


The Apache Ignite book
The next phase of the distributed systems

Shamim Bhuiyan and Michael Zheludkov

This book is available at https://leanpub.com/ignitebook

This version was published on 2025-04-03

ISBN 978-0-359-43937-9

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2018 - 2025 Shamim Bhuiyan

https://leanpub.com/ignitebook
https://leanpub.com/
https://leanpub.com/manifesto


Tweet This Book!
Please help Shamim Bhuiyan and Michael Zheludkov by spreading the word about this
book on Twitter!

The suggested tweet for this book is:

Just purchased ”The Apache Ignite Book” https://leanpub.com/ignitebook by @shamim_ru
#ApacheIgnite #IMDG #NoSQL #BigData #caching

http://twitter.com
https://twitter.com/intent/tweet?text=Just%20purchased%20%22The%20Apache%20Ignite%20Book%22%20https://leanpub.com/ignitebook%20by%20@shamim_ru%20%23ApacheIgnite%20%23IMDG%20%23NoSQL%20%23BigData%20%23caching
https://twitter.com/intent/tweet?text=Just%20purchased%20%22The%20Apache%20Ignite%20Book%22%20https://leanpub.com/ignitebook%20by%20@shamim_ru%20%23ApacheIgnite%20%23IMDG%20%23NoSQL%20%23BigData%20%23caching


Also By Shamim Bhuiyan
Generative AI with local LLM

https://leanpub.com/u/shamim_ru
https://leanpub.com/quickstartwithai


To my Mother & Brothers, thank you for your unconditional love.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
What this book covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Code Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Readership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Reader feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

About the authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Other book by the author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 4. Architecture deep dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Understanding the cluster topology: shared-nothing architecture . . . . . . . . . . 1

Client and server node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Embedded with the application . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Client and the server nodes in the same host . . . . . . . . . . . . . . . . . . . 6
Running multiple nodes within single JVM . . . . . . . . . . . . . . . . . . . . 6
Real cluster topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Data partitioning in Ignite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Understanding data distribution: DHT . . . . . . . . . . . . . . . . . . . . . . . 9
Rendezvous hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Durable memory architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Data Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Index pages and B+ trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Ignite read/write path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Write-Ahead-Log (WAL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



CONTENTS

Baseline topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Automatic cluster activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Split-brain protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Fast rebalancing and it’s pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 5. Intelligent caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Smart caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Caching best practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Design patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Basic terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Database caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 8. Streaming and complex event processing . . . . . . . . . . . . . . . . . . 50
Kafka Streamer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IgniteSourceConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 10. Management and monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 56
Managing Ignite cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Monitoring Ignite cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

VisualVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Grafana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



Preface
Apache Ignite is one of the most widely used open source memory-centric distributed,
caching, and processing platform. This allows the users to use the platform as an in-
memory computing framework or a full functional persistence data stores with SQL and
ACID transaction support. On the other hand, Apache Ignite can be used for accelerating
existing Relational and NoSQL databases, processing events & streaming data or developing
Microservices in fault-tolerant fashion.

This book addressed anyone interested in learning in-memory computing and distributed
database. This book intends to provide someone with little to no experience of Apache
Ignite with an opportunity to learn how to use this platform effectively from scratch taking
a practical hands-on approach to learning.

What this book covers

Chapter 1. Introduction: gives an overview of the trends that have made in-memory
computing such important technology today. By the end of this chapter, you will have a
clear idea of what Apache Ignite is and why use Apache Ignite instead of others frameworks
like HazelCast, Ehcache?

Chapter 2. Getting started with Apache Ignite: is about getting excited. This chapter walks
you through the initial setup of an Ignite database and running of some sample application.
You will implement your first Ignite application to read and write entries from the Cache
at the end of the chapter. Also, you will learn how to install and configure an SQL IDE to
run SQL queries against Ignite caches and use Apache Ignite Thin client to working with the
Ignite database.

Chapter 3. Apache Ignite use cases: discusses various design decisions and use cases where
Ignite can be deployed. These use cases detailed and explained through the rest of the book.

Chapter 4. Architecture deep dive: covers Ignite’s internal plumbing. This chapter has a lot
of useful design concepts if you have never worked with a distributed system. This chapter
introduces Ignite shared nothing architecture, cluster topology, distributed hashing, Ignite
replication strategy and durable memory architecture. It is a theoretical chapter; you may
skip (not recommended) it and come back later.



Preface ii

Chapter 5. Intelligent caching: presents Ignite smart caching capabilities, Memoization,
and Web-session clustering. This chapter covers developments and techniques to improve
the performance of your existing web applications without changing any code.

Chapter 6. Database: guides you through the Ignite database features. This massive chapter
explores: Ignite tables and index configurations, different Ignite queries, how SQL works
under the cover, collocated/Non-collocated distributed joins, Spring data integration, using
Ignite with JPA and Ignite native persistence. This chapter is for you if you are planning to
use Ignite as a database.

Chapter 7. Distributed computing: focuses on more advanced Ignite features such as
distributed computing and how Ignite can help you develop Micro-service like application,
which will be performed in parallel fashion to gain high performance, low latency, and linear
scalability. You will learn about Ignite inline MapReduce & ForkJoin, distributed closure
execution, continuous mapping for data processing across multiple nodes in the cluster.

Chapter 8. Streaming and complex event processing: takes the next step and goes beyond
using Apache Ignite to solve complex real-time event processing problem. This chapter
covers how Ignite can be used easily with other Big data technologies such as Kafka, flume,
storm, and camel to solve various business problems. We will guide you through with
complete examples for developing real-time data processing on Apache Ignite.

Chapter 9. Accelerating Big data computing: is a full chapter about how to use Apache
Spark Dataframe and RDD for processing massive datasets. We detailed by examples of how
to share the application states in memory across multiple Spark jobs by using Ignite.

Chapter 10. Management and monitoring: explain the various tools that you can use
to monitor and manage the Ignite cluster. For instance, configuring Zookeeper discovery,
scaling up a cluster with Baseline topology.We provide a complete example of using Grafana
for monitoring Ignite cluster at the end of this chapter.

Code Samples

All code samples, scripts, and more in-depth examples can be found on the GitHub
repository¹.

¹https://github.com/srecon/the-apache-ignite-book

https://github.com/srecon/the-apache-ignite-book
https://github.com/srecon/the-apache-ignite-book


Preface iii

Readership

The target audiences of this book are IT architect, team leaders or programmer with
minimum programming knowledge. No excessive knowledge is required, though it would
be good to be familiar with Java, Spring framework and tools like Maven. The book is also
useful for any reader, who already familiar with Oracle Coherence, Hazelcast, Infinispan or
Memcached.

Conventions

The following typographical conventions are used in this book:

Italic and Bold indicates new terms, important words, URL’s, filenames, and file extensions.

A block code is set as follows:

Listing 1.1

public class MySuperExtractor implements StreamSingleTupleExtractor<SinkRecord, String, S\
tring> {

@Override publicMap.Entry<String, String> extract(SinkRecord msg) {
String[] parts = ((String)msg.value()).split("_");
return new AbstractMap.SimpleEntry<String, String>(parts[1], parts[2]+":"+parts[3]);

}
}

Any command-line input or output is written as follows:

[2018-09-30 15:39:04,479] INFO Kafka version : 2.0.0 (org.apache.kafka.common.utils.AppIn\
foParser)
[2018-09-30 15:39:04,479] INFO Kafka commitId : 3402a8361b734732 (org.apache.kafka.common\
.utils.AppInfoParser)
[2018-09-30 15:39:04,480] INFO [KafkaServer id=0] started (kafka.server.KafkaServer)

Tip
This icon signifies a tip, suggestion.



Preface iv

Warning
This icon indicates a warning or caution.

Info
This icon signifies general note.

Reader feedback

Wewould like to hear your comment such as what you think, like or dislike about the content
of the book. Your feedback will help us to write a better book and help others to clear all the
concepts. To submit your feedback, please use the the feedback link².

²https://leanpub.com/ignitebook/email_author/new

https://leanpub.com/ignitebook/email_author/new
https://leanpub.com/ignitebook/email_author/new


About the authors
Shamim Bhuiyan is currently working as an Enterprise architect; where he’s responsible for
designing and building out highly scalable, and high-load middleware solutions. He received
his Ph.D. in Computer Science from the University of Vladimir, Russia in 2007. He has been
in the IT field for over 18 years and is specialized in Middleware solutions, Big Data and
Data science. Also, he is a former SOA solution designer, speaker, and Big data evangelist.
Actively participates in the development and designing of high-performance software for
IT, telecommunication and the banking industry. In spare times, he usually writes the blog
frommyworkshop³ and shares ideas with others.

Michael Zheludkov is a senior programmer at AT Consulting. He graduated from the Bau-
man Moscow State Technical University in 2002. Lecturer at BMSTU since 2013, delivering
course Parallel programming and distributed systems.

³http://frommyworkshop.blogspot.ru/

http://frommyworkshop.blogspot.ru/
http://frommyworkshop.blogspot.ru/


Other book by the author
If you are interested in Artificial Intelligence specially on Generative AI, don’t miss the book
by the authors.

Getting started with Generative AI⁴

This book is a practical guide for anyone interested in diving into the world of Generative
AI development, regardless of their prior programming experience.

⁴https://leanpub.com/quickstartwithai

https://leanpub.com/quickstartwithai
https://leanpub.com/quickstartwithai


Other book by the author vii

Here’s what you can expect:

1. Clear and concise explanations: The book breaks down complex AI concepts into easily
understandable steps, making it accessible to beginners.

2. Step-by-step instructions: Each chapter guides you through building a specific AI
application, from setting up your environment to deploying your final product.

3. Real-world examples: You’ll learn by applying AI techniques to solve practical prob-
lems, gaining valuable hands-on experience.

4. Popular tools and libraries: The book focuses on widely used tools and libraries like
Langchain, Vanna, and PyTorch equipping you with in-demand skills.

5. Project-based learning: You’ll work on engaging projects that range from simple image
recognition to more advanced natural language processing tasks.



Chapter 4. Architecture deep dive
Apache Ignite is an open-source memory-centric distributed database, caching and comput-
ing platform. It was designed as an in-memory data grid for developing a high-performance
software system from the beginning. So its core architecture design is slightly different from
that of the traditional NoSQL databases, able to simplify the building of modern applications
with a flexible data model and simpler high availability and high scalability.

To understand how to properly design an application with any databases or framework,
you must first understand the architecture of the database or framework itself. By getting a
better idea of the system, you can solve different problems in your enterprise architecture
landscape, can select a comprehensive database or framework that is appropriate for your
application and can get maximum benefits from the system. This chapter gives you a look at
the Apache Ignite architecture and core components to help you figure out the key reasons
behind Ignite’s success over other platforms.

Understanding the cluster topology:
shared-nothing architecture

Apache Ignite is a grid technology, and its design implies that the entire system is both
inherently available and massively scalable. Grid computing is a technology in which we
utilize the resources of many computers (commodity, on-premise, VM, etc.) in a network
towards solving a single computing problem in parallel fashion.

Note that there is often some confusion about the difference between grid and cluster.
Grid computing is very similar to cluster computing, the big difference being that cluster
computing consists of homogeneous resources, while grids are heterogeneous. Computers
that are part of a grid can run different operating systems and have different hardware,
whereas cluster computers all have the same hardware and OS. A grid can make use of spare
computing power on a desktop computer, while the machines in a cluster are dedicated to
working as a single unit and nothing else. Throughout this book, we use the terms grid and
cluster interchangeably.

Apache Ignite also provides a shared-nothing architecture⁵ where multiple identical nodes

⁵https://en.wikipedia.org/wiki/Shared-nothing_architecture

https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://en.wikipedia.org/wiki/Shared-nothing_architecture


Chapter 4. Architecture deep dive 2

form a cluster with no single master or coordinator. All nodes in a shared-nothing cluster are
identical and run the exact same process. In the Ignite grid, nodes can be added or removed
nondisruptively to increase (or decrease) the amount of RAM available. Ignite internode
communication allows all nodes to receive updates quickly without having any master
coordinator. Nodes communicate using peer-to-peer message passing. The Apache Ignite
grid is sufficiently resilient, allowing the nondisruptive automated detection and recovery
of a single node or multiple nodes.

On the most fundamental level, all nodes in the Ignite cluster fall into one of two categories:
client and server. There is a big difference between the two types of nodes, and they can be
deployed in different ways. In the rest of this section, we will talk about the topology of the
Ignite grid and how it can be deployed in real life.

Client and server node

An Ignite node is a single Ignite process running in a JVM. Apache Ignite nodes have an
optional notion of client and server nodes as we mentioned before. Often, an Ignite client
node also addresses as a native client node. Both client and server nodes are part of Ignite’s
physical grid and are interconnected with each other. The client and server nodes have the
following characteristics.

Node Description
Server 1. Acts as a container for storing data and computing. A server node contains data,

participates in caching, computing and streaming. 2. Generally starts as a standalone
Java process.

Client 1. Acts as an entry point to run operations like put/get into the cache. 2. Can store
portions of data in the near cache, which is a smaller local cache that stores most
recently and most frequently accessed data. 3. It is also used to deploy compute and
service tasks to the server nodes and can participate in computation tasks (optional). 4.
Usually embedded with the application code.

Tip
You often encounter the term data node in the Ignite documentation. The terms
data node and server node refer to the same thing and are used interchangeably.

All nodes in the Ignite grid start as server nodes by default, and client nodes need to be
explicitly enabled. You can imagine the Ignite client node as a thick client (also called a fat
client, e.g., Oracle OCI8). Whenever a client node connects to the Ignite grid or cluster, it is



Chapter 4. Architecture deep dive 3

aware of the grid topology (data partitions for each node) and is able to send a request to the
particular node to retrieve data. You can configure an Ignite node to be either a client or a
server via a Spring or Java configuration, as shown below.

Spring configuration:

Listing 4.1

<bean class="org.apache.ignite.configuration.IgniteConfiguration">
...
<!-- Enable client mode. -->
<property name="clientMode" value="true"/>
...

</bean>

Java configuration:

Listing 4.2

IgniteConfiguration cfg1 = new IgniteConfiguration();
cfg1.setGridName("name1");
// Enable client mode.
cfg1.setClientMode(true);
// Start Ignite node in client mode
Ignite ignite1 = Ignition.start(cfg1);

Here is also a special type of logical node called a compute node in the Ignite cluster. A
compute node is the node that usually participates in computing business logic. Basically, a
server node that contains data is also used to execute computing tasks.



Chapter 4. Architecture deep dive 4

Figure 4.2

However, an Apache Ignite client node can also participate in computing tasks optionally.
The concept might seem complicated at first glance, but let’s try to clarify it.

Server nodes or Data nodes always stores data and participating in any computing task.
On the other hand, the Client node can manipulate the server caches, store local data and
optionally participate in computing tasks. Usually, client nodes are only used to put or
retrieve data from the caches.

Why should you want to run any computing task on client nodes? In some cases (for instance
high volume transactions in the server nodes), you do not want to execute any job or
computing task on the server nodes. In such a case, you can choose to perform jobs only
on client’s nodes by creating a cluster group. This way, you can separate the server node
(data node) from the nodes that are particular uses for computing in the same grid.

A cluster group is a logical unit of a few nodes (server or client node) that group together in
a cluster to perform some work. Within a cluster group, you can limit job execution, service
deployment, streaming and other tasks to run only within a cluster group. You can create
a cluster group based on any predicate. For instance, you can create a cluster group from
a group of nodes, where all the nodes are responsible for caching data for a cache named
testCache. It’s enough for now, and we will explore this distinction later in the subsequent
section of this chapter.

Ignite nodes can be divided into two major groups from the deployment point of view:

1. Embedded with the application.
2. Standalone server node.



Chapter 4. Architecture deep dive 5

Embedded with the application

Apache Ignite as a Java application can be deployed embedded with other applications. It
means that Ignite nodes will be runs on the same JVM that uses the application. Ignite node
can be embedded with any Java web application artifact like WAR or EAR running on any
application server or with any standalone Java application. Our HelloIgnite Java application
from chapter 2 is a perfect example of embedded Ignite server. We start our Ignite server as
a part of the Spring application running on the same JVM and joins with other nodes of the
grids in this example. In this approach, the life cycle of the Ignite node is tightly bound with
the life cycle of the entire application itself. Ignite node will also shut down if the application
dies or is taken down. This topology is shown in figure 4.3.

Figure 4.3

If you change the IgniteConfiguration.setClientMode property to false, and rerun the
HelloIgnite application, you should see the following:

Figure 4.4

HelloIgnite Java application run and joins to the cluster as a server node. The application
exists from the Ignite grid after inserting a few datasets. Another excellent example of
using Ignite node as an embedded mode are implementing web session clustering. In this



Chapter 4. Architecture deep dive 6

approach, you usually configure (web.xml file) your web application to start an Ignite node
in embedded mode. When multiple application server instances are running, all embedded
Ignite nodes connect with each other and forming an Ignite grid. Please see the chapter 5
Intelligent caching for more details of using web session clustering.

Client and the server nodes in the same host

This is one of the typical cases when Ignite client and server nodes are running on different
JVM in the same host. You can execute Ignite client and server nodes in separate containers
such as Docker or OpenVZ if you are using container technology for running JVM. Both
containers can be located in the same single host.

Figure 4.5

The container isolates the resources (CPU, RAM, Network interface) and the JVM only uses
isolated resources assigned to this container. Moreover, the Ignite client and server node can
be deployed in the separate JVM in the single host without containers, where they all use
the shared resourced assigned to this host machine. Host machine could be any on-premise,
virtual machine or Kubernates pods.

Running multiple nodes within single JVM

It is possible to start multiple nodes from within a single JVM. This approach is very popular
for unit testing among developers. Ignite nodes running on the same JVM connects with



Chapter 4. Architecture deep dive 7

each other and forming an Ignite grid.

Figure 4.6

One of the easiest ways to run a few nodes within a single JVM is by executing the following
code::

Listing 4.3

IgniteConfiguration cfg1 = new IgniteConfiguration();
cfg1.setGridName("g1");
Ignite ignite1 = Ignition.start(cfg1);
IgniteConfiguration cfg2 = new IgniteConfiguration();
cfg2.setGridName("g2");
Ignite ignite2 = Ignition.start(cfg2);

Tip
Such a configuration is only intended for developing process and not recom-
mended for production use.

Real cluster topology

In this approach Ignite client and server nodes are running on different hosts. These are
the most common way to deploy a large-scale Ignite cluster for production use because it
provides greater flexibilities in term of cluster technics. Individual Ignite server node can be
taken down or restarted without any impact to the overall cluster.



Chapter 4. Architecture deep dive 8

Figure 4.6.1

Such a cluster can be quickly deployed in and maintained by the kubernates⁶ which an open
source system for automating deployment, scaling, and management of the containerized
application. VMWare⁷ is another common cluster management system rapidly used for the
Ignite cluster.

Data partitioning in Ignite

Data partitioning⁸ is one of the fundamental parts of any distributed database despite its
storage mechanism. Data partitioning and distribution technics are capable of handling large
amounts of data across multiple data centers. Also, these technics allow a database system
to become highly available because data has been spread across the cluster.

Traditionally, it has been difficult to make a database highly available and scalable, especially
the relational database systems that have dominated the last couple of decades. These
systems are most often designed to run on a single large machine, making it challenging
to scale out to multiple machines.

At the very high level, there are two styles of data distribution models available:

⁶https://kubernetes.io
⁷https://www.vmware.com/solutions/virtualization.html
⁸https://en.wikipedia.org/wiki/Partition_(database)

https://kubernetes.io/
https://www.vmware.com/solutions/virtualization.html
https://en.wikipedia.org/wiki/Partition_(database)
https://kubernetes.io/
https://www.vmware.com/solutions/virtualization.html
https://en.wikipedia.org/wiki/Partition_(database)


Chapter 4. Architecture deep dive 9

1. Sharding: it’s sometimes called horizontal partitioning. Sharding distributes different
data across multiple servers, so each server act as a single source for a subset of data.
Shards are called partitions in Ignite.

2. Replication: replication copies data across multiple servers, so each portion of data
can be found in multiple places. Replicating each partition can reduce the chance of a
single partition failure and improves the availability of the data.

Tip
There are also two types of partitions available in partitions strategy: vertical
partitioning and functional partition. A detailed description of these partitioning
strategies is out of the scope of this book.

Usually, there are several algorithms uses for distributing data across the cluster, a hashing
algorithm is one of them. We will cover the Ignite data distribution strategy in this section,
which will build a deeper understanding of how Ignite manages data across the cluster.

Understanding data distribution: DHT

As you read in the previous section, Ignite shards are called partitions. Partitions are memory
segments that can contain a large volume of a dataset, depends on the capacity of the RAM
of your system. Partition helps you to spread the load over more nodes, which reduces
contention and improves performance. You can scale out the Ignite cluster by adding more
partitions that run on different server nodes. The next figure shows an overview of the
horizontal partitioning or sharding.

Figure 4.7



Chapter 4. Architecture deep dive 10

In the above example, the client profile’s data are divided into partitions based on the client
Id key. Each partition holds the data for a specified range of partition key, in our case, it’s the
range of the client ID key. Note that, partitions are shown here for the descriptive purpose.
Usually, the partitions are not distributed in any order but are distributed randomly.

Distributed Hash Table⁹ or DHT is one of the fundamental algorithms used in the distributed
scalable system for partitioning data across the cluster. DHT is often used in web caching,
P2P system, and distributed database. The first step to understand the DHT is Hash Tables.
Hashtable¹⁰ needs key, value, and one hash function, where hash function maps the key to a
location (slot) where the value is located. According to this schema, we apply a hash function
to some key attribute of the entity we are storing that becomes the partition number. For
instance, if we have four Ignite nodes and 100 clients (assume that client Id is a numeric
value), then we can apply the hash function hash (Client Id) % 4, which will return the node
number where we can store or retrieve the data. Let’s begin with some basic details of the
Hashtable.

The idea behind the Hashtable is straightforward. For each element we insert, we have to
have calculated the slot (technically, each position of the hash table is called slot) number
of the element into the array, where we would like to put it. Once we need to retrieve the
element from the array, we recalculate its slot again and returns it’s as a single operation
(something like return array [calculated index or slot]). That’s why it has O(1)¹¹ time
complexity. In short, O(1) means that the operation takes a certain (constant) amount of
times, like 10 nanoseconds or 2 milliseconds. The process of calculating unique slot of each
element is called Hashing and the algorithm how it’s done called Hash function.

In a typical Hash table design, the Hash function result is divided by the number of array
slots and the remainder of the division becomes the slot number of the array. So, the index
or slot into the array can be calculated by hash(o) % n, where o is the object or key, and n is the
total number of slots into the array. Consider the following illustration below as an example
of the hash table.

⁹https://en.wikipedia.org/wiki/Distributed_hash_table
¹⁰https://en.wikipedia.org/wiki/Hash_table
¹¹https://en.wikipedia.org/wiki/Big_O_notation

https://en.wikipedia.org/wiki/Distributed_hash_table
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Distributed_hash_table
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Big_O_notation


Chapter 4. Architecture deep dive 11

Figure 4.8

The value on the left represents keys in the preceding diagram, which are being hashed by
the hash function for producing the slot where the value is stored. Based on the hash value
computed, all the items placed in respective slots. Also, we can look up the client profile of
a given client Id by calculating its hash and then accessing the resulting slot into the array.

Info
Implementation of the Hash tables has some memory overhead. Hash tables need
a lot of memory to accommodate the entire. Even if most of the table is empty,
we need to allocate memory for the entire table. Often, this called a time-space
tradeoff, and hashing gives the best performance for searching data at the expanse
of memory.

Hash table is well suited for storing data set allocated in one machine. However, when you
have to accommodate a large number of keys, for instance, millions and millions of keys,
DHT comes into play. A DHT is merely a key-value store distributed across many nodes in
a cluster. You have to divide the keys into subsets of keys and map those keys to a bucket.
Each bucket will reside in a sperate node. You can assume a bucket as a sperate hash table.
In one word, using buckets to distribute the key-value pairs is DHT.

Another key objective of the hash function in a DHT is to map a key to the node that owns it,
such that a request can be made to the correct node. Therefore, there are two hash functions
for looking up the value of the key across the cluster in DHT. The first hash function will
search for the appropriate bucket maps to the key, and the second hash function will return
the slot number of the value for the key located in the node. We can visualize the schema as
shown in figure 4.9.



Chapter 4. Architecture deep dive 12

Figure 4.9

To illustrate this, we modified our previous hash table to store pointers to the bucket instead
of values. If we have three buckets as shown in the preceding example, then key=1 should
go to the bucket 1, key=2 will go to bucket 2 and so on. Therefore, we have to need one more
hash function to find out the actual value of the key-value pair inside a particular bucket.
HashFucntion2 is the second hash function for looking up the actual key-value pair from the
bucket in this case.

Table named Buckets on the left-hand side in figure 4.9 sometimes called partition table.
This tables stores the partition IDs and the node associated to that partition. The function
of this table is to make all members of the entire cluster aware of this information, making
sure that all members know where the data is.

The fundamental problem of DHT is that it effectively fixes the total number of the nodes
in the cluster. Adding a new node or removing nodes from the cluster means changing the
hash function which would require redistribution of the data and downtime of the cluster.
Let’s see what happens when we remove the bucket 2 (node 3) from the cluster, the number
of buckets is now equal to two, i.e., n=2. This changes the result of the hash function hash

(key) % n, causing the previous mapping to the node (bucket) unstable. The key=2 which was
previously mapped to bucket two now mapped to bucket 0 since key % 2 is equal to 0. We
need to move the data between buckets to make it still work, which is going to be expensive
in this hashing algorithm.

A workaround for this problem is to use Consistence Hashing or Rendezvous hashing. Often



Chapter 4. Architecture deep dive 13

Rendezvous hashing is also called Highest Random Weight (HRW) hashing. Apache Ignite
uses the Rendezvous hashing, which guarantees that only the minimum amount of partitions
will be moved to scale out the cluster when topology changes.

Info
Consistence Hashing is also very popular among other distributive systems such
as Cassandra, Hazelcast, etc. At the early stage, Apache Ignite also used consistent
Hashing to reduce the number of partitions moving to different nodes. Still, you
can find Java class GridConsistentHash in the Apache Ignite codebase regards to
the implementation of the Consistent Hashing.

Rendezvous hashing

Rendezvous hashing¹² (aka highest random weight (HRW) hashing) was introduced by
David Thaler and Chinya Ravishankar in 1996 at the University of Michigan. It was first used
for enabling multicast clients on the internet to identify rendezvous points in a distributed
fashion. It was used by Microsoft corporation for distributed cache coordination and routing
a few years later. Rendezvous hashing is an alternative to the ring based, consistent hashing.
It allows clients to achieve distributed agreement on which node a given key is to be placed
in.

The algorithm is based on a similar idea of consistent hashing¹³ where nodes are converted
into numbers with hash. The basic idea behind the algorithm is that the algorithm uses
weights instead of projecting nodes and their replicas on a circle. A numeric value is created
with a standard hash function hash(Ni, K) to find out which node should store a given key,
for each combination of the node (N) and key (K). The node that’s picked is the one with
the highest number. This algorithm is particularly useful in a system with some replication
(we will detail the replication mechanism in the next section, for now, data replication is a
term means to have redundancies data for high availability) since it can be used to agree on
multiple options.

¹²https://en.wikipedia.org/wiki/Rendezvous_hashing
¹³https://en.wikipedia.org/wiki/Consistent_hashing

https://en.wikipedia.org/wiki/Rendezvous_hashing
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Rendezvous_hashing
https://en.wikipedia.org/wiki/Consistent_hashing


Chapter 4. Architecture deep dive 14

Figure 4.10

Both Consistent hashing and Rendezvous hashing algorithms can be used in a distributed
database to decide the home node for any given key, and often can replace each other.
However, Rendezvous hashing or HRW have some advantages over Consistent hashing
(CH).

1. You do not have to pre-define any tokens for the nodes to create any circle for HRW
hashing.

2. The biggest advantage of theHRWhashing is that it provides a very even distribution of
keys across the cluster, evenwhile nodes are being added or removed. For CH, you have
to create a lot of virtual nodes (Vnodes) into each node to provide evenly distribution
of keys on a small size of a cluster.

3. HRW hashing doesn’t store any additional information for data distribution.
4. Usually, HRW hashing can provide different N servers for a given key K. This makes

it very useful to support storing redundant data.
5. Finally, HRW hashing is simple to understand and code.

HRW hashing also has a few disadvantages as follows:

1. HRW hashing requires more than one hashing computation per key to maps key to
a node. It can make a massive difference if you are using some sort of slow hashing
function.



Chapter 4. Architecture deep dive 15

2. HRW hashing can be slower to run hash functions against each key node combinations
instead of the just once with the CH algorithms.

Rendezvous Hashing or HRW hashing is the default algorithm in Apache Ignite for a
key to node mapping since version 2.0. RendezvousAffinityFunction¹⁴ class is the standard
implementation of the Rendezvous Hashing in the Apache Ignite. This class provides affinity
information for detecting which node (nodes) are responsible for the particular key in the
Ignite grid.

Info
Keys are not directly mapped to the node in Ignite. A given key always maps to
the partition first. Then, the partitions are maps into nodes. Also, Ignite doesn’t
form any circle like network topology defined in articles or documentation.

Mapping of a given key in Ignite is a three steps operation. First, any given key will get
an affinity key by using CacheAffinityKeyMapper function. Affinity key will be used to
determine a node on which this key will be cached. The second step will map the affinity
key to partition using AffinityFunction.partition(object) method. Here, a partition is simply
a number from a limited set (0 to 1024), 1024 is default. A key to partition mapping does not
change over the time. The third step will map an obtained partition to nodes for the current
grid topology version. Partition to node mapping is calculated by using assignPartitions()
method, which assigns a collection of nodes to each partition.

¹⁴https://github.com/apache/ignite/blob/master/modules/core/src/main/java/org/apache/ignite/cache/affinity/rendezvous/
RendezvousAffinityFunction.java

https://github.com/apache/ignite/blob/master/modules/core/src/main/java/org/apache/ignite/cache/affinity/rendezvous/RendezvousAffinityFunction.java
https://github.com/apache/ignite/blob/master/modules/core/src/main/java/org/apache/ignite/cache/affinity/rendezvous/RendezvousAffinityFunction.java
https://github.com/apache/ignite/blob/master/modules/core/src/main/java/org/apache/ignite/cache/affinity/rendezvous/RendezvousAffinityFunction.java


Chapter 4. Architecture deep dive 16

Figure 4.11

Apache Ignite affinity function (key to node mapping) is fully pluggable, and you can
implement your version of Rendezvous Hashing or consistent hashing to determine an ideal
mapping for the partition to nodes in the grids. Youmust have implemented the Java interface
AffinityFuction and configure this function in the cache configuration as shown below:

Durable memory architecture

The Ignite new memory architecture as well as native persistence was debuted on version
2.0 and distributed from the end of the last year. The data in memory and on disk has the
same binary representation. This means that no additional conversion of the data is needed
while moving from in memory to disk. Ignite new memory architecture provides off-heap
data storage in a page format. Sometimes it’s also called page-based memory architecture



Chapter 4. Architecture deep dive 17

that is split into pages of fixed size. The pages are allocated in managed off-heap (outside of
the Java heap) region of the RAM and organized in a particular hierarchy. Let’s start with
the basic of the durable memory architecture: page, the smallest unit of the data with a fixed
size.

Page

A page is a basic storage unit of data that contains actual data or meta-data. Each page
contains a fixed length and has a unique identifier: FullPageId. As mentioned earlier, Pages
are stored outside the Java heap and organized in RAM. Pages interact with the memory
using the PageMemory abstraction. It usually helps to read, write a page and even allocate a
page ID.

When the allocated memory exhausted and the data are pushed to the persistence store, it
happens page by page. So, a page size is crucial for performance, it should not be too large,
otherwise, the efficiency of swapping will suffer seriously. When page size is small, there
could be another problem of storing massive records that do not fit on a single page. Because,
to satisfy a read, Ignite have to do a lot of expensive calls to the operating system for getting
small pages with 10-15 records.

When the record does not fit in a single page, it spreads across several pages, each of them
stores only some fragments of the record. The downside of this approach is that Ignite has
to look up the multiple pages to obtain the entire records. So, you can configure the size of
the memory page in such cases.

Size of the page can be configured via DataStorageConfiguration.setPageSize(..) parameter.
It is highly recommended to use the same page size or not less than of your storage device
(SSD, Flash, etc.) and the cache page size of your operating system. Try a 4 KB as page size
if it’s difficult to figure out the size of the cache page size of your operating system,.

Every page contains at least two sections: header and page data. Page header includes the
following information’s:

1. Type: size 2 bytes, defines the class of the page implementation (ex. DataPageIO,
BplusIO)

2. Version: size 2 bytes, defines the version of the page
3. CRC: size 4 bytes, defines the checksum
4. PageId: unique page identifier
5. Reserved: size 3*8 bytes



Chapter 4. Architecture deep dive 18

Ignite memory page structure illustrated in the following figure 4.29.

Figure 4.28

Memory pages are divided into several types, and the most important of them are Data Pages
and Index Pages. All of them are inherited from the PageIO. We are going to details the Data
Page and the Index Page in the next two subsections.

Data Page

The data pages store the data you enter into the Ignite caches. If a single record does not
fit into a single data page, it will be stored into several data pages. Generally, a single data
page holds multiple key-values entries to utilize the memory as efficiently as possible for
avoiding memory fragmentation. Ignite looks for an optimal data page that can fit the entire
key-value pair when a new key-value entry is being added to the cache. It makes sense to
increase the page size if you have many large entries in your application. One thing we have
to remember is that data is swapped to disk page by page and the page is either completely
located in RAM or into Disk.

Figure 4.29

During an entry updates, if the entry size exceeds the free space available in the data page,
then Ignite will look for a new data page that has enough space to store the entry and the
new value will be moved there. Data page has its header information in addition to the
abstract page. Data page consist of two major sections: the data page header and data page
data. Data page header contains the following information’s and the structure of the data
page is illustrated in figure 4.29.

1. Free space, refers to the max row size, which is guaranteed to fit into this data page.
2. Direct count.



Chapter 4. Architecture deep dive 19

3. Indirect count.

The next portions of data after the page header is data page data and consists of items and
values. Items are linked to the key-value. A link allows reading key-value pair as an Nʰ item
in a page. Items are stores from the beginning to the end, and values are stores on reverse
order: from the end to beginning.

Index pages and B+ trees

Index pages are stored in a structure known as a B+ tree¹⁵, each of them can be distributed
across multiple pages. All SQL and cache indexes are stored and maintained in B+ tree data
structure. For every unique index declared in SQL schema, Ignite initialized and managed a
dedicated B+ tree instance. Unlike data pages, index pages are always stored in memory for
quick access when looking for data.

A B+ tree structure is very similar to a B tree with the difference that an additional level
is added at the bottom with linked leaves. The purpose of the B+ tree is to link and order
the index pages that are allocated and stored within the durable memory. This means that
only a small number of pointers or links traversal is necessary to search for value if the
number of the keys in a node is very large. Finally, the index pages of the B+ tree all contain
a next sibling pointer for fast iteration through a contiguous block of value. This allows for
extremely fast range queries.

Info
Key duplication is not possible in B+ tree structure.

In B+ tree binary search is used to find out the required key. To search for an element into
the tree, one load up the root nodes finds the adjacent keys that the searched-for value is
between. If the required value is not found, it is compared with other values in the tree.

¹⁵https://en.wikipedia.org/wiki/B%2B_tree

https://en.wikipedia.org/wiki/B+_tree
https://en.wikipedia.org/wiki/B+_tree


Chapter 4. Architecture deep dive 20

Figure 4.30

There is a high cost of allocating memory for a large number of pages including data or index
pages, which solves through the next level of abstraction called Segments.

Segments

Segments are a contiguous block of physical memory, which are the atomic units of the
allocated memory. When the allocated memory runs out, the operating system is requested
for an additional segment. Further, this segment is divided into pages of fixed size. All page
types include data or index pages resides in the segment.

Figure 4.31

It is possible to allocate up to 16 memory segments for one dedicated memory region with
the size of the segments at least 256 MB in the current version. Ignite uses a particular
component for managing information about pages currently available in memory segment
and page Id mapping to region address called LoadedPagesTable. LoadedPagesTable or
PageIdTable manages mapping from Page ID to relative memory segment chunk (unsafe).



Chapter 4. Architecture deep dive 21

LoadedPagesTable uses Robin Hood Hashing¹⁶ algorithm for maintaining HashMap of
FullPageId since Ignite version 2.5.

When it comes about memory segment, it is necessary to mention the memory consumption
limits. In Apache Ignite data are stored in caches. Obviously, we cannot keep the entire
dataset forever in memory. Also, different data may have different storage requirements.
To make it possible to set limits at the level of each cache, a hybrid approach was chosen
that allows Ignite to define limits for groups of caches, which brings us to the next level of
abstraction called memory Region.

Region

The top level of the Ignite durable memory storage architecture is the data Region, a logical
expandable area. Data region can have a few memory segments and can group segments
that share a single storage area with their settings, constraints and so on. Durable memory
architecture can consist of multiple data regions that can vary in size, evictions policies and
can be persisted on disk.

Tip
Ignite allocates a single data region (default data region) occupying up to 20% of
the RAM available on a local cluster by default. The default data region is the data
region that is used for all the caches that are not explicitly assigned to any other
data region.

Data region encapsulates all the data storage configuration for operational and historical
data for your utilization in Ignite and can have one or more caches or tables on a single
region. With data region configuration you can manage more than one data region, which
can be used for storing historical and operation data of your system. There are different
cases when you might do this. The most trivial example is that when you have different
non-related caches or tables with different limits.

¹⁶http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/

http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/
http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/


Chapter 4. Architecture deep dive 22

Figure 4.32

Let’s assume that in our application we have Product, Purchase history entities stored
in ProductCache and PurchaseHistCache caches respectively. Here, the Product data is
operational and access by the application frequently. Moreover, the Purchase History data
needed occasionally and not very critical to lose. In this situation, we can define two different
regions of memory with different sizes: Data_region_4GB and Data_region_128GB.

• Data_region_128GB is only 128 GB of memory and will store the operational or
frequently access data such as Products.

• Data_region_4GB size is 4 GB and will be allocated for rarely accessed data sets like
Purchase history.

Figure 4.33

When we create caches, we should have specified the region, on which the cache will belong
to. The limits here are applied on the data region level. When you put or insert something in
your small cache, and if you exceed the maximum size of the data region (ex. 4 GB), you will
get out of the memory (IgniteOutOfMemory) exception, even when the larger data region is
empty. You can’t use the memory that is allocated for the Data_region_128GB by the small
caches, because it is assigned to the different data region.

So, you should remove or swap the stale data from the data region if you want to avoid this
out of memory error. For these circumstances, Ignite provides a few data eviction algorithms
to remove unnecessary data from in memory.



Chapter 4. Architecture deep dive 23

Ignite read/write path

Ignite uses a B+ tree index to find out the potential data pages to fulfil a read. Ignite processes
read data at several stages on the read path to discover where the data is stored, starting
looking up the key in the B+ tree and finishing with data page:

1. On the client node, a cache method has been called myCache.get(keyA).
2. Client node identifies the server node that is responsible for this given key keyA using

the built-in affinity function and delegates the request to the server node over the
network.

3. The server node determines the memory region that is responsible for the cachemyCache.
4. In the corresponding memory region, a request goes to the meta page, which contains

the entry points to a B+ tree by the key of this cache.
5. Based on the keyA hash code, the index page the key belongs to will be located in the

B+ tree.
6. Ignite will return a null value if the corresponding index page is not found in the

memory or on the disk.
7. If the index page exists, then it contains the reference to the data page of the entry keyA.
8. Ignite accesses the data page for keyA and returns the value to the client node.

The above schema for data looks up by the key can be illustrated as shown in figure 4.38.



Chapter 4. Architecture deep dive 24

Figure 4.37

Similar to the read path, Ignite processes data at several stages on a write path. The only
difference is that, when a write occurs, Ignite looks for the corresponding index page in the
B+ tree. If the index page is not found, Ignite requests a new index page from one of the free
lists. The same thing happens for the data page. Also, a new data page also requests from the
free list.

Free List is a list of pages, structured by an amount of space remained within a page. Ignite
manages free lists to solve the problem of fragmentation in pages (not full page). Free lists
make the allocation and deallocation operations of the data and index pages straightforward,
and allow to keep track of free memory. For instance, the image in figure 4.39 shows a free
list that stores all the data pages that have up to 15% free space available. Data and index
pages are tracked in separate free lists. The list is traversed, and the data/index page that is
large enough to store the data is returned when a request for a data/index pages is sent.



Chapter 4. Architecture deep dive 25

Figure 4.38

Let’s see what’s going under the hood when a myCache.put(keyA, valueA) request sent to the Ignite
node:

1. A cache method myCache.put(keyA, valueA) has been called on the client node.
2. Client node identifies the server node that is responsible for this given key keyA using

the built-in affinity function and delegates the request to the server node over the
network.

3. The server node determines the memory region that is responsible for the cachemyCache.
4. A request goes to the Meta page in the corresponding memory region, which contains

the entry points to a B+ tree by the key of this cache.
5. Based on the keyA hash code, the index page the key belongs to will be located in the

B+ tree.
6. If the corresponding index page is not found in the memory or on disk, then a new

page will be requested from one of the free lists. Once the index page is provided, it
will be added to the B+ tree.

7. If the index page is empty (i.e., does not refer to any data page), then the data page will
be provided by one of the free lists, depending on the total cache entry size. During the
selection of the data page for storing the new key-value pair, Ignite does the following:

• Consult marshaller about size in bytes of this value pair.
• Upper-round this value to be divisible by 8 bytes.
• Use the value from the previous step to get page list from the free list.
• Select some page from an appropriate list of free pages. This page will have
required amount of free space.

• A reference to the data page will be added to the index page.



Chapter 4. Architecture deep dive 26

8. The cache entry is added to the data page.

The Ignite write path with several stages illustrated in the following sequence diagram.

Figure 4.39

Write-Ahead-Log (WAL)

The Write-Ahead-Log or WAL is a commonly used technique in the database system for
maintaining atomicity and durability of writes. The key behind the WAL is that before
making any changes to database state, first, we have to log the complete set of operations to
the nonvolatile storage (e.g., disk). By writing the log into WAL first, we can guarantee the
data durability. If the database crash during changes to the disk, we will be able to read and
replay the instructions from the WAL to recover the mutation.

Tip
WAL also known as the transaction log or redo log file. Practically every database
management system has one.

From the Apache Ignite perspective, WAL is a dedicated partition file stored on each cluster
node. The update is not directly written to the appropriate partition file but is appended to
the end of theWAL file when data are updated in RAM.WAL provides superior performance
when compared to in-place updates.

So, what exactly is a Write-Ahead-Log (WAL) file and how it works? Let’s consider an
application that’s trying to change the value of A and B from the following four key-values:



Chapter 4. Architecture deep dive 27

(K, V) = (A, 10);
(K, V) = (B, 10);
(K, V) = (C, 20);
(K, V) = (D, 30);

The application is performing an addition of 10 within a single transaction as shown below.

A := A+ 10;
B := B + 10;

The problem arises when there is a system failure during writing to the disk. Assume that,
after output(A) on disk, there is a power outage, so output(B) does not get executed, and the
value of B is now in the inconsistent state. Value of A on disk is 20, and the value of B is
still 10. Therefore, the database system needs a mechanism to handle such failures since they
cannot be prevented from any power outage or system crash.

Figure 4.42

Most database system uses a log-based database recovery mechanism to solve the above
problem. A log is the most commonly used structure for recording database modification.
The DBMS has enough information available to recreate the original data changes after a
crash after the log file has been flushed to disk.

The first log approach is theUNDO log. The purpose of the undo log is to reverse or undo the
changes of an incomplete transaction. In our example, during recovery, we have to put the
database in the state it was before this transaction, means that changes to A are undone, so
A is once again 10 and A=B=10. The undo log file always written to the nonvolatile storage.

Undo logging rules:

1. Record a log in undo log file for every transaction T. Write (start T).



Chapter 4. Architecture deep dive 28

2. For every action, generate an undo log record with the old value. Write (T, X, VOLD).
3. Flush the log to disk.
4. Write all the database changes to disk if transaction T commits.
5. Then write (commit T) to the log on disk as soon as possible.

An undo log looks very similar as shown in the figure 4.43.

Figure 4.43

We log a record indicates that we have started the transaction before starting the transaction.
When we update the value A, we also write a log indicates its old value 10. Similarly, we
record its old value of 10 when we change the value of B from 10 to 20. We flush the undo
log to disk before outputting values of A and B to disk. Then we output(A) and output(B) to
disk, only after that, we can record (commit T) into undo log file.

Undo logging recovery rules:

1. We only undo the failed transaction. If there’s already (commit T) or (abort T) record,
do nothing.

2. For all (T, X, VOLD):

• output(VOLD)

3. write (abort T) to undo log.



Chapter 4. Architecture deep dive 29

Figure 4.44

We read the undo log from the end to start, and looking for an incomplete transaction during
the recovery process. Any records with (commit T) or (abort T) are ignored because we know
that (commit T) or (abort T) can only be recorded after a successful output to disk. We cannot
be sure that output was successful if there are no (commit T) record, so for every record, we
use the old value VOLD to revert the changes. So, (T, B, 10) sets B back to 10 and so on. Undo
log records (abort T) to indicate that we aborted the transaction after making the changes.

The main disadvantage of the undo log is that it might be slower for heavy write-intensive
application because for every transaction, we have to output the value to the disk before
records a (commit T) log in the undo log file.

At this moment, we can get back to our starting point about WAL. The second log approach
for protecting data-loss is the write-ahead log or WAL. Instead of undoing a change, WAL
tries to reproduce a change. During the transaction, we write all the changes to WAL that we
are indented to do, so we can rerun transaction in case of disaster and reapplying the changes
if necessary. Before making any output (write to the disk), we must record the (commit T)
record.

WAL logging rules:

1. Record a log into undo file for every transaction T. Write (start T) to the log.
2. Set its value to New if transaction modifies database record X. Write (T, X, Vⁿʷ) to the

log.
3. Write (Commit T) to the log if transaction T commits.
4. Flush the log file to the disk.



Chapter 4. Architecture deep dive 30

5. And then, write the new value Vⁿʷ for X to disk.

A WAL log file looks something like shown in figure 4.45.

Figure 4.45

We record the new values for A and B then commit and flush the log to disk. Only after
that, we output the values of A and B to the disk. This solves two main issues with disk I/O:
buffering and randomly output to disk.

WAL logging recovery rules:

1. Do nothing if there’s any incomplete transaction (no commit T) record.
2. If there is (commit T), for all (T, X, Vⁿʷ):

• output(Vⁿʷ)



Chapter 4. Architecture deep dive 31

Figure 4.46

To recover with a WAL log file, we start from the beginning of the file scanning forwards
(opposite of the undo log file). If we find any incomplete transaction (no commit T), we
skip the transaction so that no output was done. We do not know whether the output was
successful or not whenever we find any (commit T) record. In this case, we redo the changes,
and even it is redundant. In our example, the value of A will be set to 20, and the value of B
will also be set to 20.

Now that we have got the basics of the log structure, so let’s move on to Ignite’sWAL concept
to see how the things organized under the cover. From the Ignite perspective, whenever the
storage engine wants to make any changes to the data page, it writes the change to the RAM
and then appends the changes to the WAL. Storage engine sends an acknowledgment to
confirm the operation only after durably written the changes to WAL file on disk.



Chapter 4. Architecture deep dive 32

Figure 4.47

This makes the database changes reliably. If the node crashes while data was being appended
to the WAL, no problem because dirty data pages have not been copied from RAM to disk.
So, storage engine can read and reply WAL using already saved page set if it crashes while
the data pages are being modified. The storage engine can restore to state, which was last
committed state of the crashed process. In Ignite, restore is based on page store andWAL log.
You may notice that Ignite native persistence is slightly different than the classical WAL log
concept.

Tip
Data changes are acknowledged only after the cache operations and page changes
were logged into theWAL. Dirty data pageswill be copied later by another process.

Baseline topology

Ignite Baseline Topology or BLT represents a set of server nodes in the cluster that persists
data on disk.



Chapter 4. Architecture deep dive 33

Where,

• N1-2 and N5 server nodes are the member of the Ignite cluster with native persistence
enable that persists data on disk.

• N3-4, N6 server nodes are the member of the Ignite cluster but not a part of the baseline
topology.

The nodes from the baseline topology are a regular server node, that store’s data in memory
and on the disk, and also participate in computing tasks. Ignite cluster can have different
nodes that are not a part of the baseline topology such as:

• Server nodes that are not used Ignite native persistence to persist data on disk. Usually,
they store data in memory or persists data to a 3rd party database or NoSQL. In the
above equitation, node N3 or N4 might be one of them.

• Client nodes that are not stored shared data.

Let’s start at the beginning and try to understand its goal and which problem it’s solved to
clear the baseline topology concept.

The database like Ignite is designed to support massive data storage and processing. Ignite
database are highly scalable and fault-tolerant. This high scalability feature of the Ignite
brings a few challenges for the database administrator, such as:

• how to manage a cluster?
• How to add/remove nodes correctly? or
• how to rebalance data after add/remove nodes?

Ignite cluster with a multitude of nodes can significantly increase the complexity of the
data infrastructure. Let’s look at it by the example of Apache Ignite. Ignite in-memorymode
cluster concept is very simple. There are no master or dedicated node in the cluster, and
every node is equal. Each node stores a subset of data and can be participated in distributed
computing or deploy any services. In case of any node failures, client requests served by the
other nodes, and the data of the failed nodes will be no longer available. In this mode, Ignite
cluster management operations are very similar as follows:



Chapter 4. Architecture deep dive 34

1. To run a cluster, start all nodes.
2. To expand the cluster topology, add some nodes.
3. To reduce the cluster topology, remove some nodes.

Data redistributes between nodes automatically. Data partitions moves from one node to
another depending on the backup copy configuration of the caches.

Figure 4.53

In the persistence mode, the node keeps their state even after the restart. Data is read from
the disk and restores the node state during any read operation. Therefore, restart of a node
in persistence mode does not need to redistributed data from one node to another unlike
in-memory mode. The data during node failure will be restored from the disk. This strategy
opens up the opportunities to not only preventing ofmoving amassive amount of data during
node failure but also reduce the startup times of the entire cluster after a restart. So, we need
to distinguish somehow these nodes that can save their state after restart. In other words,
the Ignite baseline topology provides this capability.



Chapter 4. Architecture deep dive 35

Figure 4.54

In a nutshell, Ignite baseline topology is a collection of nodes that have been configured for
storing persistence data on disk. Baseline topology tracks the history of the topology changes
and prevents data discrepancies in the cluster during recovery. Let’s resume the goals of the
baseline topology:

1. Avoid redundant data rebalancing if a node is being rebooted.
2. Automatically activate a cluster once all the nodes of the baseline topology have joined

after a cluster restart.
3. Prevent the data inconsistencies in the case of split-brain.

Please note that, you can use persistence caches with the in-memory caches at the same
time. In-memory caches will live same as before: consider all nodes are equals and begin
redistribution of the partitions whenever a node goes down. Baseline topology will take
action only on the persistence caches. Hence, Ignite baseline topology has the following
characteristics:



Chapter 4. Architecture deep dive 36

1. Baseline topology defines a list of nodes which intended for storing data, and does not
affect other functionalities such as data grid, compute grid etc. If a new node joined to
the cluster where baseline topology is already defined, the data partitions is not started
moving to the new node until the node is added to the baseline topology manually.

2. On each node, persistence Meta-data repository is used to store the history of the
baseline topology.

3. For a newly created cluster (or cluster without baseline topology), a baseline topology
is created for the first time during the first activation of the cluster. The administrator
must explicitly do all the future changes (add/remove nodes) of the baseline topology.

4. If baseline topology is defined for a cluster, after restarting the cluster, the cluster
will be activated automatically whenever all the nodes from the baseline topology are
connected.

Now, let’s details how Ignite storage engine achieves the abovementioned goals.

Automatic cluster activation

A cluster can make on its own decision to activate the cluster in the persistence mode with
baseline topology. After the first activation of the cluster, the first baseline topology is created
and saved on the disk, which contains information about all nodes present in the cluster at
the time of activation. Each node checks the status of the other nodes within the baseline
topology after the cluster is rebooted. The cluster is activated automatically once all the nodes
are online. This time the database administrator needs no manual intervention to activate
the cluster.



Chapter 4. Architecture deep dive 37

Figure 4.55

Let’s go through the details of the automatic cluster activation when Ignite persistence is
enabled:

• Step 1. All nodes started. The cluster is inactive state and can’t handle any DDL/DML
operations (SQL, Key-value API).

• Step 2. The cluster is activated by the database administrator manually. First baseline
topology is created, added all the currently running server nodes to the baseline
topology.

• Step 3. Database administrator decided to restart the entire cluster to perform any
software or hardware upgrade. Administrator stopped or restarted each node one by
one.

• Step 4. Nodes are started back one by one and joined to the cluster.
• Step 5. Once all the nodes are baseline topology booted, the cluster gets activated
automatically.

Although, Apache Ignite is a horizontally scalable database and nodes can be added and
removed from the cluster dynamically, baseline topology proceeds from the concept that in
persistence mode the user maintains a stable cluster in production.



Chapter 4. Architecture deep dive 38

Split-brain protection

Split-brain¹⁷ is one of the common problems of distributed systems, in which a cluster of
nodes gets divided into smaller clusters of equal or nonequal numbers of nodes, each ofwhich
believes it is only the active cluster. Commonly, the split-brain situation is created during
network interruption or cluster reformation. The cluster reforms itself with the available
nodes when one or more node fails in a cluster. Sometimes instead of forming a single
cluster, multiple mini clusters with an equal or nonequal of nodes may be formed during
this reformation. Moreover, these mini cluster starts handling request from the application,
which makes the data inconsistency or corrupted. How it may happen is illustrated in figure
4.56. Here’s how it works in more details.

• Step 1. All nodes started. The cluster is inactive state and can’t handle any DDL/DML
operations (SQL, Key-value API).

• Step 2. The cluster is activated by the database administrator manually. First baseline
topology is created, added all the currently running server nodes to the baseline
topology.

• Step 3. Now let’s say, a network interruption has occurred. Database administrator
manually split the entire cluster into two different clusters: cluster A and cluster B.
Activated the cluster A with a new baseline topology.

• Step 4. Database administrator activated the cluster B with a new baseline topology.
• Step 5-6. Cluster A and B are started getting updates from the application.
• Step 7. After a while, the administrator resolved the network problem and decided to
merge the two different cluster into a single cluster. In this time baseline topology of
the cluster A will reject the merge, and an exception will occur as follows:

¹⁷https://en.wikipedia.org/wiki/Split-brain_(computing)

https://en.wikipedia.org/wiki/Split-brain_(computing)
https://en.wikipedia.org/wiki/Split-brain_(computing)


Chapter 4. Architecture deep dive 39

Figure 4.56

Listing 4.15

class org.apache.ignite.spi.IgniteSpiException: BaselineTopology of joining node (4,3) is\
not compatible with BaselineTopology in the cluster. Branching history of cluster BlT ([\
11, 9]) doesn't contain branching point hash of joining node BlT (3). Consider cleaning p\
ersistent storage of the node and adding it to the cluster again.

The nodes of the cluster B will store their data during node startup when Ignite works in
persistence mode. The data of the cluster B will be available as we started the cluster B again.
So, different nodes may have different values for the same key after the cluster is restored
to its primary state. Protection from this situation is one the task of baseline topology.



Chapter 4. Architecture deep dive 40

As stated earlier, a new baseline topology is created and saved on the disk, which contains
information about all the nodes presents in the cluster at the moment of activation when
we activate the cluster first time. This information also includes a hash value based on the
identifiers of the online nodes. If some nodes are missing in the topology during subsequent
activation (for instance, the cluster was rebooted, and one node was removed permanently
for disk outage), the hash value is recalculated for each node, and the previous value is stored
in the activation history within the same baseline topology. Such a way, baseline topology
supports a chain of hashes describing the cluster structure at the time of each activation.

In steps 3 and 4, the administrator manually activated the two incomplete cluster, and each
baseline topology recalculated and updated the hash locally with a new hash. All nodes of
each cluster will be able to calculate the same hashes, but they will be different in various
groups. Cluster A determined that nodes of the cluster B is activated independently of the
node of the cluster A, and access was denied when the administrator tried to merge the two
cluster into one. The logic is as follows:

Listing 4.16

if (!olderBaselineHistory.contains(newerBaselineHash))
<join is rejected>

Warning
Please note that this validation does not provide full protection against split-brain
conflicts. However, it protects against conflicts in case of administrative errors.

Fast rebalancing and it’s pitfalls

As described above, the rebalancing event occurs, and data starts moving between the
nodes within the baseline topology whenever a new node joins or removes from the
baseline topology explicitly by the database administrator. Generally, rebalancing is a time-
consuming process, and the process can take quite a while depending on the amount of the
data. In this section, we are going into details on the rebalancing process and its pitfalls.



Chapter 5. Intelligent caching
A cache is a high-speed data storage layer in front of the primary storage location which
stores a subset of data so that future requests for that data served up as fast as possible in
computer terminology. Primary storage could be any database or a file system that usually
stores data on non-volatile storage. Caching allows you to reuse previously retrieved or
computed data efficiently, and it is one of the secrets of high-scalability and performance of
any enterprise level application.

You may wonder why we named the chapter intelligent caching! Because, from the last
decades, the unbounded changes of the software architecture need not only correctly used
of a caching strategy but also properly configured (cache eviction, expiration) and sizing
the cache layer to achieve the maximum performance and high-scalability of an application.
Caching can be used for speeding up requests on five main different layers or environments
of your application architecture:

1. Client
2. Network
3. Web server
4. Application
5. Database

So, you should consider caching strategies for each layer of your application architecture to
accomplish the high-performance of an application, and implements it’s correctly. It should
be noted that none of the caching platforms or framework are a silver bullet. Cache usages
vary for different data sizes and scenarios. Firstly, you should measure the data sizes and
requests on each layer, doing various tests to find out the bottleneck and then with the way
of experiments you have to define a tool or framework for caching data before implementing
any caching platform such as Ignite, Ehcache, Redis or Hazelcast on any application layer.

In this chapter, we want to focus primarily on things you need to know about data caching
and demonstrate the use of Apache Ignite for accelerating application performance without
changing any business logic code. So, we are going to cover the following topics throughout
the entire chapter:

1. Different caching strategies and usage methods as a smart in-memory caching.



Chapter 5. Intelligent caching 42

2. Read/Write through and write behind strategies examples based on Hibernate and
MyBatis for database caching.

3. Memoization or application level caching.
4. Web session clustering.
5. Moreover, a list of recommendations to correctly prepare the caching layer.



Chapter 5. Intelligent caching 43

Smart caching

I often hear suggestion like this when it comes to a matter of performance: Need for speed
- Caching. However, I believe that in-memory caching is the last lines of defense when all
current optimization tricks reach a bottleneck. We have a lot of points for optimizing before
considering a separate layer for caching data, such as:

• Optimizing SQL queries; runs a few SQL queries plans to define the bottleneck on the
database level.

• Adding necessary indexes on tables.
• Optimizing and configuring connection pools on Application servers.
• Optimizing application code, such as fetching data by paging.
• Caching static data such as Java script, Images and CSS files on the Web server and
the client side.

Consider the regular N-Tier JEE architecture for optimizing and caching data as shown in
figure 5.1.

Figure 5.1



Chapter 5. Intelligent caching 44

Caches can be applied and leveraged throughout the various layers of technology including
browsers, network layers (Content delivery network and DNS), web applications and
databases as shown in figure 5.1. Cached information can include the result of database
queries, computationally intensive calculation, API request/responses, andweb artifacts such
as HTML, JavaScript, and multi-media files. Therefore, for getting a high throughput of an
entire application, you should consider optimization and caches on other layers, and not only
the use of in-memory caching layer. These will give you the maximum benefits of caching
data and improves the overall performance of the application.

Caching best practices

It’s essential to consider a few best practices for using cache smartly when implementing
a cache on any application layer. A smart caching ensure that you implement all (or most
of them) the best practices whenever designing a cache. This subsection describes a few
considerations for using a cache

1. Decide when and which data to cache. Caching can improve performance; the more
data you can cache, the higher the chance to reduce the latency and contention that’s
associated with handling large volumes of concurrent requests in the original data
store. However, server resources are finite, and unfortunately, you could not cache all
the resources you want. Consider caching data that are read frequently but modified
rarely.

2. The resilience of the caching layer. Your application can continue to operate by using
the primary data storage if the cache is unavailable, and you won’t lose any critical
piece of information.

3. Determine how to cache data effectively. Most often, caching is less useful for
dynamic data. The key to using a cache successfully lies in determining the most
appropriate data to cache and caching it in the proper time. The data can be added
to the cache on demand the first time it is fetched from the store by the application.
Subsequent access to this data can be satisfied by using this cache. On the other hand,
you can upload the data into the cache during the application startup, and sometimes
it’s called cache warm up.

4. Managing data expiration in caches. You can maintain a cache entry up-to-date by
expiring a cache entry into the cache. When a cached data expires, it’s removed from
the cache, and a new cache entry will be added into the cache at the next time when it
will be fetched from the primary data. You can set a default expiration policy when you
configure the cache. However, consider the expiration period for the cache carefully.
Cache entry expires too quickly if you make it too short, and you will reduce the



Chapter 5. Intelligent caching 45

benefits of using the cache. On the other hand, you risk the data becoming stale if you
make the period too long. Additionally, you should also consider to configure the cache
eviction policy which will help you to evict cache entries from the cache whenever the
cache is full and no more places exists to add a new entry.

5. Update the caches when data changes on the primary data store. Generally, a
middle-tier caching layer duplicates some data from the central database server. Its
goal is to avoid redundant queries to the database. The cache entry has to be updated or
invalidated when the data updates in the database. You should consider the possibility
to maintain a cache entry as up-to-date as possible when designing a caching layer.
Many database vendors allow getting a notification whenever any entity updates into
the database and updates the caches.

6. Invalidate data in a client-side cache. Data that is stored in a client-side cache
(browser or any standalone application) is generally considered to be auspices of the
service that provides the data to the client. A service cannot directly force a client to add
or remove information from a client-side cache. This means that it’s possible for a client
that poorly configured the cache to continue using the staled information. However,
a service that provides cache needs to ensure that each server response provides the
correct HTTP header directives to instruct the browser on when and for how long the
browser can cache the response.

Design patterns

There might be two different strategies in a distributed computing environment when
caching data:

• Local or private cache. The data is stored locally on the server that’s running an instance
of an application or service. Application performance is very high in this strategy,
because, most often the cached data stored in the same JVM along with application
logic. However, when the cache is resident on the same node as the application utilizing
it, scaling may affect the integrity of the cache. Additionally, when local caches are
used, they only benefit the local application that consuming the data.

• Shared or distributed cache. The cache served as the common caching layer that can
be accessed from any application instances and architecture topology. cached data can
span multiple cache servers in this strategy, and be stored in a central location for the
benefit of all the consumers of the data. This is especially relevant in a system where
application nodes can be dynamically scaled in and out.



Chapter 5. Intelligent caching 46

Tip
With the Apache Ignite you can implement either or both of the above strategies
when caching data.

Basic terms

There are a few basic terms related to caching, frequently used throughout this book. I
strongly believe that you are already familiar with these terms. However, it will be useful
for those who are not familiar with these terms and getting all the information in a single
place.

Terms Description
Cache entry A single cache value, consists of a key and its mapped data value within the

cache.
Cache Hit When a data entry is requested from the cache, and the entry exists for the

given key. A more cache hit means that most of the requests are satisfied by
the cache.

Cache Miss When a data entry is requested from the cache, and the entry does not exists
for the given key.

Hot data Data that has recently been used by an application is very likely to be
reassessed soon. Such data is considered hot. A cache may attempt to keep the
hottest data most quickly available while trying to choose the least hot data
for eviction.

Cache eviction The removal of entries from the cache in order to make room for newer
entries, typically when the cache has run out of data storage capacity.

Cache expiration The removal of entries from the cache after some amount of time has passed,
typically as a strategy to avoid stale data in the cache.

Database caching

There are many challenges that disk-based databases (especially RDBMS) can pose to your
application when developing a distributed system that requires low latency and horizontal
scaling. A few common challenges are as follows:

1. Expensive query processing. Database queries can be slow and require serious system
resources because the database system needs to perform some computation to fulfill
the query request.



Chapter 5. Intelligent caching 47

2. Database hotspots. It’s likely that a small subset of data such as a celebrity profile or
popular product (before Christmas) will be accessed more frequently than others in
many applications. The SQL queries on such favorite products can result in hot spots
in your database andmaybe overprovisioning of database resources (CPU, RAM) based
on the throughput requirements for the most frequently used data.

3. The cost to scale. Most often, RDBMS are only scaling vertically (anyway, Oracle 18c¹⁸
and Postgres-XL¹⁹ can scaling horizontally but needs tremendous effort to configure).
Scaling databases for extremely high reads can be costly and may require many
databases read replicas to match the current business needs.

Most database servers are configured by default for optimal performance. However, each
database vendors provides various optimizations tips and tricks to help engineers get the
most out of their databases. These guidelines for database optimization observe a law similar
to the funnel law that is illustrated in figure 5.2 and described below:

1. Reducing data access.
2. Returning less data.
3. Reducing interaction with the underlayer.
4. Reducing CPU overhead and using more machine resources.

Figure 5.2

¹⁸https://www.oracle.com/technetwork/database/database-technologies/sharding/overview/index.html
¹⁹https://www.postgres-xl.org

https://www.oracle.com/technetwork/database/database-technologies/sharding/overview/index.html
https://www.postgres-xl.org/
https://www.oracle.com/technetwork/database/database-technologies/sharding/overview/index.html
https://www.postgres-xl.org/


Chapter 5. Intelligent caching 48

Architects and engineers should make a great effort in squeezing as much performance as
they can out of their database as mentioned earlier, because database caching should be
implemented when all existing optimization tools reach a database bottleneck. A database
cache supplements your primary database by removing unnecessary pressure on it (very
close to the reduce data access layer), typically in the form of frequently accessed read data.
The cache itself can live in some areas including your database, application or as a standalone
layer.

The basic paradigm when querying data from a relational database from an application
includes executing SQL statement through ORM tools or JDBC API and iterating over the
returned ResultSet object cursor to retrieve the database rows. There are a few techniques
you can apply based on your data access tools and patterns when wanting to cache the
returned data.

We are going to discuss how Ignite in-memory cache can be used as a 2ⁿ level caches
in different data access tools such as Hibernate and Mybatis in this section, which can
significantly reduce the data access times of your application and improve overall application
performance.

A 2ⁿ level cache is a local or distributed data store of entity data managed by the
persistence provider to improve application performance.

A second level cache can improve application performance by avoiding expensive database
calls, keeping the data bounded (locally available) to the application. A 2ⁿ level cache is
fully managed by the persistence provider and typically transparent to the application. That
is, application reads, writes and commits data through the entity manager without knowing
about the cache.

Figure 5.3

There is also a Level 1 cache based on the persistence provider, such as MyBatis or Hibernate.
Level 1 is used to cache objects retrieved from the database within the current database



Chapter 5. Intelligent caching 49

session. An HTTP session is opened and reused until the service method returns when client-
side (web page or web service) invokes a service. All operations performed until the service
method return will share the L1 cache, so the same object will not retrieve twice from the
database. Objects retrieved from the database will not be available after closing the database
session.

Tip
In most persistence providers, level 1 cache is always enabled by default.

So, in a nutshell, the 2ⁿ level cache provides the following benefits:

1. Boost performance by avoiding expensive database calls.
2. Data are kept transparent to the application.
3. CRUD operation can be performed through standard persistence manager functions.
4. You can accelerate applications performance by using 2ⁿ level cache, without changing

the code.



Chapter 8. Streaming and complex
event processing
Probably you often heard the terms: Data-at-Rest and Data-in-Motion whenever talking
about BigData management. Data-at-rest refers mostly at static data collected from one and
many data sources and followed by analysis. The Data-in-motion refers to a mode where
all the similar data collection method is applied, and data get analyzed at the same time
as it is generated. For instance, sensor data processing for the self-driving car from Google.
Sometimes, this type of data is also called stream data. Analysis of a Data-in-motion is often
called Stream processing, Real-time analysis or Complex event processing.

Most often, Streaming data is generated continuously by thousands of data sources, which
typically send in the data records simultaneously and in small sizes. Streaming data includes
a wide variety and velocities of data such as log files generated by mobile devices, user
activities from e-commerce sites, financial trading floors or tracking information from
car/bike sharing devices, etc.

This data needs to be processed sequentially and incrementally, and used for a wide variety
of analytics including aggregation, filtering or business intelligence for taking any business
decision with latencies measured in microseconds rather than seconds of response time.
Apache Ignite allows loading and processing of continuous never-ending streams of data
in a scalable and fault-tolerant fashion, rather than analyzing data after it has reached the
database. This enables you to correlate relationships and detect meaningful patterns from
significantly more data that you can process it faster and much more efficiently.

Apache Ignite streaming and CEP can be employed in a wealth of industries area; the
following are some first-class use cases:

• Financial services: the ability to perform real-time risk analysis, monitoring ,and
reporting of financial trading and fraud detection.

• Telecommunication: the ability to perform real-time call detail record, SMS monitor-
ing ,and DDoS attack.

• IT systems and infrastructure: the ability to detect failed or unavailable applications
or servers in real-time.



Chapter 8. Streaming and complex event processing 51

• Logistics: the ability to track shipments and order processing in real-time and reports
on potential delays on arrival.

• In-game player activities: the ability to collects streaming data about player-game
interactions, and feeds the data into its gaming platform. It then analyzes the data in
real-time, offers incentives and dynamic experiences to engage its players.

Basically, Apache Ignite Streaming technics works as follows:

1. Clients inject streams of data into Ignite cluster.
2. Data is automatically partitioned between Ignite data nodes.
3. Data is concurrently processed across all cluster nodes, such as enrichment, filter extra.
4. Clients perform concurrent SQL queries on the streamed data.
5. Clients subscribe to continuous queries as data changes.

These above activities can be illustrated as shown in figure 8.1.

Figure 8.1

Data are ingesting from difference sources. Sources can be any sensors (IoT), web appli-
cations or industrial applications. Stream data can be concurrently processed directly on
the Ignite cluster in a distributed fashion. Also, data can be computed on third-party CEP
application like confluent²⁰, Apache Storm²¹ and then aggregated data can be loaded into
the Ignite cluster for visualization or for taking some actions.

²⁰https://www.confluent.io/
²¹http://storm.apache.org/

https://www.confluent.io/
http://storm.apache.org/
https://www.confluent.io/
http://storm.apache.org/


Chapter 8. Streaming and complex event processing 52

Apache Ignite provides native data streamers for loading and streaming large amounts of
data into Ignite cluster. Data streamers are defined by IgniteDataStreamer API and are built
to ingest large amounts of endless stream data into Ignite caches. IgniteDataStreamer can
ingest data from various sources such as files, FTP, queues, etc., but the users must develop
the adapter for connecting to the sources. Also, Ignite integrates with major streaming
technologies such as Kafka, Camel, Storm or Flume to bring even more advanced streaming
capabilities to Ignite-based architectures. At themoment of writing this book, Ignite provides
the following data streamers for streaming a large amount of data into Ignite cluster:

• IgniteDataStreamer
• JMS Streamer
• Flume sink
• MQTT Streamer
• Camel Streamer
• Kafka Streamer
• Storm Streamer
• Flink Streamer
• ZeroMQ Streamer
• RocketMQ Streamer

In practice, most developers use the 3ʳ party framework such as Kafka, Camel, etc. for initial
loading and streaming data into Ignite cluster, because they are well known multi-purpose
technologies for complex event processing. So, in this chapter, first of all, we will introduce
the Kafka streamer and then goes through the rest of the favorite data streamers, and provides
some real-world running example for each streamer.



Chapter 8. Streaming and complex event processing 53

Kafka Streamer

Apache Ignite out-of-the-box provides Ignite-Kafka module with three different solutions
(API) to achieve a robust data processing pipeline for streaming data from/to Kafka²² topics
into Apache Ignite.

Name Description
IgniteSinkConnector Consumes messages from Kafka topics and ingests them into an Ignite

node.
KafkaStreamer Fetching data from Kafka topics and injecting them into Ignite node.
IgniteSourceConnector Manages source tasks that listens to registered Ignite grid events and

forward them to Kafka topics.

IgniteSourceConnector

The Apache IgniteSourceConnector²³ is used to subscribe to Ignite cache events and stream
them to Kafka topic. In other words, it can be used to export data (changed datasets) from
an Ignite cache into a Kafka topic. Ignite source connector listens to registered Ignite grid
events such as PUT and forward them to Kafka topic. This enables data that has been saved
into the Ignite cache to be easily turned into an event stream. Each event stream contains
key and two values: old and new.

The IgniteSourceConnector can be used to support the following use cases:

1. To automatically notify any clients when a cache event occurs, for instance whenever
there is a new entry into the cache.

2. To use an asynchronous event streaming from an Ignite cache to 1-N destinations. The
destination can be any database or another Ignite cluster. These enable you to data
replication between two Ignite cluster through Kafka.

The Apache IgniteSourceConnector ships together with the IgniteSinkConnector, and avail-
able in ignite-kafka-x.x.x.jar distribution. IgniteSourceConnector requires the following configu-
ration parameters:

²²https://kafka.apache.org/
²³https://ignite.apache.org/releases/latest/javadoc/org/apache/ignite/stream/kafka/connect/IgniteSourceConnector.html

https://kafka.apache.org/
https://ignite.apache.org/releases/latest/javadoc/org/apache/ignite/stream/kafka/connect/IgniteSourceConnector.html
https://kafka.apache.org/
https://ignite.apache.org/releases/latest/javadoc/org/apache/ignite/stream/kafka/connect/IgniteSourceConnector.html


Chapter 8. Streaming and complex event processing 54

Name Description Mandatory/optional
igniteCfg Ignite configuration file path. Mandatory
cacheName Name of the Cache. Mandatory
topicNames Kafka topics name where event will be streamed. Mandatory
cacheEvts Ignite cache events to be listened to, for example PUT. Mandatory
evtBufferSize Internal buffer size. Optional
evtBatchSize Size of one chunk drained from the internal buffer. Optional
cacheFilterCls User-defined filter class. Optional

A high-level architecture of the IgniteSinkConnector is shown in figure 8.6.

Figure 8.6

In this section, we are going to use both IgniteSourceConnector and IgniteSinkConnector for
streaming event from one Ignite cluster to another. IgniteSourceConnector will stream the
event from one Ignite cluster (source cluster) to Kafka topic, and the IgniteSinkConnector
will stream the changes from the topic to the another Ignite cluster (target cluster). We will
demonstrate the step by step instructions to configure and run both the Source and Sink
connectors. To accomplish the data replication between Ignite clusters, we are going do the
following:

1. Execute two isolated Ignite cluster in a single machine.
2. Develop a Stream extractor to parse the incoming data before sending to the Ignite

target cluster.
3. Configure and start Ignite Source and Sink connectors in different standalone Kafka

workers.
4. Add or modify some data into the Ignite source cluster.

After completing all the configurations, you should have a typical pipeline that is streaming
data from one Ignite cluster to another as shown in figure 8.7.



Chapter 8. Streaming and complex event processing 55

Figure 8.7

We will use the knowledge of Zookeeper and Kafka from the previous section to achieve the
task. Let’s start from the Ignite cluster configuration.

Step 1. We are going to start two isolated clusters on a single machine. To accomplish this, we
have to use a different set of TcpDiscoverySpi and TcpConfigurationSpi to separate the two clusters
on a single host. So, for the nodes from the first cluster we proceed to use the following
TcpDiscoverySpi and TcpConfigurationSpi configurations:



Chapter 10. Management and
monitoring
As a system or cluster grows, you may start getting hardware or virtual machine failures
in your cloud/dedicated infrastructure. In such cases, you may need to do one of these
things: add/remove nodes from the cluster or backup/repair nodes. These tasks come as
an integral part of a system administrator daily work. Luckily all these tasks are relatively
straightforward in Apache Ignite and partially documented in Ignite documentation.

In the last chapter of this book, we will go through Ignite’s built-in and 3ʳ party tools
to manage and monitor the Ignite cluster in the production environment. We divided the
entire chapter into two parts: management and monitoring. In the management part, we
will discuss different tools and technics to configure and manage the Ignite cluster. And we
will cover the basic of monitoring Apache Ignite includes logging, inspection of JVM, etc. in
the monitoring part.



Chapter 10. Management and monitoring 57

Managing Ignite cluster

Out-of-the-box Apache Ignite provides several tools for managing cluster. These tools
include web interface or command line interface that allows you to perform various task
such as start/stop/restart remote nodes or control cluster states (baseline topology). A table
below shows all the built-in tools of the Apache Ignite to configure and managing Ignite
cluster.

Name Description
Ignite Web console Allows configuring all the cluster properties, and managing the Ignite

cluster through a web interface.
Control script A command line script that allows to monitor and control cluster states

includes Ignite baseline topology.

Info
Please note that Ignite Web console also uses for monitoring cluster functionality
like cache metrics as well as CPU and Memory heap usages.

Monitoring Ignite cluster

At this point, your Ignite cluster is configured and running. Applications are using the Ignite
cluster for writing and reading data to and from it. However, Ignite is not a set-it-and-forget-
it system. Ignite is a JVM based system and designed to fast fail. So, it requires monitoring
for acting on time.

Ignite is built on JVM and JVM can use the JMX²⁴ or Java Management Extension. In other
words, you can manage the system remotely by using JMX, gathering metrics (cache or
memory) including the memory, CPU, threads, or any other part of the system that has
been instrumented in JMX. Instrumentation enables the application or system to provide
application-specific information to be collected by the external tools.

²⁴https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/overview/intro.html

https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/overview/intro.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/overview/intro.html


Chapter 10. Management and monitoring 58

Info
JMX was introduced in Java 5.0 release to manage & monitor the resources at
runtime. Using JMX, we can monitor memory usage, garbage collection, loaded
classes, thread count, etc. over time.

MBeans or Managed Beans are a particular type of JavaBeans that takes a resource inside
the application or the JVM available externally. Figure 10.7 shows a high-level architecture
of the JMX.

Figure 10.7

Apache Ignite provides a few JMXMBeans for collection and monitoring cache and memory
metrics as follows:

• CacheMetricsMXBean. MBean that provides access to cache descriptor.
• CacheGroupMetricsMXBean. MBean that provides metrics for caches associated with
a particular CacheGroup.

• DataRegionMetricsMXBean. MBean that provides access to DataRegionMetrics of a
local Apache Ignite node.

• DataStorageMetricsMXBean. An MBean allowing to monitor and tune persistence
metrics.

A few more new MBeans will be added in the subsequent Apache Ignite releases soon.

The standard tools that ships with Java formanaging theMBeans is JConsole²⁵ or VisualVM²⁶.
In the case of VisualVM you have to install the VisualVM-MBeans plugin²⁷. VisualVM is

²⁵https://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
²⁶https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/
²⁷https://visualvm.github.io/plugins.html

https://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/
https://visualvm.github.io/plugins.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/
https://visualvm.github.io/plugins.html


Chapter 10. Management and monitoring 59

like JConsole but with more advanced monitoring featuring such as CPU profiling and GC
visualization.

Tip
Ignite allows running a VisualVM instance from IgniteVisor command. Use the
ignitevisor vvm command to open VisualVM for an Ignite node in the topology.

VisualVM

VisualVM is a GUI tool for monitor JVM. It helps the application developers and architects
to track memory leaks, analyze the heap data, monitor the JVM garbage collector and CPU
profiling. Moreover, after installing the VisualVM-MBeans plugin, you can manage and
collect metrics from JMX MBeans provides by the application. VisualVM can be also used
for monitoring the local and the remote Java process as well.

As we stated before, for monitoring the Ignite process you can lunch VisualVM with two
different ways:

• Use ignitevisor VVM command to open a VisualVM instance or
• lunch a VisualVM instance manually by the jVisualVM.exe|sh from the $JAVA_HOME/bin folder.

IgniteVisor VVM command under the cover uses the default JDK installation to run the local
VisualVM tool. Let’s execute an Ignite node, create a table and populate some test data into
the table. I am going to use the EMP table and data from the previous section. If you are
having any trouble to create the table, please refer to step 5 of the previous section.

Step 1. Lunch the VisualVM application from the JDK bin directory. On top-left corner of
the application tab, you can see different options like Local, Remote and Snapshots. Select
the org.apache.ignite.startup.cmdline.CommandLineStartup application from the Local section as shown
below.



Chapter 10. Management and monitoring 60

Figure 10.8

By default when Ignite node is started with ignite.sh!bat script, it picks up a random JMX port
and binds to it. You can explicitly set the JMX port by setting the IGNITE_JMX_PORT environmental
variable. In *nix system it can be done in the following way:

export IGNITE_JMX_PORT=55555

However, if you run the Ignite node programmatically (i.e., by using Eclipse/IntelliJ IDEA),
then the environmental variable IGNITE_JMX_PORT will not work. In such a situation, you need
to pass the system parameters to your Java process that calls Ignition.start as follows:

-Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.port={PREFERRED_PORT}
-Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=fals\
e

Step 2. The Memory, anf Threads tabs are sets of graphs that provide insight into the current
state of the application. The monitor tab consists of graphs about the current state of the
Java heap, CPU, Classes and threads (see Figure 10.8).



Chapter 10. Management and monitoring 61

Figure 10.9

The Classes graph is merely a graph of how many classes are loaded into the JVM at the
current time. One of the most important metrics to be aware of is your current heap usage.
Ignite uses off-heap memory to store data from version 2.0 by default, so it is unnecessary
to use a large heap size for Ignite node. By using small heap size, you reduce the memory
footprint on the system and possibly speed up the GC process.

Step 3. Let’s open the tab MBeans. There are many MBeans that are useful for assessing the
state of the Ignite node. Youwill notice that there are few grouping here that can be expanded.
All the Ignite MBeans classpath starts with the org.apache. Expand the group Cache Group
under 18b4aac2 and click on the EMPcache MBean as shown in figure 10.10.



Chapter 10. Management and monitoring 62

Figure 10.10

You should notice many import attributes shown for the EMPcache cache. Click on the value
of the LocalNodeOwningPartitionsCount attribute, and a simple chart should pop up and
show the current total number of partitions for the cache.

When you select anMBean in the tree, its MBeanInfo andMBean descriptor are displayed on
the right-hand side of the window. If any additional attributes, operations or notifications are
available, they appear in the tree as well below the selected MBean. As a high-level overview,
they are broken down into the following categories:

• Cache Groups. The MBeans stored in this section cover everything about the actual
data storage part of Ignite. This MBeans provides information about the caches itself:
Affinity partitions assignment map, total backups, collections of the partitions as well
as total partition number.

• Kernel. In the Kernel section, someMBeans cover the basic information about the node.
For example, IgniteKernel MBean provides you the information about node Uptime,
local node id or Peer class loading option.

• SPIs. The MBeans in the SPI’s section covers the information about node discovery and
internode communication. These include informations such as Node fails, Network
timeout.

• TransactionMetrics. The metrics available in this section are closely related to transac-
tions. These are things like LockedKeysNumber, TransactionRollbackNumber.

Each one of these sections of MBeans provides access to a large amount of information,
giving you insight into both the system as a whole and the individual nodes. There is no



Chapter 10. Management and monitoring 63

need to cover all of them as you can easily explore them on your own using VisualVm GUI
interface.

Using JConsole/VisualVM to monitor a local application or Ignite node is useful for
development or prototyping. Monitoring an Ignite cluster over 5 nodes by VisualVM or
JConsole is unrealistic and time-consuming. Also, JMX does not provide any historical
data. So, it is not recommended for production environments. Nowadays there is a lot of
tools/software available for system monitoring. Most famous of them are:

• Nagios²⁸
• Zabbix²⁹
• Grafana, etc.

In the next sub-section, we cover the Grafana for monitoring Ignite node and provide step-
by-step instructions to install and configure the entire stack technology.

Grafana

Grafana³⁰ is an open-source graphical tool dedicated to query, visualize and alert on for
all your metrics. It brings your metrics together and lets you create graphs and dashboards
based on data from various sources. Also, you can use Grafana to display data from different
monitoring systems like Zabbix. It is lightweight, easy to install, easy configure, and it looks
beautiful.

Before we dive into the details, let’s discuss the concept of monitoring large-scale production
environments. Figure 10.11 illustrated a high-level overview of how the monitoring system
looks like on production environments.

²⁸https://www.nagios.org
²⁹https://www.zabbix.com
³⁰https://grafana.com/grafana

https://www.nagios.org/
https://www.zabbix.com/
https://grafana.com/grafana
https://www.nagios.org/
https://www.zabbix.com/
https://grafana.com/grafana


Chapter 10. Management and monitoring 64

Figure 10.11

In the above architecture, data such as OS metrics, log files, and application metrics are
gathering from various hosts through different protocols likes JMX, SNMP into a single
time-series database. Next, all the gathered data is used to display on a dashboard for real-
time monitoring. However, a monitoring system could be complicated and vary in different
environments, but the basic is the same for all.

Let’s start at the bottom of the monitoring chain and work our way up. To avoid a complete
lesson on monitoring, we will only cover the basics along with what the most common
checks should be done as they relate to Ignite and it’s operation. The data we are planning
to use for monitoring are:

• Ignite node Java Heap.
• Ignite cluster topology version.
• Amount of server or client nodes in cluster.
• Ignite node total up time.

The sample chapters are ends here. If you are not sure if this book is for you, I
encourage you to try it out, and if you don’t like the book, you can always ask a 100%

refund within 45 days.


	Table of Contents
	Preface
	What this book covers
	Code Samples
	Readership
	Conventions
	Reader feedback

	About the authors
	Other book by the author
	Chapter 4. Architecture deep dive
	Understanding the cluster topology: shared-nothing architecture
	Client and server node
	Embedded with the application
	Client and the server nodes in the same host
	Running multiple nodes within single JVM
	Real cluster topology

	Data partitioning in Ignite
	Understanding data distribution: DHT
	Rendezvous hashing

	Durable memory architecture
	Page
	Data Page
	Index pages and B+ trees
	Segments
	Region

	Ignite read/write path
	Write-Ahead-Log (WAL)
	Baseline topology
	Automatic cluster activation
	Split-brain protection
	Fast rebalancing and it's pitfalls


	Chapter 5. Intelligent caching
	Smart caching
	Caching best practices
	Design patterns
	Basic terms

	Database caching

	Chapter 8. Streaming and complex event processing
	Kafka Streamer
	IgniteSourceConnector


	Chapter 10. Management and monitoring
	Managing Ignite cluster
	Monitoring Ignite cluster
	VisualVM
	Grafana



