

How Do I Write And Deploy Simple Web Apps With Go?

Satish Talim

This book is for sale at http://leanpub.com/howdoibuildawebappwithgo

This version was published on 2017-05-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

© 2013 - 2017 Satish Talim

http://leanpub.com/howdoibuildawebappwithgo
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!
Please help Satish Talim by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought ”How Do I Build Web Apps With Go?” ebook #programming #golang #gowebapps

The suggested hashtag for this book is #gowebapps.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on
Twitter:

https://twitter.com/search?q=#gowebapps

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20%22How%20Do%20I%20Build%20Web%20Apps%20With%20Go?%22%20ebook%20%23programming%20%23golang%20%23gowebapps
https://twitter.com/search?q=%23gowebapps
https://twitter.com/search?q=%23gowebapps

Contents

Preface . i
Who is the eBook for? . i
Acknowledgements . i
How to Use This eBook . i
Using Code Examples . i
Getting the Code . ii
How to Contact Me . ii
Thanks . ii

1. Deploying Go Web Apps to Heroku . 1
1.1 Cloud Computing Service Levels . 1

1.1.1 SaaS . 1
1.1.2 IaaS . 2
1.1.3 PaaS . 2

1.2 Create an account on Heroku . 2
1.3 Install the Heroku Toolbelt . 3
1.4 Prepare a web app . 4
1.5 Use Git . 5
1.6 Create a Procfile . 5
1.7 Install Godep . 5
1.8 Declare app dependencies . 5
1.9 Using godep with our project . 6
1.10 Add these new files to git . 6
1.11 Deploy the app . 6
1.12 Program gomongohq.go . 7

Preface
Go1 is an open source programming language that makes it easy to build simple, reliable, and efficient
software.

Who is the eBook for?

This short eBook will introduce you to building your own web applications and hosting it on the Internet. It
is targetted towards Go programming newbies who have:

• an understanding of basic web technologies HTTP2,
• an understanding of HTML3,
• a working knowledge of Go4 programming (to try out the programs in this eBook, you should have a
working copy of Go 1.5 on your computer),

• an understanding of JSON5.

Acknowledgements

There are a good number of people who deserve thanks for their help and support they provided, either while
or before this eBook was written, and there are still others whose help will come after the eBook is released.
I would like to thank my “gang” of mentors at RubyLearning6, Doug Sparling and Sanat Gersappa for their
help in making this eBook far better than I could have done alone.

How to Use This eBook

I recommend that you go through the entire eBook chapter by chapter, reading the text and running the
sample programs. There are no large applications in this eBook – just small, self-contained sample programs.
This will give you a much broader understanding of how things are done (and of how you can get things
done), and it will reduce the chance of anxiety, confusion, and worse yet, mistakes.

Using Code Examples

All of the code in this eBook can be used pretty much anywhere and anyhow you please.

1http://golang.org/
2https://github.com/Unknwon/build-web-application-with-golang_EN/blob/master/eBook/03.1.md
3http://msdn.microsoft.com/en-us/hh549253.aspx
4http://golang.org/
5http://en.wikipedia.org/wiki/JSON
6http://rubylearning.org/

http://golang.org/
https://github.com/Unknwon/build-web-application-with-golang_EN/blob/master/eBook/03.1.md
http://msdn.microsoft.com/en-us/hh549253.aspx
http://golang.org/
http://en.wikipedia.org/wiki/JSON
http://rubylearning.org/
http://golang.org/
https://github.com/Unknwon/build-web-application-with-golang_EN/blob/master/eBook/03.1.md
http://msdn.microsoft.com/en-us/hh549253.aspx
http://golang.org/
http://en.wikipedia.org/wiki/JSON
http://rubylearning.org/

Preface ii

Getting the Code

You can get a .zip or .tar archive of the code by going to GitHub Repo7 and clicking on the “Download”
button.

How to Contact Me

I can be reached via e-mail at satish@rubylearning.org. Please contact me if you have any questions,
comments, kudos or criticism on the eBook. Constructive criticism is definitely appreciated; I want this eBook
to get better through your feedback.

Thanks

Thanks for buying and checking out this eBook. As part of the lean publishing philosophy, you’ll be able to
interact with me as the eBook is completed. I’ll be able to change things, reorganize parts, and generally make
a better eBook. I hope you enjoy.

7https://github.com/SatishTalim/bwpwg

https://github.com/SatishTalim/bwpwg
mailto:satish@rubylearning.org
https://github.com/SatishTalim/bwpwg

1. Deploying Go Web Apps to Heroku
There are plenty of definitions for “cloud computing” online, and for the most part, they generally point to
the same thing: taking applications and running them on infrastructure other than your own. Companies or
individuals who offload or effectively “outsource” their hardware and/or applications are running those apps
“in the cloud.”

1.1 Cloud Computing Service Levels

In the figure below, you can see how the analyst firm Gartner segregates cloud computing into three distinct
classes of service.

Cloud Computing Service Levels

1.1.1 SaaS

Let’s start at the highest level: software applications that are only available online fall into the “Software-as-
a-Service” category, also known as “SaaS”. The simplest example to understand is e-mail. For personal e-mail,
people typically select from a variety of free web-based e-mail servers such as Google’s Gmail, Yahoo!Mail,
or Microsoft’s Hotmail, rather than setting up all of the above through their provider. Not only is it “free”
(supported through advertising), but users are freed from any additional server maintenance. Because these
applications run (and store their data online), users no longer need to worry about managing, saving, and

Deploying Go Web Apps to Heroku 2

backing up their files. Of course, now it becomes Google’s responsibility to ensure that your data is safe and
secure. Other examples of SaaS include Salesforce, IBM’s NetSuite, and online games.

1.1.2 IaaS

On the opposite end of the spectrum, we have “Infrastructure-as-a-Service,” or “IaaS,” where you outsource
the hardware. In such cases, it’s not just the computing power that you rent; it also includes power, cooling,
and networking. Furthermore, it’s more than likely that you’ll need storage as well. Generally IaaS is this
combination of compute and cloud storage.

When you choose to run your applications at this cloud service level, you’re responsible for everything on the
stack that is required to operate above it. By this, we mean necessities such as the operating system followed
by additional (yet optional services) like database servers, web servers, load-balancing, monitoring, reporting,
logging, middleware, etc. Furthermore, you’re responsible for all hardware and software upgrades, patches,
security fixes, and licensing, any of which can affect your application’s software stack in a major way.

1.1.3 PaaS

In the middle, we have “Platform-as-a-Service,” or “PaaS.” At this service level, the vendor takes care of
the underlying infrastructure for you, giving you only a platform with which to (build and) host your
application(s). Gone are the hardware concerns of IaaS, yet with PaaS, you control the application — it’s
your code — unlike as the SaaS level where you’re dependent on the cloud software vendor. The only thing
you have to worry about is your application itself.

Systems like Google App Engine, Salesforce’s Heroku and force.com, Microsoft Azure, and VMwares Cloud
Foundry, all fall under the PaaS umbrella.

A number of Platform-as-a-Service (PaaS) providers1 allow you to use Go applications on their clouds.

Heroku2 is a new approach to deploying web applications3. Forget about servers; the fundamental unit is the
app. Develop locally on your machine just like you always do. When you’re ready to deploy, use the Heroku
client gem to create your application in their cloud, then deploy with a single git push. Heroku has full support
for Go applications.

We shall soon see how we can deploy an app to Heroku.

1.2 Create an account on Heroku

Please ensure that you are connected to the internet and then create an account on Heroku (obviously do this
only once). If you don’t have one, then signup4. It’s free and instant. A free account can have up to 5 apps
without registering your credit card.

1https://code.google.com/p/go-wiki/wiki/ProviderIntegration
2http://heroku.com/
3https://devcenter.heroku.com/articles/getting-started-with-go#introduction
4http://heroku.com/signup

https://code.google.com/p/go-wiki/wiki/ProviderIntegration
http://heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-go#introduction
http://heroku.com/signup
https://code.google.com/p/go-wiki/wiki/ProviderIntegration
http://heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-go#introduction
http://heroku.com/signup

Deploying Go Web Apps to Heroku 3

1.3 Install the Heroku Toolbelt

The Heroku Toolbelt5 provides you access to the Heroku Command Line Interface (CLI). Once installed,
you’ll have access to the heroku command from your command window. Log in using the email address and
password you used when creating your Heroku account:

$ heroku login

Installing Heroku Toolbelt v4... done.

For more information on Toolbelt v4: https://github.com/heroku/heroku-cli

Setting up node-v4.1.1...done

Installing core plugins heroku-apps, heroku-fork, heroku-git, heroku-local, hero

ku-run, heroku-status... done

Enter your Heroku credentials.

Email: satish@rubyconfindia.org

Password (typing will be hidden):

Logged in as satish@rubyconfindia.org

5https://toolbelt.heroku.com

https://toolbelt.heroku.com/
https://toolbelt.heroku.com/

Deploying Go Web Apps to Heroku 4

1.4 Prepare a web app

In this step, you will prepare a simple Go application that can be deployed.

Create a folder webapphr under the folder $GOPATH/src/github.com/SatishTalim/ and write the program
webapphr.go in the folder webapphr as follows:

Program webapphr.go

1 package main

2

3 import (

4 "fmt"

5 "log"

6 "net/http"

7 "os"

8)

9

10 func main() {

11 http.HandleFunc("/", handler)

12 fmt.Println("listening...")

13 err := http.ListenAndServe(GetPort(), nil)

14 if err != nil {

15 log.Fatal("ListenAndServe: ", err)

16 }

17 }

18

19 func handler(w http.ResponseWriter, r *http.Request) {

20 fmt.Fprintf(w, "Hello. This is our first Go web app on Heroku!")

21 }

22

23 // Get the Port from the environment so we can run on Heroku

24 func GetPort() string {

25 var port = os.Getenv("PORT")

26 // Set a default port if there is nothing in the environment

27 if port == "" {

28 port = "4747"

29 fmt.Println("INFO: No PORT environment variable detected, defaulting to " + port)

30 }

31 return ":" + port

32 }

Deploying Go Web Apps to Heroku 5

1.5 Use Git

In order to deploy to Heroku we’ll need the app stored in Git. In the same folder i.e. $GOPATH/sr-
c/github.com/SatishTalim/webapphr type:

$ git init

$ git add -A .

$ git commit -m "code"

1.6 Create a Procfile

Use a Procfile, a text file in the root directory of your application ($GOPATH/src/github.com/SatishTalim/webapphr),
to explicitly declare what command should be executed to start your app.

The Procfile looks like this:

web: webapphr

This declares a single process type, web, and the command needed to run it. The name web is important here.
It declares that this process type will be attached to the HTTP routing stack of Heroku, and receive web traffic
when deployed.

1.7 Install Godep

The recommended way to manage Go package dependencies on Heroku is with Godep6, which helps build
applications reproducibly by fixing their dependencies.

Let us install Godep:

$ go get github.com/tools/godep

1.8 Declare app dependencies

Heroku recognizes an app as a Go app by the existence of a Godeps.json file in the Godeps directory located
in your application’s root directory ($GOPATH/src/github.com/SatishTalim/webapphr).

The Godeps/Godeps.json file is used by Godep and specifies both the dependencies that are vendored with
your application and the version of Go that should be used to compile the application.

When an app is deployed, Heroku reads this file, installs the appropriate Go version and compiles your code
using godep go install ./….

6https://github.com/tools/godep

https://github.com/tools/godep
https://github.com/tools/godep

Deploying Go Web Apps to Heroku 6

1.9 Using godep with our project

In the folder $GOPATH/src/github.com/SatishTalim/webapphr type:

$ godep save -r

This will save a list of dependencies to the file Godeps/Godeps.json.

Note: Read the contents of Godeps/_workspace and make sure it looks reasonable. Godep does not copy files
from source repositories that are not tracked in version control. Then commit the whole Godeps directory to
version control, including Godeps/_workspace.

1.10 Add these new files to git

$ git add -A .

$ git commit -m "dependencies"

Now we’re ready to ship this to Heroku.

1.11 Deploy the app

In this step, you will deploy the app to Heroku.

Create an app on Heroku, which prepares Heroku to receive your source code.

$ heroku create

Creating thawing-harbor-9085… done, stack is cedar-14

https://thawing-harbor-9085.herokuapp.com/ | https://git.heroku.com/thawing-harbor-9085.git

Git remote heroku added

When you create an app, a git remote (called heroku) is also created and associated with your local git
repository.

Heroku generates a random name (in this case thawing-harbor-9085) for your app, or you can pass a
parameter to specify your own app name.

Deploying Go Web Apps to Heroku 7

Now deploy your code:

$ git push heroku master

Counting objects: 11, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (7/7), done.

Writing objects: 100% (11/11), 1.28 KiB | 0 bytes/s, done.

Total 11 (delta 0), reused 0 (delta 0)

remote: Compressing source files… done.

remote: Building source:

remote:

remote: — — -> Go app detected

remote: — — -> Checking Godeps/Godeps.json file.

remote: — — -> Installing go1.5.1… done

remote: — — -> Running: godep go install -tags heroku ./…

remote: — — -> Discovering process types

remote: Procfile declares types -> web

remote:

remote: — — -> Compressing… done, 1.9MB

remote: — — -> Launching… done, v3

remote: https://thawing-harbor-9085.herokuapp.com/ deployed to Heroku

remote:

remote: Verifying deploy…. done.

To https://git.heroku.com/thawing-harbor-9085.git

* [new branch] master -> master

The application is now deployed.

Visit the app at the URL generated by its app name. As a handy shortcut, you can open the website as follows:

$ heroku open

That’s it — you now have a running Go app on Heroku!

Exercises
Deploy the apps webtime.go, dosasite.go, ipweb.go, stringupper.go, geoweb.go and trails.go

that you had written previously to Heroku.

1.12 Program gomongohq.go

Previously we had written the program mongohqconnect.go. We shall modify that program and store the
modified version in the file gomongohql.go. We shall host gomongohql.go on Heroku; connect it to our
database godata hosted on MongoLab and fetch information (the email id of say user Stefan Klaste) from
the collection user.

Deploying Go Web Apps to Heroku 8

Program gomongohql.go

1 package main

2

3 import (

4 "fmt"

5 "html/template"

6 "labix.org/v2/mgo"

7 "labix.org/v2/mgo/bson"

8 "log"

9 "net/http"

10 "os"

11)

12

13 type Person struct {

14 Name string

15 Email string

16 }

17

18 func main() {

19 http.HandleFunc("/", root)

20 http.HandleFunc("/display", display)

21 fmt.Println("listening...")

22 err := http.ListenAndServe(GetPort(), nil)

23 if err != nil {

24 log.Fatal("ListenAndServe: ", err)

25 return

26 }

27 }

28

29 func root(w http.ResponseWriter, r *http.Request) {

30 fmt.Fprint(w, rootForm)

31 }

32

33 const rootForm = `

34 <!DOCTYPE html>

35 <html>

36 <head>

37 <meta charset="utf-8">

38 <title>Your details</title>

39 <link rel="stylesheet" href="http://yui.yahooapis.com/pure/0.4.2/pure-min.css">

40 </head>

41 <body style="margin: 20px;">

42 <h2>A Fun Go App on Heroku to access MongoDB on MongoLab</h2>

43 <p>This simple app will fetch the email id of a person, if it's already there in t\

44 he MongoDB database.</p>

Deploying Go Web Apps to Heroku 9

45 <p>Please enter a name (example: Stefan Klaste)</p>

46 <form action="/display" method="post" accept-charset="utf-8" class="pure-form">

47 <input type="text" name="name" placeholder="name" />

48 <input type="submit" value=".. and query database!" class="pure-button pure-butt\

49 on-primary"/>

50 </form>

51 <div>

52 <p>© 2015 Go Challenge. All rights reserved.</p>

53 </div>

54 </body>

55 </html>

56 `

57

58 var displayTemplate = template.Must(template.New("display").Parse(displayTemplateHTML))

59

60 func display(w http.ResponseWriter, r *http.Request) {

61 // In the open command window set the following for Heroku.

62 // Remember to use your login/password in the string below

63 // heroku config:set MONGOLAB_URL=mongodb://IndianGuru:dbpassword@ds051523.mongola\

64 b.com:51523/godata

65 uri := os.Getenv("MONGOLAB_URL")

66 if uri == "" {

67 fmt.Println("no connection string provided")

68 os.Exit(1)

69 }

70

71 sess, err := mgo.Dial(uri)

72 if err != nil {

73 fmt.Printf("Can't connect to mongo, go error %v\n", err)

74 os.Exit(1)

75 }

76 defer sess.Close()

77

78 sess.SetSafe(&mgo.Safe{})

79

80 collection := sess.DB("godata").C("user")

81

82 result := Person{}

83

84 collection.Find(bson.M{"name": r.FormValue("name")}).One(&result)

85

86 if result.Email != "" {

87 errn := displayTemplate.Execute(w, "The email id you wanted is: " + result\

88 .Email)

89 if errn != nil {

Deploying Go Web Apps to Heroku 10

90 http.Error(w, errn.Error(), http.StatusInternalServerError)

91 }

92 } else {

93 displayTemplate.Execute(w, "Sorry... The email id you wanted does not exis\

94 t.")

95 }

96 }

97

98 const displayTemplateHTML = `

99 <!DOCTYPE html>

100 <html>

101 <head>

102 <meta charset="utf-8">

103 <title>Results</title>

104 <link rel="stylesheet" href="http://yui.yahooapis.com/pure/0.4.2/pure-min.css">

105 </head>

106 <body>

107 <h2>A Fun Go App on Heroku to access MongoDB on MongoLab</h2>

108 <p>{{html .}}</p>

109 <p>Start again!</p>

110 <div>

111 <p>© 2015 Go Challenge. All rights reserved.</p>

112 </div>

113 </body>

114 </html>

115 `

116

117 // Get the Port from the environment so we can run on Heroku

118 func GetPort() string {

119 var port = os.Getenv("PORT")

120 // Set a default port if there is nothing in the environment

121 if port == "" {

122 port = "4747"

123 fmt.Println("INFO: No PORT environment variable detected, defaulting to " + port)

124 }

125 return ":" + port

126 }

The program by now should be self-explanatory.

• The rootForm uses Pure7 – a set of small, responsive CSS modules that you can use in every web project.
• The function display uses the html/template package and the mgo driver to access the database on
MongoLab. If the name is found in the database the function throws a page to the user with the email
id for that name.

7http://purecss.io/

http://purecss.io/
http://purecss.io/

Deploying Go Web Apps to Heroku 11

Note: Before you deploy gomongohql.go to Heroku. Remember to:

• Read the contents of Godeps/_workspace. You will observe that you need to add the folder sr-

c/labix.orgwith all its contents under Godeps/_workspace. Then commit the whole Godeps directory
to version control, including Godeps/_workspace.

• After you have deployed the app to Heroku, remember to set the heroku config:set MONGOLAB_-

URL=mongodb://IndianGuru:dbpassword@ds051523.mongolab.com:51523/godata and then heroku open.

Exercise
Write a simple Go program (getcapital.go) and host it on Heroku. This program when accessed
shows a simple form to the user, where he/she enters a country name. The Go app uses this
information to access a MongoDB database on MongoLab and fetches the capital of that country.
It then either displays the name of the capital or an error message to the user.

Exercise
The Gopher Academy Blog has an excellent article titled “Build a Christmas List with Martini8”. As
an exercise build this app on Heroku and which accesses the MongoDB database on MongoLab.

8http://blog.gopheracademy.com/day-11-martini

http://blog.gopheracademy.com/day-11-martini
http://blog.gopheracademy.com/day-11-martini

	Table of Contents
	Preface
	Who is the eBook for?
	Acknowledgements
	How to Use This eBook
	Using Code Examples
	Getting the Code
	How to Contact Me
	Thanks

	Deploying Go Web Apps to Heroku
	Cloud Computing Service Levels
	SaaS
	IaaS
	PaaS

	Create an account on Heroku
	Install the Heroku Toolbelt
	Prepare a web app
	Use Git
	Create a Procfile
	Install Godep
	Declare app dependencies
	Using godep with our project
	Add these new files to git
	Deploy the app
	Program gomongohq.go

