|

il
(i 11//';[]

ol e

background-size: 50%; background-size: 50% 50%;
(X-azis) (X-azis) (Y-azis)

Figure 57: background-size can optionally take x-azis and y-axis parameters
separated by space character.

69

A

background-size: cover; background-size: contain;

Figure 58: cover and contain.

Figure 59: By combining background-repeat: no-repeat; with
background-size: 1007 it is possible to stretch the image only horizontally,
across the entire width of the element.

What if you want to repeat background vertically but keep it stretched across
the width? No problem, simply remove no-repeat from previous example.
This is what you will end up with:

70

Figure 60: This is really useful if you need to blow up a large image across the
screen without sacrificing vertical repeat.

Sometimes it is needed to stretch the image across to fit the bounding box of
an element. This often comes at a price of some distortion, however:

Figure 61: background-size: 100% 100%

Note here, 100% 100% is repeated twice. The first value tells CSS to ”stretch
the image vertically”, the second 100% does the same horizontally. In HTML,
whenever you need to specify multiple values, they are often separated by a
space. Vertical coordinates always come first.

71

6.1.3 object-fit: fill-—cover —contain—none

Cover and contain values from previous section can also be used on HTML el-
ements such as images, videos and similar media. In this case, when cover and
contain are used with object-fit CSS property, behavior of these elements
follows rules demonstrated in the diagrams below:

overflow: visible

contain

overflow: hidden

none

Figure 62: f£ill, cover, contain and none produce similar results to
background-size property, except they work on HTML media elements, rather
than background images.

72

6.1.4 background-position

Figure 63: Center on the screen without repeat can be achieved by combin-
ing background-repeat: no-repeat and background-position: center
center;

In another scenario you can force the image to be always in the center and
keep the repeat:

Figure 64: background-position: center center; with
background-repeat: repeat;

73

6.1.5 repeat-x

You can repeat the image across the x-axis only (horizontally) using repeat-x:

Figure 65: CSS style: background-position: center center;
background-repeat: repeat-x;

6.1.6 repeat-y

To the same effect but on the y-axis repeat-y property can be used:

Figure 66: The background-repeat property set to repeat-y

74

Like any other CSS property, you have to juggle around the values to achieve
the results you want. I think we covered pretty much everything there is about
backgrounds. Except one last thing...

6.1.7 Multiple Backgrounds

It is possible to add more than one background to the same HTML element.
The process is rather simple.

Consider these images stored in two separate files:

tmagel.png image2.png

Figure 67: Two images that will be used for creating multiple backgrounds.

The chessboard pattern in the image on the right is only used to indicate
transparency here. The white and grayish squares are not an actual part of
the image itself. This is the "see-through” area, which you would usually see
in digital manipulation software.

When the image on the right is placed on top of other HTML elements or
images, the checkered area will not block that content underneath. And this
is the whole idea behind multiple backgrounds in HTML.

5

6.1.8 Image Transparency

To fully take advantage of multiple backgrounds, one of the background images
should have a transparent area. But how do we create one?

In this example, the second image (image2.png) contains 5 black dots on a
transparent background (indicated by a checkered pattern.)

-’/ Eraser Tool 3

n :‘;lf/ Background Eraser Tool E

-*.J;r Magic Eraser Tool k E

Figure 68: To create images with transparent backgrounds, tools such as Pho-
toshop can be used. Just select the Magic Eraser tool from the toolbox.

Like many other CSS properties that accept multiple values — all you have
to do — to set up multiple backgrounds is to provide a set of values to the
background property separated by comma.

6.1.9 Specifying multiple background images

To assign multiple (layered) background images to the same HTML element,
the following CSS can be used:

body { background: url(’image2.png’), url(’imagel.png’);

}

76

The order in which you supply images to the background’s url property is
important. Note that the top-most image is always listed first. This is why
we start with tmage2.png

This code produces the following result:

Figure 69: Multiple background in use. Here image?2.png is superimposed on
top of imagel.png.

In this example we demonstrated multiple backgrounds in theory on a subjec-
tive <div> (or similar) element with square dimensions. Let’s take a look at
another example:

7

buppy.png pattern.png

Figure 70: A puppy and a linoleum-like pattern.

Note here again, that the puppy.png image will be the first item on the comma-
separated list. This is the image we want to superimpose on top of all of the
other images on the list.

Combining the two:

body { background: url(’puppy.png’), url(’pattern.png’);

}

We get the following result:

78

Figure 71: Multiple backgrounds.

6.1.10 Other background properties that take comma-separated
lists

In the same way, you can supply other parameters to each individual back-
ground, using the other background properties demonstrated below:

background
background—attachment
background—clip
background—image
background—origin
background—position
background—repeat
background—size

The following property cannot be used with a list, for obvious reasons:

background—color

79

6.2 Images As HTML Elements

When I started working with HTML images, for some reason I always thought
that they were completely separate entities from your standard HTML ele-
ments such as <div> for example. Perhaps this is because images by nature
are so much more impressive than text content.

The Morris Marina is a car that was manufactured by Austin-Morris division
of British Leyland from 1971 until 1980.

Figure 72: A simple image
specimen that we will use to demonstrate working with images in HTML in
this chapter.

I was wrong. The image element in HTML that can be used as <image> or
 is just like any other HTML element. The only difference is the content
area, which now contains an image, instead of text.

To prove that, here is an image with border, padding and margin set to some
arbitrary values:

81

Figure 73: An image is just like any other blocking element containing border,
padding, and margin. To be precise, an image is actually an inline and blocking
element at the same time. In other words display: inline-block.

If you set any HTML element’s display property to inline-block that ele-
ment will behave exactly like an HTML image, even if it contains some other
type of content inside.

One of the most common placement for images is in the middle of the page.

i T
gy

margin: auto margin: auto

Figure 74: An image with img {margin: auto} margin set to auto.

Automatic margins will ensure that the image is aligned to the center of the
page, and if there is any text surrounding the image it will appear above or

82

below it, based on where it is located in your HTML document.

200pz

100pz

margin: 100pz 200pz

Figure 75: Margin property can be used to position an image within its parent.

The example above assumes that the image’s display property is set to block
and its position is set to relative.

Image margins are often used to bump text away from the image to create
more white space, making the surrounding text easier to read.

But images can be also positioned using display: block and position:
absolute combo. You just need to provide additional values for top and left
properties to define its precise location on the screen relative to its parent
element.

The above example can be interpreted as though the image’s top/left proper-
ties were set to top: 100px and left: 200px to position it within parent
element at exactly the same spot without having to do it via the margin prop-
erty. Which is often the preferred way of doing it.

Note: In order for any HT'ML element to be accurately positioned within its
parent container element using absolute pixel location the parent element is
required to set its display property to a value of either absolute or relative.
If you fail to do this, the behavior of the child element is unpredictable. But
it will be most likely positioned relative to the root parent element such as
<body>.

83

11 Chapter XII: HTML Elements — Common
Properties

Every HTML element, blocking or inline has structural composition that may
not be obvious at first — because all properties that deal with size are set to 0
by default.

11.0.1 Anatomy of HTML Elements

In reality, an HTML element consists of content area, padding, a border and a
margin.

margin

padding
%ontent here

Figure 118: HTML Element Anatomy — structural composition of an HTML
element.

Note that the X and Y location of an element (determined by top and left
CSS properties) refers to the upper left corner of the content area when
padding, border and margin are set to 0.

Changing padding, border or margin to something greater than its default
value of 0 will not automatically change neither its location nor its dimensions

139

(top and left, width and height values of the element.) even though the
element will noticeably be located at a different location on the screen.

How can we then determine the actual width and height of the element in these
cases? You can use JavaScript library such as jQuery that provides methods

that calculate these values for you. But this is outside of the scope of this
book.

Increasing padding value to the element will increase its blocking width, but
not the width of its content area. So at times it’s difficult to determine as to
what should be the element’s actual width.

%ontent here

height

width

width

Figure 119:

However, you can retain the padding and suppress this from happening by
setting your element’s box-sizing property to a value of border-box:

140

N

Content goes here

width

Figure 120: box-sizing: border-box;
Notice that the padding now occupies the inner area of the element. Now
width and height of the element are their original values, and the content is
still padded within the element.

Another common thing to do to HTML elements is to max out their rounded
corners properties to create a circle using border-radius property:

Figure 121: border-radius: 500px; (or set it to actual width of the square
element)

141

To expand on the previous example, a shadow can be added to create an even
more dramatic effect:

Figure 122: box-shadow: 0 0 10px #0000

The values of the box-shadow property are explained below:

top offset left offset size color
s st Do

Figure 123: Four values supplied to box-shadow property separated by space.
Here color black (hezadecimal #000) is used to provide the base shadow color.

These techniques are often used for decorating HTML buttons:

(Subscribe)

Figure 124: Rounded corners and a shadow used to create a Subscribe button
with centered text.

Box shadow can be used in creative ways to add double (or even triple) border
effect.

142

11.0.2 Visibility

Visibility of an HTML element is controlled by visibility property.

Possible values are visible (default) and hidden.

abc d C

Figure 126: Left: Three elements with visibility:visible (default).
Right: The same three elements, with element b’s visibility set to hidden.

Setting visibility property to hidden doesn’t actually remove the element from
the document. The browser simply skips drawing it. But structurally, it is
still part of the document:

144

11.0.3 Positioning

It is very common to want to position an element exactly at the middle of the
screen. This technique is often used to create the main container for the entire
website. It’s convenient because even if the browser is resized, the element
remains automatically aligned to the center.

One way of accomplishing that would be to simply add automatic margins to
an HTML element whose display property is set to block:

margin-top can be specified separately

display: block

margin: auto

Align an element to the center of the screen using automatic margins

Figure 127: display: block; margin: auto; width: 500px;

To place an element at an exact location, relative to its parent element position:
absolute property can be used. It also requires supplying display: block
and the actual placement in pixels using top and left properties:

145

Parent container

must be set to

top: 85px
one of the two:

left:100px

position: relative;
position: absolute,

height: 200px

width: 500px

Using absolute placement with position:absolute property

Figure 128: display:block; position:absolute; top:85px;
left:100px; width:500px; height:200px;

One of my favorite features of CSS when it comes to absolute positioning of
elements is the ability to define the origin of location, based on any of the four

corners of an element.

This is useful when you want to create a placeholder for pop-up notification
messages that can potentially appear in any corner of the screen:

Ja R\ /AR
> %
top: 0 /D top: 0
X left: 0 N | right: 0
o or...
N |
-
I top: 20px | bottom: 20px
= left: 160px right: 160px
° |
[J]
= bottom: 0 | N bottom: 0
left: O N right: 0
N /ARy
N width = 500px N

Figure 129: You can use left, right, top and bottom properties to change
origin of location. But you cannot use left together with right, or top
together with bottom on the same element... for obvious reasons.

146

Relative to parent ({ display: block;

position: absolute;
top: 2px;
1 Yy left: 10px } Absolute element position.

>

The property position: absolute is often set together
1] ere with display: block It wouldn’t make much sense to
- display text at an “absolute” position within its parent
’ ll using inline or inline-block style.
display: block; e 0

position: absolute;
top: 18pz; left: 3px }

Figure 130: Absolute position applied to HTML elements containing text.

To fix your element on the screen relative to the browser view (regardless if
the horizontal scroll bar changes location) is often used for creating ”overlay”
effect. The idea behind it is simple:

position: fixed; blocking out underlying content

display: block;
position: fixed;
top: 16px;
left: 16px;
width: 50%;
height: 100%;

Figure 131: display:block; position:fixed; top:16px; left:16px;
width:50%; height:100%;

Elements "fixed” to the screen can be used to ”gray out” the background when
you need to display a custom modal dialog box as depicted on the following
diagram:

147

Type your message here

280 characters left

Figure 132: When you post a tweet, the background is shaded out by a full
screen element with 50% opacity. The primary user interface controls are then
displayed on top of that layer.

11.0.4 Floating Elements

Elements that use relative and absolute position are great for making our life
easier when creating various layouts. But there comes a time when you need to
"float” an element to make room for other content. Floating elements usually
shift to either left or right side, opening up more room for elements specified
right after them in your HTML code.

floating elements align naturally along the row, producing a gap between

float: left float: left float: right

Figure 133: Two elements with float:1left behave similar to standard inline
text. Another element with float:right was added here to demonstrate
that content doesn’t have to leave the same horizontal area, at the expense of
creating a gap if the combined width of all floating elements is shorter than
the parent.

148

11.1 Element Modifications

11.1.1 Rounded Corners

Creating rounded corners by changing border-radius property

border-radius: 0 border-radius: 8px border-radius: 32px border-radius: 100px

Figure 136: Round corners in a nutshell.

Rounded corners are used to create buttons:

Creating a custom button

Sign Up Sign Up

Default style On mouse hover style

Figure 137: Buttons with rounded corners.

11.1.2 Z-Index

Let’s say we mastered HTML element placement on the screen in two dimen-
sions (X and Y.) Still you will encounter cases where you need to pick out
some elements to appear “on top” of the others. Even if this isn’t how they
were listed in your HT'ML code structure.

The z-index property to the rescue. You can bring out any element whose
display property was set to value of absolute and ensure that it is always

150

displayed "above” the rest. In other words, on the Z-axis.

Figure 138: Natural order of elements in HTML document.

Figure 139: The z-index property can bring out elements to the front.

11.1.3 box-shadow

We already covered box shadow earlier. But here are a few more examples.

box-shadow: 0 0 10px #000

Figure 140: Shadow is centered at the element.

151

box-shadow: 5px 5px 10px #000

Figure 141: Shadow is displaced by a few pixels from the element to create a
drop-shadow effect.

And finally... by specifying light colors you can turn a shadow into this glowing

effect:
box-shadow: 0 0 10px #FFF

Figure 142: Glowing effect can be simulated by using bright colors with
box-shadow property.

152

14.1 Clock

By the end of this section we will create this simple clock:

Figure 166: The notches and clock hands are actually HTML elements posi-
tioned using combination of techniques covered in this book.

No images were used in creation of this clock. Everything is a DIV element.
Here is the same clock with border: 1px solid black; and background:
white; properties that expose its wireframe structure:

Figure 167: Wireframe view of the HTML clock showing transparent elements.

190

14.2 Calculator

In our previous example we created an animated clock. But it’s not really
an interactive application. Meaning, it does not offer the visitor a chance to
interact with it or take some sort of input.

In this chapter, let’s create another simple application that takes basic input
from the user. This calculator application should be interesting-enough to
demonstrate user input without having to deal with too much complexity.

First, let’s take a look at what we're actually trying to build here:

100+25
10
C % /
7 *
4 -
1 2 +
: o

Figure 168: Calculator application we will build in this section of the book.
Let’s begin by building out the HTML scaffold!

14.2.1 HTML — Application Scaffold

The HTML here is the simplest part of the entire application. We just need
to add the view and some buttons. Note that no id’s are necessary for most of
the buttons. This is because our JavaScript code will read the values directly
from the element’s content from the event.target object via the onClick

event.

197

