

Idiomatic Gradle Plugins Vol 2
25 additional recipes for plugin authors

Schalk Cronjé

This book is for sale at http://leanpub.com/idiomaticgradlepluginsvol2

This version was published on 2017-11-18

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2017 Schalk Cronjé

http://leanpub.com/idiomaticgradlepluginsvol2
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Schalk Cronjé by spreading the word about this book on Twitter!

The suggested hashtag for this book is ##idiomaticgradle.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

##idiomaticgradle

http://twitter.com
https://twitter.com/search?q=%23#idiomaticgradle
https://twitter.com/search?q=%23#idiomaticgradle

Contents

Configure Global, Customise per Task . 1

Migrate Extension to Unmanaged Model . 8

Appendix: Understanding the legacy native software model 12

Appendix: Legacy native software model configuration order 20

Bibliography . 21

Configure Global, Customise per Task
Summary

Use of extensions is a common pattern for global configuration. In cases where multiple tasks rely on
such global configuration, it is sometimes required to customise specific tasks not to use the global
configuration. This leads to additional properties on a task with additional testing and complexity.

Solution

Create an extension that can be applied to both the project and tasks. Make the tasks in your
plugin that would previously have relied only on a project extension to be task-extension aware.
Build the extension in such a way that task extensions are aware of the global project extension. If
the properties of the task extension is not explicitly configured by the build script author, the task
extension will retrieve the value from the project extension.

Examples

Consider for a moment that you are writing an extension for the GNU Make tool. In this extension
you want to set the number of concurrent jobs and as well as the flags that should always be passed
to an invocation of the tool. Conceptually you may model this in your extension as follows.

GnuMakeExtension.groovy

1 @CompileStatic

2 class GnuMakeExtension {

3 void setNumJobs(int numJobs) {

4 this.numJobs = numJobs

5 }

6

7 Integer getNumJobs() {

8 this.numJobs

9 }

10

11 void flags(final Map<String,String> extraFlags) {

12 flags.putAll(extraFlags)

13 }

Configure Global, Customise per Task 2

14

15 Map<String,String> getFlags() {

16 this.flags

17 }

18

19 private Integer numJobs

20 private Map<String,String> flags = [:]

21 }

The first step is to add the constructors for both task and project.

GnuMakeExtension.groovy

1 final static String NAME = 'gnumake'

2

3 GnuMakeExtension(Project project) {

4 this.project = project

5 }

6

7 GnuMakeExtension(Task task) {

8 this.task = task

9 }

10

11 private final Project project

12 private final Task task

Line #1: By convention add the name that the extensions will be known by.

Line #11: Both a Project and a Task instance is kept in the extension. One of them will
always be null. Also ntoe the usage of final as these will be one-shot assignments during
instantiation of the extension.

The second step is to modify in the internal fields so that they can be recognised as being
uninitialised. The most common case is to use null, but depending on your context this might be
different. For containers you might want to simply leave them as empty. Now modify your project
constructor to set some default values and leave them uninitialised in the task form of the extension.

Configure Global, Customise per Task 3

GnuMakeExtension.groovy

1 GnuMakeExtension(Project project) {

2 this.project = project

3 this.numJobs = 4

4 }

5

6 GnuMakeExtension(Task task) {

7 this.task = task

8 }

9

10 private Integer numJobs

11 private final Map<String,Object> flags = [:]

Line #3: Assume for the purpose of this example, that in your plugin you want four jobs
to always be run concurrently.

No defaults are set in the task constructor.

The final step is to retrieve the values in an intelligent manner. The logic is always to look in the task
extension first and then in the project extension. However, this latter logic should only occur when
an extension is attached to a task. All other entities in Gradle should not be aware of this behaviour.
Start by adding a helper function that will always return the project extension

GnuMakeExtension.groovy

1 private GnuMakeExtension getProjectExtension() {

2 project ? this : (GnuMakeExtension)(task.project.extensions.getByName(NAME))

3 }

Now continue to modify the getters in the extension to check first whether the latter is attached to
a project or a task and modify behaviour accordingly:

Configure Global, Customise per Task 4

GnuMakeExtension.groovy

1 Integer getNumJobs() {

2 if(project) {

3 return this.numJobs

4 } else {

5 this.numJobs ?: getProjectExtension().getNumJobs()

6 }

7 }

8

9 Map<String,Object> getFlags() {

10 if(project) {

11 this.flags

12 } else {

13 this.flags.isEmpty() ? getProjectExtension().getFlags() : this.flags

14 }

15 }

Line #2: If this is a project extension, return the current value of numJobs.

Line #5: If this is a task extension, check whether it has been set. If so return the configured
value, otherwise defer to the project extension.

Line #13: In a similar fashion an empty collection can be used to defer to a project extension.
The context of your own plugin will determine whether an empty collection is a feasible
approach, but this is shown as one possible option.

Having coded your extension it is now time to add it your plugin code and to your plugin’s task
types. Create the global extension as per usual when the plugin is applied.

GnuMakePlugin.groovy

1 void apply(final Project project) {

2

3 project.extensions.create(

4 GnuMakeExtension.NAME,

5 GnuMakeExtension,

6 project

7)

8 }

The task extension is added when the task is instantiated. Assuming you have created a task type
called GnuMakeTask, just add one line to the constructor.

Configure Global, Customise per Task 5

GnuMakeTask.groovy

1 GnuMakeTask() {

2 gnumake = extensions.create(GnuMakeExtension.NAME,GnuMakeExtension,this)

3 }

4

5 private final GnuMakeExtension gnumake

Line #2: It is also good practice to store the task extension reference locally so that your
code does not have to do a lookup via the extension container everytime.

Accessing the values in the extension simply becomes a case of referring to the local reference.
For instance, you may want to add a method that returns the correct command-line parameter for
concurrent jobs, This can be done as follows.

GnuMakeTask.groovy

1 String getNumJobsParameter() {

2 "-j${this.gnumake.getNumJobs()}"

3 }

Line #2: The logic previously coded will ensure that task extension will perform a fallback
to the project extension if nothing has been configured.

At this point all that remains is for a build script author to apply your plugin and make use
of. Assuming that the build script creates two GnuMakeTask instances called makeProjectA and
makeProjectB, configuration becomes readable and comprehensible.

Configure Global, Customise per Task 6

build.gradle
1 gnumake {

2 numJobs = 10

3 }

4

5 makeProjectA {

6 gnumake {

7 defaultFlags BUILDNUM : '1234'

8 }

9 }

10

11 makeProjectB {

12 gnumake {

13 numJobs = 1

14 }

15 }

Line #2: Configure setting globally

Line #7: makeProjectA uses its own set of flags, but use the numJobs from the project
extension.

Line #13: makeProjectB will use its own setting for numJobs but will use the global set of
flags.

A number of plugins in the field already make use of this recipe. If you want to study their usage
and implementations have a look at Node.js + NPM plugins and well as the Packer plugin.

Gradle API Updates

The Gradle team has made advances in moving conventions to a public API. This approach are in
many cases still more flexible and useful than conventions.

Caveats

• The above example simplifies the construction of task extensions and makes the assumption
that it will always be added with the same name. If you are concerned about potential mis-
use, then you should add a second parameter to the task constructor which takes the name of
the project extension.

• When values in the task extension is modified, the task will not be out of date. If this behaviour
is important to you, implement a task input property which can monitor changes in the task
extension.

Configure Global, Customise per Task 7

Grolifant

AbstractCombinedProjectTaskExtension1 is a base class inf Grolifant that can be used to simplify
building of this recipe.

1http://ysb33rorg.gitlab.io/grolifant/0.5.1/api/org/ysb33r/grolifant/api/AbstractCombinedProjectTaskExtension.html

http://ysb33rorg.gitlab.io/grolifant/0.5.1/api/org/ysb33r/grolifant/api/AbstractCombinedProjectTaskExtension.html
http://ysb33rorg.gitlab.io/grolifant/0.5.1/api/org/ysb33r/grolifant/api/AbstractCombinedProjectTaskExtension.html

Migrate Extension to Unmanaged
Model
Summary

Although Link Extension toModel is a good for a first migration, a plugin author might just decide to
completely remove compatibility with older version of a plugin and embrace a newmodel approach.
On the other hand, performing a Migrate Extension to Managed Model might be a step too far as
keeping the syntax as close as possible to previous versions of the plugin might make migration for
script authors less painful.

A plugin author might also be new to the new software model and might not be au fait with some of
the intricacies of managed model elements and would prefer to settle for a more familiar unmanaged
element.

Solution

Keep the existing extension class the same and enhance it with some declarative DSL methods. The
latter will be necessary as unmanaged DSL object are not decorated as would have been the case
with project extension objects. Finish it off by adding a model creation rule to create the unmanaged
object.

Examples

Continuing on from Link Extension to Model, we can stay with the external tool metaphor. In this
case out legacy extension might look something like below for GNU Make.

Migrate Extension to Unmanaged Model 9

Legacy extension for external tool

1 class ExternalToolExtension {

2 String executable = 'make'

3 List<String> execArgs = []

4

5 void execArgs(String... args) {

6 this.execArgs.addAll(args as List)

7 }

8 }

We can keep our extension code mostly intact and enhance it with some declarative methods. (If we
have anything that depends on the legacy Project object we need to rework those sections as we
won’t have access to it anymore).

Legacy extension ehanced and ready to be used ans unmanaged model element

1 class ExternalToolExtension {

2 String executable = 'make'

3 List<String> execArgs = []

4

5 void execArgs(String... args) {

6 this.execArgs.addAll(args as List)

7 }

8

9 void executable(String exe) {

10 this.executable = exe

11 }

12 }

Line #9: This allows for executable '/usr/bin/make' in addition to executable =

'/usr/bin/make', which is important if we want to keep the recommended declarative
style.

All that remains is to add a model creation rule. As this is an unmanged model element our rule has
to return an instance of the model element instead of void as would be the case for managed model
elements.

Migrate Extension to Unmanaged Model 10

Creating the ruleset
1 class ExtensionContainerRules extends RuleSource {

2 @Model

3 ExternalToolExtension externalTool() {

4 new ExternalToolExtension()

5 }

6 }

Line #3: Model creation rules for unmanaged elements always return an instance of the
element type.

Line #4: Return an instance of the modified extension type. If the original extension’s
constructor took a Project object as a parameter, it will need to be modified to operrate
without access to the Project instance.

Once the rules are applied we have all of the greatness of the original extension object available
within the model element.

Configuring as a model element
1 model {

2 externalTool {

3 executable = 'gmake'

4 execArgs = ['-i']

5 execArgs '-s','-B'

6 }

7

8 externalTool {

9 executable 'amake'

10 }

11 }

Line #2: As the model rule was called externalTool it is available as a top-level model
element by the same name within the model DSL. Anything that was configurable in the
original extension is still configurable in the model configuration block as the rest of the
callouts demonstrate.

Line #3: Configuration by assignment.

Line #4: List configuration assignment.

Line #5: Append items to the list.

Line #9: Due to the additional method that was added in the extension, we can still use a
declarative form.

Migrate Extension to Unmanaged Model 11

Caveats

This is a suggested approach if DSL-compatibility with an older plugin version needs to be
maintained. However, the following needs to be kept in mind:

• As the extension is unmanaged, Gradle can never guarantee the configuration to be im-
mutable.

• Gradle will not decorate the extension with any other methods, and it is up to the plugin
author to add the appropriate enhancements.

References & Credits

• Mark Viera clarified a number of caveats with this approach. [MViera3]

Appendix: Understanding the legacy
native software model
Managed Data Annotations

@Managed

Managed model interface

1 @Managed

2 interface ManagedDocker {

3 String getDockerHost()

4 void setDockerHost(String host)

5

6 File getCertPath()

7 void setCertPath(File path)

8 }

Line #2: Definition of a managed model is either an interface or an abstract class.

At this point the managed class can already be used in a build script as long as it is available on the
classpath.

Model declaration in build script

1 model {

2 mysqlContainer(ManagedDocker) {

3 dockerHost 'https://192.168.99.100:2376'

4 }

5 }

Line #2: Register an instance of ManagedDocker model and call it mysqlContainer.

Line #3: Configure the settings on the new model. Any property or property on the
managed class can be configured here.

Appendix: Understanding the legacy native software model 13

This is effectively the equivalent of what a @Model annotation will create. By keeping a mental
picture of this equivalence in mind, it will be easier for many of us plugins authors to transition
from the classic Gradle way of thinking to this new style.

RuleSource Annotations

These are special annotations that are applied to methods in a class that extends RuleSource.

@Model

When applied to a method it indicates that a new top level element is created in the model space.
This element takes the name of the method unlike the annotation is given a value. In the latter case
the provided name must start with a lowercase character and only consist of ASCII word characters
(Regex \w).

The element also has to provide a type, but the way of providing the type depends on whether this
is a [Managed] type or not.

• Managed: The return type is always void. The first parameter is a type defined somewhere
else and annotated with @Managed. The first parameter is not allowed to be unmanaged
or annotated with @Path. (See [Managed] for more details. Any additional parameters are
considered inputs.

• Unmanaged: The return type is the model type. All parameters are considered inputs.

A confusing subject
When reading the Gradle documentation on the new model, the term subject will be encountered
and can cause confusion. All we need to remember that if we see this term in the documentation
it refers to a managed or unmanaged type. In all other RuleSource annotations beside @Model it is
always the first parameter of the method.

Appendix: Understanding the legacy native software model 14

Declaring a new managed model with an interface

1 class ExampleRules extends RuleSource {

2

3 @Model

4 void docker(ManagedDocker md) {}

5

6 }

Line #1: All model rule definitions must start by extending RuleSource.

Line #4: Minimum declaration required to create a new managed model. Provided typed
must be annotated with @Managed. Initialisation can be performed in the code block.

When building the model rules for a managed type, the first parameter must always be the type and
the return type is void. (This pattern is common across RuleSource rule annotation, but it is worth
repeating here). The name of the method becomes the name of the model in the model registry.

Using the new model

1 apply plugin : ExampleRules

Line #1: The model rules class must be applied as a plugin. In many cases this will happen
within the plugin class, but there are other ways in which the rules can be automatically
applied.

Reinforcing this equivalence of code and script, we should visualise this code as simply being.

Script equivalent

1 model {

2 docker(ManagedDocker)

3 }

It is also to create a model without using a managed type. Consider that we rather wanted to
implement the data class for out Docker descriptor ourselves. A simplified version of it might have
looked something like this:

Appendix: Understanding the legacy native software model 15

Unmanaged extension

1 class NonManagedDocker {

2 String dockerHost = 'http://192.168.1.1:1234'

3 File certPath

4 }

In order to use this as a model, the method in our rules needs to return an instance of this class (as
opposed to void in the managed case).

Unmanaged class as a model

1 @Model

2 NonManagedDocker dockerNonManaged() {

3 new NonManagedDocker()

4 }

Line #2: The name of the method will still become the name of the toplevel model in the
build script.

Line #3: Initialise & return the object as appropriate.

The @Model annotation also allows for setting a custom name that might be more suitable for use
within a DSL than the method name. Simply use value=NewName as parameter to the annotation.

Changing the name of the model

1 @Model(value='DrDocker')

2 void docker(ManagedDocker md) {}

Line #1: The toplevel model will be known as DrDocker instead of docker.

@Defaults

Use the @Defaults annotation to set default property values for a subject. The name of the method
is irrelevant as far as the build script author is concerned and should rather be named to describe the
intent of setting the default value. The first parameter of the method is always the subject, which
will be mutable for the duration of the method call. The return type is always void.

Appendix: Understanding the legacy native software model 16

Rules class with default values.

1 class DefaultExampleRules extends RuleSource {

2 @Model

3 void docker(ManagedDocker md) {}

4

5 @Defaults

6 void defaultServer(ManagedDocker md) {

7 md.dockerHost = 'https://192.168.99.100:2376'

8 }

9 }

For a given RuleSource deriviative, methods annotated with @Defaultswill execute before
methods annotated with @Model or @Mutate and before any user configuration in the build
script. Default are executed in alphabetical order, not order in code, therefore ruleAbc will
be executed before ruleDef. It is possible to have duplicate default rules under different
method names. In such cases the last executed one wins.

@Mutate

These are some of the most powerful kind of rules as they are not only used to set values on model
subjects, but also to create tasks and other entities. The first parameter of a mutate method is always
the subject, which will be mutable for the duration of the method call. Additional parameters can
be supplied which can be used as inputs. The return type is always void.

For a given RuleSource deriviate, methods annotated with @Mutate will execute after
methods annotated with @Defaults and any user configuration in the build script, but
before methods annotated with @Finalize. Rules are executed in alphabetical order, not
order in code, therefore ruleAbc will be executed before ruleDef. (This might just be an
implementation result, and should not be relied upon).

@Finalize

According to gradle core developer,Mark Viera, there is very little difference between @Finalize and
@Mutate rules. They are effectively just two groups of the same things, with all @Mutate rules being
executed, before any @Finalize rules[MViera1]. Anything else that has been mentioned previously
for @Mutate will apply equally here. From a idiomatic point of view, it is recommended that @Fi-
nalize rules are only used for final configuration in a similar fashion that project.afterEvaluate
has been used in the classic model.

Appendix: Understanding the legacy native software model 17

For a given RuleSource deriviative, methods annotated with @Finalize will execute after
methods annotated with @Mutate, but before methods annotated with @Validate. Rules are
executed in alphabetical order, not order in code, therefore ruleAbcwill be executed before
ruleDef. (This might just be an implementation result, and should not be relied upon).

@Validate

Validation rules are used to check the integrity of properties before execution can begin. The first
parameter of the method is always the subject, which will be immutable for the duration of the
method call. It is the responsibility of the plugin author to terminate execution upon validation
failure by throwing an appropriate exception. Groovy power asserts can also be used as shown
below [MViera2]:

Example of using Groovy Power Assert

1 @Validate

2 void alwaysUseHttp(ManagedDocker md) {

3 assert md.dockerHost?.startsWith('http')

4 }

Line #3: Check that the condition are met and raise exception if not

In the 2.10 and prior versions the exception is propagates as is. From 2.11 onwards the
exception is wrapped up in a ModelRuleExecutionException which is from the internal
org.gradle.model.internal.core package.

Inspecting the Model

Script authors should not need to do this, but as plugin author at some stage will probably have th
need to look under the hood. This is especially the case when attempting to understand how the new
model work the first time or even for some low-level unit tests. For this purpose use a method on
the internal Project class namely modelRegistry. This is best described by means of a little Spock
Framework test.

Revisiting our DefaultExampleRules class from earlier

Appendix: Understanding the legacy native software model 18

Example rules

1 class DefaultExampleRules extends RuleSource {

2 @Model

3 void docker(ManagedDocker md) {}

4

5 @Defaults

6 void defaultServer(ManagedDocker md) {

7 md.dockerHost = 'https://192.168.99.100:2376'

8 }

9 }

we can author a test to check that the dockerHost property has a default value set.

Access via the model registry

1 class DefaultExampleRulesSpec extends Specification {

2 def project = ProjectBuilder.builder().build()

3

4 def "Default rule must set dockerHost"() {

5 given: "A simple model"

6 project.allprojects {

7 apply plugin : DefaultExampleRules

8 }

9

10 def node = project.modelRegistry.find('docker',ManagedDocker)

11

12 expect: "dockerHost to have default value"

13 node?.dockerHost == 'https://192.168.99.100:2376'

14 }

15

16 def "Configuration overrides Default rules"() {

17 given: "A simple model"

18 project.allprojects {

19 apply plugin : DefaultExampleRules

20

21 model {

22 docker {

23 dockerHost 'https://192.168.99.100:1234'

24 }

25 }

26 }

27

Appendix: Understanding the legacy native software model 19

28 when:

29 def node = project.modelRegistry.find('docker',ManagedDocker)

30

31 then:

32 node?.dockerHost == 'https://192.168.99.100:1234'

33 }

34

35 }

Line #7: Apply the rules class using apply plugin: syntax. This might seem strange as
one would not expect a rules class to be a plugin class, however since a rules class has to
extend the RuleSource which implements the appropriate interface.

Line #10: Sneakily using modelRegistry, we pass the model name as a string, plus the
subject type to registry’s findmethod. If it is exists it will return the instantiated component,
otherwise it will be a null value

Line #13: Now it is purely a case of querying the appropriate property from our class.

This technique is merely meant for inspecting the model. Do not use this to attempt to
mutate a model. Attempting to do so may lead to undefined behaviour and may bring the
wrath of the people who use your plugin upon you. You have been warned!

Appendix: Legacy native software
model configuration order

Bibliography
Discussion Forums

[AMurdoch1] Adam Murdoch. Obtaining the name of a component in model rules2.

[LPelletier] Luc Pelletier. Limitation of generatedBy in native software model3.

[MViera1] Mark Viera. @Finalize is not well described anywhere in the docs4.

[MViera2] Mark Viera. @Validate needs a a little more clarification5.

[MViera3] Mark Viera. Extension objects in new model6.

Software

[GNUMake] Schalk W. Cronjé. GNU Make Gradle Plugin7

[NodePlugin] Schalk W. Cronjé. Node.js Gradle Plugin8

[PackerPlugin] Schalk W. Cronjé. Packer Gradle Plugin9

[Terraform]

Books

[SCronje] Schalk Cronjé. ‘Idiomatic Gradle: 25 recipes for plugin authors’. Leanpub10.

2https://discuss.gradle.org/t/obtaining-the-name-of-a-component-in-model-rules/17790/5
3https://discuss.gradle.org/t/limitation-of-generatedby-in-native-software-model/17321
4http://discuss.gradle.org/t/finalize-is-not-well-described-anywhere-in-the-docs/17553
5https://discuss.gradle.org/t/validate-needs-a-little-more-clarification/17554
6https://discuss.gradle.org/t/extension-objects-in-new-model/17587
7https://github.com/ysb33r/gnumake-gradle-plugin
8https://gitlab.com/ysb33rOrg/nodejs-gradle-plugin
9https://gitlab.com/ysb33rOrg/packer-gradle-plugin
10http://leanpub.com/idiomaticgradle

https://discuss.gradle.org/t/obtaining-the-name-of-a-component-in-model-rules/17790/5
https://discuss.gradle.org/t/limitation-of-generatedby-in-native-software-model/17321
http://discuss.gradle.org/t/finalize-is-not-well-described-anywhere-in-the-docs/17553
https://discuss.gradle.org/t/validate-needs-a-little-more-clarification/17554
https://discuss.gradle.org/t/extension-objects-in-new-model/17587
https://github.com/ysb33r/gnumake-gradle-plugin
https://gitlab.com/ysb33rOrg/nodejs-gradle-plugin
https://gitlab.com/ysb33rOrg/packer-gradle-plugin
http://leanpub.com/idiomaticgradle
https://discuss.gradle.org/t/obtaining-the-name-of-a-component-in-model-rules/17790/5
https://discuss.gradle.org/t/limitation-of-generatedby-in-native-software-model/17321
http://discuss.gradle.org/t/finalize-is-not-well-described-anywhere-in-the-docs/17553
https://discuss.gradle.org/t/validate-needs-a-little-more-clarification/17554
https://discuss.gradle.org/t/extension-objects-in-new-model/17587
https://github.com/ysb33r/gnumake-gradle-plugin
https://gitlab.com/ysb33rOrg/nodejs-gradle-plugin
https://gitlab.com/ysb33rOrg/packer-gradle-plugin
http://leanpub.com/idiomaticgradle

	Table of Contents
	Configure Global, Customise per Task
	Migrate Extension to Unmanaged Model
	Appendix: Understanding the legacy native software model
	Appendix: Legacy native software model configuration order
	Bibliography

