


How to Deploy a Go Web App to the Google App Engine
101

Satish Talim

This book is for sale at http://leanpub.com/howtodeployagowebapptothegoogleappengine101

This version was published on 2015-09-27

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

This work is licensed under a Creative Commons Attribution 3.0 Unported License

http://leanpub.com/howtodeployagowebapptothegoogleappengine101
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US


Also By Satish Talim
How Do I Write And Deploy Simple Web Apps With Go?

Building a package in Go

How do I use Sourcegraph with Go?

How do I use Sourcegraph with Ruby?

How to Deploy a Go Web App to Heroku 101

How do I use the template package and handle forms?

Go and MongoDB on MongoLab and Heroku

Learn Go programming

http://leanpub.com/u/satishtalim
http://leanpub.com/howdoibuildawebappwithgo
http://leanpub.com/buildingapackageingo
http://leanpub.com/howdoiusesourcegraph
http://leanpub.com/howdoiusesourcegraphwithruby
http://leanpub.com/howtodeployagowebapptoheroku101
http://leanpub.com/howtousethetemplatepackageandhandleforms
http://leanpub.com/goandmongodbonmongolabandheroku
http://leanpub.com/learngoprogramming


New to Go? Want to deploy a web app built in Go to the Google App Engine? This eBook quickly guides you
to do exactly that.



Contents

Google App Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
The Go runtime environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Download and Install the App Engine SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Let us build a small app (mytext.go) locally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Uploading Your App to Google’s App Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



Google App Engine
Google App Engine¹ is different from most other cloud systems because it is neither IaaS (Infrastructure-as-a-
Service, e.g., Amazon EC2) nor SaaS (Software-as-a-Service, e.g., Salesforce). It is something in-between - PaaS
(Platform-as-a-Service). Instead of a fixed application (SaaS) or raw hardware (IaaS), App Engine manages
your infrastructure for users. Furthermore, it provides a development platform… users get to create apps, not
use the ones provided by the cloud vendor, and it leverages the infrastructure as a hosting platform.

Google App Engine lets you run web applications on Google’s infrastructure. With App Engine, there are no
servers to maintain: You just upload your application, and it is ready to serve your users. App Engine costs
nothing to get started. All applications can use up to 1 GB of storage and enough CPU and bandwidth to
support an efficient app serving around 5 million page views a month, absolutely free.

Creating an App Engine application is easy, and only takes a few minutes. And it is free to start: upload your
app and share it with users right away, at no charge and with no commitment required.

Sandbox

Developers would not be interested in letting other applications/users get any kind of access to their
application code or data. To ensure this, all App Engine applications run in a restricted environment known
as a sandbox.

This is a Warning
Because of the sandbox, applications can’t execute certain actions. These include: open a local file
for writing, open a socket connection, and make operating system calls.

Services

The App Engine team has created a set of higher-level APIs/services for developers to use. Want your app to
send and receive e-mail or instant messages? That’s what the e-mail and XMPPAPIs are for!Want to reach out
to other web applications? Use the URLfetch service! Need Memcache? Google has a global Memcache API.
Need a database? Google provides both its traditional NoSQL scalable datastore and access to the relational
MySQL-compatible Google Cloud SQL service.

The list of all the services that are available to users changes quite often as new APIs are created.

The Administration Console

The Google App Engine Administration Console gives you complete access to the public version of your
application. Access the Console by visiting this link² in your web browser. Google recommends that you use

¹https://developers.google.com/appengine/docs/whatisgoogleappengine
²https://appengine.google.com/

https://developers.google.com/appengine/docs/whatisgoogleappengine
https://appengine.google.com/
https://developers.google.com/appengine/docs/whatisgoogleappengine
https://appengine.google.com/


Google App Engine 2

the Google Developers Console³ instead. The Developers Console supports all the Cloud Platform products,
including App Engine, as well as other Google developer APIs.

Applications (web and non-web)

While many applications running on Google App Engine are web-based apps, they are certainly not limited
to those. App Engine is also a popular backend system for mobile apps. When developing such apps, it’s much
safer to store data in a distributed manner and not solely on devices which could get lost, stolen, or destroyed.
Putting data in the cloud improves the user experience because recovery is simplified and users have more
access to their data.

DataStore

App Engine Datastore⁴ is a schemaless object datastore providing robust, scalable storage for your web
application. This means that you can’t run MongoDB, for example, on the Google App Engine (GAE). You
need to use the Google datastore. However, GAE now supports Google Cloud SQL⁵ a fully managed MySQL
service hosted on Google Cloud Platform.

The Go runtime environment

With the Google App Engine for Go, you can build web applications using the Go Programming Language.
Your Go application runs on Google’s scalable infrastructure and uses large-scale persistent storage and
services.

App Engine builds and executes Go application code using a safe “sandboxed” environment. Your app receives
web requests, performs work, and sends responses by interacting with this environment.

The Go runtime environment uses the latest version of Go version 1.4. The SDK includes the Go compiler
and standard library, so it has no additional dependencies. As with the other runtimes, not all the standard
library’s functionality is available inside the sandbox. For example, attempts to open a socket or write to a
file will return an os.ErrPermission error.

The SDK includes an automated build service to compile your app, so you’ll never need to invoke the compiler
yourself. And your app will be automatically re-built whenever you change the source.

Go apps run inside a secure “sandbox” environment with a reduced set of libraries. For instance, an app cannot
write data to the local file system or make arbitrary network connections. Instead, apps use scalable services
provided by App Engine to store data and communicate over the Internet.

Download and Install the App Engine SDK

To start developing Google App Engine applications in Go, you first download and set up the App Engine Go
software development kit (SDK).

³https://developers.google.com/console/help/console?_ga=1.214591252.248597932.1423453183
⁴https://developers.google.com/appengine/docs/go/datastore/
⁵https://developers.google.com/cloud-sql/

https://developers.google.com/console/help/console?_ga=1.214591252.248597932.1423453183
https://developers.google.com/appengine/docs/go/datastore/
https://developers.google.com/cloud-sql/
https://developers.google.com/console/help/console?_ga=1.214591252.248597932.1423453183
https://developers.google.com/appengine/docs/go/datastore/
https://developers.google.com/cloud-sql/


Google App Engine 3

The Go SDK includes a web server application that simulates the App Engine environment, including a local
version of the datastore, Google Accounts, and the ability to fetch URLs and send email directly from your
computer using the App Engine APIs.

The Go SDKwill run on any Intel-basedMac OS X, Linux orWindows computer with Python 2.7. If necessary,
download and install Python 2.7 for your platform from the Python web site⁶. Most Mac OS X users already
have Python 2.7 installed. If you have issues with the Python tools, please ensure you have Python 2.7 installed.

Let us now download the App Engine SDK⁷. Next follow the instructions on the download page to install the
SDK on your computer.

I installed the App Engine SDK to C:\go_appengine on my Windows 7 desktop.

Later on in this article, we will use the following two commands from the SDK:

• goapp serve⁸ - for running a local development server
• goapp deploy⁹ - for uploading your app to App Engine

You can find these commands in the C:\go_appengine directory. To simplify development and deployment,
consider adding this directory to your PATH environment variable.

Tip
While setting the PATH ensure that C:\go_appengine comes after C:\go\bin i.e. it should be like
PATH=C:\go\bin;C:\go_appengine;... This ensures that we use the go command from the original
Go installation and not the go command from the App Engine.

Let us build a small app (mytext.go) locally

The local development environment lets you develop and test complete App Engine applications before
showing them to the world. Let us write some code.

Go App Engine applications communicate with the outside world via a web server compatible with Go’s
http package¹⁰. This makes writing Go App Engine applications very similar to writing stand-alone Go web
applications.

Let us begin by implementing a tiny application that displays a short message to a user.

⁶http://www.python.org/download/
⁷https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Go
⁸https://developers.google.com/appengine/docs/go/tools/devserver
⁹https://developers.google.com/appengine/docs/go/tools/uploadinganapp
¹⁰http://golang.org/pkg/net/http/

http://www.python.org/download/
https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Go
https://developers.google.com/appengine/docs/go/tools/devserver
https://developers.google.com/appengine/docs/go/tools/uploadinganapp
http://golang.org/pkg/net/http/
http://www.python.org/download/
https://developers.google.com/appengine/downloads#Google_App_Engine_SDK_for_Go
https://developers.google.com/appengine/docs/go/tools/devserver
https://developers.google.com/appengine/docs/go/tools/uploadinganapp
http://golang.org/pkg/net/http/


Google App Engine 4

Programmytext.go

Inside the folder $GOPATH/src/github.com/SatishTalim create the folder mytext.

Next inside the mytext folder, create a file named mytext.go, and give it the following contents:

Program mytext.go

1 package mytext

2

3 import (

4 "fmt"

5 "net/http"

6 )

7

8 func init() {

9 http.HandleFunc("/", handler)

10 }

11

12 func handler(w http.ResponseWriter, r *http.Request) {

13 fmt.Fprint(w, "Hello. This is our first Go web app for Google App Engine!")

14 }

This Go package responds to any request by sending a response containing the message: Hello. This is our

first Go web app for the Google App Engine!



Google App Engine 5

Note:

• when writing a stand-alone Go program we would place this code in package main. The Go App Engine
Runtime provides a special main package, so you should put HTTP handler code in a package of your
choice (in this case, mytext).

• to work with some printing functions, we import the package fmt¹¹.
• the App Engine Go API uses the standard http package as an interface between your Go program and
the App Engine servers. Thus for web related http functionality, we import the package http¹². Any
functions within that we refer as http.function_name.

• within the init program, we redirect any incoming requests to the handler function. We do this by
calling http.HandleFunc¹³ and passing it two parameters - the first one is a part of the incoming url,
and the second is the method capable of handling it.

• the function handler takes an http.ResponseWriter and an http.Request as its arguments.
• when a user connects, the programs responds with a text that is sent back to the browser. The
http.ResponseWriter value assembles the HTTP server’s response; by writing to it, we send data to
the HTTP client.

• an http.Request is a data structure that represents the client HTTP request.
• all the parameters of a request can be received via the parameter http.Request in the handler. You
can get the URL, the input values and other details.

Create the Configuration File

An App Engine application has a configuration file called app.yaml. Among other things, this file tells the
App Engine service which runtime to use and which URLs should be handled by our Go program.

Inside the $GOPATH/src/github.com/SatishTalim/mytext directory, create a file named app.yaml with the
following contents:

¹¹http://golang.org/pkg/fmt/
¹²http://golang.org/pkg/net/http/
¹³http://golang.org/pkg/net/http/#HandleFunc

http://golang.org/pkg/fmt/
http://golang.org/pkg/net/http/
http://golang.org/pkg/net/http/#HandleFunc
http://golang.org/pkg/fmt/
http://golang.org/pkg/net/http/
http://golang.org/pkg/net/http/#HandleFunc


Google App Engine 6

File app.yaml

1 # This is a comment

2

3 # application is mandatory (on web gochgmsg)

4 application: helloworld

5

6 # version is mandatory

7 version: 1-0

8

9 # runtime is mandatory

10 runtime: go

11

12 # api_version is mandatory

13 api_version: go1

14

15 # handlers is mandatory

16 handlers:

17 - url: /.*

18 script: _go_app

From top to bottom, this configuration file says the following about this application:

• The application identifier is helloworld. When you register your application with App Engine later on,
you will select a unique identifier, and update this value (later on we will update the value to gochgmsg).
This value can be anything during development. For now, leave it set to helloworld.

• This is version number 1-0 of this application’s code. Your application versioning information can
contain alphanumeric characters, and hyphens. If you adjust this before uploading new versions of
your application software, App Engine will retain previous versions, and let you roll back to a previous
version using the administrative console.

• This code runs in the go runtime environment, with API version go1.
• There are two kinds of handlers: script handlers, and static file handlers. A script handler runs a Go
script in your application to determine the response for the given URL. A static file handler returns the
contents of a file, such as an image, as the response.

• Static files are files to be served directly to the user for a given URL, such as images, CSS stylesheets,
or JavaScript source files. Static file handlers describe which files in the application directory are static
files, and which URLs serve them.

• url is a URL prefix. This value uses regular expression syntax (and so regexp special characters must
be escaped \). All URLs that begin with this prefix are handled by this handler, using the portion of the
URL after the prefix as part of the file path.

• Every request to a URL whose path matches the regular expression /.* (all URLs) should be handled
by the Go program.

• For Go apps, script should always have a value of _go_app.



Google App Engine 7

Note: All Go packages for a given app are built into a single executable, and request dispatch is handled by
the Go program itself. This is why we call http.HandleFunc inside the init function to associate our handler
with the web root ("/"). However, you may still use the app.yaml file to configure paths that serve static files
or require special permissions.

For a complete list of configuration options, see the Go Application Configuration page¹⁴.

Test the App

You can now test your app with the web server included with the App Engine SDK.

The application’s directory should contain the files mytext.go and app.yaml.

From the $GOPATH/src/github.com/SatishTalim directory run the following command, to compile your app
and start the development web server:

goapp serve mytext/

The web server is now running, listening for requests on port 8080. Test the application by visiting the
following URL in your web browser: http://localhost:8080/¹⁵. For more information about running the
development web server, including how to change which port it uses, see the Development Server reference¹⁶.

Iterative Development

The development app server knows towatch for changes in your file. As you update your source, it re-compiles
them and relaunches your local app. There’s no need to restart goapp serve.

Try it now: leave the web server running, then edit mytext.go to change Hello. This is our first Go web

app for the Google App Engine! to something else. Reload http://localhost:8080/¹⁷ to see the change.

To shut down the web server, make sure the terminal window is active, then press Control-C (or the
appropriate “break” key for your console).

You now have a complete App Engine application! You could deploy this simple program right now and share
it with users worldwide.

Uploading Your App to Google’s App Engine

Registering the App

You will now need to have a Google account. If you do not have a Google account, you can create a Google
account¹⁸ with an email address and password.

You create and manage App Engine web applications from the Developer’s Console¹⁹. Sign in to App Engine
using your Google account.

¹⁴https://developers.google.com/appengine/docs/go/config/appconfig
¹⁵http://localhost:8080/
¹⁶https://developers.google.com/appengine/docs/go/tools/devserver
¹⁷http://localhost:8080/
¹⁸https://www.google.com/accounts/
¹⁹https://console.developers.google.com/

https://developers.google.com/appengine/docs/go/config/appconfig
http://localhost:8080/
https://developers.google.com/appengine/docs/go/tools/devserver
http://localhost:8080/
https://www.google.com/accounts/
https://www.google.com/accounts/
https://console.developers.google.com/
https://developers.google.com/appengine/docs/go/config/appconfig
http://localhost:8080/
https://developers.google.com/appengine/docs/go/tools/devserver
http://localhost:8080/
https://www.google.com/accounts/
https://console.developers.google.com/


Google App Engine 8

To create a new application, click the “Create a Project” button. A screen pops up as shown below:

Create a project

Enter gochgmsg for the Project name. It creates a unique project ID which in our case is gochgmsg-1057.

We have elected to use the free “appspot.com” domain name. With that, the full URL for the application will
be http://gochgmsg-1057.appspot.com/.

Edit the app.yaml file, then change the value of the application: setting from helloworld to gochgmsg-1057.

Upload and Access the app

From the folder: $GOPATH/src/github.com/SatishTalim folder, type:

goapp deploy mytext/

If you see compilation errors, fix the source and re-run goapp deploy; it won’t launch (or update) your app
until compilation is successful.

Note: One issue that users could face while deploying the app — if you have multiple Google Accounts and
the default one in which you are logged in currently is not the one that is containing the App Engine project,
then the goapp deploy will fail with the error “The application does not exist ..

Access the app
You can now see your application running on App Engine. We have our message app²⁰ running,
that you can access and check out.

Congrats you have just successfully launched your first Go web app for the world to see!!

App Engine determines that an incoming request is intended for your application using the domain name of
the request. A request whose domain name is http://your_app_id.appspot.com is routed to the application
whose ID is your_app_id. Every application gets an appspot.com domain name for free.

Requests for these URLs all go to the version of your application that you have selected as the default version
in the App Engine Administration Console. Each version of your application also has its own URL, so you can

²⁰http://gochgmsg-1057.appspot.com/

http://gochgmsg-1057.appspot.com/
http://gochgmsg-1057.appspot.com/


Google App Engine 9

deploy and test a new version before making it the default version. The version-specific URL uses the version
identifier from your app’s configuration file in addition to the appspot.com domain name, in this pattern:
http://version_id-dot-latest-dot-your_app_id.appspot.com.


	Table of Contents
	Google App Engine
	The Go runtime environment
	Download and Install the App Engine SDK
	Let us build a small app (mytext.go) locally
	Uploading Your App to Google's App Engine


