

Hello Web App
Learn how to build a web app using
Django and Python! Updated for Django
3.2.

Tracy Osborn

This book is for sale at http://leanpub.com/hellowebapp

This version was published on 2021-05-22

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2015 - 2021 Tracy Osborn

http://leanpub.com/hellowebapp
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Tracy Osborn by spreading the word about this book
on Twitter!

The suggested hashtag for this book is #hellowebapp.

Find out what other people are saying about the book by clicking
on this link to search for this hashtag on Twitter:

#hellowebapp

http://twitter.com
https://twitter.com/search?q=%23hellowebapp
https://twitter.com/search?q=%23hellowebapp

Also By Tracy Osborn
Hello Web App: Intermediate Concepts

Really Friendly Command Line Intro

Really Friendly Git Intro

http://leanpub.com/u/tracymakes
http://leanpub.com/hellowebapp-intermediate-concepts
http://leanpub.com/really-friendly-command-line-intro
http://leanpub.com/really-friendly-git-intro

For my family: Andrey, who is the best supporpoise anyone could
ask for.

Westley, the 25lb biggest, baddest, most lovable cat.

Molly, who is the only kind of dog I’d ever want, except she peed
on the bed last night. Dammit.

Contents

Introduction . 1

What We’re Building . 3
MVP: Minimum Viable Product 4

Prerequisites . 6
HTML and CSS . 6
Python (just a bit) . 6
Suggestion: A Linux or Mac computer 7

Getting Started . 8

Setting Up Your Templates 10
Adding a URL to urls.py 11
Creating your first view 12
Adding static files . 13

Introduction
Have you ever wanted to build something from scratch that other
people could use? You could learn carpentry, knitting, or other
physical crafts — but what about something for the web?

There are tons of tutorials and instructions for writing your first
website using HTML and CSS, but building something that inter-
acts with the user — a full, complete web application — might feel
unachievable and out of reach.

The reality is that starting to build a web app is not as hard as you
might think. Of course it’s not easy, but today’s tools can help a
novice web developer create a basic web app in no time at all. It’s
only a matter of learning the basics and launching something real,
and you’ll be ready (and hopefully excited) to learn more.

I used to be a web designer with no appreciable programming
experience. In fact, once upon a time, I did take some introduc-
tory computer science classes at my university. After a couple of
semesters, I thought I hated programming (and especially with
Java), which drove me to switch my field of study to Art. I vowed
to never program again.

Fast forward again to when I was working as a web designer: I kept
wishing certain web apps existed. I’m sure you know the feeling.
Still convinced I hated programming, I tried finding a “technical
cofounder” to help me launch an idea for a web app I had. It didn’t
work. I was back to where I started:  an idea, no cofounder. I had
two options: quit or finally try to write code again.

Friends introduced me to Python,  a programming language that
made way more sense to me than Java, and is simply nicer looking
as well; and Django,  a framework built on Python to help jumpstart
the creation of web apps.

1

Introduction 2

Slowly but surely, I built my startup,WeddingLovely. Over the next
six years, I joined the startup accelerator 500 Startups and was ac-
cepted into the Designer Fund, raised money, and eventually made
WeddingLovely into a mostly-bootstrapped profitable business.

It wasn’t easy. The tutorials I found online all assumed previous
programming knowledge. Crazy acronyms (like MVC) abounded,
explanations only further confused me, and tutorials heavily relied
on the command line,  a tool friendly only to experienced program-
mers. As a web designer the results didn’t feel “real” to me until I
saw them on a website.

Hello Web App is what I wished had existed when I was
learning to develop web apps. I wrote this book to be free of
confusing explanations and unnecessary acronyms. I talk plainly,
not academically, as if we’re having a conversation between friends.
This book doesn’t teach “best practices” — it teaches the easiest way
to launch a web app.

I hope you enjoy!

What We’re Building
Python is a beautiful programming language. As a designer, I find
the clean code and organization very appealing.

Django is a Python framework (like Ruby on Rails is for Ruby,
another programming language you might have heard of). It is the
most feature-complete and beginner-friendly web framework for
Python: lots of useful utilities are built in and there is a massive
amount of resources (tutorials as well as plugins) due to the size of
the Django community.

But what exactly are we building?

Most tutorials start with a specific project. The official Django
tutorial, for example, creates a polling app. But what if that tutorial
subject doesn’t interest you?

If you’re like me, you would finish the tutorial but not feel any
“ownership” over what you built because you essentially replicated
another project. It’s hard to relate and really understand what
you’re doing unless you feel involved. To that end, we’re going to
try something a little different here.

HelloWebApp is going to walk you through building a generic “col-
lection of things.” However, this framework covers many different
types of web apps you could build:

• A blog, which is a collection of posts.
• An online store, which is a collection of items you could buy.
• An online directory, which is a collection of people’s profiles.
• … and so on and so forth.

What’s written here is going to be generic and vanilla, and it’s up to
you to decide what exactly you’re going to build using Hello Web

3

What We’re Building 4

App. Pretty much the only thing you’re going to change are the
names of code bits, but the functionality will remain the same.

Some specific examples of what you could build using this book:

• A ratings website for a collection of things. Really love
backpacking? You could create a website that shows your
reviews for various pieces of equipment.

• A directory of people. This was my original project — I built
a listing of custom wedding invitation designers. You could
also do a listing of conference attendees, a list of awesome
web people, such and so forth.

• An online store. There are a lot of solutions out there that
help you set up a store without coding it, but it might be fun
to build a store from the ground up to sell products.

• Or a blog, as mentioned above.

Take five minutes and think about a collection of objects that you’re
going to build using Hello Web App. Don’t worry about scope
just yet (we’re getting to that); just find something you would be
interested in working on.

What’s your “collection of things” project?

MVP: Minimum Viable Product

Oh goodness, there’s an acronym sneaking in, and I said I wouldn’t
do that.

Your MVP—Minimum Viable Product, a popular term in start-up
land—is the minimum you need to build for your app to work and
be useful to users.

Sometimes people get an idea for something they want to build
and spend four years trying to perfect it. But there will always be

What We’re Building 5

another feature to add, another bug to fix, another thing to improve,
all while you could be getting real people to use your app and give
you feedback (real feedback) on how to improve.

Building your idea might seem really intimidating, especially when
working with real customers. But having real customers will be an
incredible motivation to work on your web app more.

For example, my first programming project mentioned before —
 today, it’s chock full of features. There are free and paid accounts,
using Stripe and PayPal to trigger recurring charges. There are a
bunch of different ways to browse pages, such as by location, by
budget, or by style. There’s an API so other websites can integrate
vendor listings into their websites powered by my app.

None of these features existed in the first version I built.

The only real features I needed for that first version were:

• A homepage.
• A profile page for each stationer in the directory.
• A basic search by location page.
• A form so a stationer could apply to join the directory.
• And static pages: About, Contact, etc.

It took me only six weeks from deciding to learn how to program to
launch my first app. Two weeks later, it was profiled in a prominent
design blog. Swamped by customers, my startup was born.

Even the simplest of web apps can grow into something big.
Something you build now could become a business.

Take some time to write down your “collection of things” project
idea, and then write down every awesome feature you think it
should have. Then, circle only the ones that are really truly nec-
essary. Make your web app as small and easy to launch as possible.
With luck, the lessons of Hello Web App will be all you need to
launch your app, and if not, you’ll have only a few new concepts
to learn before you can launch.

Prerequisites
HTML and CSS

This tutorial works best for those who have a solid understanding
of HTML and CSS.

If you haven’t worked with HTML before, there are tons of re-
sources to help get you started with front-end development. Here
are a few recommended resources:

• HTML andCSS: Design and BuildWebsites (http://hellobks.com/1)
• Learn to Code HTML & CSS (http://hellobks.com/2)
• Don’t Fear the Internet: Basic HTML & CSS for Non-Web
Designers (http://hellobks.com/3)

It is recommended and highly encouraged to be comfortable build-
ing a website using basic HTML and CSS before jumping into this
book. If you’re not, it won’t take long to get there.

Python (just a bit)

Here’s the big one!

“But this is a book on how to learn how to program. Why do I need
Python knowledge?” you might be asking.

The best resources for learning the basic principles in Python have
already been written and are online for free: no need for Hello Web
App to reinvent the wheel.

6

http://hellobks.com/1
http://hellobks.com/2
http://hellobks.com/3

Prerequisites 7

My personal favorite: Learn Python TheHardWay (http://hellobks.com/4)
by Zed Shaw, which contains a series of easy and well written
Python exercises. Try to get through at least half. It shouldn’t take
very long.

Alternatively (or in addition), the video tutorial Hands-On Intro
to Python for Beginning Programmers (http://hellobks.com/5) by
Jessica McKeller is excellent.

Make sure you at least partially understand the following concepts
(More info: http://hellobks.com/6):

• Variables
• If-statements
• For-loops
• Comments

If you don’t feel like an expert, or even an intermediate, that’s okay
â€”Â these concepts will make more and more sense to you as you
play aroundwith programming. Once you feel like you have a basic
grasp, we can start building our web app.

Suggestion: A Linux or Mac computer

Unfortunately, the Windows environment doesn’t play as nicely
with development and programming as Unix-based systems do
(such as Linux and Mac operating systems.)

This doesn’t mean you can’t develop on Windows, and all Hello
Web App instructions are written with both in mind. However,
in general, life will be a lot easier on a Unix-based system, so
if you have the option to use something other than a Windows
environment, it’s highly encouraged that you do so.

If you’re usingWindows and have any issues with HelloWeb App’s
instructions while going through this book, check out ourWindows
resource page here: http://hellobks.com/7

http://hellobks.com/4
http://hellobks.com/5
http://hellobks.com/6
http://hellobks.com/7

Getting Started
Writing HTML and viewing your results right away is easy: Just
point your browser to your HTML (.html) file and voilà — your
website gets displayed!

Not so with your Python (.py) files — your browser has no clue
what to do with Python code. To start creating web apps in Django,
we first need to install Python and Django on your computer (as
well as a few other useful utilities, including a local web server that
will interpret your Python code and deliver responses that yourweb
browser can understand.)

This is the most complicated part of the process. Because the
instructions for installing and setting up Python keep changing over
time, they live online.

Hello Web App’s Python and Django installation instructions can
be found here: http://hellobks.com/8

Once you’ve finished, head back to your command line (make sure
you’re in your virtual environment and you’re in the same directory
asmanage.py) and run python manage.py runserver. If everything
worked correctly, you should see the Django congratulations page
(congratulations!)

8

http://hellobks.com/8

Getting Started 9

What you should see if you correctly installed Python and Django and started the
local web server.

As you go through the rest of the book, keep in mind that if you
ever need to check that you have the correct code snippets copied
into your app, all code in the book can be found on our GitHub
code repository (change chapters by clicking the “branch” button):
http://hellobks.com/9

We also have an online forum to discuss the book and resolve issues
here: http://hellobks.com/10

Any other information (including installation instructions, tips, and
resources) can be found on ourmain repository here: http://hellobks.com/11

Now get started building your app!

http://hellobks.com/9
http://hellobks.com/10
http://hellobks.com/11

Setting Up Your Templates
Congrats, you’ve launched your Django web app! How do you
actually make this look like a website? Note that the installation
instructions didn’t mention anything about templates, HTML, CSS,
or any other files. Let’s set that stuff up now.

Head back to your command line, and cd into your collection

folder (the one with models.py). Using mkdir, create a “templates”
directory, and then create index.html within it.

$ cd collection

collection $ mkdir templates

collection $ cd templates

collection/templates $ touch index.html

Open up index.html in your preferred code editor and add the
necessary pieces to display a typical webpage. We’re going to use
HTML5 but only the bare bones for now — we can get fancy later.

index.html

1 <!doctype html>

2 <html>

3 <head>

4 <title>My Hello Web App Project</title>

5 </head>

6 <body>

7 <h1>Hello World!</h1>

8 <p>I am a basic website.</p>

9 </body>

10 </html>

If you open up your browser and go to http://localhost:8000, you’ll
still see the same default page you saw before — none of the HTML
above. We need to tell Django how to get to that file.

10

Setting Up Your Templates 11

Adding a URL to urls.py

Django doesn’t know what to do with the index.html file we just
created. So head to urls.py, which is in the same folder as settings.py
— we’re going to associate the root directory (/) with the newly
created index.html.

In urls.py’s entries area, find the urlpatterns line, remove the pre-
existing comments, and add in the lines indicated:

urls.py

1 from django.contrib import admin

2 from django.urls import path

3

4 from collection import views

5

6 urlpatterns = [

7 path('', views.index, name='home'),

8 path('admin/', admin.site.urls),

9]

There are essentially four parts to this new line: * path() encloses
the path information. * '' is where we indicate what route we’re
targeting after the domain. Since this is empty, we’re targeting
the homepage with our new template (“www.example.com”). For
comparison, you can see that the second line (provided by Django)
is targeting the admin path (“www.example.com/admin”). * views.index
means that we’ll use the index view in views.py in our app
collection (imported at the top). We’ll create this soon. * Last,
name='home' is optional, but allows us to assign a name to this URL
so we can refer to it in the future as “home”. I’ll explain how this
ties in later.

I am using the “typical” urls.py layout here, but if it’s more
understandable to you, you can layout the URL definition like this:

Setting Up Your Templates 12

urls.py

1 urlpatterns = [

2 path(

3 route='',

4 view=views.index,

5 name='home',

6),

7 path('admin/', admin.site.urls),

8]

This will help you keep track of which bit is what. I’m going to keep
using the previous configuration in this book though, since it’s how
it’s usually laid out in Django.

Apologies if URL configuration sounds complicated. The most you
need to remember here is that there is path, then the view definition,
and then we gave the URL a name. We can easily copy and paste
from this template in the future for new URL entries.

Creating your first view

Now that we have a template and a URL entry, we need to tie
them together, so that the URL will display the template. This is
views.py’s job, which lives in the collection app.

There are a ton of different ways to display a template simply in the
views, and my favorite is Django’s shortcut function called render.
This is something you’ll need to import, but Django anticipates that
you’ll use it and already has it added to the top of views.py for us.

Setting Up Your Templates 13

views.py

1 from django.shortcuts import render

2

3 # Create your views here.

4 def index(request):

5 # this is your new view

6 return render(request, 'index.html')

Basically, urls.py will catch that someone wants the homepage
and points to this piece of code, which will render the index.html

template. Now open up your browser and check out the new
homepage on http://localhost:8000. Woohoo!

Adding static files

We’re now displaying the HTML file we created, but how do we get
CSS styling in there? Unfortunately it’s not as simple as creating a
CSS directory and linking the stylesheets in our HTML file.

Let’s go ahead and create the directory for static files now, which
Django uses for files like style sheets. In your app (remember
we named it collection — the folder that contains models.py),

Setting Up Your Templates 14

create a “static” directory, and within it, add in directories for CSS,
Javascript, and images. In the CSS directory, add a blank style.css
file.

$ cd collection

collection $ mkdir static

collection $ cd static

collection/static $ mkdir images

collection/static $ mkdir js

collection/static $ mkdir css

collection/static $ cd css

collection/static/css $ touch style.css

Head back into your index.html page. We’ll need to tell Django that
there are static files used on this page, so at the top (like imports in
views.py and urls.py) add {% load staticfiles %}. Why the {%?
We’ll get to that soon.

Now that we can add static files to this template, add your CSS tag
to the <HEAD> just like this:

index.html

1 {% load static %}

2 <!doctype html>

3 <html>

4 <head>

5 <title>My Hello Web App Project</title>

6 <link rel="stylesheet"

7 href="{% static 'css/style.css' %}" />

8 </head>

9 <body>

10 <h1>Hello World!</h1>

11 <p>I am a basic website.</p>

12 </body>

13 </html>

Wewant to avoid using relative paths, such as href="../css/style.css".
For optimization purposes, someday later you might want to move
the static files of your project to a different server (such as Ama-
zon’s Simple Storage Service, or S3), and by avoiding relative paths

Setting Up Your Templates 15

with Django’s static files URL utility, your CSS path will always
use what’s defined in your settings and will magically work even
if you change your static file’s locations.

At this point, feel free to add some stylesheet declarations to your
style.css file and check out http://localhost:8000 again (run python

manage.py runserver in your command line again if you need to
do so).

style.css

1 body {

2 background-color: cornflowerblue;

3 }

Nice! Feel free to update your CSS more at this point. If it doesn’t
turn blue, try stopping and restarting your local server.

To link to any static file from a template, use the {% static 'FILE-

LOCATION/FILENAME.TYPE' %} syntax, such as {% static 'js/script.js'

%} or {% static 'images/logo.jpg' %}. Keep in mind you still
need the IMG HTML tag when displaying images, for example:

That said, don’t worry about this within your CSS files — feel free
to use relative paths because your static files should always be

Setting Up Your Templates 16

together anyways.

1 h1 {

2 /* for example... */

3 background-image: url(../images/logo.png);

4 }

Now you can add static files and style your website! Don’t forget
to commit your work with git (review git on our git tips page here:
http://hellobks.com/12).

Next up, Django has a bunch of awesome template utilities that’ll
elevate these static HTML files and make them a lot more interest-
ing (and fun to work with).

http://hellobks.com/12

	Table of Contents
	Introduction
	What We're Building
	MVP: Minimum Viable Product

	Prerequisites
	HTML and CSS
	Python (just a bit)
	Suggestion: A Linux or Mac computer

	Getting Started
	Setting Up Your Templates
	Adding a URL to urls.py
	Creating your first view
	Adding static files

