

Hello Web App: Intermediate
Concepts
Add in the components you need to
build a successful and profitable
web app.

Tracy Osborn

This book is for sale at
http://leanpub.com/hellowebapp-intermediate-concepts

This version was published on 2021-05-22

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

© 2015 - 2021 Tracy Osborn

http://leanpub.com/hellowebapp-intermediate-concepts
http://leanpub.com/
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!
Please help Tracy Osborn by spreading the word about
this book on Twitter!

The suggested hashtag for this book is #hellowebappic.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

#hellowebappic

http://twitter.com
https://twitter.com/search?q=%23hellowebappic
https://twitter.com/search?q=%23hellowebappic

Also By Tracy Osborn
Hello Web App

Really Friendly Command Line Intro

Really Friendly Git Intro

http://leanpub.com/u/tracymakes
http://leanpub.com/hellowebapp
http://leanpub.com/really-friendly-command-line-intro
http://leanpub.com/really-friendly-git-intro

To the entire Django and Python community, since they’ve
been nothing but welcoming and encouraging and I am
truly grateful to work in such a wonderful industry.

And to my husband Andrey, who is, unfailingly, my
biggest supporter and cheerleader. Without him, I

wouldn’t be where I am today.

(Quick high-five to my cat and dog.)

Contents

Introduction . i
Prerequisites . iii
Our discussion forum iv

Creating a Contact Form and Working with Cus-
tom Forms . 1
Set up the URL 1
Set up the view 2
Set up the form 3
Create the template 4
Set up your local email server 5
Add the email logic 6
Create a template for your email 8
Improve the form (optional) 9
Set up our live email server (optional) 12
Things that could be improved 13
Your contact form is complete! 14

Introduction
Welcome to Hello Web App, the sequel!

A year ago, I wrote Hello Web App, a book that walks new
programmers through building their ownweb app. It won’t
help you get a degree in Computer Science or Computer
Engineering, nor is it a guide to getting a job as a developer
or an engineer. Simply, the book helps people learn how to
build web apps.

Readers can decide what’s next after Hello Web App: learn
more to become an engineer, hack on web apps as side-
projects, or start building a lifestyle business or a startup (I
did the last option and it turned out pretty awesome). Hello
Web App is the next step in the learn-to-code revolution —
beyond learning how to build a static website with HTML
and CSS, we can build a fully functional web app and start
working with customers.

All of this started after I taught myself — painfully — how
to code half a decade ago (holy moly does time fly). I was
a designer with an Art degree and loved doing front-end
web development work. I had a lot of ideas for websites I
wanted to build, but didn’t want to hire someone to do the
back-end development work for me.

After a few months of learning, I was able to cobble
together a basic web app from several Django tutorials on

Introduction ii

the web with copious amounts of help from my friends,
and eventually launched a website. This website grew into
my startup (and I the solo founder at the helm), which
was accepted into a prominent startup accelerator and
eventually raised funding.

During the years of refining my startup, I’ve learned more
and more about web app development. The only tutorials
available were frustratingly aimed at other developers —
peoplewho already knewhow to code andwho understood
the jargon, references and side-notes. As I learned more
development, I began to have mini-epiphanies: “Why the
heck was it taught that way when it could be taught this
way?” I realized that we needed a better way to teach web
app development to those who didn’t already know how to
code. After years of waiting for this to be built and seeing
no progress, I decided to write the book myself.

Hello Web App was Kickstarted in 2014 and launched on
May 4th, 2015. Since then, thousands of folks have used
the Hello Web App tutorial to create their first web app.
The goal was to write a short, easy introduction to web
app development, meaning the original book is the size of
a small paperback. Hello Web App takes you from creating
a project idea to launching your app on the internet so you
can start working with real customers.

Consider this book, Hello Web App: Intermediate Concepts,
as the whipped cream on top of a basic web app sundae.
The chapters here don’t rely on a chronological order, so
you don’t need to go directly from one chapter to the next

Introduction iii

through the end of the book. Here, you can pick the chapter
and concept you want to learn and just start building.

Also keep in mind that you don’t need to have read the
original Hello Web App for this book to be of use to you.
Got a basic Django web app and want to take it to the next
level? This book is for you.

This book is not going to have a lot of Computer-Science-
y acronyms and engineering concepts. There are a lot of
tutorials out there that will teach you Computer Science
theory and best practices. Here, you’ll learn how to do
something from start to finish without a lot of asides and
explanation about the why — just the how. And a tiny bit
of theory.

We’re buildingweb apps, sowe can create cool side projects
— maybe even starting a lifestyle business or becoming the
next startup. Learning web app development will open up
so many doors for you.

Prerequisites

As mentioned before, this is a follow-up to the original
HelloWebApp but experiencewith the original book isnot
required. Do you have a basic Django web app and want
to build some of the topics this book covers, like payment
functionality? I got you.

One side-note: This book references the command-line
command touch to create new files. Mac and Linux com-

Introduction iv

puters have this ability natively, but unfortunately Win-
dows computers don’t. Either create the new files in your
code-editor of choice by hand, or you can use Git for
Windows http://hellowebapp.com/ic/01, which installs Git
on your computer in addition to giving you a command
line interface that lets you do UNIX commands such as
touch.

Our discussion forum

If you have any issues while going through this book and
Googling your question isn’t giving you the answers you
seek, check out the awesome Hello Web App discussion
forum here: http://discuss.hellowebapp.com

Feel free to create a new topic if you’re stuck and I’ll pop
in to help you within a few days (or some of the other
awesome commentators may get back to you sooner). I also
encourage you to share the app you’ve made for feedback,
ask questions, or just say hi.

All right, let’s get started!

http://hellowebapp.com/ic/01
http://discuss.hellowebapp.com/

Creating a Contact Form
andWorking with
Custom Forms

In this walkthrough, we’re going to build something rel-
atively easy: a simple contact form where your users can
enter their name, email address, and message, which will
be emailed to you automatically by your website (with the
user’s email as the reply-to). In terms of the big picture, this
will teach you how to create custom forms using Django,
as so far in Hello Web App, we’ve only shown you how to
create a ModelForm.

Set up the URL

Pretty much every new feature that will go into your web
app will go through the same process: set up the URL, set
up the logic, then set up the template. We’re going to set
up a simple page that lives at /contact/. Add the new page
to your urls.py:

Creating a Contact Form and Working with Custom Forms 2

urls.py

1 # make sure you're importing your views

2 # 'collection' is the name of my app, replace with yours

3 from collection import views

4

5 urlpatterns = [

6 ...

7 # new url definition

8 path('contact/', views.contact, name='contact'),

Set up the view

Now in views.py, we need to start setting up the logic. Let’s
set it up to just display a form for now. Later on, we’ll do
the rest of the logic for after the form is submitted in a bit:

views.py

1 # add to the top

2 from .forms import ContactForm

3

4 # add to your views

5 def contact(request):

6 form_class = ContactForm

7

8 return render(request, 'contact.html', {

9 'form': form_class,

10 })

We’re grabbing a form (which we haven’t defined yet) and
passing it over into the template (which we haven’t created
yet).

Creating a Contact Form and Working with Custom Forms 3

Set up the form

In Hello Web App, we went over creating forms with
ModelForms, but skipped creating basic forms without a
model. But it’s just as simple to create custom forms!

In our forms.py, add the below form code:

forms.py

1 # make sure this is at the top if it isn't already

2 from django import forms

3

4 # our new form

5 class ContactForm(forms.Form):

6 contact_name = forms.CharField()

7 contact_email = forms.EmailField()

8 content = forms.CharField(widget=forms.Textarea)

We’re going to define the fields wewant in our form, which
will be just the contact’s name, their email, andwhat they’d
like to say to you.

All those form fields were grabbed from Django’s form
fields documentation (http://hellowebapp.com/ic/2), which
is pretty easy to read to see what other fields are avail-
able. We’re making all the form fields required, using an
EmailField for the email so we can take advantage of the
additional email formatting checks that Django provides,
and making the “content” field a Textarea.

http://hellowebapp.com/ic/2

Creating a Contact Form and Working with Custom Forms 4

Create the template

Now we need to create the template page to display the
contact form on ourwebsite.We’re going to create the form
using the form passed in from our view.

1 {% extends 'base.html' %}

2 {% block title %}Contact - {{ block.super }}{% endblock %}

3

4 {% block content %}

5 <h1>Contact</h1>

6 <form role="form" action="" method="post">

7 {% csrf_token %}

8 {{ form.as_p }}

9 <button type="submit">Submit</button>

10 </form>

11 {% endblock %}

At this point, we have all the pieces in place to display the
form. Load /contact/ and check it out:

Creating a Contact Form and Working with Custom Forms 5

Nice! Now let’s start adding the logic in the back-end to
handle the information submitted by the user.

Set up your local email server

This will be redundant for you if you’ve already finished
already the HelloWeb App tutorial. In case you haven’t, all
you need to do to set up a local email server is add these
lines to the bottom of your settings.py:

Creating a Contact Form and Working with Custom Forms 6

settings.py

1 EMAIL_BACKEND =

2 'django.core.mail.backends.console.EmailBackend'

3 DEFAULT_FROM_EMAIL = 'testing@example.com'

4 EMAIL_HOST_USER = ''

5 EMAIL_HOST_PASSWORD = ''

6 EMAIL_USE_TLS = False

7 EMAIL_PORT = 1025

This tells Django to output the “email” to your console,
where you ran your python manage.py runserver com-
mand. We’ll see what this looks like in a second.

(This is only for local development — we’ll get into email
servers for your production web app at the end of this
chapter.)

Add the email logic

Let’s fill out the rest of the email logic. Here’s the view from
before, now filled in:

views.py

4 # new imports that go at the top of the file

5 from django.template.loader import get_template

6 from django.core.mail import EmailMessage

Creating a Contact Form and Working with Custom Forms 7

views.py

24 # our view

25 def contact(request):

26 form_class = ContactForm

27

28 # new logic!

29 if request.method == 'POST':

30 form = form_class(data=request.POST)

31

32 if form.is_valid():

33 contact_name = form.cleaned_data['contact_name']

34 contact_email = form.cleaned_data['contact_email']

35 form_content = form.cleaned_data['content']

36

37 # Email the profile with the contact info

38 template = get_template('contact_template.txt')

39

40 context = {

41 'contact_name': contact_name,

42 'contact_email': contact_email,

43 'form_content': form_content,

44 }

45 content = template.render(context)

46

47 email = EmailMessage(

48 'New contact form submission',

49 content,

50 'Your website <hi@example.com>',

51 ['youremail@gmail.com'],

52 headers = {'Reply-To': contact_email }

53)

54 email.send()

55 return redirect('contact')

56

57 return render(request, 'contact.html', {

58 'form': form_class,

59 })

Creating a Contact Form and Working with Custom Forms 8

Phew, a lot of logic! If you read it from top to bottom, here’s
what’s happening if the form was submitted:

• Apply the information from the form to the form
class we set up before.

• Make sure that everything is valid (no missing fields,
etc.)

• Take the form information and put it in variables.
• Stick the form information into a contact form tem-
plate (which we will create momentarily).

• Create an email message using that contact template,
and send the message.

• Redirect to our contact page (not ideal, we’ll go into
why below).

• Otherwise, just create the template with a blank
form.

Create a template for your email

Before we can test our logic, we need to create an email
template. Our email template is going to be simple, as it
will just show the sections that our user filled out. Create
a new file in your templates directory (touch contact_-

template.txt) and fill it in with the info below. Django
will grab this file and fill it in using the context we set up
in the view.

Creating a Contact Form and Working with Custom Forms 9

contact_template.txt

1 Contact Name:

2 {{ contact_name|striptags }}

3

4 Email:

5 {{ contact_email|striptags }}

6

7 Content:

8 {{ form_content|striptags }}

(We’re using Django’s template filter strip_tags to strip out
HTML from the content. We need to be very careful with
taking user input and presenting it as it was given. If we
don’t strip HTML, then a malicious user might put in some
evil JavaScript in their input!)

Improve the form (optional)

In the screenshot of the form from before, we can see that
the labels of the form aren’t very “pretty” — for example,
just saying “Contact name,” which is very impersonal.

Django creates these names automatically from your field
names, but we can set up our own pretty label names in the
form definition in forms.py. To do so, update your code to
the below:

Creating a Contact Form and Working with Custom Forms 10

forms.py

1 class ContactForm(forms.Form):

2 contact_name = forms.CharField(required=True)

3 contact_email = forms.EmailField(required=True)

4 content = forms.CharField(

5 required=True,

6 widget=forms.Textarea

7)

8

9 # the new bit we're adding

10 def __init__(self, *args, **kwargs):

11 super(ContactForm, self).__init__(*args, **kwargs)

12 self.fields['contact_name'].label = "Your name:"

13 self.fields['contact_email'].label = "Your email:"

14 self.fields['content'].label = "What do you want to say?"

We’ve added the bit that starts with __init__, which
might look a bit confusing. If you ignore the first two lines,
the rest are pretty easy to read. We’re just grabbing the
relevant fields in our form and updating the label.

We can set more than just the label — we can also set the
field as required, add help text, and other fields as well
through __init__. You can see more information about
updating form fields and attributes here in this excellent
post: http://hellowebapp.com/ic/3

Once we’ve reloaded our form, we can see the new labels:

http://hellowebapp.com/ic/3

Creating a Contact Form and Working with Custom Forms 11

(Of course, this is minus any pretty CSS styling we need to
do.)

Once we stick in some test information and submit the
form, we can see the “email” in our command line:

Creating a Contact Form and Working with Custom Forms 12

Set up our live email server
(optional)

The local email server will output “emails” to your local
server (what’s running in your command line), so you can
confirm everything is working locally. But, when your web
app is live, you obviously want those emails to actually
land in your email inbox, rather than the server output.

You can do this by setting up something like Sendgrid
(http://hellowebapp.com/ic/4) orMandrill (http://hellowebapp.com/ic/5)
— freemium email servers where you should just need to
sign up for an account and set the details of your account
in your settings.py.

http://hellowebapp.com/ic/4
http://hellowebapp.com/ic/5

Creating a Contact Form and Working with Custom Forms 13

Sendgrid has a great short walkthrough here: http://hellowebapp.com/ic/6.
If you’re at the point in Hello Web App where you’ve
set up a production settings file, you can stick the email
server stuff in there, and keep your local/test emails (using
the Django console) in your normal settings.py file. This
way you can “send emails” as you’re developing your app,
but you don’t have to worry about going over the daily
email limit that these email delivery products have in their
freemium accounts.

Things that could be improved

I mentioned above that, upon successful form submission,
you will be redirected to your app homepage. That would
be really confusing to the user, because there is no success
message. You have two options here:

• Set up a separate template that just says “Success!”
that users are redirected to after successful sub-
mission. This is the easiest option, but adding these
kind of templates tends to clutter up your templates
directory.

• Utilize the Django messages framework. This is a
better option. In your base template file, you can add
a “messages” block, and then when you redirect to a
page, you could pass along a message (e.g. an alert,
an error, a warning, an info message, etc.) that will
pop into the top of any page. It’s what I use for my

http://hellowebapp.com/ic/6

Creating a Contact Form and Working with Custom Forms 14

production web apps. Chapter 6, Setting up Django
Messages for Alerts, goes into this in detail.

Your contact form is complete!

You now have a working contact form that allows visitors
to your web app to email you messages, and hopefully you
learned some new skills about creating forms in Django
and working with email. Congrats!

	Table of Contents
	Introduction
	Prerequisites
	Our discussion forum

	Creating a Contact Form and Working with Custom Forms
	Set up the URL
	Set up the view
	Set up the form
	Create the template
	Set up your local email server
	Add the email logic
	Create a template for your email
	Improve the form (optional)
	Set up our live email server (optional)
	Things that could be improved
	Your contact form is complete!

