

Implementando Laravel

Chris Fidao and Antonio Carlos Ribeiro

This book is for sale at http://leanpub.com/implementinglaravel-pt

This version was published on 2013-09-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 Chris Fidao (traduzido por Antonio Carlos Ribeiro)

http://leanpub.com/implementinglaravel-pt
http://leanpub.com
http://leanpub.com/manifesto

Conteúdo

Conceitos Básicos . 1

O Contêiner . 2
Uso Básico . 2
Indo Para Algo Mais Avançado . 3
Inversão de Controle . 3
Uso no Mundo Real . 5

Injeção de Dependência . 7
O que é Injeção de Dependência? . 7
Criando Novas Dependências no Controlador . 8
Interfaces como Dependências . 9
Por que Injeção de Dependência? . 11
Conclusão . 14

Conceitos Básicos

Ao longo deste livro nós vamos fazer uso de alguns dos recursos mais poderosos do Laravel.

Antes de começar é importante, pelo menos, saber algo sobre o contêiner do Laravel e como ele nos
permite usar mais facilmente a Injeção de Dependência (Dependency Injection).

Este capítulo vai falar sobre o contêiner do Laravel, seu uso da Inversão de Controle (Inversion of
Control) e da Injeção de Dependência.

O Contêiner
A classe Illuminate\Foundation\Application é quem faz a amarração de tudo o que há no Laravel.
Esta classe é um contêiner - ela pode “conter” dados, objetos, classes e até “closures” (funções
anônimas).

Uso Básico

Para ver como o contêiner funciona, vamos ver fazer um exercício no nosso arquivo de rotas (routes).

O contêiner do Laravel implementa a interface ArrayAccess e assim sendo é possível acessá-lo como
se fosse um array. Vamos usá-lo como um array associativo:

1 Route::get('/container', function()

2 {

3 // Retorna a instância da Aplicação

4 $app = App::getFacadeRoot();

5

6 $app['some_array'] = array('foo' => 'bar');

7

8 var_dump($app['some_array']);

9 });

Apontando o browser para a rota /container, teremos este resultado:

1 array (size=1)

2 'foo' => string 'bar' (length=3)

Assim vemos que a Application (classe App acima), mesmo sendo uma classe com atributos e
métodos está acessível como se fosse um array.

Facades
Não entendeu o que App::getFacadeRoot() faz? A classe App é uma fachada (Facade). Isso
permite seu uso em qualquer lugar, acessando-a de maneira estática. Entretanto ela não é
uma classe estática. O método getFacadeRoot retorna a instância real da classe, que nós
precisávamos a fim de usá-la como um array no exemplo.

Veja esta e outras Facades no namespace Illuminate\Support\Facades.

O Contêiner 3

Indo Para Algo Mais Avançado

Agora um uso mais sofisticado do contêiner, vamos atribuir a ele uma closure.

1 Route::get('/container', function()

2 {

3 // Retorna a instância da Aplicação

4 $app = App::getFacadeRoot();

5

6 $app['say_hi'] = function()

7 {

8 return "Hello, World!";

9 };

10

11 return $app['say_hi'];

12 });

Novamente, apontando para a rota /container vamos ver:

1 Hello, World!

Embora aparentemente simples, isso é realmente muito poderoso. Isso é, de fato, a base de como os
vários pacotes Illuminate interagem entre si, formando o Laravel framework.

Mais adiante vamos ver como os Provedores de Serviço (Service Providers) vinculam itens ao
contêiner, funcionando como elo de ligação entre os vários pacotes Illuminate.

Inversão de Controle

A classe Container do Laravel possui muito mais cartas na manga do que apenas parecer ser um
array. Ela também pode funcionar como contêiner de Inversão de Controle (IoC - do inglês Inversion
of Control).

Inversão de Controle é uma técnica que nos permite definir como a nossa aplicação deve implemen-
tar uma classe ou uma interface.

Por exemplo, se a nossa aplicação possui como dependência FooInterface e nós queremos usar uma
implementação dela, cuja classe vamos chamar de ConcreteFoo, o contêiner IoC é aonde definimos
esta implementação.

Vamos ver um exemplo básico de como isso funciona usando nossa rota /container, novamente.

Primeiro vamos definir algumas classes - uma interface e uma classe que a implementa, estas podem
ser colocadas diretamente no arquivo app/routes.php:

O Contêiner 4

1 interface GreetableInterface {

2

3 public function greet();

4

5 }

6

7 class HelloWorld implements GreetableInterface {

8

9 public function greet()

10 {

11 return 'Hello, World!';

12 }

13 }

Agora vamos usar essas classes como nosso contêiner, para ver o que dá pra fazer. Primeiro vou
introduzir o conceito de “ligação” (binding).

1 Route::get('/container', function()

2 {

3 // Retorna a instância da Aplicação

4 $app = App::getFacadeRoot();

5

6 $app->bind('GreetableInterface', function()

7 {

8 return new HelloWorld;

9 });

10

11 $greeter = $app->make('GreetableInterface');

12

13 return $greeter->greet();

14 });

Ao invés de usar o (acessível como array) $app['GreetableInterface'], usamos o método bind().

Ele configura o contêiner IoC do Laravel, para que este devolva uma instância da classe HelloWorld
toda vez que for solicitado pela interface GreetableInterface.

Desta forma podemos mudar implementações! Por exemplo, ao invés de HelloWorld, eu poderia
criar uma nova implementação, chamá-la de GoodbyeCruelWorld e decidir que o contêiner a devolva
sempre que alguém solicitar GreetableInterface.

Isso nos leva ao encontro da manutenibilidade da nossa aplicação. Usando o contêiner nós podemos
(de forma ideal) mudar implementações em determinados pontos sem afetar outras áreas do código
da nossa aplicação.

O Contêiner 5

Uso no Mundo Real

Onde na sua aplicação você vai colocar todas essas ligações? Se você não quer abarrotar os arquivos
start.php, filters.php, routes.php e outros arquivos envolvidos na inicialização com ligações,
então você pode usar classes Provedoras de Serviços (Service Providers).

Provedores de Serviço são criados especificamente para registrar as ligações feitas ao contêiner do
Laravel. De fato praticamente todos os pacotes Illuminate usam um Provedor de Serviço para fazer
apenas isso.

Vamos ver um exemplo de como Provedores de Serviços são usados em um pacote Illuminate.
Examinemos o pacote Pagination.

Primeiro, aqui está o método register() do Provedor de Serviço Pagination:

1 public function register()

2 {

3 $this->app['paginator'] = $this->app->share(function($app)

4 {

5 $paginator = new Environment(

6 $app['request'],

7 $app['view'],

8 $app['translator']

9);

10

11 $paginator->setViewName(

12 $app['config']['view.pagination']

13);

14

15 return $paginator;

16 });

17 }

O método register() é executado automaticamente em cada Provedor de Serviço especi-
ficado no arquivo app/config/app.php.

E o que está acontecendo nesse método register()? Em primeiro lugar, e acima de tudo,
ele registra a instância do “paginator” no contêiner. Isso disponibilizará $app['paginator'] e
App::make('paginator') para uso em outras áreas da aplicação.

Em seguida ele define a instância do “paginator” como retorno (resultado) de uma “closure”,
exatamente como fizemos no exemplo say_hi.

O Contêiner 6

O método Share em $this->app->share() apenas provê um caminho para que a “closure”
seja utilizada como um “singleton” (garantia de apenas uma instância).

Esta closure cria um novo objeto Pagination\Environment, altera nele um parâmetro de configura-
ção e o devolve.

Você provavelmente notou que o Provedor de Serviço usa outras ligações com a aplicação. A
classe PaginationEnvironment claramente possui algumas dependências no seu método construtor
(__construct): um objeto request ($app['request']), um objeto view ($app['view']) e um objeto
translator ($app['translator']). Felizmente estas ligações são criadas em outros pacotes do
Illuminate, definidas em diversos Provedores de Serviços.

Podemos, assim, ver como os diversos pacotes Illuminate interagem entre si. Devido ao fato deles
estarem “ligados” ao contêiner da aplicação, nós podemos usá-los em outros pacotes (ou em nosso
próprio código!), sem amarar nosso código a uma classe específica.

Injeção de Dependência
Agora que sabemos como o contêiner funciona, vamos ver como nós podemos usá-lo para imple-
mentar Injeção de Dependência no Laravel.

O que é Injeção de Dependência?

Injeção de Dependência (Dependency Injection) é o ato de injetar (introduzir) qualquer dependência
no momento da instanciação de uma classe, ao invés de invés de instanciar as dependências em
algum lugar dentro próprio código da classe. Frequentemente dependências são definidas como
indução de tipo (type-hinting), que é forçar que os parâmetros de um método construtor sejam
objetos de uma determinada classe.

Veja este método construtor, por exemplo:

1 public function __construct(HelloWorld $greeter)

2 {

3 $this->greeter = $greeter;

4 }

Ao forçar (induzir) que o parâmetro $greeter seja do tipo HelloWorld, estamos afirmando explici-
tamente que a classe depende de uma instância de HelloWorld.

Opostamente, esta é uma instanciação direta:

1 public function __construct()

2 {

3 $this->greeter = new HelloWorld;

4 }

Se você está se perguntando o porquê de se usar Injeção de Dependência, esta resposta no
Stack Overflow¹ é um ótimo ponto de partida. Eu vou cobrir alguns dos benefícios dela nos
exemplos que seguem.

A seguir vamos ver um exemplo de Injeção de Dependência em ação, usando o contêiner IoC do
Laravel.

¹http://stackoverflow.com/questions/130794/what-is-dependency-injection

http://stackoverflow.com/questions/130794/what-is-dependency-injection
http://stackoverflow.com/questions/130794/what-is-dependency-injection
http://stackoverflow.com/questions/130794/what-is-dependency-injection

Injeção de Dependência 8

Criando Novas Dependências no Controlador

Este é um caso de uso bem comum em Laravel.

Normalmente, criarmos um controlador que precisa receber uma classe instanciada em seu método
construtor (__construct), nós precisaremos passar essas dependências (sob a forma de parâmetros)
quando a classe for criada. Mas o que acontece quando você cria uma dependência em um
controlador Laravel? Você vai precisar instanciar o controlador manualmente a fim de solucionar a
dependência (enviá-la através de parâmetro). Veja um exemplo:

1 $crtl = new ContainerController(new HelloWorld);

Isso é ótimo, mas ninguém instancia controladores diretamente em Laravel - o roteador lida com
isso para nós.

Nós podemos, entretanto, injetar as dependências do controlador através do uso do contêiner IoC
do Laravel!

Mantendo as mesmas classes GreetableInterface e HelloWorld de antes, vamos imaginar agora
que ligamos nossa rota /container a um controlador:

Arquivo: app/routes.php

1 interface GreetableInterface {

2

3 public function greet();

4

5 }

6

7 class HelloWorld implements GreetableInterface {

8

9 public function greet()

10 {

11 return 'Hello, World!';

12 }

13 }

14

15 Route::get('/container', 'ContainerController@container);

Agora em nosso novo controlador, podemos definir HelloWorld como um parâmetro no método
construtor:

Injeção de Dependência 9

Arquivo: app/controllers/ContainerController.php

1 class ContainerController extends BaseController {

2

3 protected $greeter;

4

5 // Dependência da classe: HelloWorld

6 public function __construct(HelloWorld $greeter)

7 {

8 $this->greeter = $greeter;

9 }

10

11 public function container()

12 {

13 return $this->greeter->greet();

14 }

15

16 }

Agora execute a rota /container e você deve, novamente, ver:

1 Hello, World!

Observe, porém, que nós não fizemos nenhuma ligação no contêiner. Ele “simplesmente funcionou”
- uma instância de HelloWorld foi automaticamente enviada ao controlador.

Isso aconteceu porque o contêiner IoC tenta resolver qualquer dependência definida no método
construtor de um controlador. E Laravel vai injetar as dependências necessárias para nós!

Interfaces como Dependências

Mas nós ainda não terminamos, finalmente chegamos ao que queríamos mostrar.

E se ao invés de especificar HelloWorld como dependência do controlador, nós especificássemos a
interface GreetableInterface?

Vamos ver como fica:

Injeção de Dependência 10

1 class ContainerController extends BaseController {

2

3 protected $greeter;

4

5 // Dependência da classe: GreetableInterface

6 public function __construct(GreetableInterface $greeter)

7 {

8 $this->greeter = $greeter;

9 }

10

11 public function container()

12 {

13 echo $this->greeter->greet();

14 }

15

16 }

Se tentarmos executar como está, vamos receber o seguinte erro:

1 Illuminate\Container\BindingResolutionException:

2 Target [GreetableInterface] is not instantiable

A classe GreetableInterface, claro, não é instanciável, porque ela é uma interface. Mas podemos
ver que Laravel está tentando instanciá-la, para resolver a dependência definida na classe.

Resolvendo isso - nosso controlador depende de uma instância de GreetableInterface, então vamos
então usar o método bind() do contêiner para indicar ao Laravel que ele deve enviar uma instância
de HelloWorld:

1 interface GreetableInterface {

2

3 public function greet();

4

5 }

6

7 class HelloWorld implements GreetableInterface {

8

9 public function greet()

10 {

11 return 'Hello, World!';

12 }

13 }

Injeção de Dependência 11

14

15 // Ligando a classe HelloWorld quando for solicitada uma instância de

16 // GreetableInterface aqui!!

17 App::bind('GreetableInterface', 'HelloWorld');

18

19 Route::get('/container', 'ContainerController@container);

Agora execute a rota /container e você deve ver Hello, World! novamente!

Note que eu não usei uma função anônima para ligar a HelloWorld - Você pode simples-
mente passar o nome da classe concreta como uma string, se preferir. Uma closure é útil
quando a implementação tem as suas próprias dependências que precisam ser passadas no
método construtor.

Por que Injeção de Dependência?

Por que nós queremos especificar uma interface como dependência ao invés de uma classe concreta?

Porque precisamos que toda classe definida no construtor seja uma subclasse de uma interface. Desta
forma podemos com segurança usar qualquer implementação, porque o método que precisamos
sempre estará disponível.

Em outras palavras e de forma sucinta: podemos mudar a implementação à vontade, sem afetar
outras porções do código da nossa aplicação.

Aqui vai um exemplo de algo que precisei fazer muitas vezes em aplicações reais.

Não copie e cole este exemplo. Estou omitindo alguns detalhes, tal como o uso de variáveis
de configuração para chaves de API, para ficar mais claro.

Vamos dizer que sua aplicação envia e-mails usando o AWS da Amazon. Para tal foi definida uma
interface Emailer implementada na classe AwsEmailer:

Injeção de Dependência 12

1 interface Emailer {

2

3 public function send($to, $from, $subject, $message);

4 }

5

6 class AwsEmailer implements Emailer {

7

8 protected $aws;

9

10 public function __construct(AwsSDK $aws)

11 {

12 $this->aws = $aws;

13 }

14

15 public function send($to, $from, $subject, $message)

16 {

17 $this->aws->addTo($to)

18 ->setFrom($from)

19 ->setSubject($subject)

20 ->setMessage($message);

21 ->sendEmail();

22 }

23 }

Ligamos Emailer à implementação AwsEmailer:

1 App::bind('Emailer', function()

2 {

3 return new AwsEmailer(new AwsSDK);

4 });

O controlador tem a interface Emailer como dependência:

Injeção de Dependência 13

1 class EmailController extends BaseController {

2

3 protected $emailer;

4

5 // Class dependency: Emailer

6 public function __construct(Emailer $emailer)

7 {

8 $this->emailer = $emailer;

9 }

10

11 public function email()

12 {

13 $this->emailer->send(

14 'ex-to@example.com',

15 'ex-from@example.com',

16 'Peanut Butter Jelly Time!',

17 "It's that time again! And so on!"

18);

19

20 return Redirect::to('/');

21 }

22

23 }

Vamos em seguida supor que no futuro o escopo da sua aplicação cresca e passe a precisar de
funcionalidades do que a AWS não provê. Depois de alguma procura e pesar de opções, você decide
pelo SendGrid.

Como você vai fazer para migrar a sua aplicação para o SendGrid? Devido ao fato de estar usando
interfaces e o contêiner IoC do Laravel, migrar para o SendGrid é fácil!

Primeiro, crie uma implementação da interface Emailer que use SendGrid!

1 class SendGridEmailer implements Emailer {

2

3 protected $sendgrid;

4

5 public function __construct(SendGridSDK $sendgrid)

6 {

7 $this->sendgrid = $sendgrid;

8 }

9

10 public function send($to, $from, $subject, $message)

Injeção de Dependência 14

11 {

12 $mail = $this->sendgrid->mail->instance();

13

14 $mail->addTo($to)

15 ->setFrom($from)

16 ->setSubject($subject)

17 ->setText(strip_tags($message))

18 ->setHtml($message)

19 ->send();

20

21 $this->sendgrid->web->send($mail);

22 }

23 }

Em seguida (e por último), configure a aplicação para usar SendGrid ao invés de AWS. Por ter
nossa chamada a bind() no contêiner IoC, alterar a implementação do Emailer de AwsEmailer para
SendGridEmailer é tão simples quanto esta mudança:

1 // De

2 App::bind('Emailer', function()

3 {

4 return new AwsEmailer(new AwsSDK);

5 });

6

7 // Para

8 App::bind('Emailer', function()

9 {

10 return new SendGridEmailer(new SendGridSDK);

11 });

Note que fizemos isso sem alterar uma linha de código em qualquer outro ponto da nossa aplicação.
Impor o uso da interface Emailer como dependência, garante que qualquer classe injetada sempre
terá o método send() disponível.

Podemos ver isso em nosso exemplo. O controlador continua chamando $this->emailer->send() e
não teve que sermodificado quandomudamos a implementação de AwsEmailer para SendGridEmailer.

Conclusão

Injeção de Dependência e Inversão de Controle são padrões exaustivamente utilizados no desenvol-
vimento em Laravel.

Como você verá, vamos definir várias interfaces a fim de tornar nosso código manutenível e ajudar
nos testes. O contêiner IoC do Laravel torna isso fácil para nós.

	Índice analítico
	Conceitos Básicos
	O Contêiner
	Uso Básico
	Indo Para Algo Mais Avançado
	Inversão de Controle
	Uso no Mundo Real

	Injeção de Dependência
	O que é Injeção de Dependência?
	Criando Novas Dependências no Controlador
	Interfaces como Dependências
	Por que Injeção de Dependência?
	Conclusão

