*

*
x
x
x
*
¥
*
»
x
*

* * +* * = > * * " *|
* % P * . » o * X H X
* » * ¥ * ¥ »
» x > ; x & ba %
* x *
* * . L* * x * ¥ * * * «
* «
£ L% ") ¥ ¥ . o " * < N ‘
* * * % * *
¥
e ¥ * * * * ¥ * ¥
» *
* * * F * ¥ »
* * * £ . x
S\ ¥, S # % > * * * . * * ¥ " *
« * *
. & ¥ . - x w * » * . x/* . * . * . *
> * * . * * * » 4 * ¥
* * x ¥ * ¥
» Id » . &
% x
x * * x x
x * * N » N
¥ * ¥
+
¥ *® -\ * * * * * +
» * ¥
* * * ¥ 3 /% * B * *
* X * * * ¥ &* *
L " *x/* * P * x| x “ *
» *
. ¥ A ¥ * ¥ ¥ % * */ N L]
W o F - * N * * *
* * ¥ * x* » * * * * * ¥ B
* . * ¥ B ¥ * * * * Sy * * o
* * * * *
* * * % % * v
* * ®
- . * * % * ; N
* * * ! * * 2
* * b * * * * * x
¥ A * * L
* * Py # M * *
® x ¥ ", * * kg
. & » . - * " * . *) * . . P .
*
* * * * . ¥ v * N *
* *
* *
» % - * N +* A N .
* *
% * % * @ x x N
x * * *
< 5 * » \
* * ¥ - > *
* * * ¥
* . *
* » * .
¥
* x *
* % . *
* *
. xx| ¥ y ¥ * ¥ * * N
» & * ¥ * *
* > »
& * * * « » *) <
& Y4 ol A * FOIL * *
*
N * *
& * x
¥ * * * * % ¥
N * » T *
* * * ¥
*
* * * f * *
. b * x * , *
* R * LN *
"W > »* * w * ‘ ® . . ¥
A &
+
. g . ° i .
* * * * * *
. * * *
¥ x * %
* * x ps . N
* *
N ¥ * AL > * x X AN * b *
i *
* x * * " * * P X
- * *
« N ¥ 4
* % P, * *
%
*

y
x LS X
>
L .
Ma

*
i
* 5 x

*

*
¥

.. . Painful .

x
* * *
» * *

WALEED KHAMIES

ke. Codlng Interv1ew Preparatlon Less

x

How to Solve Algorithm Problems

Make Coding Interview Preparation Less
Painful

WALEED KHAMIES

This book is for sale at
http://leanpub.com/how-to-solve-algorithm-problems-book

This version was published on 2023-05-21 ISBN 978-1-7390105-1-5

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2023 WALEED KHAMIES

Tweet This Book!

Please help WALEED KHAMIES by spreading the word about this book on
Twitter!

The suggested tweet for this book is:

Exciting news! Just got my copy of "How to Solve Algorithm Problems” by
@khamiesw! I can’t wait to dive into the strategies and techniques shared
in this essential guide. Join me on this coding journey and grab your copy
today! Happy coding! #TechBooks #NewRelease

The suggested hashtag for this book is #how-to-solve-algorithm-problems.

http://leanpub.com/how-to-solve-algorithm-problems-book
https://leanpub.com
https://leanpub.com/manifesto
http://twitter.com
https://twitter.com/intent/tweet?text=
https://twitter.com/intent/tweet?text=
https://twitter.com/intent/tweet?text=
https://twitter.com/intent/tweet?text=
https://twitter.com/search?q=%23how-to-solve-algorithm-problems

Find out what other people are saying about the book by clicking on this
link to search for this hashtag on Twitter:

#how-to-solve-algorithm-problems

https://twitter.com/search?q=%23

To my lovely parents, Ahmed, and Salha,

No words can fully describe the sincere gratitude and love I have for
everything you have done for us. I won’t be here without you, so thank you!

To the gang, my brothers,

Who are facing immense danger and hardship due to the ongoing military
conflict in Sudan between the RSF militia and the Sudanese army. Please
hold on, things will get better soon.

To my only land, Sudan,

I lose a piece of my heart every single day. You have been through a
lot, so much pain and suffering, with rampant corruption and violence. But
I believe that we will overcome these challenges and emerge stronger than

before.

To my beloved reader,

I hope this guide serves as a valuable resource throughout your career.
May it empower you to achieve your goals and reach new heights of success.

Table of Contents

GuideBook
How to Solve Algorithms Problems?
Make Coding Interview Preparation Less Painful

Learning Cycle & Interview Assessment Factors
2.1 Understanding the Learning Cycle
2.1.1BeginnerPhase
2.1.2 Experienced Phase
2.1.3SeniorPhase

2.2 Interview Assessment Factors
2.2.1 Understanding of Algorithms and Data Structures
2.2.2 Problem-Solving Skills
2.23 Attention ToDetail
2.2.4 Code Efficiency
2.2.5 Time Complexity Analysis
22,6 ModularCode
227Debugging.
2.2.8 Communication

Solving Algorithm Problems

w

NN NN NN NNyttt G S S N

o]

TABLE OF CONTENTS

3.1 Steps to Solve Algorithm Problems 8
3.1.1 Understand the Problem 8
3.1.2 Formalize the Problem 9
3.1.3 Repeat Reading the Question Yourself 9
3.1.4 Bring Input Examples 9
3.1.5 Develop a Brute-Force Solution 10
3.1.6 Analyze Time and Space Complexities For the Brute-

Force Solution 10
3.1.7 Optimize The Brute-Force Solution. 10
3.1.8 Analyze Time and Space Complexities For the Optimized

Solution 11

3.2 KSum Family Problems 12
3.21The 2Sum Problem 12
3.2.2The3Sum Problem. 18
323KSum. 24

41. FGCCFramework 32

41.1WhatisFGCC? 32

4.1.2 A Mental Framework 32

4.1.3 Steps To Apply FGCC Framework 32

42. FGCCInPractice 33

4.2.1 Introduction to Backtracking Technique 33
4.2.1.1 Finding Permutations 33
Solution 33
4.2.1.2 Finding Combinations 33
4.2.1.3 Letter Combinations of a Phone Number 33

4.2.2 The Pillars of the FGCC Framework 34

5. Top #3 Algorithm Techniques. 36

51TwoPointers 36
5.1.1Code Example 36
512Usageo 36
5.1.3Data Structures L 36

5.2 Breadth-First Search (BFS) 37
5.2.1Code Example 37

522Usage 37

TABLE OF CONTENTS

5.23DataStructures L o oL o 37

5.3 Depth-First Search (DFS) 37
531Usageo 37
5.3.2DataStructures o Lo oL 37
6.Supplements. 38
6.1 Detect a Linked List Cycle 38
6.1.1 Problem Description. 38
6.1.2T1/O Examples 38
6.1.3Solution 38
6.1.4 Complexity Analysis 38

6.2 Remove the Nth Node From the End of a Linked List 39
6.2.1 Problem Description. 39
6.22T/OExamples L 39
6.23Solution 39
6.2.4 Complexity Analysis 40

6.3 Swapping Linked List Node Pairs 40
6.3.1 Problem Description. 40
6.3.2I/OExamples 40
6.3.3Solution 40
6.3.4 Complexity Analysis 41

6.4 Validate Binary Search Tree 41
6.4.1 Problem Description. 41
6.4.21/O Examples oL 41
6.43Solution 41
6.4.4 Complexity Analysis 42
6.5Same Binary Tree, 42
6.5.1 Problem Description. 42
6.5.2I/O Examples oL 42
6.53Solution 42
6.5.4 Complexity Analysis 43

6.6 Symmetric Binary Tree 43
6.6.1 Problem Description. 43
6.6.2I/OExamples L. 43
6.63Solution 43

6.6.4 Complexity Analysis 44

TABLE OF CONTENTS

References
Acknowledgments

About the Author

GuideBook

How to Solve Algorithms Problems?

Make Coding Interview Preparation Less Painful

by Waleed Khamies

This book is also for sale on the following platforms:

Leanpub: https://leanpub.com/how-to-solve-algorithm-problems-book
Khamies’ Store: https://shop.waleedkhamies.com/b/hsap

This version was published on 2023-05-21

The buyer will receive access to the book through a download link, Kindle
format, or a hard copy, but it is non-transferable to third parties. The included
Notion template link is also owned by the author and is protected by copyright
and other intellectual property laws, and is not transferable to any third
parties. This book, along with any content or materials provided, is owned by
the author and is protected by copyright, trademark, and other intellectual
property laws. Prior written consent is required for any reproduction or
distribution of this product.

© Waleed Khamies 2023, All rights reserved
www.waleedkhamies.com, info@waleedkhamies.com

Book Cover By : Author on Canva.

mn

Clear Mind — Better
Judgement — Better
Outcome.™

NAVAL RAVIKANT

Preface

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book

How to Solve Algorithm
Problems

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

How Should You Read This Guide?

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Notion Template: Learn Algorithms By
Doing

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

What Is The Goal Of This Guide?

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

What Should You Expect After Completing
This Guide?

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

4

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

Learning Cycle & Interview
Assessment Factors

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.1 Understanding the Learning Cycle

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.1.1 Beginner Phase

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.1.1.1 General Characteristics

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.1.1.2 Focus Points

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.1.2 Experienced Phase

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

5

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

Learning Cycle & Interview Assessment Factors 6

2.1.2.1 General Characteristics

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.1.2.2 Focus Points

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.1.3 Senior Phase

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.1.3.1 General Characterstics

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.1.3.2 Focus Points

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.2 Interview Assessment Factors

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.2.1 Understanding of Algorithms and Data
Structures

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

Learning Cycle & Interview Assessment Factors 7

2.2.2 Problem-Solving Skills

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.2.3 Attention To Detail

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.2.4 Code Efficiency

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.2.5 Time Complexity Analysis

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.2.6 Modular Code

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.2.7 Debugging

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2.2.8 Communication

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

Solving Algorithm Problems

This chapter discusses the key steps involved in solving algorithm problems.
The first section covers essential steps, including understanding algorithms
and data structures, problem-solving skills, attention to detail, code efficiency,
time complexity analysis, modular code, debugging, and communication.

The second section focuses on applying these factors to solve problems related
to the KSum Family. The chapter explores three critical problems in this
family, providing step-by-step solutions that emphasize the key concepts
discussed in the first section.

After completing this chapter, readers will have a better understanding of
how to approach algorithm problems and solve them efficiently.

3.1 Steps to Solve Algorithm Problems

When attempting to solve an algorithm problem, it is important to adopt a
systematic approach that assists in developing a robust solution. This means
creating a solution that takes into account various corner cases and is efficient
in terms of speed and memory usage. To achieve this, here are the steps to
follow when solving an algorithm problem:

3.1.1 Understand the Problem

The first step in solving any problem is to understand it. You cannot solve
something that you do not understand, and as they say: “Reading the question
is half of the answer” It is important to pay attention to the details when
encountering an algorithm problem.

Solving Algorithm Problems 9

3.1.2 Formalize the Problem

In this step, the job is to convert the problem information to a single question.
This question will be in an input-output format, where one specifies what
the input to the problem is and what the expected output is when solving the
problem.

3.1.3 Repeat Reading the Question Yourself

Repeating a question several times guarantees that one will not miss any
hidden information between the lines. In the binary search example, knowing
the array is sorted helped in developing an extremely efficient algorithm.

3.1.4 Bring Input Examples

After understanding and formalizing the problem as a question, it is time to
bring a handful of examples. These examples will serve as the expected inputs
and outputs of the developed algorithm. The number of these input examples
depends on the person, but it is better to have three examples, each one of
them serving a specific goal, as follows:

3.1.4.1 Example 1: An Empty-Case Input

The algorithm will expect to receive an empty input such as an empty string,
an empty list, or a number with a null value. Bringing this type of input
includes these corner cases in the algorithm design process.

3.1.4.2 Example 2: A Medium-Case Input

This type of input example is dedicated to testing the algorithm in its most
general flow. In other words, these are the inputs that the algorithm will
usually deal with. There will be a concrete example of this type of input in
the next section.

Solving Algorithm Problems 10

3.1.4.3 Example 3: A Corner-Case Input

The algorithm will expect to handle some special input examples that the
general flow of the algorithm will not expect to see frequently. Examples of
such corner cases include:

« Duplicated values in an array when the algorithm should expect to
receive unique values.

« Negative inputs when only the algorithm should expect to receive
positive inputs.

3.1.5 Develop a Brute-Force Solution

Now, it is time to develop a quick, dirty, and not practical solution for the
problem. In this stage of solving the problem, there is no need to write an
efficient code; only a code that works is required.

3.1.6 Analyze Time and Space Complexities For the
Brute-Force Solution

After developing the brute-force solution, one has to analyze the time and
space complexities. The first reason for this step is that it will tell the
interviewer that one knows how much the algorithm will cost in terms of
time and space. The second reason is that it will assist in optimizing the code
in later stages.

3.1.7 Optimize The Brute-Force Solution

This step is the difference between a beginner candidate and an experienced
candidate. The interviewer will try to see if you could optimize the brute-
force solution and produce a better result. In this stage, you have to go over
your brute-force solution line-by-line and look for operations that take too
much time and space if the input size becomes very big.

Solving Algorithm Problems 11

3.1.8 Analyze Time and Space Complexities For the
Optimized Solution

Again, you have to estimate the time and space complexities of your opti-
mized solution. If you reached this stage, congratulations! That means you
have passed your technical interview.

Solving Algorithm Problems 12

3.2 KSum Family Problems

In this section, we will delve into the process of solving algorithmic problems
while considering the factors discussed earlier. We will closely examine three
essential problems that belong to the KSum Family', and walk through their
solutions while highlighting these principles.

KSum is one of the most asked questions among interviewers, because It
contains multiple solution patterns that you can see among almost any other
algorithm problem. Also, it allows the interviewers to easily extend their
questions from one type of KSum problem to another version of the KSum
problem. For these reasons, KSum represents a good example to study closely
these assessement factors.

3.2.1 The 2Sum Problem

3.2.1.1 Problem Description

We are given a list of unique numbers and want to find the
index of a number that matches a given target.

*https://bit.ly/uacifds-ksum

https://bit.ly/uacifds-ksum
https://bit.ly/uacifds-ksum

Solving Algorithm Problems 13

List — 3 4 6 11

Indices ™ O 1 2 3 4

Figure 3.1: 2Sum Problem.

3.2.1.2 Problem Understanding

We have a list of integers that have duplicates, and we are
interested to find k numbers from this list whose sum will be
equal to a target.

Important Keywords: 1. non-unique integers, 2. unique com-
bination sets.

3.2.1.31/0 Examples

a b w N

-~ O

10
11
12
13
14
15
16
17
18
19
20

Solving Algorithm Problems 14

In/Out Examples.

Input: list of integers and a target.
Output: A collection of unique sets, where
each set has length = k.

Examples:

Example 1: (Empty-Case Example)
Input: array = [|, k = 4, target = 0
Output: []

Example 2: (Medium-Case Example)
Input: array = [2, 4, 6,9,15 |, k = 2, target = 15
Output: [[6,9]]

Example 3: (Corner-Case Example)
Input: array = [1, 3, 5, 6, 7, 8, 10, 2, 2, 13], k = 4, target = 15
output: [[1, 2, 2, 10], [1, 2, 5, 7],

[1, 3, 5, 6], [2, 2, 3, 8],

[2, 2, 3, 6, 1]

3.2.1.4 Brute-Force Solution

To solve this problem, we see that we have access to a target. This target
represents the sum of two numbers from the given array. Then, a simple
solution to this problem will be by making two loop variables (i, j).

Then, we look for a combination of two numbers that add up to the target
value. In the following code, we can see the implementation of this algorithm.

Solving Algorithm Problems 15

The Brute-force solution of 2Sum problem.

def two_sum_brute(nums, target):

n = len(nums)

for i in range(n):
for j in range(i + 1, n): # we start the second loop
from j = i+1.
if nums[i] + nums[j] == target:
return [i, j]
return []

3.2.1.5 Complexity Analysis
Time Complexity

The time complexity of this solution will be O(n?) because we used two
nested loops, which will result in this time complexity in the worst-case
scenario.

Space Complexity

However, space complexity is O(1) which is great, because this solution will
always use constant space regarding the size of the input. As we can see,
O(n?) is not a good time complexity, especially if you want to run this code
on an array with millions of numbers. In other words, If the algorithm takes
1 second to process 10 numbers, then that means it will take 100,000 seconds
(~28 hours) to process 1 million numbers.

3.2.1.6 Optimized Solution

To optimize the brute-force code, we need to examine the algorithm line-by-
line to see what operations take more resources. Below, we can see a table that
outlines the time complexity of the main operations involved in the brute-
force solution for the 2Sum problem.

Solving Algorithm Problems 16

ID Operation Time Complexity
1 n = len(nums) 0o(1)
2 foriin range(n): O(n)
3 for j in range(i+1, n): O(n)
4 if nums [i] + nums [j] == target: 0(1)
5 return [i,j] 0(1)

From the table, we can see clearly that our algorithm has a bottleneck because
of operations 2, and 3, because in the worst-case senario, operation 3 will have
O(n.n) = O(n?) time complexity.

Q How we can remove this bottleneck and optimize these opera-
tions?

One of the most useful data structures that programmers like to use is the
hashmap data structure. Hashmap has O(1) time complexity for the search
operation of almost any element inside it. Then, we can work around the
inefficiency of the brute-force solution by relying on space complexity.

Optimization Steps

« Store all the numbers inside a hashmap.

« Loop over the list items, and for each element, we will query our
hashmap using a key with a value equal to target -nums[i], where
i is the loop variable, and nums is the list of numbers.

Here is the optimized version of the code:

Solving Algorithm Problems 17

The optimized solution of 2Sum problem.

def twoSum_optimized(nums, target):

mapper = {}
for (i, e) in enumerate(nums):

Store the numbers inside the hashmap,
where the keys are the numbers,
and the values are the coressponding indicies.

mapper [e] = i

for i in range(len(nums)):
b = target - nums[i] # get the key value

if b in mapper and mapper[b] != i:
if the key is existed in the hashmap and the its
value
does not equal to the index of the second number,
we return
the indicies.

return (i, mapper[b])

3.2.1.7 Complexity Analysis
Time Complexity

The time complexity of this solution will be O(n) because we used only one
loop variable to iterate over the array elements.

Space Complexity

But, space complexity is O(n) because we rely on the hashmap to increase
the time efficiency of our algorithm.

Solving Algorithm Problems

3.2.2 The 3Sum Problem

3.2.2.1 Problem Description

We are given a list of non-unique integers, and we want
to find three numbers that add up to zero. In such a way,
the triplets should be all unique.

Target —> n

-1 10 1 2 -1 [-4

A Figure Illustrates 3Sum Problem.

3.2.2.2 Problem Understanding

We have a list of integers that are non-unique, and we are
interested to find three numbers from this list whose sum will
be equal to zero.

Important Keywords: 1. non-unique integers, 2. unique
triplets.

3.2.2.3 1/0 Examples

18

a b w N

-~ O

10
11
12
13
14
15
16
17
18
19
20
21
22

Solving Algorithm Problems 19

In/Out Examples.

Input: list of integers and a target.

Output: A collection of unique triplets.

Examples:

Example 1: (Empty-Case Example)

Input: array = [|, target = 0
Output: []

Example 2: (Medium-Case Example)

Input: array = [2,3,4,-1,-2], target = 0
Output: [(-1,-2, 3)]

Example 3: (Corner-Case Example)

Input: array = [-1,0,1,2,-1,-4], target = 0
output: [[-1,-1,2], [-1,0,1]]
not [[_11_1/21/ [_1/®/1]/ [1161_1]]

3.2.2.4 Brute-Force Solution

The intuitive approach to solving the problem is making three loops variables
(i, j, k). Then, we look for a combination of three numbers that add up to zero.

In the following code lines, notice how the sorting we did initially allowed
the Python set “result” to recognize duplicate combinations.

Solving Algorithm Problems 20

The Brute-force solution of 3Sum problem.

def three_sum_brute(nums):

nums = sorted(nums) # sort nums.
n = len(nums)
target = 0

result = set()

for i in range(n):
for j in range(i + 1, n):

for k in range(j + 1, n):
combination_sum = nums[i] + nums[j] + nums[k]
if combination_sum == target:

result.add((nums[i], nums[j], nums[k]))

return result

3.2.2.5 Complexity Analysis
Time Complexity

The time complexity of this solution will be O(n?) because we used three
nested loops. Notice that this is one of the worst time complexities, and the
need for the optimization step is mandatory in this case.

Space Complexity

Space complexity is O(n) which is fair enough because the code will use a
linear space.

3.2.2.6 Optimized Solution

The next table outlines the time complexity of the main operations involved
in the brute-force solution for the 3Sum problem. Let us examine our brute-
force solution line-by-line to see what operations take more resources.

Solving Algorithm Problems 21

ID Operation Time Complexity
1 nums = sorted(nums) O(nlogn)

2 n=len(nums) 0o(1)

3 foriin range(n): O(n)

4 for j in range(i+1, n): O(n)

5 for k in range(j+1, n): O(n)

6 if combination_sum == target: 0o(1)

7 result.add((nums[i], numsl[j], 0(1)

nums[k]))

From the previous table, we can see clearly that our algorithm has a
bottleneck because of operations 4 and 5. Because of the triple for-loops, the
overall time complexity for this solution cost will cost O(n.n.n) = O(n>).

How can we speed up this naive solution, and make it robust
in terms of time and memory?

One of the most useful algorithm techniques to solve algorithm problems is
Two Pointers. We are going to solve this problem as follows:

1. Sort the array of integers in increasing order.
2. Create a set to hold the combinations of triplets called “result.”
3. While looping over the array using a variable (i):

« Initialize two pointers, a left pointer with a value equal to i+1 and

a right pointer with a value equal to n-1, where n = array size.

» Make a nested loop and traverse the array using the two pointers.
Because we are looking for nums[left] + nums[right] + nums[i]= 0,
we will set our target = -numsli].

o If nums(left] + nums[right] = target, we will add this to the set of
results.

© 00 N O O b W N =

N NN NN NN P R s sy s
O O b WO N O O 0N O U B W N~ O

Solving Algorithm Problems 22

« If nums[left] + nums[right] < target, that means we need to increase

the left pointer to increase the value of this summation.
« Finally, if nums[left] + nums[right] > target, it means we need to

decrease the right pointer to decrease the value of the summation

and push it toward zero.
« In the end, we return the “result”

Here is how we can code this optimized version of the 3Sum problem:

The optimized solution of 2Sum problem.

def three_sum_optimized(nums):

nums = sorted(nums)
n = len(nums)
result = set()

for i in range(n):

left =1 + 1
right = n - 1
target = 0 - nums[i]

while left < right:

combination_sum = nums[left] + nums[right]

if combination_sum == target:
result.add((nums[i], nums[left], nums[right]))
left += 1
right -= 1

elif combination_sum < target:
left += 1
else:

right -= 1

return result

Solving Algorithm Problems 23

3.2.2.7 Complexity Analysis
Time Complexity

We used two main operations, Sorting O(nlogn) and Searching O(n?) (two
nested loops). However, the time complexity is still O(n?), because O(nlogn)
+ O(n?) = O(n?).

Space Complexity

Space complexity is O(n) because we used the Python set result to store the
triplets.

Solving Algorithm Problems 24

3.2.3 KSum

3.2.3.1 Problem Description

Given a list of non-unique integers and a target, we want to
find any set of K numbers from this list that add up to that
target, where those sets are all unique.

a1 +as +as + ... + ap = target

A Figure Illustrates KSum Problem.

3.2.3.2 Problem Understanding

We have a list of integers that have duplicates, and we are
interested to find K numbers from this list whose sum will
be equal to a target.

Important Keywords: 1. non-unique integers, 2. unique com-
bination sets.

g b W N -

= O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Solving Algorithm Problems

3.2.3.31/0 Examples

In/Out Examples.

25

Input: list of integers and a target.
Output: A collection of unique sets, where
each set has length = k.

Examples:

Example 1: (Empty-Case Example)

Input: array = [|, k = 4, target = 0

Output: [[1]

Example 2: (Medium-Case Example)

Input: array = [2, 4, 6,9,15 |, k = 2, target = 15

output: [[6,9]]

Example 3: (corner-Case Example)

Input: array = [1,3,5,6,7,8,10, 2, 2,13], k = 4, target = 15

Output: [[1, 2, 2, 1@], [1, 2, 5, 7],
[11 3/ 5/ 6]/ [2/ 2/ 3/ 8]/ [2/ 2/ 5/ 6]]

3.2.3.4 Solution

As you can see in 3Sum, even though we have duplicates in the array, our
code should handle such a situation by keeping all the sets unique. Also, we
provide different K values. This is important later when you test your code

against different KSum problems.

Solving Algorithm Problems 26

This problem is the general form of the 2Sum problem. To be able to infer the
KSum solution from our previous solutions, we need to understand a very
important thing first. Any KSum problem can be solved with this simple idea:

“Reduce KSum to 2Sum problem, then solve it.”

First, let us define some terms:

t, = The uppermost n degree target
K = The degree of KSum problem
Mathematically, the 2Sum problem could be formalized as:
a1 +ag =1t
While 3Sum is formalized as:

a1 +as +as =ts

And 4Sum is formalized as:
a1 +ag +az+ayg =t3
Then to solve 4Sum, we can rearrange these equations as follows:
to =13 —ay
t1 =1ty —ag

a; =t —as

Then, here is the summary of the KSum algorithm:

« Starting with the uppermost degree target

K=n

© 00 N O O b W N =

NN N N P R 1 1 N L s
W N PP O OV 0O N0 O N,

Solving Algorithm Problems 27

t=1,

« Recursively, calculate the upper-degree targets (i.e #5 t,) and the
missing numbers (i.e. a., as).

« When K = 2, call the 2Sum function to calculate the last missing
numbers (a,, a,).

To code KSum in Python, we defined two functions, we will introduce two
functions. The first function handles the 2Sum operation, while the second
function handles the KSum operation.

The 2Sum function:

2Sum using Two Pointers technique

def two_sum_2pointers(
nums,
target,
path,
result,

):

left = 0
right = len(nums) - 1

while left < right:

if nums[left] + nums[right] == target:
result.append(path + [nums[left], nums[right]])

while left < right and nums[left] == nums[left + 1]:

left += 1
while left < right and nums[right] == nums[right - 1]:
right -=1

24
25
26
27
28
29
30
31
32

Solving Algorithm Problems

left += 1
right -=1

if nums[left] + nums[right] < target:
left += 1

if nums[left] + nums[right] > target:
right -= 1

28

As you can see, we use the Two Pointers technique to implement this version
of 2Sum. In chapter 5, we will learn more about this technique in detail.

The KSum function:

KSum using Two Pointers technique

def k_sum(

© 00 N O O & W N =

[S S S N = e Y
S © 00 N O O & W N =~ O

nums,

K,

target,

path,

result,

):

stop early if the number of summation variables is less
than 2 or greater than the length of input array (nums).
if len(nums) < k or k < 2:

return

if k == 2: # (Call 2Sum_2pointers function when degree (k) =

two_sum_2pointers(nums, target, path, result)
else:

recursively reduce k (degree) value and estimate
upper-degree targets (target-nums[i]) till we reach

k =2 to solve it as a two_sum problem.

2

21
22
23
24
25

Solving Algorithm Problems 29

for i in range(len(nums)):
remove the duplicates in nums.
if i == Q@ or i > @ and nums[i - 1] != nums[i]:
k_sum(nums[i + 1:], k - 1, target - nums[i], path
+ [nums[i]], result)

The k_sum function keeps calculating the required numbers by reducing the
value of k by one till K = 2. Then it calls the two_sum_2pointers function
to calculate the last two missing numbers.

3.2.3.5 Complexity Analysis
Time Complexity

The time complexity of this solution will be:

O(n*~1)

because we used recursive function calls to solve for the k elements.
Space Complexity
In general, the code will have a space complexity equal to O(n) which

represents the space needed to store the results. (ignoring the function stack
memory and the path variable)

4 | FGCC FRAMEWORK

FGCC FRAMEWORK

4.1. FGCC Framework

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

4.1.1 What is FGCC?

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

4.1.2 A Mental Framework

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

4.1.3 Steps To Apply FGCC Framework

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

32

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

4.2. FGCC In Practice

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

4.2.1 Introduction to Backtracking
Technique

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

4.2.1.1 Finding Permutations

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Solution

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

4.2.1.2 Finding Combinations

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

4.2.1.3 Letter Combinations of a Phone Number

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

33

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

4.2. FGCC In Practice 34

4.2.2 The Pillars of the FGCC Framework

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

4.2.2.1 Focus (F)

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

1. Problem Formulation Pattern

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

2. Solution Pattern

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

A. Finding Permutations

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

B. Finding Combinations

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

C. Letter Combinations of a Phone Number

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

4.2. FGCC In Practice 35

4.2.2.2 Group (G) & Convert (C)

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

4.2.2.3 Communication

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

5. Top #3 Algorithm
Techniques

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

5.1 Two Pointers

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

5.1.1 Code Example

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

5.1.2 Usage

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

5.1.3 Data Structures

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

36

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

5. Top #3 Algorithm Techniques 37

5.2 Breadth-First Search (BFS)

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

5.2.1 Code Example

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

5.2.2 Usage

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

5.2.3 Data Structures

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

5.3 Depth-First Search (DFS)

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

5.3.1 Usage

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

5.3.2 Data Structures

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

6. Supplements

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.1 Detect a Linked List Cycle

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.1.1 Problem Description

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.1.21/0 Examples

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.1.3 Solution

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.1.4 Complexity Analysis

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

38

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

6. Supplements 39

Time Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Space Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.2 Remove the Nth Node From the End of
a Linked List

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.2.1 Problem Description

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.2.21/0 Examples

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.2.3 Solution

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

6. Supplements 40

6.2.4 Complexity Analysis

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Time Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Space Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.3 Swapping Linked List Node Pairs

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.3.1 Problem Description

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.3.21/0 Examples

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.3.3 Solution

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

6. Supplements 41

6.3.4 Complexity Analysis

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Time Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Space Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.4 Validate Binary Search Tree

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.4.1 Problem Description

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.4.21/0 Examples

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.4.3 Solution

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

6. Supplements 42

6.4.4 Complexity Analysis

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Time Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Space Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.5 Same Binary Tree

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.5.1 Problem Description

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.5.2 1/0 Examples

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.5.3 Solution

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

6. Supplements 43

6.5.4 Complexity Analysis

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Time Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Space Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.6 Symmetric Binary Tree

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.6.1 Problem Description

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.6.2 1/0 Examples

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

6.6.3 Solution

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

6. Supplements 44

6.6.4 Complexity Analysis

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Time Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

Space Complexity

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book
http://leanpub.com/how-to-solve-algorithm-problems-book

References

This content is not available in the sample book. The book can be purchased
on Leanpub at http://leanpub.com/how-to-solve-algorithm-problems-book

45

http://leanpub.com/how-to-solve-algorithm-problems-book

Acknowledgments

I am grateful to my supervisors for their support and mentorship, my friends
for their encouragement, and my family for their unconditional love. I also
appreciate the readers for their valuable feedback and support. Thank you

all for being part of my journey.

46

About the Author

Waleed Khamies is an applied machine learning scientist with a deep passion
for exploring the realm of semantic representations in multimodal data.
With a strong background in research and engineering, Waleed has gained
invaluable experience as a research engineer intern at Mila and a research
associate intern at Brown University’s Robotics Lab.

Holding a master’s degree in Mathematical Sciences/Machine Learning from
AMMI and a bachelor’s degree in Electrical and Electronics Engineering
from UofK, Waleed is recognized for his expertise in reinforcement learning
and the development of cutting-edge deep learning models for robotics
applications. His work has been published in reputable workshops, and he
actively shares his knowledge and insights through his engaging blog and
newsletter.

For more information about his work and interests, please visit his website
at waleedkhamies.com.

47

	Table of Contents
	GuideBook
	How to Solve Algorithms Problems?
	Make Coding Interview Preparation Less Painful

	Preface
	How to Solve Algorithm Problems
	How Should You Read This Guide?
	Notion Template: Learn Algorithms By Doing
	What Is The Goal Of This Guide?
	What Should You Expect After Completing This Guide?

	Learning Cycle & Interview Assessment Factors
	2.1 Understanding the Learning Cycle
	2.1.1 Beginner Phase
	2.1.2 Experienced Phase
	2.1.3 Senior Phase

	2.2 Interview Assessment Factors
	2.2.1 Understanding of Algorithms and Data Structures
	2.2.2 Problem-Solving Skills
	2.2.3 Attention To Detail
	2.2.4 Code Efficiency
	2.2.5 Time Complexity Analysis
	2.2.6 Modular Code
	2.2.7 Debugging
	2.2.8 Communication

	Solving Algorithm Problems
	3.1 Steps to Solve Algorithm Problems
	3.1.1 Understand the Problem
	3.1.2 Formalize the Problem
	3.1.3 Repeat Reading the Question Yourself
	3.1.4 Bring Input Examples
	3.1.5 Develop a Brute-Force Solution
	3.1.6 Analyze Time and Space Complexities For the Brute-Force Solution
	3.1.7 Optimize The Brute-Force Solution
	3.1.8 Analyze Time and Space Complexities For the Optimized Solution

	3.2 KSum Family Problems
	3.2.1 The 2Sum Problem
	3.2.2 The 3Sum Problem
	3.2.3 KSum

	4.1. FGCC Framework
	4.1.1 What is FGCC?
	4.1.2 A Mental Framework
	4.1.3 Steps To Apply FGCC Framework

	4.2. FGCC In Practice
	4.2.1 Introduction to Backtracking Technique
	4.2.1.1 Finding Permutations
	Solution
	4.2.1.2 Finding Combinations
	4.2.1.3 Letter Combinations of a Phone Number

	4.2.2 The Pillars of the FGCC Framework

	5. Top #3 Algorithm Techniques
	5.1 Two Pointers
	5.1.1 Code Example
	5.1.2 Usage
	5.1.3 Data Structures

	5.2 Breadth-First Search (BFS)
	5.2.1 Code Example
	5.2.2 Usage
	5.2.3 Data Structures

	5.3 Depth-First Search (DFS)
	5.3.1 Usage
	5.3.2 Data Structures

	6. Supplements
	6.1 Detect a Linked List Cycle
	6.1.1 Problem Description
	6.1.2 I/O Examples
	6.1.3 Solution
	6.1.4 Complexity Analysis

	6.2 Remove the Nth Node From the End of a Linked List
	6.2.1 Problem Description
	6.2.2 I/O Examples
	6.2.3 Solution
	6.2.4 Complexity Analysis

	6.3 Swapping Linked List Node Pairs
	6.3.1 Problem Description
	6.3.2 I/O Examples
	6.3.3 Solution
	6.3.4 Complexity Analysis

	6.4 Validate Binary Search Tree
	6.4.1 Problem Description
	6.4.2 I/O Examples
	6.4.3 Solution
	6.4.4 Complexity Analysis

	6.5 Same Binary Tree
	6.5.1 Problem Description
	6.5.2 I/O Examples
	6.5.3 Solution
	6.5.4 Complexity Analysis

	6.6 Symmetric Binary Tree
	6.6.1 Problem Description
	6.6.2 I/O Examples
	6.6.3 Solution
	6.6.4 Complexity Analysis

	References
	Acknowledgments
	About the Author

