& Terminal Sheil oyt View Window Help

€=

1OMGE 4 Sat927PM _Chris Fidao Q il
Cacherntertace pho

namespace l-cl\Servx(e\Cn(he,

¢ CacheInterface {

Implementand
Laravel

TRADUGAO
POR

F AnTONIO CARLOS RIBEIRO
CHRis Fibao

Implementando Laravel

Chris Fidao and Antonio Carlos Ribeiro

This book is for sale at http://leanpub.com/implementinglaravel-pt

This version was published on 2013-09-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once

you do.

©2013 Chris Fidao (traduzido por Antonio Carlos Ribeiro)

http://leanpub.com/implementinglaravel-pt
http://leanpub.com
http://leanpub.com/manifesto

Conteudo

Conceitos Basicos 1
O Contéiner e 2
UsoBasico 2
Indo Para Algo Mais Avancado 3
Inversdao de Controle 3
UsonoMundoReal 5
Injecdo de Dependéncia 7
O que é Injecdo de Dependéncia? 7
Criando Novas Dependéncias no Controlador 8
Interfaces como Dependéncias L Lo Lo 9
Por que Injecdo de Dependéncia? 11

Conclusao s, 14

Conceitos Basicos

Ao longo deste livro nds vamos fazer uso de alguns dos recursos mais poderosos do Laravel.

Antes de comecar ¢ importante, pelo menos, saber algo sobre o contéiner do Laravel e como ele nos
permite usar mais facilmente a Injecdo de Dependéncia (Dependency Injection).

Este capitulo vai falar sobre o contéiner do Laravel, seu uso da Inversao de Controle (Inversion of
Control) e da Injecao de Dependéncia.

© 00 N O O & W N =

O Contéiner

A classe I1luminate\Foundation\Application é quem faz a amarracdo de tudo o que ha no Laravel.
Esta classe é um contéiner - ela pode “conter” dados, objetos, classes e até “closures” (funcdes
andnimas).

Uso Basico

Para ver como o contéiner funciona, vamos ver fazer um exercicio no nosso arquivo de rotas (routes).

O contéiner do Laravel implementa a interface ArrayAccess e assim sendo é possivel acessa-lo como
se fosse um array. Vamos usa-lo como um array associativo:

Route: :get('/container', function()

{
// Retorna a insténcia da Aplicagdo
$app = App: :getFacadeRoot();
$app/'some_array'] = array('foo' => 'bar');
var_dump($app/'some_array']);

1);

Apontando o browser para a rota /container, teremos este resultado:

array (size=1)
'foo' => string 'bar' (length=3)

Assim vemos que a Application (classe App acima), mesmo sendo uma classe com atributos e
métodos esta acessivel como se fosse um array.

Facades

Nao entendeu o que App: : getFacadeRoot () faz? A classe App é uma fachada (Facade). Isso
permite seu uso em qualquer lugar, acessando-a de maneira estatica. Entretanto ela ndo é
uma classe estatica. O método getFacadeRoot retorna a instincia real da classe, que nos
precisdvamos a fim de usa-la como um array no exemplo.

Veja esta e outras Facades no namespace I1luminate\Support\Facades.

© 00 N O O b W N =

O ENEY
N O

O Contéiner 3

Indo Para Algo Mais Avancado

Agora um uso mais sofisticado do contéiner, vamos atribuir a ele uma closure.

Route: :get('/container', function()

{

// Retorna a insténcia da Aplicagdo

$app = App: :getFacadeRoot();

$app/'say_hi'] = function()
{

return "Hello, World!";

};

return $app/'say_hi'];
1)

Novamente, apontando para a rota /container vamos ver:
Hello, World!

Embora aparentemente simples, isso é realmente muito poderoso. Isso €, de fato, a base de como os
varios pacotes Illuminate interagem entre si, formando o Laravel framework.

Mais adiante vamos ver como os Provedores de Servigo (Service Providers) vinculam itens ao
contéiner, funcionando como elo de ligagdo entre os varios pacotes Illuminate.

Inversao de Controle

A classe Container do Laravel possui muito mais cartas na manga do que apenas parecer ser um
array. Ela também pode funcionar como contéiner de Inversao de Controle (IoC - do inglés Inversion
of Control).

Inversao de Controle é uma técnica que nos permite definir como a nossa aplicacao deve implemen-
tar uma classe ou uma interface.

Por exemplo, se a nossa aplicagao possui como dependéncia FooInter face e nds queremos usar uma
implementacio dela, cuja classe vamos chamar de ConcreteFoo, o contéiner IoC é aonde definimos
esta implementacao.

Vamos ver um exemplo basico de como isso funciona usando nossa rota /container, novamente.

Primeiro vamos definir algumas classes - uma interface e uma classe que a implementa, estas podem
ser colocadas diretamente no arquivo app/routes.php:

© 0 N O O & W N =

_R
W N O

© 00 N O O b W N =

I SN
B W N =~

O Contéiner 4

interface Greetablelnterface {

public function greet();

class HelloWorld implements Greetablelnterface {

public function greet()

{

return 'Hello, World!';

Agora vamos usar essas classes como nosso contéiner, para ver o que da pra fazer. Primeiro vou
introduzir o conceito de “ligacdo” (binding).

Route: :get('/container', function()

{

// Retorna a insténcia da Aplicagdo
$app = App: :getFacadeRoot();

$app->bind('Greetablelnterface', function()
{

return new HelloWorld;

1
$greeter = $app->make('CGreetablelnterface');

return $greeter->greet();

1)

Ao invés de usar o (acessivel como array) $app['GreetableInterface'], usamos o método bind().

Ele configura o contéiner IoC do Laravel, para que este devolva uma instancia da classe HelloWor1ld
toda vez que for solicitado pela interface GreetableInter face.

Desta forma podemos mudar implementacdes! Por exemplo, ao invés de HelloWorld, eu poderia
criar uma nova implementacao, chama-la de GoodbyeCruelWorld e decidir que o contéiner a devolva
sempre que alguém solicitar CreetablelInterface.

Isso nos leva ao encontro da manutenibilidade da nossa aplicacdo. Usando o contéiner nés podemos
(de forma ideal) mudar implementacoes em determinados pontos sem afetar outras areas do codigo
da nossa aplicacao.

© 00 N O O b W N =

T S = Y
~N O O b W N =~ 0O

O Contéiner 5

Uso no Mundo Real

Onde na sua aplicacdo vocé vai colocar todas essas ligacdes? Se vocé nao quer abarrotar os arquivos
start.php, filters.php, routes.php e outros arquivos envolvidos na inicializagdo com ligacdes,
entdo vocé pode usar classes Provedoras de Servicos (Service Providers).

Provedores de Servico sdo criados especificamente para registrar as ligacoes feitas ao contéiner do
Laravel. De fato praticamente todos os pacotes Illuminate usam um Provedor de Servigo para fazer
apenas isso.

Vamos ver um exemplo de como Provedores de Servicos sdo usados em um pacote I1lluminate.
Examinemos o pacote Pagination.

Primeiro, aqui esta o método register() do Provedor de Servigo Pagination:

public function register()
{
$this->app/'paginator'] = $this->app->share(function($app)
{
$paginator = new Environment(
$app/'request'],
$app/'view'],
$app/'translator']
);

$paginator->setViewName(
$app/'config']['view.pagination']
);

return $paginator;

});

O método register() é executado automaticamente em cada Provedor de Servigo especi-
ficado no arquivo app/config/app.php.

E o que estd acontecendo nesse método register()? Em primeiro lugar, e acima de tudo,
ele registra a instancia do “paginator” no contéiner. Isso disponibilizard $app['paginator'] e
App: :make('paginator') para uso em outras areas da aplicagao.

Em seguida ele define a instancia do “paginator” como retorno (resultado) de uma “closure”,
exatamente como fizemos no exemplo say_hi.

O Contéiner 6

O método Share em $this->app->share() apenas prové um caminho para que a “closure”
seja utilizada como um “singleton” (garantia de apenas uma instancia).

Esta closure cria um novo objeto Pagination\Environment, altera nele um parametro de configura-
cao e o devolve.

Vocé provavelmente notou que o Provedor de Servigo usa outras ligacdes com a aplicacdo. A
classe PaginationEnvironment claramente possui algumas dependéncias no seu método construtor
(__construct): um objeto request ($app['request']), um objeto view ($app['view']) e um objeto
translator ($app['translator']). Felizmente estas ligacdes sdo criadas em outros pacotes do
[lluminate, definidas em diversos Provedores de Servicos.

Podemos, assim, ver como os diversos pacotes [lluminate interagem entre si. Devido ao fato deles
estarem “ligados” ao contéiner da aplicacdo, nds podemos usa-los em outros pacotes (ou em nosso
proprio codigo!), sem amarar nosso coédigo a uma classe especifica.

W N -

B W N -

Injecao de Dependéncia

Agora que sabemos como o contéiner funciona, vamos ver como nds podemos usa-lo para imple-
mentar Injecdo de Dependéncia no Laravel.

O que é Injecao de Dependéncia?

Injecdo de Dependéncia (Dependency Injection) € o ato de injetar (introduzir) qualquer dependéncia
no momento da instanciagdo de uma classe, ao invés de invés de instanciar as dependéncias em
algum lugar dentro préprio codigo da classe. Frequentemente dependéncias sdo definidas como
inducdo de tipo (type-hinting), que é forcar que os parametros de um método construtor sejam
objetos de uma determinada classe.

Veja este método construtor, por exemplo:

public function __construct(HelloWorld $greeter)

{

$this->greeter = $greeter;

Ao forgar (induzir) que o parametro $greeter seja do tipo HelloWorld, estamos afirmando explici-
tamente que a classe depende de uma instancia de HelloWorld.

Opostamente, esta ¢ uma instanciagao direta:

public function __construct()

{

$this->greeter = new HelloWorld;

ﬁ Se vocé esta se perguntando o porqué de se usar Injecdo de Dependéncia, esta resposta no
Stack Overflow® é um 6timo ponto de partida. Eu vou cobrir alguns dos beneficios dela nos
exemplos que seguem.

A seguir vamos ver um exemplo de Injecdo de Dependéncia em acdo, usando o contéiner IoC do
Laravel.

'http://stackoverflow.com/questions/130794/what-is-dependency-injection

http://stackoverflow.com/questions/130794/what-is-dependency-injection
http://stackoverflow.com/questions/130794/what-is-dependency-injection
http://stackoverflow.com/questions/130794/what-is-dependency-injection

© 00 I O O b W N =

U
g b W N =~ O

Injecio de Dependéncia 3

Criando Novas Dependéncias no Controlador

Este é um caso de uso bem comum em Laravel.

Normalmente, criarmos um controlador que precisa receber uma classe instanciada em seu método
construtor (__construct), nds precisaremos passar essas dependéncias (sob a forma de parametros)
quando a classe for criada. Mas o que acontece quando vocé cria uma dependéncia em um
controlador Laravel? Vocé vai precisar instanciar o controlador manualmente a fim de solucionar a
dependéncia (envia-la através de pardmetro). Veja um exemplo:

$crtl = new ContainerController(new HelloWorld);

Isso é 6timo, mas ninguém instancia controladores diretamente em Laravel - o roteador lida com
isso para nos.

No6s podemos, entretanto, injetar as dependéncias do controlador através do uso do contéiner IoC
do Laravel!

Mantendo as mesmas classes GreetableInterface e HelloWorld de antes, vamos imaginar agora
que ligamos nossa rota /container a um controlador:

Arquivo: app/routes.php

interface Greetablelnterface {

public function greet();

class HelloWorld implements Greetablelnterface {

public function greet()

{
return 'Hello, World!';
}
}
Route: :get('/container', 'ContainerController@container);

Agora em nosso novo controlador, podemos definir HelloWorld como um parametro no método
construtor:

Injecio de Dependéncia 9

Arquivo: app/controllers/ContainerController.php

class ContainerController extends BaseController {

protected $greeter;

// Dependéncia da classe: HelloWorld
public function __construct(HelloWorld $greeter)

{
$this->greeter = $greeter;
}
public function container()
{
return $this->greeter->greet();
}

Agora execute a rota /container e vocé deve, novamente, ver:
Hello, World!

Observe, porém, que nds nao fizemos nenhuma ligacdo no contéiner. Ele “simplesmente funcionou”
- uma instancia de HelloWorld foi automaticamente enviada ao controlador.

Isso aconteceu porque o contéiner IoC tenta resolver qualquer dependéncia definida no método
construtor de um controlador. E Laravel vai injetar as dependéncias necessarias para nos!

Interfaces como Dependéncias

Mas noés ainda nao terminamos, finalmente chegamos ao que queriamos mostrar.

E se ao invés de especificar HelloWorld como dependéncia do controlador, nds especificassemos a
interface GreetablelInter face?

Vamos ver como fica:

© 0 N O O & W N =

_R
W N r o

Injecio de Dependéncia 10

class ContainerController extends BaseController {

protected $greeter;

// Dependéncia da classe: Greetablelnterface
public function __construct(Greetablelnterface $greeter)

{
$this->greeter = $greeter;
}
public function container()
{
echo $this->greeter->greet();
}

Se tentarmos executar como esta, vamos receber o seguinte erro:

Il1luminate\Container\BindingResolutionException:
Target [Greetablelnterface] is not instantiable

A classe GreetablelInterface, claro, ndo é instanciavel, porque ela é uma interface. Mas podemos
ver que Laravel esta tentando instancia-la, para resolver a dependéncia definida na classe.

Resolvendo isso - nosso controlador depende de uma insténcia de Greetablelnter face, entdo vamos
entdo usar o método bind() do contéiner para indicar ao Laravel que ele deve enviar uma instancia
de HelloWorld:

interface Greetablelnterface {

public function greet();

class HelloWorld implements Greetablelnterface {

public function greet()

{

return 'Hello, World!';

14
15
16
17
18
19

Injecdo de Dependéncia 11

// Ligando a classe HelloWorld quando for solicitada uma instancia de
// GreetablelInterface aqui!!
App: :bind('Greetablelnterface', 'HelloWorld');

Route: :get('/container', 'ContainerController@container);

Agora execute a rota /container e vocé deve ver Hello, World! novamente!

Note que eu ndo usei uma fungio anénima para ligar a HelloWorld - Vocé pode simples-
mente passar o nome da classe concreta como uma string, se preferir. Uma closure é 1til
quando a implementacdo tem as suas proprias dependéncias que precisam ser passadas no
método construtor.

Por que Injecao de Dependéncia?

Por que nds queremos especificar uma interface como dependéncia ao invés de uma classe concreta?

Porque precisamos que toda classe definida no construtor seja uma subclasse de uma interface. Desta
forma podemos com seguranga usar qualquer implementacéo, porque o método que precisamos
sempre estara disponivel.

Em outras palavras e de forma sucinta: podemos mudar a implementacio a vontade, sem afetar
outras porc¢oes do codigo da nossa aplicacio.

Aqui vai um exemplo de algo que precisei fazer muitas vezes em aplicagdes reais.

Nao copie e cole este exemplo. Estou omitindo alguns detalhes, tal como o uso de variaveis
de configuragdo para chaves de API, para ficar mais claro.

Vamos dizer que sua aplicacdo envia e-mails usando o AWS da Amazon. Para tal foi definida uma
interface Emailer implementada na classe AwsEmailer:

O 0O = O O » wWw N =

NN s
B W N

15
16
17
18
19
20
21
22
23

B W N -

Injegédo de Dependéncia

interface Emailer {

public function send($to, $from, $subject, $message);

class AwsEmailer implements Emailer {
protected $aws;

public function __construct(AwsSDK $aws)

{

$this->aws = $aws;

public function send($to, $from, $subject, $message)

{
$this->aws->addTo($to)
->setFrom($from)
->setSubject($subject)
->setMessage($message) ;
->sendEmail();

Ligamos Emailer a implementacdo AwsEmailer:

App::bind('Emailer', function()
{

return new AwsEmailer(new AwsSDK);

});

O controlador tem a interface Emailer como dependéncia:

12

© 00 N O O & W N =

-
(]

Injecio de Dependéncia 13

class EmailController extends BaseController {

protected $emailer;

// Class dependency: Emailer
public function __construct(Emailer $emailer)

{
$this->emailer = $emailer;
}
public function email()
{
$this->emailer->send(
'ex-to@example.com',
'ex- from@example.com',
'Peanut Butter Jelly Time!',
"It's that time again! And so on!"
);
return Redirect::to('/"');
}

Vamos em seguida supor que no futuro o escopo da sua aplicacdo cresca e passe a precisar de

funcionalidades do que a AWS néao prové. Depois de alguma procura e pesar de opcdes, vocé decide
pelo SendGrid.

Como vocé vai fazer para migrar a sua aplicagio para o SendGrid? Devido ao fato de estar usando
interfaces e o contéiner IoC do Laravel, migrar para o SendGrid é facil!

Primeiro, crie uma implementacao da interface Emailer que use SendGrid!

class SendGridEmailer implements Emailer {
protected $sendgrid;
public function __construct(SendGridSDK $sendgrid)

{
$this->sendgrid = $sendgrid;

public function send($to, $from, $subject, $message)

11
12
13
14
15
16
17
18
19
20
21
22
23

© 00 N O O & W N =

RN
= O

Injecio de Dependéncia 14

$mail = $this->sendgrid->mail->instance();

$mail->addTo($to)
->setFrom($from)
->setSubject($subject)
->setText(strip_tags($message))
->setHtml ($message)
->send();

$this->sendgrid->web->send($mail);

}

Em seguida (e por ultimo), configure a aplicacdo para usar SendGrid ao invés de AWS. Por ter
nossa chamada a bind() no contéiner IoC, alterar a implementagao do Emailer de AwsEmailer para
SendGridEmailer € tdo simples quanto esta mudanca:

// De
App::bind('Emailer', function()
{

return new AwsEmailer(new AwsSDK);

});

// Para
App::bind('Emailer', function()
{

return new SendGridEmailer(new SendGridSDK);

});

Note que fizemos isso sem alterar uma linha de cddigo em qualquer outro ponto da nossa aplicagao.
Impor o uso da interface Emailer como dependéncia, garante que qualquer classe injetada sempre
tera o método send() disponivel.

Podemos ver isso em nosso exemplo. O controlador continua chamando $this->emailer->send() e
nao teve que ser modificado quando mudamos a implementagao de AwsEmailer paraSendGridEmailer.

Conclusao

Injecdo de Dependéncia e Inversdo de Controle sdo padroes exaustivamente utilizados no desenvol-
vimento em Laravel.

Como vocé vera, vamos definir varias interfaces a fim de tornar nosso coédigo manutenivel e ajudar
nos testes. O contéiner IoC do Laravel torna isso facil para nds.

	Índice analítico
	Conceitos Básicos
	O Contêiner
	Uso Básico
	Indo Para Algo Mais Avançado
	Inversão de Controle
	Uso no Mundo Real

	Injeção de Dependência
	O que é Injeção de Dependência?
	Criando Novas Dependências no Controlador
	Interfaces como Dependências
	Por que Injeção de Dependência?
	Conclusão

