%
“S\o

O\ ,
Q‘.‘"" SEBASTIAN BUCZYNSKI

< IMPLEMENTING

THE CLEAN ARCHITECTURE

FOrEWOI . eeieeieencenceoncensconsesssessesssesssensesssesssessesssessssssesssenssessesssensesssesssensesnsensss 5

Why | wrote this Book®ccooeeiiiiiiiiii s 5
TOOIS-ATIVEN ©IQ oottt et e e e e e e e e e e e e e saeensaasnaasaasnssasnasnseasnsensnaens 5
WHhO iS This DOOK FOI? eececceceececcesceseccescesescescesessescssessescesessessesessessesessessesessosssse 7

What will you find in this book? ..cccccceecceccncceecsecsecsncsnccscsscssessecsecsscsscsscsscssccses?

The CIean Architecture bGSics ...8

What is it @ll FOr2eeeeee s 8
Code Organization - horizontal slicing..............ceeiiiiiiiiiiiii e, 12
Chapter SUMMAIYcoiiiiiiiiiieee e e ettt e e e e e e e e e eeeaaaaaaaaeeseaaeeeens 18

Referential implementation0........0........0.....0........0.....0........0........0.....0......20

DT Yol [o T T-Y U 20
Control flow in the Clean Architectureooovviiiiiiiiiiieiiiiieeecceeee e 20
BUSINESS reqUIrEMENTES......cuniiiiiii it et e et e ee e ee e e e eeaees 22
IMPlEMENTAHON ... e e e e e e e e e e e e e e eeeeas 23
Chapter SUMMAIYiiiiieiie e e e e e et e e e e e et e e e e e e aannaeeeeens 30
The Clean Architecture modificationsS...ccccceecceeccsecencsseccsccsscssecsscssscssecsscsseccsees 32
Presenter dilemma...........cooiiiiiii e 32
Getting rid of INpUt BOUNAArYccoiiiiiiiiiiiiiiiiii e e e e e e e e e e e e e e e e 35
Alternative design of Use Casescccceeiiiiiiiiiiiiiiiiee et 36
Chapter SUMMAIY ...ccooviiiiiiiiieeee e ree e e e e e e e e eeeeaaaaeeeeeeeeeeeeesnssnnnns 40
Dependency iNJECHON cicccceccecsececsececsscecsscscsscscsscscsscscsscscsscscsssscssssssssscssssesscsesdd 2
Abstractions & classes everywherel ..., 42
Abstractions in the Clean Architectureoouviiiiiiiiiiiiiic e, 43
Inversion of Control...........oouuiiiiiiiii e 45
loC Container vs Service Locatorcouviiiiiiiiiiiiiiiiii e e ea e 47
Dependency Injection vs configuration............cccoeeeiiiiiiiiiiiiiiiiiee e, 48
Chapter SUMMAIYcooiiiiiiiiiiiiiieieeeeeeeet s s s s e e e e e e e e s e eaaaaaaaaaeas 49

CQRS ..50

T [eYe [V 1ei (1] RO 50
What does it have to do with the Clean Architecture?®..........c.oueeinieiieiiiieieiieeieiannnn, 52
Separate read stack - Why ... 52

Separate read stack - hHOW?cooiiiiiiiiiiiii e 53

CQRS VS REST AP ..ottt eeaeeeaeeeeeeeeeeeeeeeseeeeereeees 57
CQRS vs GraphQlL........ouuiiiieiei it e e e e e e e et e e e e e e e e e eeeeeaasannes 58
Chapter SUMMAIYcoovviiiiiiieiei et e s e e e e e et e bt sse e e s e eeeaeesaenaaans 58
Sharp bouNdary .cccccececcecceccecsnceccecsscsecsncsccsesscsscsscsessesscsscsscssssesssscsscsssssssess 59
A WOrd 0N COMPIEXIY ...vvveiiiiiiiiccere eeeeeeees 59
TWO WOTIAS et ee e 60
Boundary between Application and External World ... 61
WIHING INPUE DTOS ...ouniiiiiciie et et e et e e e e e eae e e ea e eeaaeeeenns 61
ValUE ODJECES ... 61
Chapter SUMMAIYueiiiiiie e e e et e e e e e e r e e e e e e aannaeeeeens 66
ENd-TO-ENd eXample...cccccceececsecsecsecsessesssecsecsessessesesessessessessesessessessessssessessess®7
WHEre 10 SEAMT2 ...ttt e e e e e e e e eteaabbasseeeseeeeeeaeasenaaans 67
Walking skeleton.........cooiiiiiiiiiiee e e e e e e e e e e e e 68
PlacingBid Use Case / INteractor.............ouuuuuiiiiieeiiiieeeiiiiieee e e e e 68
Auction and Bid EnHHESscceeviiiiiiiiieeei e e e e 72
Data Access Interface (Abstract Repository)...........cooveiiiiiiiiiiieeiiiiieecceee e, 76
Data Access (REPOSITOIY)uuuuuiiieiiiiiiieiiiieee e e e e e e e e 76
Finishing our first Use Caseccoeiiiiiiiiiiiiiiiciee e e e e /8
ool o T 13T I ele T« [N PRSP 81
Implementing EndingAuction Use Case..........cuuuueeiiiiiiiiiieeiieciiiiee e eeeae e 90
Read only operations...........ccooiiiiiiiiiiiiiiiiie e 101
Inverting Control with EVENtsuiiiiiiiiiiiiiiiiiiieiee e 108
Dealing with other cross-cutting concernscceeeeeiiiiiiiiiiiiiiiiiie e 123
Chapter SUMMAIYccooveiiiiieceee et e e e e et e e e e e e aaane e e e e e enannanaes 128
MOAUIANitY cuceeceacencececsncsacsncsesscsscsscsscsessesscsscsscsssscsscsscsscssssessesscssssssssssesscanes 130
The burden of success - growth & continuous changes..........cccceevvvviiiiiieiieeeeeennnnnnn.n. 130
Cohesion and Modulescieiiiiiiiiiiii e 130
Packaging code by feature............ouuuuniiiiiiiiii e 131
Modules and flexibility of interior design...........cccoeeeiiiiiiiiiiiiiiiiiiee e, 131
Modules Versus MiCroSErviCes...........couiviiiiiiiuiiieeeeeeeeeeeeiiieee e e e e e e e eeeeeareeeeeeeaeeeens 132
MOdUIES VEISUS USEIcceeiiiiiiiiieee et e e e e e e e e e e e e e eeeeas 133

Modules Vs BOUNAEA CONEXESvnieinieieeeie et e ee e e e eeeeae e eeesnesasessnssasnaanennes 133

Modules implementation..............ooiiiiiiiiiiiiiiee e 134

Modules depending on each other..............coooviiiiiiiiiiiiii e, 135
Case study - auctioning platform...............ccciiiiiiii 139
Chapter SUMMAIYcooiiiiiie e e et e e e e e e e e e e e eeaaaeeeeeeennns 171
TESHING cecececsesececocsesesacscsesesscscsesesscscsesssscscsesssscsssessssssesessssssessssssssssessssssesesssne 173
Testing strategy and feature flavorscooiiiiiiiiiiiiiiiiieee e 173
Rediscovering Unit-testingccouvuuuiiiiiiieiiiiiiiiiiiceee e e e e e e e e 183
state and interaction oriented testingceeeeiiiiiiiiiiiiiiiieee e, 188
Unittesting of an entire module ..., 193
Chapter SUMMAIYcooiiiiiiiieeee e et eee e e e e e e e e eereaeaaaeeeeeaeeaees 201

Final words...203

Appendix A: Migrating from legacy .ccccecceccecceccnceecsececseccacsecsesscsscsscscsscssesne 204
Should | even migrate?............cuuviiiiiiiiiiiiiii e e e e e e e e e e e e e e e 204
HOW 10 O 12 ... e e e e e e e 204
“I cannot stop delivering new features”uuuiiiiiiiiiiiiiiiiieereeeeee e, 205

Appendix B: Introduction to Event SOUIrCiNg cc.ccceccsecsecsecsecssessessessessessesssessess 206

What is EVent SOUMCING?uueieeieeeeeieieie s 206
Simple example of an Event Sourcing aggregatecccoeeeeiiiiiiiiiiiiiiiieee e, 209
Persistence in Event SOUICINGcc..ciiiiiiiiiiiiiii e 215
ProJECHONS .. ettt et et et e e e e e ea e eaas 232
Event Sourcing versus a modular applicationcccccvviiiiiiiniiiiiiiee e, 235

Bibliography...237

FOREWORD

WHY | WROTE THIS BOOK?

This book is meant to be a supplement to Robert C. Martin’s Clean Architecture: A Craftsman’s
Guide to Software Structure and Design. It is focused on practical aspects of applying the Clean
Architecture in IT projects. I find a scarcity of good - quality implementation examples
unsatisfactory. Since I used this approach successfully in a few projects, I believe I have
plenty of illuminating insights to share with the community.

At the same time, I came across some limitations which I had to overcome. Sometimes the
cure was to use other technique (such as CQRS - Command Query Responsibility Segregation),
sometimes it would be better not to use the Clean Architecture at all.

In short, this book was conceived to share all experience me and my colleagues got during
the implementation of the Clean Architecture.

TOOLS-DRIVEN ERA

World of Python is a magical, enchanting place. Imagine you are to write some boilerplate
code needed to implement an actual feature. Virtually every time you are about to fall under
such an evil spell, you can break it by casting a counter-spell:

pip install <name of a 3rd party library solving your problem>

Ease of using this command combined with libraries profusion enables everyone, including
apprentices of sorcery, to solve seemingly complex problems with a little mana expense.
Nowadays, wizardry called software development can be picked up and practised almost
effortlessly without knowing its arcana, though nature of the magic itself has not changed at
all. This creates an illusion that knowledge about principles and patterns is no longer
needed. Although entry point is lowered, deluded sorcery apprentices are far from being
enlightened.

Literally every tool python developers use daily is an implementation of long-know (more
than decades) and an extensively described pattern of some sort. Django ORM? It is an
example of Active Record pattern implementation, widely known thanks to Ruby On Rails
which follows the same pattern. For example, it was described in Martin Fowler's Patterns of
Enterprise Application Architecture using these words:

"It’s easy to build Active Records, and they are easy to
understand. Their primary problem is that they work well
only if the Active Record objects correspond directly to the

database tables: an isomorphic schema. (...) Another
argument against Active Record is the fact that it couples

the object design to the database design. This makes it
more difficult to refactor either design as a project goes
forward.”

What about something more sophisticated, like SQLAlchemy's session? It turns out the
pattern behind it is called Unit of Work and is described in the same book. Suddenly an
impression of magic powering PyPi packages fades away to eventually vanish. Such
knowledge is an invaluable help to choose the right tools for the job. At the same time, a
tool which solves your most acute problem will cause several lesser ones, yet those ones you
can live with. For example, SQLAlchemy's session forces a developer to register any newly
created model using add method. Without it, no data will be persisted upon commit. Is the
necessity for manual models management worth the trouble, or maybe Django ORM is just
ok for this particular project?

The most effective cure for indecisiveness is to stay pragmatic and flexible. In fact, this is
what this book is truly about. Even though it explains an exciting approach which highlights
the importance of business concerns, it does not conveniently omit drawbacks.

Whenever a new project is started, developers should ask themselves: which approach/
framework/library should they use? I may ask in return: What problems would you prefer to
have? What issues you have to avoid?

WHO IS THIS BOOK FOR?

This book is aimed at intermediate-/senior-level software developers who wish to broaden
their knowledge with various software engineering techniques that emerged over the last
several years.

Almost all code examples are written in Python, so the reader's acquaintance with its syntax
will be helpful. Luckily, software engineering is mostly technology-agnostic discipline, so
even if readers do not write code in Python for a living, they still might use this book to
learn something new. All code snippets were written using Python 3.7 and later modernized
to Python 3.8.

WHAT WILL YOU FIND IN THIS
BOOK?

“In theory, theory and practice are the same. In practice,
they are not."

This book is mainly to provide tons of practical advice on implementing the Clean
Architecture. Everything is based on my experiences, learnt the hard way. Sometimes it was
immediately apparent that a certain solution is a bad idea. Sometimes we needed a laborious
refactoring weeks later to undo bad design. Few times we have not had an opportunity to
improve something that desperately needed it.

With trial and error, we found out how we can evolve our software using more and more
sophisticated techniques, like CQRS, Event Sourcing or Domain-Driven Design. The
greatest thing was the ability to pick one them up whenever we actually needed them,
without investing a lot of time and effort in a big design upfront or having to rewrite
everything from scratch.

Implementing the Clean Architecture is a bit like a buffet - a reader is encouraged to get out of it
whatever seems to suit best their need and mood. It makes no sense to follow every rule &
recommendation rigorously if a simpler approach would suffice.

THE CLEAN ARCHITECTURE BASICS
WHAT IS IT ALL FOR?

IT is an industry which changes rapidly all the time. New languages and frameworks emerge
daily, just to be forgotten several years later. Solutions that once were popular become an
enormous technical debt soon after the last contributor abandoned the project. On the other
hand, there are few successful, long-living projects which are continuously maintained and
developed. Although we get new features and security updates regularly, it still requires
some effort to keep up with the newest versions of your favourite web framework.

“The only thing that is constant is change” - Heraclitus

This task becomes cumbersome if the business logic of a project is tightly coupled to a
framework. Every backwards-incompatible update in the framework's codebase breaks
something in the actual application. Such a situation is inconvenient for both maintainers
and users of the framework. The former group is under constant pressure not to break
anything with a new release. Just imagine how discouraging the situation is.

Some applications are pretty straightforward. All they need to do is just fetch some data
from a database, modify it and save back. A common name for a database browser is CRUD
(Create Read Update Delete). Adding REST API increases complexity only a bit. Using Django
for such a project is one of the best choices one may make in the Python world.

The situation becomes a lot trickier when we deal with more complex domains. They are
actually pretty easy to recognize. One of the symptoms might be a vast number of checks to
conduct. Invariants spanning multiple objects are even more interesting. Say, we are to build
a new project where people can bid on auctions. An auction can have 0, 1 or multiple
winners at the same time. An auction has an end time after which no one can bid.

If we were to use CRUD approach a'la Django/RoR, then most likely we would end up with
separate models for Auction and Bid:

class Auction(models.Model):
title = models.CharField(max_length=255)
starting_price = MoneyField(
max_digits=19,
decimal_places=4,
default_currency="USD",

)

current_price = MoneyField(
max_digits=19,
decimal_places=4,
default_currency="USD",

class Bid(models.Model):
price = MoneyField(
max_digits=19,
decimal_places=4,
default_currency="USD",

)
bidder = models.ForeignKey(

get_user_model(), on_delete=models.PROTECT

auction = models.ForeignKey(
Auction,
related name="bids",
on_delete=models.CASCADE,

The problem is that in terms of a bidding process, these two are strongly connected. We can
not just save a new Bid to a database whenever someone clicks a Bid! button. New Bid has to
be checked against Auction. Has not the latter just ended? If the new Bid is the highest one,
then we have to set it as a winning one for the Auction. At the same time, we have to change
the current price of Auction. Previously winning Bid is now considered a losing one. As you
can see, these two, seemingly distinct entities, can not be treated independently. In other
words, there are invariants in the domain that span both Auction and Bid. It does not make
any sense to reason about them separately, at least not in the bidding process.

This example was not too complicated. Yet code that enforces these business rules does not
fit into any of building blocks included in Django (or any other web framework, to be fair).
Invariants span beyond a single model. At the same time it is hard to imagine putting them

in a view (a function or class handling single HTTP request). Although there are no physical
obstacles, it just does not feel right.

Another issue with code coupled to a framework is visible when one tries to test it - one is
not able to test business logic without involving heavy machinery. Initializing the whole
thing, inserting rows to the database, executing web framework code (e.g. for URL
routing), cleaning DB afterwards - it all takes time. As a matter of fact, time is the only cost
of running tests. If executing test suite takes ages, then it will not be run too often. As it
happens, complex domains have multiple cases to be checked. If one wants to cover them
all, they are stuck with long execution time of a test suite.

The last category of things that can give a headache - integrations with 3rd party services.
Using as many external services as possible is a trendy approach these days. 3rd party
services can not be avoided for many seemingly simple projects. The first example that
comes to mind - e-commerce. Customers have to pay for their shoppings, so making friends
with some payments platform is a worthwhile idea. Such platforms income comes from
charged fees. Now imagine you are to replace one integration with another because different
payments platform is slightly cheaper. How many orders must be placed to compensate for
development time? Reckless, naive integration will tightly couple payment processes within
the application in the same way as web frameworks do. Therefore it will be hard to change.

So far only problems were described, without proposing any solution. All of them can be
addressed with elegance and style. This is where the Clean Architecture comes in. Simply
saying, it is an approach to software architecture that gives special treatment to business
rules. It is unacceptable for a framework, database or 3rd party service to leak to and poison
business logic. Correctly applied, the Clean Architecture gives us the following:

 independence of frameworks - upgrading framework or even switching it should be much
less of a headache than before

testability - all business rules can be tested using unit tests, without inserting anything
into a database

independence of UI/API - delivery mechanism must not shape logic

independence of database - way of storing data should not limit a developer

independence of any 3rd party - business rules do not need to know which payments
platform you are using

o flexibility - certain architectural decisions can be delayed without stopping development

o extensibility - projects can be easily extended with more sophisticated techniques like
CQRS, Event Sourcing or Domain Driven Design if needed

These are benefits of a strict separation of concerns, arranging codebase into clearly
separated layers and applying the Dependency Rule between them.

CODE ORGANIZATION - HORIZONTAL SLICING

In a basic form of the Clean Architecture, there are four layers. Naturally, one can use more
if it is justified.

External
world

Infrastructure

interfaces adapters

Application

UseCases, interfaces

Domain
Entities & friends

Figure 1.1 Layers of the Clean Architecture

EXTERNAL WORLD

The outermost one, External world, represents all services and code that project uses, but it
does not belong to the same code base. Simply saying, this layer encompasses everything
that was implemented outside the project.

INFRASTRUCTURE

The second layer is called Infrastructure. It contains all the code needed for the project to use
goodies from External World. For example, if we use MariaDB for our primary data store,
classes and functions responsible for communication with MariaDB will be sitting in the
Infrastructure layer. The same is true for any 3rd party service we have to integrate with. For

example, if we are building an e-commerce solution, we are going to place here classes
implementing integration with payment providers. Kinds of integrations depend on the type
of the project.

APPLICATION

The third layer is for application-specific business rules. Therein lies code that specifies
what a project actually does. Application layer is a home for Use Cases (also known as
Interactors). Use Case is a single operation within the project that leads to changing the state
of the system, assuming everything goes right. Using auctioning example, we could have a
Use Case for placing a bid and another one for withdrawing a bid. If we were building an e-
commerce solution, we could have one Use Case for adding an item to a cart and another for
removing an item from the cart. Use Case represents a single action of a user (or another
actor) that is significant from the business point of view. If you are familiar with Scrum,
these can be more or less translated into user stories.

The second kind of building blocks which will always reside in this layer is an Interface (also
known as Port). These are abstractions over anything that sits in the layer above -
Infrastructure and is required by at least one Use Case. In Python, this can be implemented
using abstract base classes (abc) module.

import abc

class EmailSender(abc.ABC):
@mabc.abstractmethod
def send(self, message: EmailMessage) — None:
pass

import smtplib

from application.interfaces.email_sender import (
EmailSender,

)

class LocalhostEmailSender(EmailSender):
def send(self, message: EmailMessage) — None:
server = smtplib.SMTP("localhost", 1025)

These code snippets show a relation between Interfaces from Application layer and their

adapters from Infrastructure. What is important - a Use Case MUST NOT be aware whether

we are using LocalhostEmailSender or any other class inheriting from EmailSender. More on

this later. To sum up, Application layers contains code for all actions and defines interfaces

for the external world to execute actions’ logic.

DOMAIN

This layer is a place for all business rules that have to be enforced regardless of a context in

which they were used. Basic building block to use here is called Entity. Using auctioning

example once again - we could have an Entity for Auction with methods for placing a bid and

withdrawing one:

class Auction:
def place_bid(
self, user_id: int, amount: Decimal
) — None:
pass

def withdraw_a_bid(self, bid_id: int) — None:
pass

Why would anyone place such logic here instead of implementing it inside
PlacingBidUseCase? One could just change an instance of Auction directly:

class PlacingBidUseCase:
def execute(self, _args):

auction.winners = [new_bid.bidder_id]
auction.current_price = new_bid.amount

Such an approach would effectively make our Entities anemic. Such creatures are also called
Data Classes! (not to confuse with data classes from standard library!) or Plain Old Python
Objects. They are just dummy bags for data and have no methods (behavior). Whole logic
would be implemented outside such classes. This pattern is known as Transaction Script2.

This can work in certain circumstances, but certainly not in this case, because auctioning
domain has invariants to protect. For example, every change of the winner affects the
current price. We already know at least two situations when this happens - when someone
offers more than the previous winner and when we are to withdraw currently winning bid.
We are going to have separate Use Cases for PlacingBid and WithdrawingBid, so naive approach
with methodless classes and Transaction Scripts implies that we would have to duplicate logic
of calculating current price, which is unacceptable. When Transaction Script is misused and
implements the logic that should be encapsulated by Entity, we are talking about anti-
pattern called Anemic Entities. Yet another principle that warns against changing object data
from the outside is Tell, Don’t asks3.

class PlacingBidUseCase:
def execute(self, _args) — None:

auction.place_bid(...)

I Martin Fowler, Refactoring: Improving the Design of Existing Code 2nd edition, Chapter 3, Data
Class

2 Martin Fowler, Patterns of Enterprise Application Architecture, Chapter 9, Transaction Script

3 Martin Fowler, TellDontAsk https://martinfowler.com/bliki/TellDontAsk.html

https://martinfowler.com/bliki/TellDontAsk.html

THE DEPENDENCY RULE

Grouping classes and functions into layers is not enough to get clear, maintainable codebase.
Obviously, control flow has to cross at least few (if not all) layers to actually do something
in projects that use the Clean Architecture. Having benefits and goals of this approach in
mind, interactions between layers cannot be left to chance. One possibly could import and
call some framework-specific code in the domain layer if it not had been for the Dependency
Rule. It says that no lower layer is allowed to know and use anything from any upper layer.
For example, one is not permitted to use any class, function or a module from the
Infrastructure if we are in the Domain layer. The Dependency Rule not only forbids developer
from explicitly importing symbols from the outer layer but also discourages accepting these
as functions arguments. The Dependency Rule is illustrated with arrows in the architecture
diagram. The direction of arrows is the same as dependencies: Infrastructure uses Application,
Application uses Domain, but it is not allowed for Domain to use Infrastructure or Application
etc.

Naturally, in Python, the whole thing has to be treated as a gentlemen’s agreement.
Language does not provide any native method to enforce layering rules. They are certain
half-measures described later in the book. In languages such as Java or C#, a developer can
rely on packages and access modifiers to achieve a nice, clean separation.

BOUNDARIES

Last, but definitely not least thing layers need to have are sharp boundaries. The boundary
defines a communication protocol with the layer. A layer groups code. It contains classes
and functions. Most of them will not be meant to be used from the outside. They are private,
in a manner of speaking. This implies that no one from the outside should be even bothered
by their existence. To point lost developers in the right direction, one should expose the
layer’s API and make it look like an obvious path to take whenever someone needs layer’s
functionality. Effectively, a boundary is a set of interfaces. Their methods are like doors and
arguments of these methods are like locks. They expect a specific argument which will open
them, like a key.

Arbitrary types should not be passed between layers. Following the Dependency Rule, one is
strictly forbidden from passing data structure from the upper layer down to the lower layer.
For example, passing an ORM model to Domain violates the rule, because it implies that
Domain knows something about the outer world. Languages without static typing or type
annotations (like Python before 3.4) can have that easily overlooked. Fortunately, importing
something from an upper layer only to annotate an argument already gives bad feelings.

Input arguments are part of a boundary, and they should belong to a layer that accepts them.
In a real-world API of a layer will consist of many methods accepting a varying number of
arguments. This complexity cannot be taken lightly. Thus, it makes perfect sense to group
boundary parameters for individual entry points - methods - in data structures. This pattern
is called Data Transfer Objects (DTOs).

adataclass(frozen=True)
class EmailDto:
src: EmailAddress
reply_to: EmailAddress
contents: str

The most crucial boundary is placed on the edge of Application layer. Application’s boundary
that is to be used from the outside world is formed by Use Cases. To avoid exposing concrete
classes (and hence, coupling) with Application’s clients, another interface can be introduced
that will abstract a Use Cases - Input Boundary. From External World’s perspective Use Case/Input
Boundary is just an interface communicating business intent of an application. To call it, one
has to prepare a DTO and pass it as the only argument. Analogously, another DTO is a result
of actions taken by a Use Case (though it is not directly returned - more on this later). These
three (Input DTO, Output DTO, Input Boundary) together form a rock-solid boundary that
hides all details of Application layer. Other names that may be used to refer to Input- and
Output DTOs are respectively called Request and Response. However, to avoid confusion with
HTTP protocol, I will refer to them using Input- and Output DTOs throughout the book. Data
Transfer Objects are immutable (frozen=True). There is no reason why would anyone want to
mutate data inside. They are like messages - one coming in and another coming out.

adataclass(frozen=True)

class PlacingBidInputDto:
bidder_id: int
auction_id: int
amount: Decimal

adataclass(frozen=True)

class PlacingBidOutputDto:
is_winning: bool
current_price: Decimal

class PlacingBidInputBoundary:
nabc.abstractmethod
def execute(
self, request: PlacingBidInputDto
) — None:

MVYC ANYONE?

If you are a Pythonista who wrote some code in Django, Flask or Pyramid, you might
be confused a bit with naming. Controller in the diagram corresponds to a concept you
know as view, whereas View resembles template. This fuss roots in different patterns
adoption between Python and other programming communities. The diagram
assumes readers acquaintance with Model-View-Controller, while Django embraces
something known as Model-Template-View. More information can be found on
djangobook.com - Django’s Structure — A Heretic’s Eye View https://djangobook.com/

mdj2-django-structure/.

Nevertheless, all confusion will disappear once we analyse referential
implementation.

CHAPTER SUMMARY

Actual value of IT projects lies right next to the most significant complexity they have.
Provided that a project is something more than just a browser for a relational database,
there will be plenty of business rules that have to be enforced. The Clean Architecture treats
the latter as first-class citizens. Instead of hiding this most-valued logic in a soup of
frameworks and ORMs it exposes business rules and processes on separate layers - Domain
and Application. Distilled business logic can be easily tested as it is completely unaware of
the external world. Code responsible for communicating with it lies in the Infrastructure
layer. The latter can use Application, but Application must not know anything about
Infrastructure. This is enforced by the Dependency Rule:

External World — Infrastructure — Application — Domain

Obviously, during the execution of a business scenario, one will have to insert rows to a
database or call an external service at some point. The Clean Architecture forbids coupling
business logic with the external world, so Application defines set of Interfaces (also known as
Ports) which are a form of abstract plugins. Concrete implementations are to be eventually
provided by Infrastructure.

http://djangobook.com
https://djangobook.com/mdj2-django-structure/
https://djangobook.com/mdj2-django-structure/
http://djangobook.com
https://djangobook.com/mdj2-django-structure/
https://djangobook.com/mdj2-django-structure/

Keeping everything in order requires drawing sharp, distinctive boundaries. Layers expose
some functionality via Interfaces that accept Input DTO (sometimes called Request) as
arguments. All details are hidden behind the boundary. From the outer world, one can only
see method signatures and data structures required to call method lying on the boundary.

REFERENTIAL IMPLEMENTATION

DISCLAIMER

This chapter is to present example implementation according to the original idea presented

by Robert C. Martin in The Clean Architecture article?, few talks given on conferences’ and
described in his book®.

I must admit I have never tried implementing the Clean Architecture in a commercial
project rigorously following original Uncle Bob’s vision. I felt that a few parts could be
removed or done differently without losing too much. Although my implementations look a
bit different, I decided to illustrate the original concept with code for the sake of
completeness of this book. In the next chapter, I describe possible simplifications one may
make without compromising much of the quality and benefits.

CONTROL FLOW IN THE CLEAN ARCHITECTURE

This example is a standard web application that uses a database for storing data. Control
flow begins in Controller, which is invoked by a web framework upon dispatching request.
Role of the Controller is to repack HTTP request data into Input DTO and pass it to Input
Boundary, implemented by Use Case (also known as Interactor). The latter uses data from Input
DTO to fetch required Entities from Database using Data Access Interface. Then Use Case
orchestrates Entities to perform business logic and optionally saves them using Data Access
Interface. Use Case finishes its task by building Output DTO and passing it into Output Boundary
implementation - Presenter. Its role is to reformat data to be convenient for displaying in the
final View. View receives data in another DTO, called View Model. Use Case that implements
Input Boundary, does not return anything. Presenter that implements Output Boundary is to
actually present the result using Output DTO.

This is a complete description in a nutshell. Before we delve into actual implementation,
please take note about boundaries and layers. Starting from the right-upper corner, Entities

4 Robert C. Martin, The Clean Architecture https://blog.cleancoder.com/uncle-bob/
2012/08/13/the-clean-architecture.html

5 Robert C. Martin, Architecture the Lost Years https://www.youtube.com/watch?
v=WpkDN78P884

6 Robert C. Martin, Clean Architecture: A Craftsman's Guide to Software Structure and
Design

belong to Domain layer. Majority of elements in the diagram (Input DTO, Input Boundary,
Output Boundary, Output DTO, Use Case, Data Access Interface) belongs to Application layer. The

rest is less important. Data Access implementation lies in Infrastructure layer, while Database
belongs to External World.

oy Entity

\\

<< interface >>
Data Access
Interface

| . Use Case
\ \ *| InputDlo Interactor
\
\
\ : \ /
\ \ << interface >> | | /
Controller T ‘.\ Input v
\ \\ Boundary \‘/
\ \ / \
\ \ /o
\\ \ / b
\\ 4
\ << interface >>
Presenter A - Output
Boundary
Y
ViewModelDto
A
View

Figure 2.1 The Clean Architecture referential implementation diagram

P

Data Access
Interface

BUSINESS REQUIREMENTS

The code is to be derived from a set of business rules. Therefore I present them before the

implementation is shown:
e Bidders can place bids on auctions to win them
e An auction has a current price that is visible for all bidders
o current price is determined by the amount of the lowest winning bid
o to become a winner, one has to offer a price higher than the current price

e Auction has a starting price. New bids with an amount lower than the starting price

must not be accepted

IMPLEMENTATION

SEQUENCE DIAGRAM

— g input_dto: placing_bid_uc: data_access_gateway: A . . output_dto: presenter:
view: PlacingBidView | PlacingBidInputDto PlacingBigUseCase DbAuctionsDataAccess auction: AuctionEntity PlacingBidOutputDto PlacingBidWebPresenter
post (http_request) _: : '
] <<oreate>> >D
execute (input_dto) : ; :
1 get (‘auction_id) o :
T <<oreate>> 5
auction
[€remmmmmmem e oo eeeee -
place_bid (usfer_id, amount) |
save (auction) ‘D :
winners k< get >> R
winners
[€ommmmmmmmmm oo Foommmoosssosooeeooeooooooo
current_price << get >>
current_price '
15]
; << create >>] '
""""""""""""""""" + ’>|:|
: present (output_dto) ' N
is a wnner & current price _ : H : : ' |_|

Figure 2.2 A sequence diagram of the Clean Architecture referential implementation

It may look confusing that there is no arrow from Presenter to View just before the end. There
is a reason for that described below.

INPUT BOUNDARY

Our application’s functionality is visible on a framework level as an Input Boundary - an
interface accepting an Input DTO. The latter is a relatively simple data structure with typed
fields, understandable by lower layer - in this case, we accept only standard Python’s data

types:

adataclass(frozen=True)

class PlacingBidInputDto:
bidder_id: int
auction_id: int
amount: Decimal

We assume that the authentication aspect is to be dealt with on a web framework level - we
just accept bare id that belongs to a person that places a bid and trust it. Input DTO is to be
passed into Use Case abstracted by an Input Boundary:

class PlacingBidInputBoundary(abc.ABC):
nabc.abstractmethod
def execute(
self,
input_dto: PlacingBidInputDto,
presenter: PlacingBidOutputBoundary,
) — None:
pass

OUTPUT BOUNDARY

At the same time, we expect our operation to produce some data in the form of Output DTO:

adataclass(frozen=True)

class PlacingBidOutputDto:
is_winning: bool
current_price: Decimal

This data structure is to be accepted by the only method of placingBidoutputBoundary (an
interface for presenters):

class PlacingBidOutputBoundary(abc.ABC):
nabc.abstractmethod
def present(
self, output_dto: PlacingBidOutputDto
) — None:
pass

PRESENTER

A class that implements PlacingBidOutputBoundary is called Presenter. Its role is to convert
output data to the format most convenient for a presentation layer. In our example, we
return the boolean flag to indicate whether bidder became a winner and a piece of
information about the current price of the auction. Presenter is to format decimal number to
the desired number of decimal fields, add currency symbol - in short, to convert data into a
string, appropriate for showing it to a bidder.

class PlacingBidWebPresenter(
PlacingBidOutputBoundary

def present(
self, output_dto: PlacingBidOutputDto
) — None:
formatted data = {
"current_price": f'${output_dto.current_price.quantize(".01")}"',

"i1s_winning": "Congratulations!"
if output_dto.is_winning
else ":(",

As you might have deduced from the sequence diagram, the flow of control ends in a
Presenter implementation, namely present method. We do not return anything to Controller
(or view in MVT). A bidder should see new data immediately after the present call ends.
This is hard to imagine in the most popular Python web frameworks when Controller is
expected to return something that the framework is going to send to the client later.
However, approach with flow ending in the present method works perfectly fine for mobile
applications which can build the next screen depending on contents of PlacingBidOutputDto
and show it to the user. One could also get to such behavior in frameworks that create a
response object beforehand and lets you manipulate it. Examples for this particular case will
be shown later in the book. For the sake of simplicity, one would rather extend
PlacingBidOutputBoundary interface with another method that can be used for retrieving
data in Controller:

class PlacingBidOutputBoundary(abc.ABC):
aabc.abstractmethod
def present(
self, output_dto: PlacingBidOutputDto
) — None:
pass

@abc.abstractmethod
def get_presented_data(self) — dict:
pass

Any concrete implementation would essentially be just giving back formatted data:

class PlacingBidWebPresenter(
PlacingBidOutputBoundary

def present(
self, output_dto: PlacingBidOutputDto
) — None:
self. formatted data = {
"current_price": f'${output_dto.current_price.quantize(".01")}",

"is_winning": "Congratulations!"
if output_dto.is_winning
e-lse n:(u’

def get_presented_data(self) — dict:
return self._formatted_data

Finding an appropriate output data type for Presenters which returns through
get_presented_data may be tricky. In Python returning dict is the best bet as it could be
passed down to template rendering function. Popular templating engines accept template
object and a dict instance with data for prepared placeholders. However, this diminishes
Presenter’s responsibility. This problem does not exist when a Presenter does not return data
but is able to actually present result of the process. This topic will be discussed further in the
next chapter.

VIEW MODEL

This is nothing more but another Data Transfer Object that is obtained from a Presenter to be
passed down to the View. In this case, a simple dict does the job, because most templating
engines used in Python web frameworks accept such a format. However, if there is a need
for more control over the structure of a View model, then introducing a class would do the
trick.

USE CASE

Use Case is the most interesting part of the Clean Architecture, where something is finally
happening. Use Case implements Input Boundary and orchestrates an entire business process:

class PlacingBidUseCase(PlacingBidInputBoundary):
def __init__(
self,
data_access: AuctionsDataAccess,
output_boundary: PlacingBidOutputBoundary,
) — None:
self. _data_access = data_access
self._output_boundary = output_boundary

def execute(
self, 1nput_dto: PlacingBidInputDto
) — None:
auction = self._data_access.get(
input_dto.auction_id
)
auction.place_bid(
input_dto.bidder_id, input_dto.amount

)

self. _data_access.save(auction)

output_dto = PlacingBidOutputDto(
input_dto.bidder_id
in auction.winners,
auction.current_price,

)
self._output_boundary.present(output_dto)

This example is intentionally kept simple. It does not take into consideration any edge cases
or error handling - it is just to reflect what was shown in the sequence diagram. Firstly, we
retrieve Auction Entity using an implementation of AuctionsDataAccess. Having an Entity
instance, we call place_bid method. The latter is a command - it is to change the state of an
Entity but does not return any value. In the next step, we persist changes using an
implementation of AuctionsDataAccess. Finally, we assemble an instance of
PlacingBidOutputDto, by feeding it with data got from query methods on Auction Entity -
winners and current_price property. In the last step, we pass output_dto into

Output Boundary present method call.

One interesting thing here is how data_access and output_boundary are created. They are
not explicitly instantiated by PlacingBidUseCase - rather, they are passed into __init__ (a
Python’s rough equivalent of constructor). We know for sure that objects cannot be
instances of AuctionsDataAccess Or PlacingBidOutputBoundary because they are abstract.
Actually, we have concrete implementations of these interfaces, namely
PlacingBidWebPresenter and DbAuctionsDataAccess respectively. It is crucial for
PlacingBidUseCase to not know what exact implementation is it using. Why? Because they

belong to higher layer and it would be against the Dependency Rule for Use Case to know
anything about upper layers. On the other hand, AuctionsbataAccess and
PlacingBidOutputBoundary both belong to Application layer, so they can safely be referred in
the Use Case.

A technique of passing dependencies into an object’s constructor is called Dependency
Injection. Normally, one would not do that manually and automate that by using a
dependency injection container. In short, the latter behaves a bit like a dictionary that keeps
concrete implementations under interfaces they implement. There must be a configuration
somewhere in the codebase that instructs dependency injection container what it should do
whenever someone requests an instance of a given type. For the snippet above, if we would
use inject library, it might look as follows:

import inject

def di_config(binder: inject.Binder) — None:
binder.bind(
AuctionsDataAccess, DbAuctionsDataAccess()

)

binder.bind_to_provider(
PlacingBidOutputBoundary,
PlacingBidWebPresenter,

inject.configure(di_config)

Once configured, inject stores a mapping between types (usually abstract classes) and their
implementations. More information on that subject will be presented later. For now, it is
sufficient to know that PlacingBidUseCase does not create its dependencies nor knows which
implementations of abstract classes are used.

DATA ACCESS INTERFACE

This specifies an interface for retrieving/storing Entities. The simplest interface will consist
of two methods - get by primary key and save.

class AuctionsDataAccess(abc.ABC):
aabc.abstractmethod
def get(self, auction_id: int) — Auction:
pass

aabc.abstractmethod
def save(self, auction: Auction) — None:
pass

DATA ACCESS

DbAuctionsDataAccess is a concrete implementation of AuctionsDataAccess abstract class
that is to use whatever data store we use for storing our dear auctions. We could be keeping
data in files, an RDBMS, NoSQL database or some external service hidden behind REST
APL.

ENTITIES - BID

Finally, we land in a domain layer to model a bid as a separate Entity.

adataclass

class Bid:
id: Optionallint]
bidder_id: int
amount: Decimal

This is a simple class that has three fields: id, bidder_id and amount. First one is optional as
newly created bids (before writing them down somewhere) will not have IDs. There is
another approach - to use UUID and always give new bids an ID7. For the sake of simplicity,
I am not adding fields for creation time etc.

ENTITIES - AUCTION

An auction in the simplest form will need a public method for placing a new bid, getting

winners list and current price.

7 Vaughn Vernon, Implementing Domain-Driven Design, Chapter 5. Entities, Unique Identity,
Application Generates Identity

class Auction:

def __init__(
self,
id: int,
starting_price: Decimal,
bids: List[Bid],

) — None:
self.id = id
self.starting_price = starting_price
self.bids = bids

def place_bid(

self, user_id: int, amount: Decimal
) — None:

pass

aproperty
def current_price(self) — Decimal:
pass

aproperty
def winners(self) — List[int]:
pass

Please note that place_bid changes an auction (mutates its state), while current_price and
winners do not. Each methods of Auction belong to one of two distinct categories:

o commands that change the state and do not return any value,
e queries that return value but cannot change anything

This approach is known as Command Query Separation (CQS) and was originally described by
Bertrand Meyer in his Object Oriented Software Construction8 back in 1988. Bear in mind
that queries are considered to be safe - they can be rearranged, used anywhere and will not
affect the state of the system, while one has to be more careful with commands. Usually,
order of invoking commands is meaningful, whereas queries can be invoked in any
sequence. The reason why this pattern was applied here is that it simplifies and orders
Auction class interface. It will also make it a bit easier to test the class.

CHAPTER SUMMARY

This chapter described a flow of control in applications implementing the Clean
Architecture in its original vision.

8 Bertrand Meyer, Object-Oriented Software Construction

Controller repacks request data into Input Dto, passes it to Use Case abstracted by

Input Boundary. Use Case leverages concrete implementation of Data Access to fetch Entities
from persistent storage (e.g. relational database), gives them commands to change their
internal state. Finally, Entities are saved. The last step for Use Case is to gather data required
for Output Dto that is to be passed into a Presenter, abstracted by Output Boundary.

All these layers and abstractions are here to distill code driven by business requirements

from non-functional stuff.
That’s the end of the free sample.

Check out https://leanpub.com/implementing-the-clean-architecture if you liked it!

https://leanpub.com/implementing-the-clean-architecture

