

How to Deploy a Go Web App to Heroku 101

Satish Talim

This book is for sale at http://leanpub.com/howtodeployagowebapptoheroku101

This version was published on 2016-09-17

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

This work is licensed under a Creative Commons Attribution 3.0 Unported License

http://leanpub.com/howtodeployagowebapptoheroku101
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

Also By Satish Talim
How Do I Write And Deploy Simple Web Apps With Go?

Building a package in Go

How do I use Sourcegraph with Go?

How do I use Sourcegraph with Ruby?

How to Deploy a Go Web App to the Google App Engine 101

How do I use the template package and handle forms?

Go and MongoDB on MongoLab and Heroku

Learn Go programming

http://leanpub.com/u/satishtalim
http://leanpub.com/howdoibuildawebappwithgo
http://leanpub.com/buildingapackageingo
http://leanpub.com/howdoiusesourcegraph
http://leanpub.com/howdoiusesourcegraphwithruby
http://leanpub.com/howtodeployagowebapptothegoogleappengine101
http://leanpub.com/howtousethetemplatepackageandhandleforms
http://leanpub.com/goandmongodbonmongolabandheroku
http://leanpub.com/learngoprogramming

New to Go? Want to deploy a web app built in Go to Heroku? This eBook quickly guides you to do exactly that.

Contents

Deploying Go Web Apps to Heroku . 1
Cloud Computing Service Levels . 1
Assumption . 2
Create an account on Heroku . 3
Install the Heroku Command Line Interface (CLI) . 3
Prepare a web app . 4
Use Git to deploy our app to Heroku . 5
Create a Procfile . 5
Install Godep . 5
Declare app dependencies . 5
Using godep with our project . 6
Add these new files to git . 6
Create and Deploy the app . 6
A brief note by Gunnar Aasen . 7

Deploying Go Web Apps to Heroku
There are plenty of definitions for “cloud computing” online, and for the most part, they generally point to
the same thing: taking applications and running them on infrastructure other than your own. Companies or
individuals who offload or effectively “outsource” their hardware and/or applications are running those apps
“in the cloud.”

Cloud Computing Service Levels

In the figure below, you can see how the analyst firm Gartner segregates cloud computing into three distinct
classes of service.

Cloud Computing Service Levels

SaaS

Let’s start at the highest level: software applications that are only available online fall into the “Software-as-
a-Service” category, also known as “SaaS”. The simplest example to understand is e-mail. For personal e-mail,
people typically select from a variety of free web-based e-mail servers such as Google’s Gmail, Yahoo!Mail,
or Microsoft’s Hotmail, rather than setting up all of the above through their provider. Not only is it “free”
(supported through advertising), but users are freed from any additional server maintenance. Because these
applications run (and store their data online), users no longer need to worry about managing, saving, and

Deploying Go Web Apps to Heroku 2

backing up their files. Of course, now it becomes Google’s responsibility to ensure that your data is safe and
secure. Other examples of SaaS include Salesforce, IBM’s NetSuite, and online games.

IaaS

On the opposite end of the spectrum, we have “Infrastructure-as-a-Service,” or “IaaS,” where you outsource
the hardware. In such cases, it’s not just the computing power that you rent; it also includes power, cooling,
and networking. Furthermore, it’s more than likely that you’ll need storage as well. Generally IaaS is this
combination of compute and cloud storage.

When you choose to run your applications at this cloud service level, you’re responsible for everything on the
stack that is required to operate above it. By this, we mean necessities such as the operating system followed
by additional (yet optional services) like database servers, web servers, load-balancing, monitoring, reporting,
logging, middleware, etc. Furthermore, you’re responsible for all hardware and software upgrades, patches,
security fixes, and licensing, any of which can affect your application’s software stack in a major way.

PaaS

In the middle, we have “Platform-as-a-Service,” or “PaaS.” At this service level, the vendor takes care of
the underlying infrastructure for you, giving you only a platform with which to (build and) host your
application(s). Gone are the hardware concerns of IaaS, yet with PaaS, you control the application — it’s
your code — unlike as the SaaS level where you’re dependent on the cloud software vendor. The only thing
you have to worry about is your application itself.

Systems like Google App Engine, Salesforce’s Heroku and force.com, Microsoft Azure, and VMwares Cloud
Foundry, all fall under the PaaS umbrella.

A number of Platform-as-a-Service (PaaS) providers¹ allow you to use Go applications on their clouds.

Heroku² is a new approach to deploying web applications³. Forget about servers; the fundamental unit is the
app. Develop locally on your machine just like you always do. When you’re ready to deploy, use the Heroku
client gem to create your application in their cloud, then deploy with a single git push. Heroku has full support
for Go applications.

We shall soon see how we can deploy an app to Heroku.

Assumption

I assume that you have:

• Go 1.6+ or 1.7+ installed.
• $GOPATH/bin has been added to your $PATH.

¹https://code.google.com/p/go-wiki/wiki/ProviderIntegration
²http://heroku.com/
³https://devcenter.heroku.com/articles/getting-started-with-go#introduction

https://code.google.com/p/go-wiki/wiki/ProviderIntegration
http://heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-go#introduction
https://code.google.com/p/go-wiki/wiki/ProviderIntegration
http://heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-go#introduction

Deploying Go Web Apps to Heroku 3

Create an account on Heroku

Please ensure that you are connected to the internet and then create an account on Heroku (obviously do this
only once). If you don’t have one, then signup⁴. It’s free and instant. A free account can have up to 5 apps
without registering your credit card.

Install the Heroku Command Line Interface (CLI)

The Heroku CLI⁵ provides you access to the Heroku Command Line Interface (CLI). Once installed, you’ll
have access to the heroku and git command from your command window.

Log in to heroku

Open a commandwindow and create a folder webapphr under the folder $GOPATH/src/github.com/SatishTalim/.
Change your folder to $GOPATH/src/github.com/SatishTalim/webapphr.

Now log in to Heroku using the email address and password you used when creating your Heroku account:

$ heroku login

Enter your Heroku credentials.

Email: satish.talim@gmail.com

Password (typing will be hidden):

Logged in as satish.talim@gmail.com

Authenticating is required to allow both the heroku and git commands to operate.

Introduce yourself to Git

On Windows, start the Command Prompt (cmd.exe) to access the command shell.

For all operating users, you now need to identify yourself to Git (you need to do this only once) so that it can
properly label the commits you make later on. I am using SatishTalim and satish.talim@gmail.com below:

$ git config --global user.name "Satish Talim"

$ git config --global user.email satish.talim@gmail.com

Substitute in your own user name and email id.

⁴http://heroku.com/signup
⁵https://s3.amazonaws.com/assets.heroku.com/heroku-toolbelt/heroku-toolbelt.exe

http://heroku.com/signup
https://s3.amazonaws.com/assets.heroku.com/heroku-toolbelt/heroku-toolbelt.exe
http://heroku.com/signup
https://s3.amazonaws.com/assets.heroku.com/heroku-toolbelt/heroku-toolbelt.exe

Deploying Go Web Apps to Heroku 4

Prepare a web app

In this step, you will prepare a simple Go application that can be deployed.

In the folder webapphr under the folder $GOPATH/src/github.com/SatishTalim/ write the program webap-

phr.go as follows:

Program webapphr.go

1 package main

2

3 import (

4 "fmt"

5 "log"

6 "net/http"

7 "os"

8)

9

10 func main() {

11 http.HandleFunc("/", handler)

12 fmt.Println("listening...")

13 err := http.ListenAndServe(GetPort(), nil)

14 if err != nil {

15 log.Fatal("ListenAndServe: ", err)

16 }

17 }

18

19 func handler(w http.ResponseWriter, r *http.Request) {

20 fmt.Fprintf(w, "Hello. This is our first Go web app on Heroku!")

21 }

22

23 // Get the Port from the environment so we can run on Heroku

24 func GetPort() string {

25 var port = os.Getenv("PORT")

26 // Set a default port if there is nothing in the environment

27 if port == "" {

28 port = "4747"

29 fmt.Println("INFO: No PORT environment variable detected, defaulting to " + port)

30 }

31 return ":" + port

32 }

Deploying Go Web Apps to Heroku 5

Use Git to deploy our app to Heroku

In order to deploy to Heroku we’ll need the app stored in Git. In the same folder i.e. $GOPATH/sr-

c/github.com/SatishTalim/webapphr type:

$ git init

$ git add -A .

$ git commit -m "code"

Create a Procfile

Use a Procfile, a text file in the root directory of your application ($GOPATH/src/github.com/SatishTalim/webapphr),
to explicitly declare what command should be executed to start your app.

The Procfile looks like this:

web: webapphr

This declares a single process type, web, and the command needed to run it. The name web is important here.
It declares that this process type will be attached to the HTTP routing stack of Heroku, and receive web traffic
when deployed.

Install Godep

The recommended way to manage Go package dependencies on Heroku is with Godep⁶, which helps build
applications reproducibly by fixing their dependencies.

Let us install Godep:

$ go get github.com/tools/godep

Declare app dependencies

Heroku recognizes an app as a Go app by the existence of a Godeps.json file in the Godeps directory located
in your application’s root directory ($GOPATH/src/github.com/SatishTalim/webapphr).

The Godeps/Godeps.json file is used by Godep and specifies both the dependencies that are vendored with
your application and the version of Go that should be used to compile the application.

When an app is deployed, Heroku reads this file, installs the appropriate Go version and compiles your code
using godep go install ./….

⁶https://github.com/tools/godep

https://github.com/tools/godep
https://github.com/tools/godep

Deploying Go Web Apps to Heroku 6

Using godep with our project

In the folder $GOPATH/src/github.com/SatishTalim/webapphr type:

$ godep save -r

This will save a list of dependencies to the file Godeps/Godeps.json.

Note: Read the contents of Godeps/_workspace and make sure it looks reasonable. Godep does not copy files
from source repositories that are not tracked in version control. Then commit the whole Godeps directory to
version control, including Godeps/_workspace.

Add these new files to git

$ git add -A .

$ git commit -m "dependencies"

Now we’re ready to ship this to Heroku.

Create and Deploy the app

In this step, you will first create and then deploy the app to Heroku.

Creating an app on Heroku, prepares Heroku to receive your source code.

$ heroku create

Creating app... done, stormy-lake-46504

https://stormy-lake-46504.herokuapp.com/ | https://git.heroku.com/stormy-lake-46504.git

When you create an app, a git remote (called heroku) is also created and associated with your local git
repository.

Heroku generates a random name (in this case stormy-lake-46504) for your app, or you can pass a parameter
to specify your own app name.

Deploying Go Web Apps to Heroku 7

Now deploy your code:

$ git push heroku master

Counting objects: 11, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (8/8), done.

Writing objects: 100% (11/11), 1.30 KiB | 0 bytes/s, done.

Total 11 (delta 0), reused 0 (delta 0)

remote: Compressing source files... done.

remote: Building source:

remote:

remote: -----> Go app detected

remote: -----> Checking Godeps/Godeps.json file.

remote: -----> Installing go1.6.2... done

remote: !! Installing package '.' (default)

remote: -----> Running: go install -v -tags heroku .

remote: github.com/SatishTalim/webapphr

remote: -----> Discovering process types

remote: Procfile declares types -> web

remote:

remote: -----> Compressing...

remote: Done: 2.2M

remote: -----> Launching...

remote: Released v3

remote: https://stormy-lake-46504.herokuapp.com/ deployed to Heroku

remote:

remote: Verifying deploy... done.

To https://git.heroku.com/stormy-lake-46504.git

* [new branch] master -> master

The application is now deployed.

Visit the app at the URL generated by its app name. As a handy shortcut, you can open the website as follows:

$ heroku open

That’s it — you now have a running Go app on Heroku!

A brief note by Gunnar Aasen

Troubleshooting

A number of bugs can potentially be encountered in the process of deploying a Go application to Heroku.
Many times, a bug can be traced to a misunderstanding of Heroku’s architecture and how it works.

https://github.com/gunnaraasen

Deploying Go Web Apps to Heroku 8

Heroku’s Architecture

Overall, Heroku applications are expected to follow the “process model”⁷ architecture. The process model
allows applications, and web applications in particular, to be easily scaled out and managed with little
administrative overhead. In exchange, the architecture requires applications to conform to certain rules and
restrictions.

There are two fundamental parts to a Heroku application: Dynos, which follow the proccess model; and Add-
ons, which are provided through third-party integrations.

Dynos

The main unit of a Heroku application is the Dyno.

Dynos are ephemeral servers which run a single process. Each process started by a dyno must be assigned a
“process type”. A dyno’s type is defined by the starting process type.

Even though a dyno can only start a single process, once started that process may spawn additional processes
within the dyno within limits⁸.

Keep in mind, dynos do not retain data. Data does not persist between Dyno restarts and there are no shared
volumes between dynos. Practically speaking, you cannot retain any data on a dyno. Add-ons⁹ should be used
for persistence and are explained below.

There are three types¹⁰ of Dynos tailored for different workloads: web dynos, worker dynos, and one-off
dynos.

Only web dynos receive HTTP traffic via the Heroku router. Heroku assigns a single $PORT environment
variable to all dynos running a web process type. All inbound HTTP traffic to a web process goes through
the single assigned $PORT variable. The Heroku router attaches headers¹¹ to HTTP requests to describe the
original request as received by Heroku.

Web Dynos also have the following restrictions not discussed above: - They allow 50 active requests per web
dynowith a 50 request queue. - Theymust connect to the Heroku provided $PORT environment variable within
60 seconds¹² or the dyno will automatically be shut down.

Add-ons

Persistence and other functionality needed by applications which cannot be provided by Dynos are available
through Add-ons¹³. Many add-ons are integrated with Dynos through environment variables.

⁷https://devcenter.heroku.com/articles/process-model
⁸https://devcenter.heroku.com/articles/dynos#process-thread-limits
⁹https://addons.heroku.com/
¹⁰https://devcenter.heroku.com/articles/dynos#types-of-dynos
¹¹https://devcenter.heroku.com/articles/http-routing#heroku-headers
¹²https://devcenter.heroku.com/articles/dynos#web-dynos
¹³https://addons.heroku.com/

https://devcenter.heroku.com/articles/process-model
https://devcenter.heroku.com/articles/dynos#process-thread-limits
https://addons.heroku.com/
https://devcenter.heroku.com/articles/dynos#types-of-dynos
https://devcenter.heroku.com/articles/http-routing#heroku-headers
https://devcenter.heroku.com/articles/dynos#web-dynos
https://devcenter.heroku.com/articles/dynos#web-dynos
https://addons.heroku.com/
https://devcenter.heroku.com/articles/process-model
https://devcenter.heroku.com/articles/dynos#process-thread-limits
https://addons.heroku.com/
https://devcenter.heroku.com/articles/dynos#types-of-dynos
https://devcenter.heroku.com/articles/http-routing#heroku-headers
https://devcenter.heroku.com/articles/dynos#web-dynos
https://addons.heroku.com/

Deploying Go Web Apps to Heroku 9

Slugs

In addition to the process described above, Go applications can also be cross-compiled into a binary and
deployed to Heroku through the use of a custom slug. Slugs are containers (similar to Docker images) which
hold everything needed to run a program on Heroku’s infrastructure. To deploy a Go application this way,
a slug needs to be created, published, and released on Heroku. Heroku has published an article specifically
about deploying Go slugs¹⁴.

¹⁴https://devcenter.heroku.com/articles/platform-api-deploying-slugs#go

https://devcenter.heroku.com/articles/platform-api-deploying-slugs#go
https://devcenter.heroku.com/articles/platform-api-deploying-slugs#go
https://devcenter.heroku.com/articles/platform-api-deploying-slugs#go

	Table of Contents
	Deploying Go Web Apps to Heroku
	Cloud Computing Service Levels
	Assumption
	Create an account on Heroku
	Install the Heroku Command Line Interface (CLI)
	Prepare a web app
	Use Git to deploy our app to Heroku
	Create a Procfile
	Install Godep
	Declare app dependencies
	Using godep with our project
	Add these new files to git
	Create and Deploy the app
	A brief note by Gunnar Aasen

