

How do | use the template package and handle forms?

Satish Talim

This book is for sale at http://leanpub.com/howtousethetemplatepackageandhandleforms

This version was published on 2015-04-05
Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

©MOoM

This work is licensed under a Creative Commons Attribution 3.0 Unported License

http://leanpub.com/howtousethetemplatepackageandhandleforms
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

Also By Satish Talim

How Do I Write And Deploy Simple Web Apps With Go?
Building a package in Go

How do I use Sourcegraph with Go?

How do I use Sourcegraph with Ruby?

How to Deploy a Go Web App to the Google App Engine 101
How to Deploy a Go Web App to Heroku 101

http://leanpub.com/u/satishtalim
http://leanpub.com/howdoibuildawebappwithgo
http://leanpub.com/buildingapackageingo
http://leanpub.com/howdoiusesourcegraph
http://leanpub.com/howdoiusesourcegraphwithruby
http://leanpub.com/howtodeployagowebapptothegoogleappengine101
http://leanpub.com/howtodeployagowebapptoheroku101

New to Go? Want to know how to use the template package and handle forms? This eBook quickly guides you
to do exactly that.

Contents

Package template 1
text/template L
AStatic Site with Go L 9
html/template 13
Handling Forms L 18

Web app stringupper e 18

Package template

text/template

Usage: import "text/template"”

Most server-side languages have a mechanism for taking predominantly static pages and inserting a
dynamically generated component, such as a list of items. Typical examples are scripts in Java Server Pages,
PHP scripting and many others. Go has adopted a relatively simple scripting language in the template’
package.

The package is designed to take text as input and output different text, based on transforming the original
text using the values of an object.

To generate HTML output, we shall soon use package html/template, which has the same interface as this
package but automatically secures HTML output against certain attacks.

The original source is called a template and will consist of text that is transmitted unchanged, and embedded
commands which can act on and change text. The commands are delimited by {{ ... }}, similar to the JSP
commands <%= ... =%> and PHPs <?php ... ?>.

A template is applied to a Go object. Fields from that Go object can be inserted into the template, and you can
“dig” into the object to find sub-fields, etc. The current object is represented as ., so that to insert the value
of the current object as a string, you use {{.}}. The package uses the fmt package by default to work out the
string used as inserted values.

To insert the value of a field of the current object, you use the field name prefixed by .. For example, if the
object is of type:

type Student struct {
Name string

then you insert the values of Name by The name is {{.Name}}.

Thus, templates are a way to merge generic text with more specific text i.e. retain the content that is common
in the template and then substitute the specific content as required.

The syntax of such definitions is to surround each template declaration with a “define” and “end” action.

The define action names the template being created by providing a string constant. Here is a simple example:

*http://golang.org/pkg/text/template

http://golang.org/pkg/text/template
http://golang.org/pkg/text/template

B W N =

Package template 2

{{define "T1"}}ONE{{end}}

{{define "T2"}}TWO{{end}}

{{define "T3"}}{{template "T1"}} {{template "T2"}}{{end}}
{{template "T3"}}

This defines two templates, T1 and T2, and a third T3 that invokes the other two when it is executed. Finally
it invokes T3. If executed this template will produce the text

ONE TWO

In Go, we use the template package and methods like Parse, ParseFile, Execute to load a template from a
string or file and then perform the merge. The content to merge is within a defined type and that has exported
fields, i.e. fields within the struct that are used within the template have to start with a capital letter.

Let us look at a simple example.

Make a new folder and cd to it as follows:

$ mkdir $GOPATH/src/github.com/SatishTalim/texttmpl
$ cd $GOPATH/src/github.com/SatishTalim/texttmpl

In this folder write the program stud_struct.go as follows:

00 I O O B W N =~

W W W W W WNDNDDNDDDDNDDNDDNDDNNDN®S=S~A 2~ 2~ 2~ 2 & &
O b 0N~ O O 00 O O kb WONPO O 03O0 G dx w4~ oo ©

Package template

Program stud_struct.go

package main

import (
"log"
P
"text/template”
)

type Student struct {
//exported field since it begins
//with a capital letter
Name string

func main() {

//define an instance
s := Student{"Satish"}

//create a new template with some name

tmpl := template.New("test")
//parse some content and generate a template
tmpl, err := tmpl.Parse("Hello {{.Name}}!")
if err != nil {

log.Fatal("Parse: ", err)

return
}
//merge template 'tmpl' with content of 's'
errl := tmpl.Execute(os.Stdout, s)
if errd != nil {

log.Fatal("Execute: ", err1l)

return
}

Package template 4

You can now run the program by typing:
$ go run stud_struct.go

The output is:

Hello Satish!

Note:

« New allocates a new template with the given name.

« Parse parses a string into a template.

+ To include the content of a field within a template, enclose it within curly braces and add a dot at the
beginning. E.g. if Name is a field within a struct and its value needs to be substituted while merging,
then include the text {{.Name}} in the template. Do remember that the field name has to be present
and it should also be exported (i.e. it should begin with a capital letter in the type definition), or there
could be errors. All text outside {{.Name}} is copied to the output unchanged.

+ We have used the predefined variable os.Stdout which refers to the standard output to print out the
merged data - os.Stdout implements io.Writer.

« Execute applies a parsed template to the specified data object, and writes the output to os. Stdout.

Pipelines

A pipeline may be “chained” by separating a sequence of commands with pipeline characters ' | . In a chained
pipeline, the result of each command is passed as the last argument of the following command. The output of
the final command in the pipeline is the value of the pipeline.

The output of a command will be either one value or two values, the second of which has type error. If that
second value is present and evaluates to non-nil, execution terminates and the error is returned to the caller
of Execute.

Let us look at an example.

Make a new folder and cd to it as follows:

$ mkdir $GOPATH/src/github.com/SatishTalim/person
$ cd $GOPATH/src/github.com/SatishTalim/person

In this folder write the program person.go as follows:

O 00 = O O » W N =~

W W W W W W W wwWwhDNDDNDDDNDNDDNDDNDDNDDN-S - » = 2 2
O 00 9 O O b WO NP~ O O 03O0 O d WO O WO U0 v wdh =~ 0o

Package template

Program person.go

package main

import (
"log"
"ogh
"text/template”
)

type Person struct {
Name string
Emails []string

const tmpl = “The name is {{.Name}}.
{{range .Emails}}

His email id is {{.}}
{{end}}

func main() {
person := Person{
Name: "Satish",
Emails: []string{"satish@rubylearning.org", "satishtalim@gmail.com"},

t := template.New("Person template")

t, err := t.Parse(tmpl)
if err != nil {

log.Fatal("Parse: ", err)

return

err = t.Execute(os.Stdout, person)
if err != nil {
log.Fatal("Execute: ", err)
return

You can now run the program by typing:

g s W N =

B W N -

Package template 6

$ go run person.go
The output is:

The name is Satish.
His email id is satish@rubylearning.org

His email id is satishtalim@gmail.com

In the above program we have {{range .Emails}}. With range the current object . is set to the successive
elements of the array or slice Emails.

Variables

The template package allows you to define and use variables. In the above example, how would we print each
person’s email address prefixed by their name? Let’s modify the above program.

In the code snippet:

{{range .Emails}}
{{.1}
{{end}}

We cannot access the Name field as . is now traversing the array elements and the Name is outside of this scope.
The solution is to save the value of the Name field in a variable that can be accessed anywhere in its scope.
Variables in templates are prefixed by $. So we write:

{{$name := .Name}}
{{range .Emails}}
Name is {{$name}}, email is {{.}}

{{end}}

The modified program, named new_person.go is:

O 00 = O O » W N =~

W W W W W W W wwWwhDNDDNDDDNDNDDNDDNDDNDDN-S - » = 2 2
O 00 9 O O b WO NP~ O O 03O0 O d WO O WO U0 v wdh =~ 0o

Package template

Program new_person.go

package main

import (
"log"
P
"text/template”
)

type Person struct {
Name string
Emails []string

const tmpl = “{{$name := .Name}}
{{range .Emails}}
Name is {{$name}}, email is {{.}}

{{end}}

func main() {
person := Person{
Name: "Satish",

Emails: []string{"satish@rubylearning.org", "satishtalim@gmail.com"},

t := template.New("Person template")

t, err := t.Parse(tmpl)
if err != nil {

log.Fatal("Parse: ", err)

return

err = t.Execute(os.Stdout, person)
if err != nil {
log.Fatal("Execute: ", err)
return

Package template 8

You can now run the program by typing:
$ go run new_person.go
The output is:

Name is Satish, email is satish@rubylearning.org

Name is Satish, email is satishtalim@gmail.com

The Go template package is useful for certain kinds of text transformations involving inserting values of
objects. It does not have the power of, say, regular expressions, but is faster and in many cases will be easier
to use than regular expressions.

© 00 9 O O P+ W N =

B R R s
O O & W N~ O

Package template 9

A Static Site with Go

Let’s build a web app in Go to display a static site, which we call “Dosa Diner”.

Dosa is a fermented crepe or pancake made from rice batter and black lentils. This staple dish is widely popular
in all southern Indian states Karnataka, Andhra Pradesh, Tamil Nadu and Kerala, as well as being popular in
other countries like Sri Lanka, Malaysia and Singapore.

Start by creating the folders to hold the project:

DosaSite folder structure

c:\go_projects
\---go
\---src
\---github.com
\---SatishTalim
\---dosasite
| dosasite.go
I
\---public
| index.html
|
+---images
| dosa. jpg
|
\---stylesheets
dosasite.css

We will write our Go code in the file dosasite.go and some sample HTML and CSS files in a public folder.

o 1 O O b W N~

NN NN NN R R Rl
O O D WN P, O O W IO 0 WN~»r O O

Package template 10

File index.html

<IDOCTYPE html>
<html>

<head>

<title>Dosa Diner</title>

<meta charset="utf-8">

<link rel="stylesheet" href="stylesheets/dosasite.css">
</head>

<body>
<h1>Dosa Diner</hi>

<h2>The Restaurant</h2>
<p>The Dosa Diner offers casual lunch and dinner fare in a hip atmosphere.
The menu changes regularly to highlight the freshest ingredients.</p>

<h2>Catering Services</h2>
<p>You have fun... we'll do the cooking. Dosa Diner Catering can handle events
from snacks for bridge club to elegant corporate fundraisers.</p>

<h2>Location and Hours</h2>

<p>Deccan Corner in Pune, India;

Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to midnight.</p>
</body>

</html>

O 00 = O O » W N =~

I S S Y
O B W N =~ O

Package template

File dosasite.css

11

body {
background-color: #C2ATF2;
font-family: sans-serif;
}
htl {
color: #2A1959;
border-bottom: 2px solid #2A1959;
}
h2 {
color: #474B94;
font-size: 1.2em;

}

h2, p {
margin-left: 120px;

}

Once the above files are created, the code we need to get up and running is quite compact:

0 I O O b W N =

W WM NDDNDNDDNDDNDDNDNDNDND A R R 1 1 L L sy
~ O © 0 N O U b WN -~ O O W10 U b WD~ O ©

Package template 12

Program dosasite.go

package main

import (
"fmt"
"log"
"net/http"
"os"

)

func main() {
fs := http.FileServer(http.Dir("public"))
http.Handle("/", fs)

fmt.Println("Listening...")
err := http.ListenAndServe(GetPort(), nil)

if err !'= nil {
log.Fatal("ListenAndServe: ", err)
return

}

// Get the Port from the environment so we can run on Heroku (more of this later)
func GetPort() string {

var port = os.Getenv("PORT")

// Set a default port if there is nothing in the environment

if port == "" {

port = "4747T"

fmt.Println("INFO: No PORT environment variable detected, defaulting to " + port)
}
return ":" + port

+ like all Go programs that need to be executed, our program has a package main.

« we import the fmt* and net/http® packages from the Go standard library.

« to work with some printing functions, we import the package fmt.

« for web related http functionality, we import the package http. Any functions within that we refer as
http. function_name.

« we use the FileServer* function to create a handler that responds to HTTP requests with the contents
of a given FileSystem®.

*http://golang.org/pkg/fmt/
*http://golang.org/pkg/net/http/
“http://golang.org/pkg/net/http/#FileServer
*http://golang.org/pkg/net/http/#FileSystem

http://golang.org/pkg/fmt/
http://golang.org/pkg/net/http/
http://golang.org/pkg/net/http/#FileServer
http://golang.org/pkg/net/http/#FileSystem
http://golang.org/pkg/fmt/
http://golang.org/pkg/net/http/
http://golang.org/pkg/net/http/#FileServer
http://golang.org/pkg/net/http/#FileSystem

Package template 13

« we use the operating system’s file system implementation by http.Dir

« we've used the public folder relative to our application, but you could use any other folder on your
system (or indeed anything that implements the FileSystem interface).

« we use the Handle® function to register it as the handler for all requests, and launch the server listening
on port 4747.

Now you can run program with the go tool:

$ cd $GOPATH/src/github.com/SatishTalim/dosasite
$ go run dosasite.go

Now open http://localhost:4747/index.html” in your browser. You should see the HTML page we have made.

DosaSite

html/template

Usage: import "html/template”

Package template html/template® implements data-driven templates for generating HTML output safe against
code injection. It provides the same interface as package text/template and should be used instead of
text/template whenever the output is HTML.

Modify dosasite.go to use templates

Previously we had written the program dosasite.go where in the program, all requests are being handled by
our file server. Let’s make a slight adjustment so that it only handles request paths that begin with the pattern
/public/ instead.

“http://golang.org/pkg/net/http/#Handle
"http://localhost:4747/index.html
®http://golang.org/pkg/html/template/

http://golang.org/pkg/net/http/#Handle
http://localhost:4747/index.html
http://golang.org/pkg/html/template/
http://golang.org/pkg/net/http/#Handle
http://localhost:4747/index.html
http://golang.org/pkg/html/template/

B W N =

© 00 9 O O P+ W N =

N = S S Y
0 N O O b 0N~

Package template 14

fs := http.FileServer(http.Dir("public"))
http.Handle("/public/", http.StripPrefix("/public/", fs))

The function StripPrefix’ returns a handler that serves HTTP requests by removing the given prefix from the
request URL’s Path and invoking the handler fs. StripPrefix handles a request for a path that doesn’t begin
with prefix by replying with an HTTP 404 not found error.

Now you can run program with the go tool:

$ cd $GOPATH/src/github.com/SatishTalim/dosasite
$ go run dosasite.go

Now open http://localhost:4747/public/index.html* in your browser. You should see the HTML page we have
made.

Next, create a templates folder as shown below, containing a layout.html file with shared markup, and an
indexnew.html file with some page-specific content.

DosaSite modified folder structure

c:\go_projects
\---go
\---src
\---github.com
\---SatishTalim
\---dosasite
| dosasite.go
I
\---public
I |
| +---images
| | dosa. jpg
| |
| \---stylesheets
| dosasite.css
\---templates
indexnew.html
layout.html

°http://golang.org/pkg/net/http/#StripPrefix
1%http://localhost:4747/public/index.html

http://golang.org/pkg/net/http/#StripPrefix
http://localhost:4747/public/index.html
http://golang.org/pkg/net/http/#StripPrefix
http://localhost:4747/public/index.html

0 N O O & W N =

I = U SN
W N O O

0 N O O B W N =

I S
O O b N O

Package template 15

Program layout.html

{{define "layout"}}
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>{{template "title"}}</title>
<link rel="stylesheet" href="/public/stylesheets/dosasite.css">
</head>

<body>
{{template "body"}}
</body>
</html>
{{end}}

Program indexnew.html

{{define "title"}}Dosa Diner{{end}}

{{define "body"}}
<h1>Dosa Diner</hi>

<h2>The Restaurant</h2>
<p>The Dosa Diner offers casual lunch and dinner fare in a hip atmosphere.
The menu changes regularly to highlight the freshest ingredients.</p>

<h2>Catering Services</h2>
<p>You have fun... we'll do the cooking. Dosa Diner Catering can handle events
from snacks for bridge club to elegant corporate fundraisers.</p>

<h2>Location and Hours</h2>

<p>Deccan Corner in Pune, India;

Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to midnight.</p>
{{end}}

Go templates, as discussed before, are essentially just named text blocks surrounded by {{define}} and
{{end}} tags. Templates can be embedded into each other, as we do above where the layout template embeds
both the title and body templates.

O 00 9 O U b W N =

AR R W W W W W WWWWNDNDNDNDDNDNDNNDNDND S s s s s
N~ O O 000 ®N RSO O 000 WONRE® O Wm0 0 d W~

Package template 16

The modified dosasite.go program is:

Program dosasite.go

package main

import (
" fmt"
"html/template”
"log"
"net/http"

n n

os
"path"

func main() {
fs := http.FileServer(http.Dir("public"))
http.Handle("/public/", http.StripPrefix("/public/", fs))

http.HandleFunc("/", ServeTemplate)

fmt.Println("Listening...")
err := http.ListenAndServe(GetPort(), nil)
if err != nil {

log.Fatal("ListenAndServe: ", err)

return

// Get the Port from the environment so we can run on Heroku
func GetPort() string {
var port = os.Getenv("PORT")

// Set a default port if there is nothing in the environment

if port == "" {

port = "4747"

fmt .Println("INFO: No PORT environment variable detected, defaulting to " + port)
}
return ":" + port

func ServeTemplate(w http.ResponseWriter, r *http.Request) {
1p := path.Join("templates", "layout.html™")
fp := path.Join("templates", r.URL.Path)

// Return a 404 if the template doesn't exist
info, err := os.Stat(fp)

43
44
45
46
47
48
49
50
o1
52
53
o4
55
56
o7
58
99
60
61
62
63
64

Package template 17

if err !'= nil {
if os.IsNotExist(err) {
http.NotFound(w, r)
return

// Return a 404 if the request is for a directory
if info.IsDir() {
http.NotFound(w, 1)

return
}
templates, _ := template.ParseFiles(lp, fp)
if err !'= nil {
fmt.Println(err)
http.Error(w, "500 Internal Server Error", 500)
return
}

templates.ExecuteTemplate(w, "layout", nil)

In the above program, we’ve added the html/template and path packages to the import statement.

We’ve then specified that all the requests not picked up by the static file server should be handled with a new
ServeTemplate function.

In the ServeTemplate function, we build paths to the layout file and the template file corresponding with the
request. Rather than manual concatenation we use Join!, which has the advantage of cleaning the path to
help prevent directory traversal attacks.

We then use the ParseFiles' function to bundle the requested template and layout into a template set. Finally,
we use the ExecuteTemplate'® function to render a named template in the set, in our case the layout template.

Our code also has some error handling:

« Send a 404 response if the requested template doesn’t exist.
« Send a 404 response if the requested template path is a directory.
« Send and print a 500 response if the template.ParseFiles function throws an error.

Special thanks to Alex Edwards whose article™ has been adapted for this topic.

http://golang.org/pkg/path/#Join
“http://golang.org/pkg/text/template/#Template.ParseFiles
Phttp://golang.org/pkg/text/template/#Template.Execute Template
Yhttp://www.alexedwards.net/blog/serving-static-sites- with-go

http://golang.org/pkg/path/#Join
http://golang.org/pkg/text/template/#Template.ParseFiles
http://golang.org/pkg/text/template/#Template.ExecuteTemplate
http://www.alexedwards.net/blog/serving-static-sites-with-go
http://golang.org/pkg/path/#Join
http://golang.org/pkg/text/template/#Template.ParseFiles
http://golang.org/pkg/text/template/#Template.ExecuteTemplate
http://www.alexedwards.net/blog/serving-static-sites-with-go

© 0 9 O O P+ W N =

e
(]

Package template 18

Handling Forms

If we want users to be able to post their own messages on a webpage, we need a way to process this information
submitted by the user with a web form. The Go http package makes processing form data easy.

Let us see how this is done.

Web app stringupper

The directory structure for this app is as follows:

App folder structure

C:\go_projects>
\---go
\---src
\---github.com
\---SatishTalim
+---stringupper
| | stringupper.go
I I
[\---css
I

upper .css

Here are the contents of the file upper .css:

00 I O O B W N =~

[N =Y
w N~ O

14
15

Package template

upper.css

19

body {
background-color: #C2ATF2;
font-family: sans-serif;

}
htl {
color: #2A1959;
border-bottom: 2px solid #2A1959;
}
h2 {
color: #474B94;
font-size: 1.2em;
}
h2 {

margin-left: 120px;

0 I O O B W N~

B D W0 W W WWWWWWNNDNDDNDDNDDNDDNNDNDNDS =SS
N O © 0 N O U b WONP O O 00 N0 0 kx WONAOO O 03O0 O Wwh=~ oo ©

Package template 20

Here is the code for the app stringupper.go:

stringupper.go

package main

import (
" fmt"
"html/template”
"log"
"net/http"

n n

os
"strings"

func main() {
// Add a handler to handle serving static files from a specified directory
// The reason for using StripPrefix is that you can change the served
// directory as you please, but keep the reference in HTML the same.
http.Handle("/css/", http.StripPrefix("/css/", http.FileServer(http.Dir("css"))))

http.HandleFunc("/", root)
http.HandleFunc("/upper", upper)
fmt.Println("listening...")

err := http.ListenAndServe(GetPort(), nil)
if err != nil {

log.Fatal("ListenAndServe: ", err)

return

func root(w http.ResponseWriter, r *http.Request) {
fmt.Fprint(w, rootForm)

<

const rootForm =
<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<link rel="stylesheet" href="css/upper.css">
<title>String Upper</title>
</head>
<body>
<h1>String Upper</h1>
<p>The String Upper Service will accept a string from you and

43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87

Package template

return you the Uppercase version of the original string. Have fun!</p>
<form action="/upper" method="post" accept-charset="utf-8">

<input type="text" name="str" value="Type a string..." id="str">
<input type="submit" value=".. and change to uppercase!">
</form>
</body>
</html>

var upperTemplate = template.Must(template.New("upper").Parse(upperTemplateHTML))

func upper(w http.ResponseWriter, r *http.Request) ({
strEntered := r.FormValue("str")
strUpper := strings.ToUpper(strEntered)
err := upperTemplate.Execute(w, strUpper)
if err != nil {
http.Error(w, err.Error(), http.StatusInternalServerError)

const upperTemplateHTML =
<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<link rel="stylesheet" href="css/upper.css">
<title>String Upper Results</title>
</head>
<body>
<h1>String Upper Results</h1>
<p>The Uppercase of the string that you had entered is:</p>
<pre>{{html .}}</pre>
</body>
</html>

// Get the Port from the environment so we can run on Heroku
func GetPort() string {
var port = os.Getenv("PORT")
// Set a default port if there is nothing in the environment

if port == "" {

port = "4747"

fmt.Println("INFO: No PORT environment variable detected, defaulting to " + port)
}
return ":" + port

21

Package template 22

This app has two handlers: the path / is mapped to root, which displays a web form for the user to enter some
text as a string. The path /upper is mapped to upper, which displays to the user the text entered by him/her
in uppercase.

The upper function gets the form data by calling r . Formvalue and passes it to upperTemplate.Execute that
writes the rendered template to the http.ResponseWriter. In the template code, the content is automatically
filtered to escape HTML special characters. The automatic escaping is a property of the html/template®
package, as distinct from text/template®.

The line {{html .}} in const upperTemplateHTML, html is a predefined global function that returns the
escaped HTML equivalent of the textual representation of its arguments, . in this case.

You can refer to Handling Web Forms'” for more information.

You can now run the program by typing:
$ go run stringupper.go

Have fun!!

Phttp://golang.org/pkg/html/template/
“Shttp://golang.org/pkg/text/template/
"https://developers.google.com/appengine/docs/go/gettingstarted/handlingforms

http://golang.org/pkg/html/template/
http://golang.org/pkg/text/template/
https://developers.google.com/appengine/docs/go/gettingstarted/handlingforms
http://golang.org/pkg/html/template/
http://golang.org/pkg/text/template/
https://developers.google.com/appengine/docs/go/gettingstarted/handlingforms

	Table of Contents
	Package template
	text/template
	A Static Site with Go
	html/template
	Handling Forms
	Web app stringupper

