’s run through an exercise in our routes file.

Laravel’s container implements ArrayAccess, and so we know we can access it like an array. Here
we’ll see how we can access it like an associative array.

File: app/routes.php

1 Route::get('/container', function()

2 {

3 // Get Application instance

4 $app = App::getFacadeRoot();

5

6 $app['some_array'] = array('foo' => 'bar');

7

8 var_dump($app['some_array']);

9 });

Going to the /container route, We’ll get this result:

1 array (size=1)

2 'foo' => string 'bar' (length=3)

So, we can see that the Application, while still a class with attributes and methods, is also accessible
like an array!

Facades
Confused as to what App::getFacadeRoot() is doing? The App class is a Facade. This allows
us to use it anywhere, accessing it in a static manner. However, it’s actually not a static
class. getFacadeRootwill get the real instance of the class, which we needed to do in order
to use it like an array in this example.

See this and other Facades in the Illuminate\Support\Facades namespace.

The Container 3

Getting More Advanced

Now, let’s get a little fancier with the container and assign a closure:

File: app/routes.php

1 Route::get('/container', function()

2 {

3 // Get Application instance

4 $app = App::getFacadeRoot();

5

6 $app['say_hi'] = function()

7 {

8 return "Hello, World!";

9 };

10

11 return $app['say_hi'];

12 });

Once again, run the /container route and we’ll see:

1 Hello, World!

While seemingly simple, this is actually quite powerful. This is, in fact, the basis for how the separate
Illuminate packages interact with each other in order to make up the Laravel framework.

Later we’ll see how Service Providers bind items to the container, acting as the glue between the
various Illuminate packages.

Inversion of Control

Laravel’s Container class has more up its sleeve than simply masquerading as an array. It also can
function as an Inversion of Control (IoC) container.

Inversion of Control is a technique which let’s us define how our application should implement a
class or interface. For instance, if our application has a dependency FooInterface, and we want to
use an implementing class ConcreteFoo, the IoC container is where we define that implementation.

Let’s see a basic example of how that works using our /container route once again.

First, we’ll setup some classes - an interface and an implementing class. For simplicity, these can go
right into the app/routes.php file:

The Container 4

File: app/routes.php

1 interface GreetableInterface {

2

3 public function greet();

4

5 }

6

7 class HelloWorld implements GreetableInterface {

8

9 public function greet()

10 {

11 return 'Hello, World!';

12 }

13 }

Now, let’s use these classes with our container to see what we can do. First, I’ll introduce the concept
of “binding”.

File: app/routes.php

1 Route::get('/container', function()

2 {

3 // Get Application instance

4 $app = App::getFacadeRoot();

5

6 $app->bind('GreetableInterface', function()

7 {

8 return new HelloWorld;

9 });

10

11 $greeter = $app->make('GreetableInterface');

12

13 return $greeter->greet();

14 });

Instead of using the array-accessible $app['GreetableInterface'], we used the bind() method.

This is using Laravel’s IoC container to return the class HelloWorld anytime it’s asked for
GreetableInterface.

The Container 5

In this way, we can “swap out” implementations! For example, instead of HelloWorld, I could
make a GoodbyeCruelWorld implementation and decide to have the container return it whenever
GreetableInterface was asked for.

This goes towards maintainability in our applications. Using the container, we can (ideally) swap
out implementations in one location without affecting other areas of our application code.

Real-World Usage

Where do you put all these bindings in your applications? If you don’t want to litter your start.php,
filters.php, routes.php and other bootstrapping files with bindings, then you can use Service
Provider classes.

Service Providers are created specifically to register bindings to Laravel’s container. In fact, nearly
all Illuminate packages use a Service Provider to do just that.

Let’s see an example of how Service Providers are usedwithin an Illuminate package.We’ll examine
the Pagination package.

First, here is the Pagination Service Provider’s register() method:

Illuminate\Pagination\PaginationServiceProvider.php

1 public function register()

2 {

3 $this->app['paginator'] = $this->app->share(function($app)

4 {

5 $paginator = new Environment(

6 $app['request'],

7 $app['view'],

8 $app['translator']

9);

10

11 $paginator->setViewName(

12 $app['config']['view.pagination']

13);

14

15 return $paginator;

16 });

17 }

The register() method is automatically called on each Service Provider specified within
the app/config/app.php file.

The Container 6

So, what’s going on in this register() method? First and foremost, it registers the “paginator” in-
stance to the container. This will make $app['paginator'] and App::make('paginator') available
for use by other areas of the application.

Next, it’s defining the ‘paginator’ instance as the returned result of a closure, just as we did in the
‘say_hi’ example.

Don’t be confused by the use of $this->app->share(). The Share method sim-
ply provides a way for the closure to be used as a singleton, similar to calling
$this->app->instance('paginator', new Environment).

This closure creates a new Pagination\Environment object, sets a configuration value on it and
returns it.

You likely noticed that the Service Provider uses other application bindings! The PaginationEnvironment
class clearly takes some dependencies in its constructor method - a request object $app['request'],
a view object $app['view'], and a translator $app['translator']. Luckily, those bindings are
created in other packages of Illuminate, defined in various Service Providers.

We can see, then, how the various Illuminate packages interact with each other. Because they are
bound to the application container, we can use them in other packages (or our own code!), without
actually tying our code to a specific class.

Dependency Injection
Now that we see how the container works, let’s see how we can use it to implement Dependency
Injection in Laravel.

What is Dependency Injection?

Dependency Injection is the act of adding (injecting) any dependencies into a class, rather than
instantiating them somewhere within the class code itself. Often, dependencies are defined as type-
hinted parameters of a constructor method.

Take this constructor method, for example:

1 public function __construct(HelloWorld $greeter)

2 {

3 $this->greeter = $greeter;

4 }

By type-hinting HelloWorld as a parameter, we’re explicitly stating that an instance of HelloWorld
is a class dependency.

This is opposite of direct instantiation:

1 public function __construct()

2 {

3 $this->greeter = new HelloWorld;

4 }

If you find yourself asking why Dependency Injection is used, this Stack Overflow answer¹
is a great place to start. I’ll cover some benefits of it in the following examples.

Next, we’ll see an example of Dependency Injection in action, using Laravel’s IoC container.

Adding Controller Dependencies

This is a very common use case within Laravel.

Normally, if we set a controller to expect a class in its constructor method, we also need to add those
dependencies when the class is created. However, what happens when you define a dependency on
a Laravel controller? We would need to instantiate the controller somewhere ourselves:

¹http://stackoverflow.com/questions/130794/what-is-dependency-injection

http://stackoverflow.com/questions/130794/what-is-dependency-injection
http://stackoverflow.com/questions/130794/what-is-dependency-injection

Dependency Injection 8

1 $crtl = new ContainerController(new HelloWorld);

That’s great, but we don’t directly instantiate a controller within Laravel - the router handles it for
us.

We can still, however, inject controller dependencies with the use of Laravel’s IoC container!

Keeping the same GreetableInterface and HelloWorld classes from before, let’s now imagine we
bind our /container route to a controller:

File: app/routes.php

1 interface GreetableInterface {

2

3 public function greet();

4

5 }

6

7 class HelloWorld implements GreetableInterface {

8

9 public function greet()

10 {

11 return 'Hello, World!';

12 }

13 }

14

15 Route::get('/container', 'ContainerController@container');

Now in our new controller, we can set HelloWorld as a parameter in the constructor method:

File: app/controllers/ContainerController.php

1 <?php

2

3 class ContainerController extends BaseController {

4

5 protected $greeter;

6

7 // Class dependency: HelloWorld

8 public function __construct(HelloWorld $greeter)

9 {

10 $this->greeter = $greeter;

Dependency Injection 9

11 }

12

13 public function container()

14 {

15 return $this->greeter->greet();

16 }

17

18 }

Now head to your /container route and you should, once again, see:

1 Hello, World!

Note, however, that we did NOT bind anything to the container. It simply “just worked” - an instance
of HelloWorld was passed to the controller!

This is because the IoC container will automatically attempt to resolve any dependency set in the
constructor method of a controller. Laravel will inject specified dependencies for us!

Interfaces as Dependencies

We’re not done, however. Here is what we’re building up to!

What if, instead of specifying HelloWorld as the controller’s dependency, we specified the interface
GreetableInterface?

Let’s see what that would look like:

File: app/controllers/ContainerController.php

1 <?php

2

3 class ContainerController extends BaseController {

4

5 protected $greeter;

6

7 // Class dependency: GreetableInterface

8 public function __construct(GreetableInterface $greeter)

9 {

10 $this->greeter = $greeter;

11 }

12

Dependency Injection 10

13 public function container()

14 {

15 echo $this->greeter->greet();

16 }

17

18 }

If we try to run this as-is, we’ll get an error:

1 Illuminate\Container\BindingResolutionException:

2 Target [GreetableInterface] is not instantiable

The class GreetableInterface is of course not instantiable, as it is an interface.We can see, however,
that Laravel is attempting to instantiate it in order to resolve the class dependency.

Let’s fix that - when the container sees that our controller depends on an instance of GreetableInterface,
we’ll use the container’s bind() method to tell Laravel to give the controller and instance of
HelloWorld:

File: app/routes.php

1 interface GreetableInterface {

2

3 public function greet();

4

5 }

6

7 class HelloWorld implements GreetableInterface {

8

9 public function greet()

10 {

11 return 'Hello, World!';

12 }

13 }

14

15 // Binding HelloWorld when asked for

16 // GreetableInterface here!!

17 App::bind('GreetableInterface', 'HelloWorld');

18

19 Route::get('/container', 'ContainerController@container');

Dependency Injection 11

Now re-run your /container route, you’ll see Hello, World! once again!

Note that I didn’t use a closure to bind HelloWorld - You can simply pass the concrete class
name as a string if you wish. A closure is useful when your implementation has its own
dependencies that need to be passed into its constructor method.

Why Dependency Injection?

Why would we want to specify an interface as a dependency instead of a concrete class?

We want to because we need any class dependency given to the constructor to be a subclass of an
interface. In this way, we can safely use any implementation - the method we need will always be
available.

Put succinctly, we can change the implementation at will, without effecting other portions of
our application code.

Here’s an example. It’s something I’ve had to do many times in real applications.

Don’t copy and paste this example. I’m omitting some details, such as using configuration
variables for API keys, to clarify the point.

Let’s say our application sends emails using Amazon’s AWS. To accomplish this, we have defined
an Emailer interface and an implementing class AwsEmailer:

1 interface Emailer {

2

3 public function send($to, $from, $subject, $message);

4 }

5

6 class AwsEmailer implements Emailer {

7

8 protected $aws;

9

10 public function __construct(AwsSDK $aws)

11 {

12 $this->aws = $aws;

13 }

14

15 public function send($to, $from, $subject, $message)

16 {

Dependency Injection 12

17 $this->aws->addTo($to)

18 ->setFrom($from)

19 ->setSubject($subject)

20 ->setMessage($message);

21 ->sendEmail();

22 }

23 }

We bind Emailer to the AwsEmailer implementation:

1 App::bind('Emailer', function()

2 {

3 return new AwsEmailer(new AwsSDK);

4 });

A controller uses the Emailer interface as a dependency:

File: app/controllers/EmailController.php

1 class EmailController extends BaseController {

2

3 protected $emailer;

4

5 // Class dependency: Emailer

6 public function __construct(Emailer $emailer)

7 {

8 $this->emailer = $emailer;

9 }

10

11 public function email()

12 {

13 $this->emailer->send(

14 'ex-to@example.com',

15 'ex-from@example.com',

16 'Peanut Butter Jelly Time!',

17 "It's that time again! And so on!"

18);

19

20 return Redirect::to('/');

21 }

22

23 }

Dependency Injection 13

Let’s further pretend that someday down the line, our application grows in scope and needs some
more functionality than AWS provides. After some searching and weighing of options, you decide
on SendGrid.

How do you then proceed to change your application over to SendGrid? Because we used interfaces
and Laravel’s IoC container, switching to SendGrid is easy!

First, make an implementation of Emailer which uses SendGrid!

1 class SendGridEmailer implements Emailer {

2

3 protected $sendgrid;

4

5 public function __construct(SendGridSDK $sendgrid)

6 {

7 $this->sendgrid = $sendgrid;

8 }

9

10 public function send($to, $from, $subject, $message)

11 {

12 $mail = $this->sendgrid->mail->instance();

13

14 $mail->addTo($to)

15 ->setFrom($from)

16 ->setSubject($subject)

17 ->setText(strip_tags($message))

18 ->setHtml($message)

19 ->send();

20

21 $this->sendgrid->web->send($mail);

22 }

23 }

Next, (and lastly!), set the application to use SendGrid rather than Aws. Because we have our
call to bind() in the IoC container, changing the implementation of Emailer from AwsEmailer to
SendGridEmailer is as simple as this one change:

Dependency Injection 14

1 // From

2 App::bind('Emailer', function()

3 {

4 return new AwsEmailer(new AwsSDK);

5 });

6

7 // To

8 App::bind('Emailer', function()

9 {

10 return new SendGridEmailer(new SendGridSDK);

11 });

Note that we did this all without changing a line of code elsewhere in our application. Enforcing
the use of the interface Emailer as a dependency guarantees that any class injected will have the
send() method available.

We can see this in our example. The controller still called $this->emailer->send() without having
to be modified when we switched from AwsEmailer to SendGridEmailer implementations.

Wrapping Up

Dependency Injection and Inversion of Control are patterns used over and over again in Laravel
development.

As you’ll see, we’ll define a lot of interfaces in order to make our code more maintainable, and help
in testing. Laravel’s IoC container makes this easy for us.

	Table of Contents
	Core Concepts
	The Container
	Basic Usage
	Getting More Advanced
	Inversion of Control
	Real-World Usage

	Dependency Injection
	What is Dependency Injection?
	Adding Controller Dependencies
	Interfaces as Dependencies
	Why Dependency Injection?
	Wrapping Up

