

[image: Hello Web App: Intermediate Concepts]



  Hello Web App: Intermediate Concepts


  Add in the components you need to build a successful and profitable web app.

   


  Tracy Osborn

   

  This book is for sale at http://leanpub.com/hellowebapp-intermediate-concepts

  This version was published on 2021-05-22

  [image: publisher's logo]

    *   *   *   *   *

  This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

  *   *   *   *   *


  

© 2015 - 2021 Tracy Osborn


  
    To the entire Django and Python community, since they’ve been nothing but welcoming and encouraging and I am truly grateful to work in such a wonderful industry.


And to my husband Andrey, who is, unfailingly, my biggest supporter and cheerleader. Without him, I wouldn’t be where I am today.


(Quick high-five to my cat and dog.)

  

      
        Table of Contents


         
           
  	
    Introduction
    
      	
        Prerequisites
      

      	
        Our discussion forum
      

    

  

  	
    Creating a Contact Form and Working with Custom Forms
    
      	
        Set up the URL
      

      	
        Set up the view
      

      	
        Set up the form
      

      	
        Create the template
      

      	
        Set up your local email server
      

      	
        Add the email logic
      

      	
        Create a template for your email
      

      	
        Improve the form (optional)
      

      	
        Set up our live email server (optional)
      

      	
        Things that could be improved
      

      	
        Your contact form is complete!
      

    

  




         

         
            Guide

            
               	
                  Begin Reading
               

            

         



Introduction


Welcome to Hello Web App, the sequel!


A year ago, I wrote Hello Web App, a book that walks new programmers through
building their own web app. It won’t help you get a degree in Computer Science or
Computer Engineering, nor is it a guide to getting a job as a developer or an
engineer. Simply, the book helps people learn how to build web apps.


Readers can decide what’s next after Hello Web App: learn more to become an
engineer, hack on web apps as side-projects, or start building a lifestyle
business or a startup (I did the last option and it turned out pretty awesome).
Hello Web App is the next step in the learn-to-code revolution — beyond
learning how to build a static website with HTML and CSS, we can build a fully
functional web app and start working with customers.


All of this started after I taught myself — painfully — how to code half a
decade ago (holy moly does time fly). I was a designer with an Art degree and
loved doing front-end web development work. I had a lot of ideas for websites I
wanted to build, but didn’t want to hire someone to do the back-end development
work for me. 


After a few months of learning, I was able to cobble together a basic web app
from several Django tutorials on the web with copious amounts of help from my
friends, and eventually launched a website. This website grew into my startup
(and I the solo founder at the helm), which was accepted into a prominent
startup accelerator and eventually raised funding. 


During the years of refining my startup, I’ve learned more and more about web
app development. The only tutorials available were frustratingly aimed at other
developers — people who already knew how to code and who understood the jargon,
references and side-notes. As I learned more development, I began to have
mini-epiphanies: “Why the heck was it taught that way when it could be taught
this way?” I realized that we needed a better way to teach web app development
to those who didn’t already know how to code. After years of waiting for this to
be built and seeing no progress, I decided to write the book myself. 


Hello Web App was Kickstarted in 2014 and launched on May 4th, 2015. Since then,
thousands of folks have used the Hello Web App tutorial to create their first
web app. The goal was to write a short, easy introduction to web app
development, meaning the original book is the size of a small paperback. Hello
Web App takes you from creating a project idea to launching your app on the
internet so you can start working with real customers.


Consider this book, Hello Web App: Intermediate Concepts, as the whipped cream
on top of a basic web app sundae. The chapters here don’t rely on a
chronological order, so you don’t need to go directly from one chapter to the
next through the end of the book. Here, you can pick the chapter and concept you
want to learn and just start building. 


Also keep in mind that you don’t need to have read the original Hello Web App
for this book to be of use to you. Got a basic Django web app and want
to take it to the next level? This book is for you.


This book is not going to have a lot of Computer-Science-y acronyms and
engineering concepts. There are a lot of tutorials out there that will teach you
Computer Science theory and best practices. Here, you’ll learn how to do
something from start to finish without a lot of asides and explanation about the
why — just the how. And a tiny bit of theory.


We’re building web apps, so we can create cool side projects — maybe even
starting a lifestyle business or becoming the next startup. Learning web app
development will open up so many doors for you.


Prerequisites


As mentioned before, this is a follow-up to the original Hello Web App but
experience with the original book is not required. Do you have a basic Django
web app and want to build some of the topics this book covers, like payment
functionality? I got you.


One side-note: This book references the command-line command touch to create
new files. Mac and Linux computers have this ability natively, but unfortunately
Windows computers don’t. Either create the new files in your code-editor of
choice by hand, or you can use Git for Windows
http://hellowebapp.com/ic/01, which installs Git
on your computer in addition to giving you a command line interface that lets
you do UNIX commands such as touch. 


Our discussion forum


If you have any issues while going through this book and Googling your question
isn’t giving you the answers you seek, check out the awesome Hello Web App
discussion forum here:
http://discuss.hellowebapp.com


Feel free to create a new topic if you’re stuck and I’ll pop in to help you
within a few days (or some of the other awesome commentators may get back to you
sooner). I also encourage you to share the app you’ve made for feedback, ask
questions, or just say hi.


All right, let’s get started!









Creating a Contact Form and Working with Custom Forms


In this walkthrough, we’re going to build something relatively easy: a simple
contact form where your users can enter their name, email address, and message,
which will be emailed to you automatically by your website (with the user’s
email as the reply-to). In terms of the big picture, this will teach you how to
create custom forms using Django, as so far in Hello Web App, we’ve only shown
you how to create a ModelForm.


Set up the URL


Pretty much every new feature that will go into your web app will go through the
same process: set up the URL, set up the logic, then set up the template. We’re
going to set up a simple page that lives at /contact/. Add the new page to your
urls.py:



  urls.py
1 # make sure you're importing your views
2 # 'collection' is the name of my app, replace with yours
3 from collection import views
4 
5 urlpatterns = [
6     ...
7     # new url definition
8     path('contact/', views.contact, name='contact'),






Set up the view


Now in views.py, we need to start setting up the logic. Let’s set it up to
just display a form for now. Later on, we’ll do the rest of the logic for after
the form is submitted in a bit:



  views.py
 1 # add to the top
 2 from .forms import ContactForm
 3 
 4 # add to your views
 5 def contact(request):
 6     form_class = ContactForm
 7 
 8     return render(request, 'contact.html', {
 9         'form': form_class,
10     })






We’re grabbing a form (which we haven’t defined yet) and passing it over
into the template (which we haven’t created yet).


Set up the form


In Hello Web App, we went over creating forms with ModelForms, but skipped
creating basic forms without a model. But it’s just as simple to create custom
forms!


In our forms.py, add the below form code:



  forms.py
1 # make sure this is at the top if it isn't already
2 from django import forms
3 
4 # our new form
5 class ContactForm(forms.Form):
6     contact_name = forms.CharField()
7     contact_email = forms.EmailField()
8     content = forms.CharField(widget=forms.Textarea)






We’re going to define the fields we want in our form, which will be just the
contact’s name, their email, and what they’d like to say to you.


All those form fields were grabbed from Django’s form fields documentation
(http://hellowebapp.com/ic/2), which is pretty easy to read to see what other
fields are available. We’re making all the form fields required, using an
EmailField for the email so we can take advantage of the additional email
formatting checks that Django provides, and making the “content” field a
Textarea.


Create the template


Now we need to create the template page to display the contact form on our
website. We’re going to create the form using the form passed in from our view.



 1 {% extends 'base.html' %}
 2 {% block title %}Contact - {{ block.super }}{% endblock %}
 3 
 4 {% block content %}
 5 <h1>Contact</h1>
 6 <form role="form" action="" method="post">
 7     {% csrf_token %}
 8     {{ form.as_p }}
 9     <button type="submit">Submit</button>
10 </form>
11 {% endblock %}






At this point, we have all the pieces in place to display the form. Load
/contact/ and check it out:




  
    [image: ]
    
  




Nice! Now let’s start adding the logic in the back-end to handle the information
submitted by the user.


Set up your local email server


This will be redundant for you if you’ve already finished already the Hello Web
App tutorial. In case you haven’t, all you need to do to set up a local email
server is add these lines to the bottom of your settings.py:



  settings.py
1 EMAIL_BACKEND =
2   'django.core.mail.backends.console.EmailBackend'
3 DEFAULT_FROM_EMAIL = 'testing@example.com'
4 EMAIL_HOST_USER = ''
5 EMAIL_HOST_PASSWORD = ''
6 EMAIL_USE_TLS = False
7 EMAIL_PORT = 1025






This tells Django to output the “email” to your console, where you ran your
python manage.py runserver command. We’ll see what this looks like in a
second.


(This is only for local development — we’ll get into email servers for your
production web app at the end of this chapter.)


Add the email logic


Let’s fill out the rest of the email logic. Here’s the view from before, now filled in:



  views.py
4 # new imports that go at the top of the file
5 from django.template.loader import get_template
6 from django.core.mail import EmailMessage







  views.py
24 # our view
25 def contact(request):
26     form_class = ContactForm
27 
28     # new logic!
29     if request.method == 'POST':
30         form = form_class(data=request.POST)
31 
32         if form.is_valid():
33             contact_name = form.cleaned_data['contact_name']
34             contact_email = form.cleaned_data['contact_email']
35             form_content = form.cleaned_data['content']
36 
37             # Email the profile with the contact info
38             template = get_template('contact_template.txt')
39 
40             context = {
41                 'contact_name': contact_name,
42                 'contact_email': contact_email,
43                 'form_content': form_content,
44             }
45             content = template.render(context)
46 
47             email = EmailMessage(
48                 'New contact form submission',
49                 content,
50                 'Your website <hi@example.com>',
51                 ['youremail@gmail.com'],
52                 headers = {'Reply-To': contact_email }
53             )
54             email.send()
55             return redirect('contact')
56 
57     return render(request, 'contact.html', {
58         'form': form_class,
59     })






Phew, a lot of logic! If you read it from top to bottom, here’s what’s
happening if the form was submitted:



  	Apply the information from the form to the form class we set up before.

  	Make sure that everything is valid (no missing fields, etc.)

  	Take the form information and put it in variables.

  	Stick the form information into a contact form template (which we will create
  momentarily).

  	Create an email message using that contact template, and send the message.

  	Redirect to our contact page (not ideal, we’ll go into why below).

  	Otherwise, just create the template with a blank form.




Create a template for your email


Before we can test our logic, we need to create an email template. Our email
template is going to be simple, as it will just show the sections that our user
filled out. Create a new file in your templates directory (touch
contact_template.txt) and fill it in with the info below. Django will grab this
file and fill it in using the context we set up in the view.



  contact_template.txt
1 Contact Name:
2 {{ contact_name|striptags }}
3 
4 Email:
5 {{ contact_email|striptags }}
6 
7 Content:
8 {{ form_content|striptags }}






(We’re using Django’s template filter strip_tags to strip out HTML from the
content. We need to be very careful with taking user input and presenting it as
it was given. If we don’t strip HTML, then a malicious user might put in some
evil JavaScript in their input!)


Improve the form (optional)


In the screenshot of the form from before, we can see that the labels of the form
aren’t very “pretty” — for example, just saying “Contact name,” which is very
impersonal.


Django creates these names automatically from your field names, but we can set
up our own pretty label names in the form definition in forms.py. To do so,
update your code to the below:



  forms.py
 1 class ContactForm(forms.Form):
 2     contact_name = forms.CharField(required=True)
 3     contact_email = forms.EmailField(required=True)
 4     content = forms.CharField(
 5         required=True,
 6         widget=forms.Textarea
 7     )
 8 
 9     # the new bit we're adding
10     def __init__(self, *args, **kwargs):
11         super(ContactForm, self).__init__(*args, **kwargs)
12         self.fields['contact_name'].label = "Your name:"
13         self.fields['contact_email'].label = "Your email:"
14         self.fields['content'].label = "What do you want to say?"






We’ve added the bit that starts with __init__, which might look a bit
confusing. If you ignore the first two lines, the rest are pretty easy to read.
We’re just grabbing the relevant fields in our form and updating the label.


We can set more than just the label — we can also set the field as required, add
help text, and other fields as well through __init__. You can see more
information about updating form fields and attributes here in this excellent
post: http://hellowebapp.com/ic/3


Once we’ve reloaded our form, we can see the new labels:




  
    [image: ]
    
  




(Of course, this is minus any pretty CSS styling we need to do.)


Once we stick in some test information and submit the form, we can see the
“email” in our command line:




  
    [image: ]
    
  




Set up our live email server (optional)


The local email server will output “emails” to your local server (what’s running
in your command line), so you can confirm everything is working locally. But,
when your web app is live, you obviously want those emails to actually land in
your email inbox, rather than the server output.


You can do this by setting up something like Sendgrid
(http://hellowebapp.com/ic/4) or Mandrill
(http://hellowebapp.com/ic/5) — freemium
email servers where you should just need to sign up for an account and set the
details of your account in your settings.py.


Sendgrid has a great short walkthrough here:
http://hellowebapp.com/ic/6. If
you’re at the point in Hello Web App where you’ve set up a production settings
file, you can stick the email server stuff in there, and keep your local/test
emails (using the Django console) in your normal settings.py file. This way
you can “send emails” as you’re developing your app, but you don’t have to worry
about going over the daily email limit that these email delivery products have
in their freemium accounts.


Things that could be improved


I mentioned above that, upon successful form submission, you will be redirected
to your app homepage. That would be really confusing to the user, because there
is no success message. You have two options here:



  	
Set up a separate template that just says “Success!” that users are
  redirected to after successful submission. This is the easiest option, but
  adding these kind of templates tends to clutter up your templates directory.

  	
Utilize the Django messages framework. This is a better option. In your
  base template file, you can add a “messages” block, and then when you
  redirect to a page, you could pass along a message (e.g. an alert, an error,
  a warning, an info message, etc.) that will pop into the top of any page.
  It’s what I use for my production web apps. Chapter 6, Setting up Django
  Messages for Alerts, goes into this in detail.




Your contact form is complete!


You now have a working contact form that allows visitors to your web app to
email you messages, and hopefully you learned some new skills about creating
forms in Django and working with email. Congrats!




OEBPS/images/leanpub_tip.png





OEBPS/images/leanpub_error.png





OEBPS/images/leanpub_exercise.png





OEBPS/images/leanpub_discussion.png





OEBPS/images/leanpub_warning.png





OEBPS/images/leanpub_question.png





OEBPS/images/leanpub_information.png





OEBPS/images/form.png
806 / || Contact - My HelloWeb A/ x \| |

Tracy

€« C' [ localhost:8000/contact/

Hello Web App

Contact name:

Contact email:

Content:

| Submit |





OEBPS/images/labels.png
806 / || Contact - My HelloWeb A/ x \| |

Tracy

€« C' [ localhost:8000/contact/

Hello Web App

Your name:

Your email:

‘What do you want to say?

| Submit |





OEBPS/images/console.png
2. limedaring@Orion:
Performing system checks...

System check identified no issues (@ silenced).

October 03, 2015 - 17:47:05

Django version 1.8.4, using settings 'hellowebapp.settings'
Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

[03/0ct/2015 18:15:27] "GET /contact/ HTTP/1.1" 200 1412
[03/0ct/2015 18:15:27] "GET /static/css/style.css HTTP/1.1" 200 37
[03/0ct/2015 18:15:28] "GET /favicon.ico HTTP/1.1" 404 4250
MIME-Version: 1.0

Content-Type: text/plain; charset="utf-8"
Content-Transfer-Encoding: 7bit

Subject: New contact form submission

From: Your website<hi@weddinglovely.com>

To: youremail@gmail.com

Date: Sat, 03 Oct 2015 18:16:54 -0000

Message-ID: <20151003181654.87128.78963@0rion.local>
Reply-To: test@test.com

Contact Name: Test
Email: test@test.com
Content: Hi, this is a test message!

[03/0ct/2015 18:16:55] "POST /contact/ HTTP/1.1" 302 @
[03/0ct/2015 18:16:55] "GET /contact/ HTTP/1.1" 200 1412





OEBPS/images/leanpub-logo.png
[

Leanpub





OEBPS/images/title_page.png
BBBBBBBBBBBBB





