

[image: Idiomatic Gradle Plugins]

 Idiomatic Gradle Plugins

 25 Recipes for Authors

 Schalk Cronjé

 This book is for sale at http://leanpub.com/idiomaticgradle

 This version was published on 2018-12-20

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2015 - 2018 Schalk Cronjé

 Table of Contents

 	
 Avoiding Groovy Version Mismatch

 	
 Collection of Files

 	
 Collection of Strings

 	
 Property Maps

 	
 Allow user to override specific version of underlying in-process library

 	
 Add SourceSet Support for JVM Language

 	
 Create Safe Filenames From Inputs

 	
 Self-referencing plugin

 	
 Bibliography

 Guide

 	
 Begin Reading

Avoiding Groovy Version Mismatch

Summary

As part of plugin development, it is highly probable that a plugin uses Groovy as the implementation or testing language.
 (As mentioned before, all recipes in this book assume Groovy as the implementation language). When relying on other
 dependencies that has Groovy as a transitive dependency, the build can fail due to a Groovy version mismatch.

Solution

Exclude groovy-all for the dependency that is adding it as a transitive dependency.
If the plugin is part of a multi-project build, then exclude groovy-all for all configurations

Examples

When using Spock Framework for unit testing, the version of Groovy that is
resolved is usually different from that of localGroovy(). Exclude groovy-all for Spock.

 Customising transitive dependencies
1 testCompile ('org.spockframework:spock-core:1.0-groovy-2.0') {
2 exclude module : 'groovy-all'
3 }

The Groovy VFS Gradle Plugin is built as part of a multi-project build. The main artifact it relies upon,
is in another subproject called groovy-vfs and this is a pure Groovy implementation. As groovy-vfs is an independent distributed
jar, it is compatible with a range of Groovy versions. When consumed by the plugin, resolving transitive dependencies
will cause a version mismatch. In such a case exclude groovy-all for all configurations.

 Gradle plugins in multi-project builds
1 configurations.all {
2 exclude module : 'groovy-all'
3 }
4
5 dependencies {
6 compile project (':otherProject')
7 compile localGroovy()
8 }

 Line #2: Exclude groovy-all from all configurations. When run, the correct groovy-all jar will be made available on the classpath
 due to localGroovy()

Gradle API Updates

As from Gradle 2.8 the version of the bundled Groovy has moved to 2.4.4 (from 2.3.10 as opposed to Gradle 2.7). This results in
the Spock Framework version being of the incorrect version. Although it is recommended to build plugins with Gradle 2.0,
there are cases where a plugin might rely on APIs in later Gradle releases. A plugin developer might also choose to
make it as easy to build and test a plugin with a later version without having to tweak the build script.

 Covering different versions of Spock Framework
1 ext {
2 spockGroovyVer = GroovySystem.version.replaceAll(/\.\d+$/,'')
3 }
4
5 dependencies {
6 testCompile ("org.spockframework:spock-core:1.0-groovy-${spockGroovyVer}") {
7 exclude module : 'groovy-all'
8 }
9 }

References

 	Peter Niederweser on excluding Groovy dependencies

 	Cedric Champeau on obtaining Groovy Version

Collection of Files

Summary

Many tasks need one ore more properties that need to be a collection of files. It is important to keep the configuration
readable and easy to use by script authors.

Solution

Store the configuration entity as a list of Object in the task class. Convert it to files only when accessed. This will
allow for lazy evaluation when needed, replacement of list content and appending of more files to the list.

Examples

Assume for the moment that a task has a list of input sources files called documents.

 Task class code snippet for file collections
 1 @InputFiles
 2 FileCollection getDocuments() {
 3 project.files(this.documents)
 4 }
 5
 6 void setDocuments(Object... docs) {
 7 this.documents.clear()
 8 this.documents.addAll(docs as List)
 9 }
10
11 void documents(Object... docs) {
12 this.documents.addAll(docs as List)
13 }
14
15 private List<Object> documents = []

 Line #1: Create a getter and annotate with @InputFiles or @OutputFiles. The purpose of the getter is to translate upon access
 to a FileCollection object.

 Line #3: Translate from the list of Object using the built-in project.files method. This handles a large variety of types
 including files, strings and closures as well as lists and arrays thereof.

 Line #6: Use a setter to allow for setDocuments 'foo','bar' replacement of current content with a new set of content. This becomes
 very useful should another plugin author decide to extend your task type.

 Line #11: Use a method with the name of the property to allow for a expressive documents 'foo','bar' style.

 Line #15: The property is left private as appropriate access is already provided.

 Usage in build script
 1 // Assuming we have a task called 'documentBinder'
 2 documentBinder {
 3
 4 setDocuments '/path/to/doc', new File('/path/to/other/doc')
 5
 6 documents '/path/to/doc', new File(' / path / to / other / doc ')
 7
 8 documents project.file('add/other/doc')
 9
10 documents { '/even/add/from/closure' }
11 }

 Line #4: Clear any existing document list, and replace with the given list. List can contain anything that project.files
 can convert to File objects.

 Line #6: Append more documents to existing list

 Line #10: Even closures can be used to allow for late evaluation of documents

Collection of Strings

Summary

The use of string collections as task properties is quite common. It is important to keep the configuration readable and
 easy to use by script authors. The use of toString() by script authors will lead to less readable (and ugly) build scripts
 and as such plugin authors, should attempt to handle conversion from a variety of class types to String objects
 behind the scenes.

Solution

Store the configuration entity as a list of Object. Convert it to String objects only when accessed.
Allow for replacement of list content or appending to the list. If required, also allow for lazy evaluation only at the
point of task execution.

Examples

The JRubyExec task type in the JRuby Gradle plugin allows the script author to
provide a list of arguments that can be passed to a Ruby script when run from Gradle. In order to make it easy for
authors, these arguments can be provided as strings, objects convertible to strings or even closures.

 Task class code snippet for string collections
 1 @Input
 2 List<String> getScriptArgs() {
 3 CollectionUtils.stringize(
 4 this.scriptArgs.collect { it ->
 5 it instanceof Closure ? (it as Closure).call() : it
 6 } .flatten()
 7)
 8 }
 9
10 void setScriptArgs(Object... args) {
11 this.scriptArgs.clear()
12 this.scriptArgs.addAll(args as List)
13 }
14
15 void scriptArgs(Object... args) {
16 this.scriptArgs.addAll(args as List)
17 }
18
19 private List<Object> scriptArgs = []

 Line #1: Create a getter and annotate with @Input or @Output. The purpose of the getter is to translate upon access
 to a collection of String objects.

 Line #2: Collections usually are Set or List.

 Line #3: Translate from the list of Object using the built-in org.gradle.util.CollectionUtils.stringize method.
 This handles a collection containing a large variety of types including files and strings, but not closures.

 Line #5: Add special cases for handling closures.

 Line #6: Flatten out embedded collections.

 Line #10: Use a setter to allow for setScriptArgs 'foo','bar' replacement of current content with a new set of content. This becomes
 very useful should another plugin author decide to extend your task type or when a task is modified via an extension.

 Line #15: Use a method with the name of the property to allow for a expressive scriptArgs 'foo','bar' style.

 Line #19: The property is left private as appropriate access is already provided.

 Configuration snippet
1 // Assuming we have a task called 'runMyScript'
2 runMyScript {
3 setScriptArgs '--file', new File('/path/to/other/doc')
4
5 scriptArgs '--output', new File('/path/to/other/doc')
6 scriptArgs "${{->delayedString}}"
7 scriptArgs { 'string in closure' }
8 scriptArgs { ['list in closure','with multiple elements'] }
9 }

 Line #3: Clear any existing arguments list, and replace with the given list. List can contain any number of items
 that can be converted to a string.

 Line #5: Append more arguments to the existing list

 Line #6: A GString containing a closure returning a single string

 Line #7: A closure returning a single string

 Line #8: A closure returning a list of strings

Property Maps

Summary

Another tool or system that is being wrapped by a Gradle plugin might need a list of free-form properties passed unto it.
 The underlying system might not perform any further validation, also ignoring anything that is not applicable.

Solution

The Groovy language already provides for an easy declaration of property maps and this feasture can be used as is within the
task configuration DSL. Declare the property map as a private member and add getter, replacement (via setter) and append
methods. Keeping the property map as private prevents accidental assignment from the configuration closure as this could
be confusing to script authors or consumers.

Examples

The Asciidoctor Gradle plugin needs to pass a set of attributes to the underlying Asciidoctor
engine. Attributes that are not required by the Asciidoctor engine will be silently ignored. This makes the application
of a property map a very good fit, as superfluous attributes can be stored, but will not cause a runtime error.

 Task class code snippet
 1 @Input
 2 Map getAttributes() {
 3 this.attrs
 4 }
 5
 6 void setAttributes(Map m) {
 7 this.attrs=m
 8 }
 9
10 void attributes(Map m) {
11 this.attrs+=m
12 }
13
14 private Map attrs = [:]

 Line #1: Annotate the getter as opposed to the property.

 Line #6: Use the setter to replace one property map with another

 Line #10: Use the basename to insert more properties into the existing map

 Line #14: Keep the property private (or use @PackageScope) to keep it from accidental usage within the configuration closure.

 Usage of property map in Asciidoctor plugin
 1 ext {
 2 predefined = [doctype : 'book']
 3 }
 4
 5 asciidoctor {
 6 setAttributes toclevel : '3', revnumber : '1.0'
 7
 8 attributes 'source-highlighter': 'coderay'
 9
10 attributes toc : 1, toclevel : '2'
11
12 attributes predefined
13
14 }

 Line #6: All existing properties can be removed and replaced with a new set

 Line #8: Properties can be past one per line. (aids readability and loops)

 Line #10: Multiple properties can be passed per call

 Line #12: Other property maps can be passed and will be merged.

Allow user to override specific version of underlying in-process library

Summary

In many cases a plugin consumer does want to be locked down to one version of a dependency. A plugin author might thus
want to allow the user to override the default dependency with different version.

Solution

Create a project extension where the version can be set. Add an afterEvaluate closure, which in turn will add the dependency
to the appropriate configuration group at the appropriate time. Optionally a classloader can be used to load the class
when the task is executed.

Examples

The Asciidoctor Gradle plugin relies on a
specific version of Asciidoctorj. When a new version of Asciidoctorj comes
out, there might be a delay before the plugin is released. Alternatively the plugin author might want to experiment with development
versions of Asciidoctorj before release.

The first step is to create an extension whereby the script author can set the version. Even though this could be handled
directly by the script author using a dependencies block, the use of an extension provides clearer intent and reduces
misunderstanding as to which dependency should be used.

 Create extension
 1 class AsciidoctorJExtension {
 2 String version = '1.5.0' //
 3
 4 AsciidoctorJExtension(Project proj) {
 5 project=proj
 6 }
 7
 8 @PackageScope
 9 Project project
10 }

 Line #2: Set the default version as to the one that would be recommended to be used by the plugin author.

Once the extension is created, it can be added when the plugin is applied.

 Add extension in plugin
 1 void apply(Project project) {
 2 project.extensions.create('asciidoctorj',AsciidoctorJExtension,project)
 3 project.configurations.maybeCreate('internal_asciidoctorj')
 4
 5 project.afterEvaluate {
 6 project.dependencies {
 7 internal_asciidoctorj "org.asciidoctor:asciidoctorj:${project.asciidocto\
 8 rj.version}"
 9 }
10 }
11 }

 Line #2: Create an extension called asciidoctorj.

 Line #3: Create a configuration called internal_asciidoctorj.

 Line #7: Add the dependency to the internal_asciidoctorj at the end of the configuration phase.

Noteworthy in the previous code snippet is the use of the interpolated GString to det the dependency. As it is within
the closure added to afterEvaluate it be only be evaluated at the end of the configuration phase, by which time the
correct version will already have been set.

When the plugin is published, the script author will simply be able to override the version of asciidoctorj by doing
as below.

 Setting the version in build.gradle
1 asciidoctorj {
2 version = '1.5.2'
3 }

 Line #2: User can now override the version of the library.

In some cases it might be necessary to lazy load the object as well. In this case a custom classloader is utilised.
The use of term classloader can induce fear in those not-so-Java developers, but there is no need for angst when loading
it as part of a plugin. Loading can be accomplished by a little bit of code within the task action.

 Use a custom classloader
1 def urls = project.configurations.internal_asciidoctorj.files.collect { it.toURI().t\
2 oURL() }
3 def classLoader = new URLClassLoader(urls as URL[], Thread.currentThread().contextCl\
4 assLoader)
5 def asciidoctorInstance = classLoader.loadClass('org.asciidoctor.Asciidoctor$Factory\
6 ')

 Line #1: Get all of the files in the internal_asciidoctorj configuration that was created when the plugin was applied.

 Line #2: Create the classloader for all those files. For simplicity the class loader that is currently in context is used
 (i.e. the context within which the task action is executed within).

 Line #3: Load the class that is required. One or more classes can be loaded if needed.

Gradle API Updates

A new way of handling default dependencies was introduced in Gradle 2.5 in the form of defaultDependency.
This removes the need for an afterEvaluate closure and instead allows for a closure to be called when a configuration
is first resolved and no specific dependency was provided elsewhere. This approach does not necessarily provide a shorter
code form, but it does provide a standardised way of dealing with dependencies going forward.

 Alternative plugin approach for Gradle 2.5+
 1 void apply(Project project) {
 2 project.with {
 3 def asciidoctorj = extensions.create('asciidoctorj',AsciidoctorJExtension,pr\
 4 oject)
 5 def conf = configurations.maybeCreate('internal_asciidoctorj')
 6 conf.defaultDependencies { deps ->
 7 deps.add(project.dependencies.create(
 8 "org.asciidoctor:asciidoctorj:${asciidoctorj.version}")
 9)
10 }
11 }
12 }

 Line #3: Create extension as before

 Line #4: Create configuration as before

 Line #5: Call defaultDependencies on the configuration. The closure will be passed the DependencySet` from the configuration.

 Line #7: Use the create call on the project’s DependencyHandler object to create a dependency that is not associated with a
 configuration and then add it to the provided DependencySet.

A plugin author wishing to advantage of the new functionality on offer, but still want to maintain one codebase with the
largest possible version compatibility can resort to some minute Groovy metaprogramming.

 Allow plugin to select functionality automatically
 1 void apply(Project project) {
 2 project.extensions.create('asciidoctorj',AsciidoctorJExtension,project)
 3 def conf = project.configurations.maybeCreate('internal_asciidoctorj')
 4
 5 if(conf.respondsTo('defaultDependencies')) {
 6 conf.defaultDependencies { deps ->
 7 deps.add(project.dependencies.create(
 8 "org.asciidoctor:asciidoctorj:${project.asciidoctorj.version}")
 9)
10 }
11 } else {
12 project.afterEvaluate {
13 project.dependencies {
14 internal_asciidoctorj "org.asciidoctor:asciidoctorj:${project.asciid\
15 octorj.version}"
16 }
17 }
18 }
19 }

 Line #2: Create extension and configuration as before

 Line #5: Check whether configuration object support the defaultsDependencies method and select appropriate approach.

Caveats

The original implementation relies on the assumption that a script author will mostly not be aware of the internal configuration
and therefore not try to add additional items into the configuration. Should the script author decide to explicitly set
the Maven coordinates of the dependency against that of the internal configuration name, the probability is good that the
newer version of the dependency will win out. It is only if the resolver strategy is explicitly modified by the script
author, that outcome might be different.

In this regards, use of the new defaultDependencies will introduce a behavioural change.
The version that the script author supplied, will be taken over any default version. Should a plugin author like to bring the
same behaviour to older versions of Gradle it is will possible within the afterEvaluate closure as illustrated by the
following code block.

 Only add dependency if one does not exist already
 1 project.afterEvaluate {
 2 def hasDep = project.configurations.internal_asciidoctorj.dependencies.find {
 3 it.group == 'org.asciidoctor' && it.name == 'asciidoctorj'
 4 }
 5 if (!hasDep) {
 6 project.dependencies {
 7 internal_asciidoctorj "org.asciidoctor:asciidoctorj:${project.asciidocto\
 8 rj.version}"
 9 }
10 }
11 }

 It has to be remembered that this kind of tinkering with internal configurations by script authors are rare and there is
 very little need to provide safety against it within the plugin. A script author that is in the need of performing such
 remediation should well be aware of the associated dangers.

A second problem may arise in the use maybeCreate when creating the configuration. In contract to the create which
will emit an exception if the configuration already exists, maybeCreate will re-use the existing one. This has the advantage
of more than one plugin using the same configuration, or to allow a script author to manipulate the configuration prior to the
plugin being applied. Both these cases, however, can also lead to unexpected side-effects. It is possible to modify creation
of the configuration as below:

 Strict configuration creation
1 def conf = project.configurations.create('internal_asciidoctorj')
2 conf.visible = false

 Line #1: Fail the build should the configuration already exists

 Line #2: Restrict the scope of the configuration only to the projects where the plugin is applied in.

This decision which approach to use is left to the plugin author. Most has advantages and disadvantages as explained before.
It is suggested that where the second approach is taken, to use a longer configuration name that will have little change
of being re-used by another plugin.

References

 	A comment on defaultDependencies

Add SourceSet Support for JVM Language

Summary

Many new languages are being created that targets the JVM. Creating a plugin for a JVM language that follows
the conventions of core languages such as Java, Groovy & Scala, may contribute to both the popularity of Gradle
and the new JVM language.

Solution

Follow conventions for JVM languages such as Groovy & Scala by doing the following:

 	Implement a loose-standing source set class for the new JVM language.

 	Address joint-compilation if supported by the new JVM language

 	Create a base plugin class and configure defaults for source sets to recognise the new language files.

 	Follow this up by implementing Add Assemble Task Support for JVM Language.

Examples

Assume that support for a new fictitious JVM language Sprache (the German word for language) will be added. All source
files for Sprache will be found in .sprache files. Sprache, like Groovy and Scala, will also support joint-compilation
with Java files.

An independent source set class is the easiest way to start. Unfortunately the Gradle API does not support all of the
necessary functionality in the public API and therefore some internal APIs will be required:

 Source set imports
1 import org.gradle.api.file.SourceDirectorySet
2 import org.gradle.util.ConfigureUtil
3 import org.gradle.api.internal.file.DefaultSourceDirectorySet
4 import org.gradle.api.internal.file.FileResolver

 Line #3: It is far easier to re-use DefaultSourceDirectorySet, than to perform a full custom implementation of
 the SourceDirectorySet interface. The API for DefaultSourceDirectorySet has remained stable throughout
 Gradle 2.0 - 2.11, but has been changed in Gradle 2.12.

 Line #4: FileResolver is an internal API which helps Gradle find files and is required
 by DefaultSourceDirectorySet.

 Understanding source set behaviour

 Very important to notice is that this source set class does not
implement the SourceSet interface. The latter is something that will be exposed automatically to the build script
by Gradle, glue-ing in bits via convention mapping. Nor surprisingly, this is a huge point of confusion for
many plugin writers.

 SourceSet has four getter methods by default from which source is obtained - getJava, getAllJava,
 getResources and getAllSource.

 	
getJava will only return Java source files from the java source set.

 	
getAllJava will return Java source files found in the java source set as well as any other
language source set. For instance if the Groovy plugin was applied, it will also return Java files from
the groovy source set.

 	
getResources will only return files defined as resources.

 	
getAllSource will return all source files plus all resources.

 Things can get more confusing for JVM language plugins. This is best illustrated via the Groovy plugin.
When the mentioned plugin is applied, two more source accessors will appear on the SourceSet instance,
being getGroovy and getAllGroovy. These two methods exhibit some potentially confusing behaviour:

 	
getGroovy will return both Java & Groovy source files from the groovy source set.

 	
getAllGroovy will only return Groovy source files from the groovy source set. (!)

 It can argued that the two methods should have been named the other way around. However, this is the state
 of Gradle today and plugin authors should just be aware of this naming convention.

Most of the work for a source set is done in the constructor. Two directory sets are defined - one that
includes only the language-specific files and one that could contain both the former and some
additional files.

 Source set definition
 1 class SpracheSourceSet {
 2
 3 static final String LANG_NAME = 'sprache'
 4
 5 SpracheSourceSet(String displayName, FileResolver fileResolver) {
 6 fullSourceSet = createSourceDirectorySet(
 7 "${displayName} ${LANG_NAME.capitalize()} source",
 8 fileResolver
 9)
10 fullSourceSet.filter.include("**/*.java", "**/*.sprache")
11
12 spracheOnlySourceSet = createSourceDirectorySet(
13 "${displayName} ${LANG_NAME.capitalize()} source",
14 fileResolver
15)
16 spracheOnlySourceSet.source(fullSourceSet)
17 spracheOnlySourceSet.filter.include("**/*.sprache")
18 }
19
20 private final SourceDirectorySet fullSourceSet
21 private final SourceDirectorySet spracheOnlySourceSet
22 }

 Line #3: The language name will be used in a number of places as part of convention naming. It is useful
 to define it once-off.

 Line #9: Define a directory set that will return all source files found under a given directory that
 is of interest to this source set.

 Line #10: As Sprache supports joint-compilation, return both Java & Sprache files. If Sprache did not support
 joint-compilation, then the Java part of the filter could have been left out.

 Line #15: Define a directory set that will return only Sprache source files found under a given file tree.

 Line #16: Add in all files that were found by the joint-compilation file tree.

 Line #17: Filter this file tree to only include Sprache files.

Wrapping internal APIs into seperate methods can be very useful to help with later maintenance should a class
or interface change with a new release of Gradle. In the case of creating DefaultSourceDirectorySet this
version if very simplistic for for Gradle 2.0 - 2.11, but see notes on Gradle API changes at the end of this
recipe.

 Wrapping DefaultSourceDirectorySet
1 private DefaultSourceDirectorySet createSourceDirectorySet(
2 String name,
3 FileResolver fileResolver
4) {
5 new DefaultSourceDirectorySet(name,fileResolver)
6 }

What remains for the source set definition is to add some getter methods and a single method to
allow configuration via closure.

 Source set getter and configuration methods
 1 class SpracheSourceSet {
 2 /* Constructor and fields defined previously */
 3
 4 SourceDirectorySet getSprache() {
 5 fullSourceSet
 6 }
 7
 8 SpracheSourceSet sprache(Closure configureClosure) {
 9 ConfigureUtil.configure(configureClosure, getSprache())
10 return this
11 }
12
13 SourceDirectorySet getAllSprache() {
14 spracheOnlySourceSet
15 }
16 }

 Line #4: Return the source set containing all of the Sprache and Java files.

 Line #8: Allow for configuration of a source set via closure.

 Line #9: Due to the way the directory sets have been set up in the constructor it is only necessary
 to configure the ‘sprache’ sourceset. (Calling allSprache will simply filter out anything it does
 not need).

 Line #13: Return the source set containing only Sprache files.

 Laying out the base plugin
 1 import org.gradle.api.internal.plugins.DslObject
 2 import org.gradle.api.internal.project.ProjectInternal
 3 import org.gradle.api.tasks.compile.AbstractCompile
 4 import org.gradle.util.GradleVersion
 5
 6
 7 class SpracheBasePlugin implements Plugin<Project> {
 8
 9 static final String LANG_NAME = SpracheSourceSet.LANG_NAME
10
11 void apply(Project project) {
12 project.with {
13 apply plugin : JavaBasePlugin
14 }
15
16 createSourceSetDefaults(project)
17 }
18 }

 Line #9: The language name will be used in number of places as part of convention naming. It is useful
 to define it once-off, but just re-using the one already defined in the source set class.

 Line #13: The JavaBasePlugin is required for all JVM language implementations. It provides the core
 support for JVM source sets.

In order to instantiate this source set and attach it to a named global source set, some reliance
on internal APIs are required once again.

 Internal APIs required for source set creation
1 import org.gradle.api.internal.plugins.DslObject
2 import org.gradle.api.internal.project.ProjectInternal
3 import org.gradle.api.tasks.compile.AbstractCompile
4 import org.gradle.util.GradleVersion

 Creating the base plugin for a JVM language.
 1 class SpracheBasePlugin implements Plugin<Project> {
 2 /* For other code see previous code block */
 3
 4 void createSourceSetDefaults(Project project) {
 5 def jpc = project.convention.getPlugin(JavaPluginConvention)
 6 jpc.sourceSets.all { SourceSet srcSet ->
 7 final SpracheSourceSet langSourceSet = new SpracheSourceSet(
 8 "${LANG_NAME.capitalize()} ${srcSet.name}",
 9 (project as ProjectInternal).fileResolver
10)
11 final SourceDirectorySet dirSet = langSourceSet."${LANG_NAME}"
12
13 new DslObject(srcSet).convention.plugins.put(LANG_NAME,langSourceSet)
14 dirSet.srcDir("src/${srcSet.name}/${LANG_NAME}")
15 srcSet.allJava.source(dirSet)
16 srcSet.allSource.source(dirSet)
17 srcSet.resources.filter.exclude {
18 FileTreeElement fte -> srcSet."${LANG_NAME}".contains(fte.file)
19 }
20 }
21 }
22 }

 Line #7: Instantiate the Sprache source set given the provided source set name as well as the
 Gradle’s internal FileResolver instance.

 Line #13: Glue this source set to the global SourceSet container instance known as sourceSets.

 Line #14: Set a default directory where to find sources, should no other directory be set.

 Line #15: Since joint-compilation, tell Gradle to also Java files in this source set.

 Line #16: Add all of the Sprache sources to the named global named source set.

 Line #17: Ensure Sprache source files do not end up in resources.

The plugin is now ready to have the assemble tasks added. It is also a Gradle convention to create
a base plugin for the language which provides all of the functionality to
find source files and assemble them. The base plugin does not provide any directory layout conventions.
See the Add Source Layout Conventions for JVM Language recipe on how to accomplish this.

Gradle API Updates

The way of adding source sets for a new language is also changing with the new incubating model ([GradleDocs2], [GradleDocs3],
[GradleDocs4], [GradleDocs5]).

As a more direct consequence to this recipe, the internal API of the constructors for DefaultSourceDirectorySet
have changed in Gradle 2.12 adding a third parameter
in all cases. The latter is another internal interface being DirectoryFileTreeFactory from the
org.gradle.api.internal.file.collections package. Luckily it easy to construct an instance of this via
DefaultDirectoryFileTreeFactory which is in the same internal package. This poses a dilemma for the plugin author,
which has to make a decision on whether to release one version of the plugin for earlier versions of Gradle and one for
2.12 and beyond. Luckily there is a way to workaround this through the use of some
metaprogramming, even if it results in more code.

 Handling API change across multiple Gradle versions
 1 @CompileDynamic
 2 private DefaultSourceDirectorySet createSourceDirectorySet(
 3 String name,
 4 FileResolver fileResolver
 5) {
 6 DefaultSourceDirectorySet.constructors.findResult { ctor ->
 7 def params = ctor.parameterTypes
 8 if(params == [String,FileResolver] as Class[]) {
 9 return ctor.newInstance(name,fileResolver)
10 } else if (params == [String,String,FileResolver] as Class[]) {
11 return null
12 }
13 try {
14 final String pkgName = 'org.gradle.api.internal.file.collections'
15 Class<?> dftfInterface = Class.forName(
16 "${pkgName}.DirectoryFileTreeFactory"
17)
18 Class<?> fileTreeFactory = Class.forName(
19 "${pkgName}.DefaultDirectoryFileTreeFactory"
20)
21 if(params == [String,FileResolver,dftfInterface] as Class[]) {
22 return ctor.newInstance(name,fileResolver,fileTreeFactory.
23 newInstance())
24 }
25 } catch (ClassNotFoundException){}
26 null
27 }
28 }

 Line #8: Look for the pre-Gradle 2.12 constructor

 Line #9: Create a new instance of DefaultSourceDirectorySet.

 Line #11: If the alternative three parameter constructor from pre-Gradle 2.12 is found, ignore it.

 Line #17: Try to load the new DirectoryFileTreeFactory interface. If it is not found, then this is not a supported
 Gradle version. 2.0-2.11 is already covered by the previous two conditions, so this also acts as a safeguard
 to detect API changes beyond 2.12

 Line #20: Try to load the DefaultDirectoryFileTreeFactory implementation class .

 Line #21: Check whether there is a constructor which takes DirectoryFileTreeFactory as a parameter. It is
 important that the interface class is used and not the name of the implementation class.

 Line #23: Instantiate DefaultSourceDirectorySet using the new three parameter constructor, passing an
 instance of DefaultDirectoryFileTreeFactory.

 Line #25: The catch block is required to take care of the earlier Class.forName calls. The result is set to null
 as to indicate that no match was found.

Add the above code now ensure that the plugin can work across all of Gradle 2.0 - 4.10.3. In another API
breaking change occurs this code will result in a NPE being emitted. A plugin author might want to wrap the code up
into another exception that provides a more meaningful message.

There is also an alternative, potentially shorter and slightly more readable way that has been suggested by Lance Semmens.

 Alternative way of handling API change across multiple Gradle versions
 1 if(GradleVersion.current() < GradleVersion.version('2.12')) {
 2 DefaultSourceDirectorySet.getConstructor(String,FileResolver).
 3 newInstance(name,fileResolver)
 4 } else {
 5 final String pkgName = 'org.gradle.api.internal.file.collections'
 6 DefaultSourceDirectorySet.getConstructor(
 7 String,FileResolver,Class.forName(
 8 "${pkgName}.DirectoryFileTreeFactory"
 9)).newInstance(
10 name,
11 fileResolver,
12 Class.forName(
13 "${pkgName}.DefaultDirectoryFileTreeFactory"
14).newInstance()
15)
16 }

 Line #1: Use org.gradle.util.GradleVersion to determine the current Gradle version

 Line #3: If earlier than 2.12 just construct if via the old constructor interface, otherwise use a technique as described
 earlier.

References & Credits

 	Dinko Srkoč for suggesting the use of metaprogramming.

 	
Benjamin Muschko - How SourceSet concept is added.

 	
Lance Semmens for suggesting an alternative way of solving the Gradle 2.12 problem.

Create Safe Filenames From Inputs

Summary

In certain conditions it might be necessary to create file or path names from input data over which the plugin author
might not have control. Creating safe filenames in a portable manner can be erroneous and contain traps for the unwary
or inexperienced cross-platform developer.

Solution

Use the internal API org.gradle.internal.FileUtils.toSafeFileName utility function.

 As this is internal it might change in a future version, but at the time of writing it have been the same from
Gradle 2.0 - 2.12.

Examples

The Asciidoctor plugin produces outputs in different folders for each of the backends that it supports.
Should a new backend be added that may contain a character that is invalid on a specific operating system (for instance
a : on Windows), that will cause the plugin to fail. By passing the name through org.gradle.internal.FileUtils.toSafeFileName
an operating system-safe filename will be generated

 Using toSafeFileName
1 File backendDirname(final File baseDir, final String backend) {
2 new File(baseDir, org.gradle.internal.FileUtils.toSafeFileName(backend))
3 }

Self-referencing plugin

Summary

There are certain plugins that require themselve as part of the build. One common solution is to always use the previous
version of the plugin for the development of the new. Unfortunately there are cases where the build process relies on code
that exists only in the new (unreleased) plugin version.

Solution

Load the source code directly into the Gradle process via a GroovyScriptEngine instance. The tasks from the plugin
will be loaded in the same way as if the compiled plugin is loaded in another build script.

Examples

The Unofficial Bintray plugin for Gradle might need the latest functionality in the plugin in order to
publish a new version to Bintray. Apply this short code snippet into the build.gradle file to ensure that the plugin is
loaded directly from the source code instead of a built jar.

 Code snippet for build script
1 apply plugin: new GroovyScriptEngine(
2 ['src/main/groovy','src/main/resources'].
3 collect{ file(it).absolutePath }
4 .toArray(new String[2]),
5 project.class.classLoader
6).loadScriptByName('book/SelfReferencingPlugin.groovy')

 Line #2: Add each toplevel source folder that will be required to build the plugin

 Line #4: Set count to number of items in list defined above

 Line #6: Set relative path below source folders where plugin class is to be found.

The previous example works in most cases, but when certain Gradle APIs are used, they are found in JARs that are in the
libs/plugins folder of the Gradle distribution. In such a case a little bit more needs to be done.

 Code snippet for extending the classpath
 1 def pluginURLs = fileTree ("${gradle.gradleHomeDir}/lib/plugins") { include '*.jar' \
 2 } .files.collect {
 3 it.toURI().toURL()
 4 }
 5 def selfReferencingClassLoader = new URLClassLoader(
 6 pluginURLs.toArray(new URL[pluginURLs.size()]),
 7 project.gradle.class.classLoader as URLClassLoader
 8)
 9
10
11 apply plugin: new GroovyScriptEngine(
12 ['src/main/groovy','src/main/resources'].
13 collect{ file(it).absolutePath }.toArray(new String[2]),
14 selfReferencingClassLoader
15).loadScriptByName('book/SelfReferencingPlugin.groovy')

 Line #3: Add all of the JARs as URLs

 Line #7: The classloader used by the project instance is an extension of java.net.URLCLassLoader, so it is just a
 matter of creating another URLClassLoader instance, using the classloader from project as the parent and providing
 URLs to all of the additional URLs

 Line #13: Just pass the new classloader here instead of the one from project.

Caveats

This wonderful trick only works if the referenced plugin class actually compiles. If it does not, then compilation of the
build script will fail and the plugin author will be no-man’s land. The recommendation is to wrap the self-referencing code
in a conditional block that can be turned off via a command-line property:

 Build script safeguard for self-referencing plugins
1 if(!project.properties.DISABLE_GRADLETEST) {
2 /* Self-referencing code mentioned earlier go here */
3 }

 Line #1: Fix a temporary problem by adding -PDISABLE_GRADLETEST to the command-line when building.

References

 	Original idea from Knut Saua Mathiesen

Bibliography

Discussion Forums

[[GHale1]] Gary Hale. Dynamic dependency version for plugin

[[MErdmann1]] Marcin Erdmann. Generate a Java file and include it in the Sourceset of compilation

[[PNiederwieser1]] Peter Niederwieser. Controlling conflicting versions of Groovy

[[SGreene1]] Stirling Greene. A comment on defaultDependencies

[[CChampeau1]] Cedric Champeau. Groovy Version

[[BMuschko2]] Benjamin Muschko. How to add a sourceSet without using any plugins

[[AOberstar1]] Andrew Oberstar. Custom task with fields - assign directly or via conventionmapping

[[LanceJava1]] Lance Semmens. DefaultSourceDirectorySet alternative

Software

[[AsciidoctorProject]] Asciidoctor Github Organisation. Asciidoctor Project

[[AsciidoctorJ]] Asciidoctor Github Organisation. Asciidoctorj Project

[[AsciidoctorGradle]] Asciidoctor Github Organisation. Asciidoctor Gradle Plugin

[[JRubyGradle]] JRuby-Gradle Github Organisation. JRuby Gradle Plugin

[[MSBuild]] Microsoft, MSBuild on Github

[[XBuild]] Mono Project. XBuild

[[Spock]] Peter Niederwieser. Spock Framework 1.0

[[DoxygenGradle]] Schalk Cronjé. Doxygen Gradle Plugin

[[GradleTest]] Schalk Cronjé. GradleTest Gradle Plugin

[[GroovyVfs]] Schalk Cronjé. Groovy VFS Gradle Plugin

[[BintrayGradle]] Schalk Cronjé. Unofficial Bintray Gradle Plugin

[[GnuMake]] Schalk Cronjé. GNU Make Gradle Plugin

Other

[[Aalmiray1]] Griffon Github Organisation, ‘Griffon Project’. Code snippet

[[GradleDocs1]] Gradleware Inc. Gradle 2.0 User Guide. Writing Custom Plugins

[[GradleDocs2]] Gradleware Inc. Gradle 2.9 Release Notes. Improvements to the incubating model infrastructure

[[GradleDocs3]] Gradleware Inc. Gradle 2.10 Release Notes. DSL improvements for the Software Model

[[GradleDocs4]] Gradleware Inc. Gradle 2.11 Release Notes. Better support for developing plugins with the software model

[[GradleDocs5]] Gradleware Inc. Gradle 2.12 Release Notes. Experimental software model improvements

[[GradleDocsWrapper]] Gradleware Inc. Gradle 2.0 User Guide. Gradle Wrapper

[[GradleTestKit]] Gradleware Inc. Gradle 2.7 User Guide. Gradle TestKit

[[GradleWrapperBug]] Gradleware Inc. Gradle 2.7 Release Notes. Gradle 2.6 Wrapper Bug

[[KHenney1]] Kevlin Henney, The Programmer

[[KMathiesen1]] Knut Saua Mathiesen. Gist

[[BMuschko1]] Benjamin Muschko. Gradle Plugin Best Practices by Example

[[ELezmy]] Eyal Lezmy. Gradle Plugin. Take control of the build. Presentation at Devoxx Belgium 12 November 2015.

OEBPS/images/leanpub_comments.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
2
T
2
o
H
-
s
2
§
n

