


How Do | Write And Deploy Simple Web Apps With Go?

Satish Talim
This book is for sale at http://leanpub.com/howdoibuildawebappwithgo

This version was published on 2017-05-28

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

© 2013 - 2017 Satish Talim


http://leanpub.com/howdoibuildawebappwithgo
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!

Please help Satish Talim by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought "How Do I Build Web Apps With Go?” ebook #programming #golang #gowebapps
The suggested hashtag for this book is #gowebapps.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on
Twitter:

https://twitter.com/search?q=#gowebapps


http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20%22How%20Do%20I%20Build%20Web%20Apps%20With%20Go?%22%20ebook%20%23programming%20%23golang%20%23gowebapps
https://twitter.com/search?q=%23gowebapps
https://twitter.com/search?q=%23gowebapps

Contents

Preface . . . . . .

Acknowledgements . . . . ...
HowtoUse ThiseBook . . . . . . . . . . .
Using Code Examples . . . . . . . . . o
Gettingthe Code . . . . . . . . . o e
HowtoContact Me . . . . . . . . . . ... .
Thanks . . . . . . L

1. Deploying Go Web AppstoHeroku . . . . . ... ... ... .. .. .. ... .. .. ... ...
1.1 Cloud Computing Service Levels . . . . . . ... . ... .. . ... ...
111 SaaS . . .

112 TaaS . . . . o

113 PaaS . . ..

1.2 Createanaccounton Heroku . ... ... ... .. ... ... ... . . L ..
1.3 Install the Heroku Toolbelt . . . . . . . . . . . . .
1.4 Prepareawebapp . . . . . . ..
1.5 UseGit . . . . . .
1.6 CreateaProcfile . .. ... ... .. ...
1.7 Install Godep . . . . . . . . .
1.8 Declare app dependencies . . . . . .. .. ... L
1.9 Using godep with our project . . . . . . . . ... L
1.10 Addthesenewfilestogit . .. .. .. ... ... ... L
1.11 Deploytheapp . . . . . . . .
1.12 Program gomongohq.go . . . . . . . . ..

e e o TR - I Y

N OO NN U U Ul 0N NN = e



Preface

Go! is an open source programming language that makes it easy to build simple, reliable, and efficient
software.

Who is the eBook for?

This short eBook will introduce you to building your own web applications and hosting it on the Internet. It
is targetted towards Go programming newbies who have:

« an understanding of basic web technologies HTTP?,

« an understanding of HTML?,

« a working knowledge of Go* programming (to try out the programs in this eBook, you should have a
working copy of Go 1.5 on your computer),

« an understanding of JSON®.

Acknowledgements

There are a good number of people who deserve thanks for their help and support they provided, either while
or before this eBook was written, and there are still others whose help will come after the eBook is released.
I would like to thank my “gang” of mentors at RubyLearning®, Doug Sparling and Sanat Gersappa for their
help in making this eBook far better than I could have done alone.

How to Use This eBook

I recommend that you go through the entire eBook chapter by chapter, reading the text and running the
sample programs. There are no large applications in this eBook — just small, self-contained sample programs.
This will give you a much broader understanding of how things are done (and of how you can get things
done), and it will reduce the chance of anxiety, confusion, and worse yet, mistakes.

Using Code Examples

All of the code in this eBook can be used pretty much anywhere and anyhow you please.

"http://golang.org/
*https://github.com/Unknwon/build-web-application-with-golang_EN/blob/master/eBook/03.1.md
3http://msdn.microsoft‘com/en— us/hh549253.aspx

“http://golang.org/

*http://en.wikipedia.org/wiki/JSON

Shttp://rubylearning.org/


http://golang.org/
https://github.com/Unknwon/build-web-application-with-golang_EN/blob/master/eBook/03.1.md
http://msdn.microsoft.com/en-us/hh549253.aspx
http://golang.org/
http://en.wikipedia.org/wiki/JSON
http://rubylearning.org/
http://golang.org/
https://github.com/Unknwon/build-web-application-with-golang_EN/blob/master/eBook/03.1.md
http://msdn.microsoft.com/en-us/hh549253.aspx
http://golang.org/
http://en.wikipedia.org/wiki/JSON
http://rubylearning.org/

Preface ii

Getting the Code

You can get a .zip or .tar archive of the code by going to GitHub Repo’ and clicking on the “Download”
button.

How to Contact Me

I can be reached via e-mail at satish@rubylearning.org. Please contact me if you have any questions,
comments, kudos or criticism on the eBook. Constructive criticism is definitely appreciated; I want this eBook
to get better through your feedback.

Thanks

Thanks for buying and checking out this eBook. As part of the lean publishing philosophy, you’ll be able to
interact with me as the eBook is completed. I’ll be able to change things, reorganize parts, and generally make
a better eBook. I hope you enjoy.

"https://github.com/SatishTalim/bwpwg


https://github.com/SatishTalim/bwpwg
mailto:satish@rubylearning.org
https://github.com/SatishTalim/bwpwg

1. Deploying Go Web Apps to Heroku

There are plenty of definitions for “cloud computing” online, and for the most part, they generally point to
the same thing: taking applications and running them on infrastructure other than your own. Companies or
individuals who offload or effectively “outsource” their hardware and/or applications are running those apps
“in the cloud”

1.1 Cloud Computing Service Levels

In the figure below, you can see how the analyst firm Gartner segregates cloud computing into three distinct
classes of service.

Cloud Computing as Gartner Sees It

Google Apps, Salesforce.com, Netsuite,
Lotus, WebFilings, Zoho, Yahoo!Mail,
Hotmail, ...

Google App Engine, Force.com,
Windows Azure, LongJump,
PaaS Rollbase, Amazon Elastic Beanstalk,
VMware CloudFoundry, ...

Amazon EC2, Rackspace,
VMware, Joyent, Google
Cloud Storage, ....

Source: Gartner AADI Summit Dec 2008

Cloud Computing Service Levels

1.1.1 SaaS

Let’s start at the highest level: software applications that are only available online fall into the “Software-as-
a-Service” category, also known as “SaaS”. The simplest example to understand is e-mail. For personal e-mail,
people typically select from a variety of free web-based e-mail servers such as Google’s Gmail, Yahoo!Mail,
or Microsoft’s Hotmail, rather than setting up all of the above through their provider. Not only is it “free”
(supported through advertising), but users are freed from any additional server maintenance. Because these
applications run (and store their data online), users no longer need to worry about managing, saving, and



Deploying Go Web Apps to Heroku 2

backing up their files. Of course, now it becomes Google’s responsibility to ensure that your data is safe and
secure. Other examples of Saa$ include Salesforce, IBM’s NetSuite, and online games.

1.1.2 laaS

On the opposite end of the spectrum, we have “Infrastructure-as-a-Service,” or “laaS,” where you outsource
the hardware. In such cases, it’s not just the computing power that you rent; it also includes power, cooling,
and networking. Furthermore, it’s more than likely that you’ll need storage as well. Generally IaaS is this
combination of compute and cloud storage.

When you choose to run your applications at this cloud service level, you’re responsible for everything on the
stack that is required to operate above it. By this, we mean necessities such as the operating system followed
by additional (yet optional services) like database servers, web servers, load-balancing, monitoring, reporting,
logging, middleware, etc. Furthermore, you’re responsible for all hardware and software upgrades, patches,
security fixes, and licensing, any of which can affect your application’s software stack in a major way.

1.1.3 PaaS

In the middle, we have “Platform-as-a-Service,” or “PaaS” At this service level, the vendor takes care of
the underlying infrastructure for you, giving you only a platform with which to (build and) host your
application(s). Gone are the hardware concerns of IaaS, yet with PaaS, you control the application — it’s
your code — unlike as the SaaS level where you’re dependent on the cloud software vendor. The only thing
you have to worry about is your application itself.

Systems like Google App Engine, Salesforce’s Heroku and force.com, Microsoft Azure, and VMwares Cloud
Foundry, all fall under the PaaS umbrella.

A number of Platform-as-a-Service (PaaS) providers' allow you to use Go applications on their clouds.

Heroku? is a new approach to deploying web applications®. Forget about servers; the fundamental unit is the
app. Develop locally on your machine just like you always do. When you’re ready to deploy, use the Heroku
client gem to create your application in their cloud, then deploy with a single git push. Heroku has full support
for Go applications.

We shall soon see how we can deploy an app to Heroku.

1.2 Create an account on Heroku

Please ensure that you are connected to the internet and then create an account on Heroku (obviously do this
only once). If you don’t have one, then signup®. It’s free and instant. A free account can have up to 5 apps
without registering your credit card.

!https://code.google.com/p/go-wiki/wiki/ProviderIntegration
*http://heroku.com/

*https://devcenter.heroku.com/articles/getting- started-with-go#introduction
4http://heroku.com/ signup


https://code.google.com/p/go-wiki/wiki/ProviderIntegration
http://heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-go#introduction
http://heroku.com/signup
https://code.google.com/p/go-wiki/wiki/ProviderIntegration
http://heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-go#introduction
http://heroku.com/signup

Deploying Go Web Apps to Heroku 3

1.3 Install the Heroku Toolbelt

The Heroku Toolbelt® provides you access to the Heroku Command Line Interface (CLI). Once installed,
you’ll have access to the heroku command from your command window. Log in using the email address and
password you used when creating your Heroku account:

$ heroku login

Installing Heroku Toolbelt v4... done.

For more information on Toolbelt v4: https://github.com/heroku/heroku-cli
Setting up node-v4.1.1...done

Installing core plugins heroku-apps, heroku-fork, heroku-git, heroku-local, hero
ku-run, heroku-status... done

Enter your Heroku credentials.

Email: satish@rubyconfindia.org

Password (typing will be hidden):

Logged in as satish@rubyconfindia.org

*https://toolbelt.heroku.com


https://toolbelt.heroku.com/
https://toolbelt.heroku.com/

O 00 I O O » W N =~

W W WNNDNDDDNDNDDNDDNDNDDND A B 1 1 s sy 1y
N A O O 03O0 U™ WD, O W10 0 bh whe~r O

Deploying Go Web Apps to Heroku

1.4 Prepare a web app

In this step, you will prepare a simple Go application that can be deployed.

Create a folder webapphr under the folder $GOPATH/src/github.com/SatishTalim/ and write the program

webapphr . go in the folder webapphr as follows:

Program webapphr.go

package main

import (
"fmt"
"log"
"net/http"

" n

os

func main() {
http.HandleFunc("/", handler)
fmt.Println("listening...")

err := http.ListenAndServe(GetPort(), nil)

if err != nil {

log.Fatal("ListenAndServe:

func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "Hello. This is our first Go web app on Heroku!")

// Get the Port from the environment so we can run on Heroku

func GetPort() string {
var port = os.Getenv("PORT")

// Set a default port if there is nothing in the environment

fmt.Println("INFO: No PORT environment variable detected, defaulting to " + port)

if port == "" {

port = "4747"
}
return ":" + port




Deploying Go Web Apps to Heroku 5

1.5 Use Git

In order to deploy to Heroku we’ll need the app stored in Git. In the same folder i.e. $GOPATH/sr-
c/github.com/SatishTalim/webapphr type:

$ git init
$ git add -A .
$ git commit -m "code"

1.6 Create a Procfile

Use aProcfile, atext file in the root directory of your application (§GOPATH/src/github.com/SatishTalim/webapphr),
to explicitly declare what command should be executed to start your app.

The Procfile looks like this:
web: webapphr

This declares a single process type, web, and the command needed to run it. The name web is important here.
It declares that this process type will be attached to the HTTP routing stack of Heroku, and receive web traffic
when deployed.

1.7 Install Godep

The recommended way to manage Go package dependencies on Heroku is with Godep®, which helps build
applications reproducibly by fixing their dependencies.

Let us install Godep:

$ go get github.com/tools/godep

1.8 Declare app dependencies

Heroku recognizes an app as a Go app by the existence of a Godeps. json file in the Godeps directory located
in your application’s root directory ($GOPATH/src/github.com/SatishTalim/webapphr).

The Godeps/Godeps . json file is used by Godep and specifies both the dependencies that are vendored with
your application and the version of Go that should be used to compile the application.

When an app is deployed, Heroku reads this file, installs the appropriate Go version and compiles your code
using godep go install ./...

®https://github.com/tools/godep


https://github.com/tools/godep
https://github.com/tools/godep

Deploying Go Web Apps to Heroku 6

1.9 Using godep with our project

In the folder $GOPATH/src/github.com/SatishTalim/webapphr type:
$ godep save -r
This will save a list of dependencies to the file Godeps/Godeps . json.

Note: Read the contents of Godeps/_workspace and make sure it looks reasonable. Godep does not copy files
from source repositories that are not tracked in version control. Then commit the whole Godeps directory to
version control, including Godeps/_workspace.

1.10 Add these new files to git

$ git add -A .
$ git commit -m "dependencies"

Now we’re ready to ship this to Heroku.

1.11 Deploy the app

In this step, you will deploy the app to Heroku.

Create an app on Heroku, which prepares Heroku to receive your source code.

$ heroku create

Creating thawing-harbor-9085.. done, stack is cedar-14
https://thawing-harbor-9085.herokuapp.com/ | https://git.heroku.com/thawing-harbor-9085.git
Git remote heroku added

When you create an app, a git remote (called heroku) is also created and associated with your local git
repository.

Heroku generates a random name (in this case thawing-harbor-9085) for your app, or you can pass a
parameter to specify your own app name.



Deploying Go Web Apps to Heroku 7

Now deploy your code:

$ git push heroku master

Counting objects: 11, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (7/7), done.

Writing objects: 100% (11/11), 1.28 KiB | 0 bytes/s, done.
Total 11 (delta 0), reused 0 (delta 0)

remote: Compressing source files.. done.

remote: Building source:

remote:

remote: — — -> Go app detected

remote: — — -> Checking Godeps/Godeps. json file.

remote: — — -> Installing gol.5.1.. done

remote: — — -> Running: godep go install -tags heroku ./..
remote: — — -> Discovering process types

remote: Procfile declares types -> web

remote:
remote: — — -> Compressing.. done, 1.9MB
remote: — — -> Launching.. done, v3

remote: https://thawing-harbor-9085. herokuapp.com/ deployed to Heroku
remote:

remote: Verifying deploy... done.

To https://git.heroku.com/thawing-harbor-9085.git

* [new branch] master -> master

The application is now deployed.

Visit the app at the URL generated by its app name. As a handy shortcut, you can open the website as follows:
$ heroku open

That’s it—you now have a running Go app on Heroku!

d

Exercises

Deploy the apps webtime.go, dosasite.go, ipweb.go, stringupper .go, geoweb.go and trails.go
that you had written previously to Heroku.

1.12 Program gomongohq.go

Previously we had written the program mongohqconnect.go. We shall modify that program and store the
modified version in the file gomongohql.go. We shall host gomongohql.go on Heroku; connect it to our
database godata hosted on MongoLab and fetch information (the email id of say user Stefan Klaste) from
the collection user.



O 00 9 O O » W N =~

B D D D 0w W WWWWWWWNDNDNDDNDDNDNDDNNDNDDN-S S PS, s sssSss s
B WO NP O O 03O0 0 v WA OO O WO U b WO O© O O kb WwN =~ O

Deploying Go Web Apps to Heroku

Program gomongohgql.go

package main

import (
"fmt"
"html/template"
"labix.org/v2/mgo"
"labix.org/v2/mgo/bson"
"log"
"net/http"

" n

os

type Person struct {
Name string

Email string

func main() {
http.HandleFunc("/", root)
http.HandleFunc("/display", display)
fmt.Println("listening...")
err := http.ListenAndServe(GetPort(), nil)
if err != nil {

log.Fatal("ListenAndServe: ", err)

return

func root(w http.ResponseWriter, r *http.Request) {
fmt.Fprint(w, rootForm)

const rootForm =
<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Your details</title>
<link rel="stylesheet" href="http://yui.yahooapis.com/pure/0.4.2/pure-min.css">
</head>
<body style="margin: 20px;">
<h2>A Fun Go App on Heroku to access MongoDB on MongolLab</h2>
<p>This simple app will fetch the email id of a person, if it's already there in t\
he MongoDB database.</p>



45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89

Deploying Go Web Apps to Heroku

<p>Please enter a name (example: Stefan Klaste)</p>
<form action="/display" method="post" accept-charset="utf-8" class="pure-form">
<input type="text" name="name" placeholder="name" />
<input type="submit" value=".. and query database!" class="pure-button pure-butt\
on-primary"/>
</form>
<div>
<p><b>&copy; 2015 Go Challenge. All rights reserved.</b></p>
</div>
</body>
</html>

var displayTemplate = template.Must(template.New("display").Parse(displayTemplateHTML))

func display(w http.ResponseWriter, r *http.Request) {

// In the open command window set the following for Heroku.

// Remember to use your login/password in the string below

// heroku config:set MONGOLAB_URL=mongodb://IndianGuru:dbpassword@ds051523. mongola\
b.com:51523/godata

uri := os.Getenv("MONGOLAB_URL")

if uri == "" {
fmt.Println("no connection string provided")
os.Exit(1)
}
sess, err := mgo.Dial(uri)
if err != nil {
fmt.Printf("Can't connect to mongo, go error %v\n", err)
os.Exit(1)
}

defer sess.Close()
sess.SetSafe(&mgo.Safe{})
collection := sess.DB("godata").C("user"
result := Person{}
collection.Find(bson.M{"name": r.FormValue("name")}).One(&result)
if result.Email != "" {
errn := displayTemplate.Execute(w, "The email id you wanted is: " + result\

.Email)
if errn != nil {



90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

Deploying Go Web Apps to Heroku

http.Error(w, errn.Error(), http.StatusInternalServerError)

}
} else {

displayTemplate.Execute(w, "Sorry... The email id you wanted does not exis\

const displayTemplateHTML =
<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Results</title>

<link rel="stylesheet" href="http://yui.yahooapis.com/pure/0.4.2/pure-min.css">

</head>
<body>

<h2>A Fun Go App on Heroku to access MongoDB on MongolLab</h2>

<pr><b>{{html .}}</b></p>
<p><a href="/">Start again!</a></p>
<div>

<p><b>&copy; 2015 Go Challenge. All rights reserved.</b></p>

</div>
</body>
</html>

// Get the Port from the environment so we can run on Heroku

func GetPort() string {
var port = os.Getenv("PORT")

// Set a default port if there is nothing in the environment

fmt.Println("INFO: No PORT environment variable detected, defaulting to " + port)

if port == "" {

port = "4747T"
}
return ":" + port

The program by now should be self-explanatory.

« The rootForm uses Pure’ — a set of small, responsive CSS modules that you can use in every web project.
« The function display uses the html/template package and the mgo driver to access the database on
MongoLab. If the name is found in the database the function throws a page to the user with the email

id for that name.

"http://purecss.io/


http://purecss.io/
http://purecss.io/

Deploying Go Web Apps to Heroku 11

Note: Before you deploy gomongohql . go to Heroku. Remember to:

« Read the contents of Godeps/_workspace. You will observe that you need to add the folder sr-
c/labix.org with all its contents under Godeps/_workspace. Then commit the whole Godeps directory
to version control, including Godeps/_workspace.

« After you have deployed the app to Heroku, remember to set the heroku config:set MONGOLAB_-
URL=mongodb : //IndianGuru: dbpassword@ds@51523.mongolab.com:51523/godata and then heroku open.

Exercise

Write a simple Go program (getcapital.go) and host it on Heroku. This program when accessed
shows a simple form to the user, where he/she enters a country name. The Go app uses this
information to access a MongoDB database on MongoLab and fetches the capital of that country.
It then either displays the name of the capital or an error message to the user.

'd

Exercise

4
The Gopher Academy Blog has an excellent article titled “Build a Christmas List with Martini®”. As
an exercise build this app on Heroku and which accesses the MongoDB database on MongoLab.

®http://blog.gopheracademy.com/day- 11-martini


http://blog.gopheracademy.com/day-11-martini
http://blog.gopheracademy.com/day-11-martini

	Table of Contents
	Preface
	Who is the eBook for?
	Acknowledgements
	How to Use This eBook
	Using Code Examples
	Getting the Code
	How to Contact Me
	Thanks

	Deploying Go Web Apps to Heroku
	Cloud Computing Service Levels
	SaaS
	IaaS
	PaaS

	Create an account on Heroku
	Install the Heroku Toolbelt
	Prepare a web app
	Use Git
	Create a Procfile
	Install Godep
	Declare app dependencies
	Using godep with our project
	Add these new files to git
	Deploy the app
	Program gomongohq.go


