

[image: Hello Web App]

 Hello Web App

 Learn how to build a web app using Django and Python! Updated for Django 3.2.

 Tracy Osborn

 This book is for sale at http://leanpub.com/hellowebapp

 This version was published on 2021-05-22

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2015 - 2021 Tracy Osborn

 For my family:
Andrey, who is the best supporpoise anyone could ask for.

Westley, the 25lb biggest, baddest, most lovable cat.

Molly, who is the only kind of dog I’d ever want, except she peed on the bed last night.
Dammit.

 Table of Contents

 	
 Introduction

 	
 What We’re Building

 	
 MVP: Minimum Viable Product

 	
 Prerequisites

 	
 HTML and CSS

 	
 Python (just a bit)

 	
 Suggestion: A Linux or Mac computer

 	
 Getting Started

 	
 Setting Up Your Templates

 	
 Adding a URL to urls.py

 	
 Creating your first view

 	
 Adding static files

 Guide

 	
 Begin Reading

Introduction

Have you ever wanted to build something from scratch that other people could
use? You could learn carpentry, knitting, or other physical crafts — but what
about something for the web?

There are tons of tutorials and instructions for writing your first website
using HTML and CSS, but building something that interacts with the user — a
full, complete web application — might feel unachievable and out of reach.

The reality is that starting to build a web app is not as hard as you might
think. Of course it’s not easy, but today’s tools can help a novice web
developer create a basic web app in no time at all. It’s only a matter of
learning the basics and launching something real, and you’ll be ready (and
hopefully excited) to learn more.

I used to be a web designer with no appreciable programming experience. In fact,
once upon a time, I did take some introductory computer science classes at my
university. After a couple of semesters, I thought I hated programming (and
especially with Java), which drove me to switch my field of study to Art. I
vowed to never program again.

Fast forward again to when I was working as a web designer: I kept wishing
certain web apps existed. I’m sure you know the feeling. Still convinced I hated
programming, I tried finding a “technical cofounder” to help me launch an idea
for a web app I had. It didn’t work. I was back to where I started:  an idea, no
cofounder. I had two options: quit or finally try to write code again.

Friends introduced me to Python,  a programming language that made way more
sense to me than Java, and is simply nicer looking as well; and Django,  a
framework built on Python to help jumpstart the creation of web apps.

Slowly but surely, I built my startup, WeddingLovely. Over the next six years, I
joined the startup accelerator 500 Startups and was accepted into the Designer
Fund, raised money, and eventually made WeddingLovely into a mostly-bootstrapped
profitable business.

It wasn’t easy. The tutorials I found online all assumed previous programming
knowledge. Crazy acronyms (like MVC) abounded, explanations only further
confused me, and tutorials heavily relied on the command line,  a tool friendly
only to experienced programmers. As a web designer the results didn’t feel
“real” to me until I saw them on a website.

Hello Web App is what I wished had existed when I was learning to develop web
apps. I wrote this book to be free of confusing explanations and unnecessary
acronyms. I talk plainly, not academically, as if we’re having a conversation
between friends. This book doesn’t teach “best practices” — it teaches the
easiest way to launch a web app.

I hope you enjoy!

What We’re Building

Python is a beautiful programming language. As a designer, I find the clean
code and organization very appealing.

Django is a Python framework (like Ruby on Rails is for Ruby, another
programming language you might have heard of). It is the most feature-complete
and beginner-friendly web framework for Python: lots of useful utilities are
built in and there is a massive amount of resources (tutorials as well as
plugins) due to the size of the Django community.

But what exactly are we building?

Most tutorials start with a specific project. The official Django tutorial, for
example, creates a polling app. But what if that tutorial subject doesn’t
interest you?

If you’re like me, you would finish the tutorial but not feel any “ownership”
over what you built because you essentially replicated another project. It’s
hard to relate and really understand what you’re doing unless you feel involved.
To that end, we’re going to try something a little different here.

Hello Web App is going to walk you through building a generic “collection of
things.” However, this framework covers many different types of web apps you
could build:

 	A blog, which is a collection of posts.

 	An online store, which is a collection of items you could buy.

 	An online directory, which is a collection of people’s profiles.

 	… and so on and so forth.

What’s written here is going to be generic and vanilla, and it’s up to you to
decide what exactly you’re going to build using Hello Web App. Pretty much the
only thing you’re going to change are the names of code bits, but the
functionality will remain the same.

Some specific examples of what you could build using this book:

 	A ratings website for a collection of things. Really love backpacking? You
 could create a website that shows your reviews for various pieces of
 equipment.

 	A directory of people. This was my original project — I built a listing of
 custom wedding invitation designers. You could also do a listing of
 conference attendees, a list of awesome web people, such and so forth.

 	An online store. There are a lot of solutions out there that help you set up a
 store without coding it, but it might be fun to build a store from the
 ground up to sell products.

 	Or a blog, as mentioned above.

Take five minutes and think about a collection of objects that you’re going to
build using Hello Web App. Don’t worry about scope just yet (we’re getting to
that); just find something you would be interested in working on.

 What’s your “collection of things” project?

MVP: Minimum Viable Product

Oh goodness, there’s an acronym sneaking in, and I said I wouldn’t do that.

Your MVP—Minimum Viable Product, a popular term in start-up land—is the minimum
you need to build for your app to work and be useful to users.

Sometimes people get an idea for something they want to build and spend four
years trying to perfect it. But there will always be another feature to add,
another bug to fix, another thing to improve, all while you could be getting
real people to use your app and give you feedback (real feedback) on how to
improve.

Building your idea might seem really intimidating, especially when working with
real customers. But having real customers will be an incredible motivation to
work on your web app more.

For example, my first programming project mentioned before — today, it’s chock
full of features. There are free and paid accounts, using Stripe and PayPal to
trigger recurring charges. There are a bunch of different ways to browse pages,
such as by location, by budget, or by style. There’s an API so other websites
can integrate vendor listings into their websites powered by my app.

None of these features existed in the first version I built.

The only real features I needed for that first version were:

 	A homepage.

 	A profile page for each stationer in the directory.

 	A basic search by location page.

 	A form so a stationer could apply to join the directory.

 	And static pages: About, Contact, etc.

It took me only six weeks from deciding to learn how to program to launch my
first app. Two weeks later, it was profiled in a prominent design blog. Swamped
by customers, my startup was born.

Even the simplest of web apps can grow into something big. Something you
build now could become a business.

Take some time to write down your “collection of things” project idea, and then
write down every awesome feature you think it should have. Then, circle only the
ones that are really truly necessary. Make your web app as small and easy to
launch as possible. With luck, the lessons of Hello Web App will be all you need
to launch your app, and if not, you’ll have only a few new concepts to learn
before you can launch.

Prerequisites

HTML and CSS

This tutorial works best for those who have a solid understanding of HTML and
CSS.

If you haven’t worked with HTML before, there are tons of resources to help get
you started with front-end development. Here are a few recommended resources:

 	HTML and CSS: Design and Build Websites
 (http://hellobks.com/1)

 	Learn to Code HTML & CSS
 (http://hellobks.com/2)

 	Don’t Fear the Internet: Basic HTML & CSS for Non-Web Designers
 (http://hellobks.com/3)

It is recommended and highly encouraged to be comfortable building a website
using basic HTML and CSS before jumping into this book. If you’re not, it won’t
take long to get there.

Python (just a bit)

Here’s the big one!

“But this is a book on how to learn how to program. Why do I need Python
knowledge?” you might be asking.

The best resources for learning the basic principles in Python have already been
written and are online for free: no need for Hello Web App to reinvent the
wheel.

My personal favorite: Learn Python The Hard Way
(http://hellobks.com/4) by Zed Shaw, which
contains a series of easy and well written Python exercises. Try to get through
at least half. It shouldn’t take very long.

Alternatively (or in addition), the video tutorial Hands-On Intro to Python for
Beginning Programmers (http://hellobks.com/5) by
Jessica McKeller is excellent.

Make sure you at least partially understand the following concepts (More info:
http://hellobks.com/6):

 	Variables

 	If-statements

 	For-loops

 	Comments

If you don’t feel like an expert, or even an intermediate, that’s okay â€”Â these
concepts will make more and more sense to you as you play around with
programming. Once you feel like you have a basic grasp, we can start building
our web app.

Suggestion: A Linux or Mac computer

Unfortunately, the Windows environment doesn’t play as nicely with development
and programming as Unix-based systems do (such as Linux and Mac operating
systems.)

This doesn’t mean you can’t develop on Windows, and all Hello Web App
instructions are written with both in mind. However, in general, life will be a
lot easier on a Unix-based system, so if you have the option to use something
other than a Windows environment, it’s highly encouraged that you do so.

If you’re using Windows and have any issues with Hello Web App’s instructions
while going through this book, check out our Windows resource page here:
http://hellobks.com/7

Getting Started

Writing HTML and viewing your results right away is easy: Just point your
browser to your HTML (.html) file and voilà — your website gets displayed!

Not so with your Python (.py) files — your browser has no clue what to do with
Python code. To start creating web apps in Django, we first need to install
Python and Django on your computer (as well as a few other useful utilities,
including a local web server that will interpret your Python code and deliver
responses that your web browser can understand.)

This is the most complicated part of the process. Because the instructions for
installing and setting up Python keep changing over time, they live online.

Hello Web App’s Python and Django installation instructions can be found here:
http://hellobks.com/8

Once you’ve finished, head back to your command line (make sure you’re in your
virtual environment and you’re in the same directory as manage.py) and run
python manage.py runserver. If everything worked correctly, you should see the
Django congratulations page (congratulations!)

 [image: What you should see if you correctly installed Python and Django and started the local web server.]
 What you should see if you correctly installed Python and Django and started the local web server.

As you go through the rest of the book, keep in mind that if you ever need to
check that you have the correct code snippets copied into your app, all code in
the book can be found on our GitHub code repository (change chapters by clicking
the “branch” button): http://hellobks.com/9

We
also have an online forum to discuss the book and resolve issues here:
http://hellobks.com/10

Any other information (including installation instructions, tips, and resources)
can be found on our main repository here:
http://hellobks.com/11

Now get started building your app!

Setting Up Your Templates

Congrats, you’ve launched your Django web app! How do you actually make this
look like a website? Note that the installation instructions didn’t mention
anything about templates, HTML, CSS, or any other files. Let’s set that stuff up
now.

Head back to your command line, and cd into your collection folder (the one
with models.py). Using mkdir, create a “templates” directory, and then
create index.html within it.

$ cd collection
collection $ mkdir templates
collection $ cd templates
collection/templates $ touch index.html

Open up index.html in your preferred code editor and add the necessary pieces
to display a typical webpage. We’re going to use HTML5 but only the bare bones
for now — we can get fancy later.

 index.html
 1 <!doctype html>
 2 <html>
 3 <head>
 4 <title>My Hello Web App Project</title>
 5 </head>
 6 <body>
 7 <h1>Hello World!</h1>
 8 <p>I am a basic website.</p>
 9 </body>
10 </html>

If you open up your browser and go to http://localhost:8000, you’ll still see
the same default page you saw before — none of the HTML above. We need to tell
Django how to get to that file.

Adding a URL to urls.py

Django doesn’t know what to do with the index.html file we just created. So
head to urls.py, which is in the same folder as settings.py — we’re going to
associate the root directory (/) with the newly created index.html.

In urls.py’s entries area, find the urlpatterns line, remove the
pre-existing comments, and add in the lines indicated:

 urls.py
1 from django.contrib import admin
2 from django.urls import path
3
4 from collection import views
5
6 urlpatterns = [
7 path('', views.index, name='home'),
8 path('admin/', admin.site.urls),
9]

There are essentially four parts to this new line:
* path() encloses the path information.
* '' is where we indicate what route we’re targeting after the domain. Since
 this is empty, we’re targeting the homepage with our new template
 (“www.example.com”). For comparison, you can see that the second line (provided
 by Django) is targeting the admin path (“www.example.com/admin”).
* views.index means that we’ll use the index view in views.py in our app
 collection (imported at the top). We’ll create this soon.
* Last, name='home' is optional, but allows us to assign a name to this URL so
 we can refer to it in the future as “home”. I’ll explain how this ties in
 later.

I am using the “typical” urls.py layout here, but if it’s more understandable to
you, you can layout the URL definition like this:

 urls.py
1 urlpatterns = [
2 path(
3 route='',
4 view=views.index,
5 name='home',
6),
7 path('admin/', admin.site.urls),
8]

This will help you keep track of which bit is what. I’m going to keep using the
previous configuration in this book though, since it’s how it’s usually laid out
in Django.

Apologies if URL configuration sounds complicated. The most you need to
remember here is that there is path, then the view definition, and then we gave
the URL a name. We can easily copy and paste from this template in the future
for new URL entries.

Creating your first view

Now that we have a template and a URL entry, we need to tie them together, so
that the URL will display the template. This is views.py’s job, which lives in
the collection app.

There are a ton of different ways to display a template simply in the views, and
my favorite is Django’s shortcut function called render. This is something
you’ll need to import, but Django anticipates that you’ll use it and already has
it added to the top of views.py for us.

 views.py
1 from django.shortcuts import render
2
3 # Create your views here.
4 def index(request):
5 # this is your new view
6 return render(request, 'index.html')

Basically, urls.py will catch that someone wants the homepage and points to
this piece of code, which will render the index.html template. Now open up
your browser and check out the new homepage on http://localhost:8000. Woohoo!

 [image:]

Adding static files

We’re now displaying the HTML file we created, but how do we get CSS styling in
there? Unfortunately it’s not as simple as creating a CSS directory and linking
the stylesheets in our HTML file.

Let’s go ahead and create the directory for static files now, which Django uses
for files like style sheets. In your app (remember we named it collection —
the folder that contains models.py), create a “static” directory, and within
it, add in directories for CSS, Javascript, and images. In the CSS directory,
add a blank style.css file.

$ cd collection
collection $ mkdir static
collection $ cd static
collection/static $ mkdir images
collection/static $ mkdir js
collection/static $ mkdir css
collection/static $ cd css
collection/static/css $ touch style.css

Head back into your index.html page. We’ll need to tell Django that there are
static files used on this page, so at the top (like imports in views.py and
urls.py) add {% load staticfiles %}. Why the {%? We’ll get to that soon.

Now that we can add static files to this template, add your CSS tag to the
<HEAD> just like this:

 index.html
 1 {% load static %}
 2 <!doctype html>
 3 <html>
 4 <head>
 5 <title>My Hello Web App Project</title>
 6 <link rel="stylesheet"
 7 href="{% static 'css/style.css' %}" />
 8 </head>
 9 <body>
10 <h1>Hello World!</h1>
11 <p>I am a basic website.</p>
12 </body>
13 </html>

We want to avoid using relative paths, such as href="../css/style.css". For
optimization purposes, someday later you might want to move the static files of
your project to a different server (such as Amazon’s Simple Storage Service,
or S3), and by avoiding relative paths with Django’s static files URL utility,
your CSS path will always use what’s defined in your settings and will magically
work even if you change your static file’s locations.

At this point, feel free to add some stylesheet declarations to your style.css
file and check out http://localhost:8000 again (run python manage.py
runserver in your command line again if you need to do so).

 style.css
1 body {
2 background-color: cornflowerblue;
3 }

 [image:]

Nice! Feel free to update your CSS more at this point. If it doesn’t turn blue, try stopping and restarting your local server.

To link to any static file from a template, use the {% static
'FILELOCATION/FILENAME.TYPE' %} syntax, such as {% static 'js/script.js' %}
or {% static 'images/logo.jpg' %}. Keep in mind you still need the IMG HTML
tag when displaying images, for example: <img src="{% static 'images/logo.jpg'
%}" alt=""/>

That said, don’t worry about this within your CSS files — feel free to use
relative paths because your static files should always be together anyways.

1 h1 {
2 /* for example... */
3 background-image: url(../images/logo.png);
4 }

Now you can add static files and style your website! Don’t forget to commit your
work with git (review git on our git tips page here:
http://hellobks.com/12).

Next up, Django has a bunch of awesome template utilities that’ll elevate these
static HTML files and make them a lot more interesting (and fun to work with).

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_information.png

OEBPS/images/newproject.png
® 06 [Welcome to Django X \D

€ —© C [localhost:8000

A

django

View release notes

po

v
The install worked successfully! Congratulations!

You are seeing this page because DEBUG=True is in your
settings file and you have not configured any URLs.

OEBPS/images/helloworld.png
® 06 / | My Hello Web App Project x
sy

by

C | localhost:8000

Hello World!

I am a basic website.

OEBPS/images/bluehelloworld.png
Hello World!

I am a basic website.

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
vvvvvvvvvvvvv

