IS

ALEJANDRO SERRANO MENA

Haskell (almost)
Standard Librarnes

Copyright © 2022 Alejandro Serrano Mena. All rights reserved.

Reviewer: Dave Parfitt

Other books by the same author

ssssssssssssssss

Book of monads

Practical S %

Haskell

Apress’

Contents

Summary of libraries 1
Introduction 5
11 The Haskellethos 6
1.2 Alternative PreludeS i 6
Dependencies 9
21 Repositories e 1
22 Searchbytype e 13
2.3 Adviceonchoosingalibrary 14
Utilities 17
31 Betterfolds. e 19
Containers 21
41 Polymorphiccontainers 21
4.2 deriving Hashable 24
4.3 Specialized containers e 25
44 Graphs . . . e 25
Text 27
51 Unicode support. o i i e e 28
52 Llargeamountsoftext., 29

53 Regularexpressions. 30

10

1

12

13

Bytes

6.1 Bytestrings. e
6.2 Arraysandvectors. e
6.3 Unboxedvectors.

Mutability
71 Mutablereferences
7.2 Mutablevectors

Serialization

84 JSON . . . e e e e e e
82 Binary e
83 Otherformats e

Validation and parsing

91 Applicative and Alternative.
9.2 Parsers e e e e e
9.3 Operatorsand lexers i
9.4 Replacement

Optics
10.1 Lenses, prisms, (affine) traversals, folds
10.2 Focusingon JSON documents

Controlling evaluation

111 Forcingevaluation.
11.2 Strictand lazy containers
1.3 Deepevaluation e

Exceptions and resources

121 Throwingand catching
12.2 Retrying computations
12.3 Resource management

Files

131 Namesandpaths
13.2 Filesandfolders
13.3 Contents e e e e e e

33
33
34
36

39
39
i1

43
43
47
48

49
49
52
56
58

61
62
67

69
71
73
74

14 Processes
140 MY OWN PrOCESS . . o v v e e e e e e e e e e e e e e e e e e e
142 Other processes o v i i i i i e e e e

15 Streaming
151 Streaming pipelines e
15.2 yieldandawait
15.3 Other streaminglibraries

16 Randomness
161 Randomgenerators e e
16.2 UUIDS e e e e e e e e e

17 Time
171 Thetwoaxesoftime @ i i
172 QUENYINE A DAY « v v v v vt e e e e e e e e e e e e

18 Async
181 SPAWNING . . o o o i e e e e e
18.2 Communication
183 Pureandparallel

19 Network
191 HTTPrequests i i i i i it e e e e e e e e e
19.2 TCPsockets. o o i e e e

20 Web applications
201 Asimple Application e
202 Middleware

21 Functors
210 Xunctors e e
21.2 Categoriesand arrows it

22 Effects
221 Stacksandclasses
22.2 Architecture: classes, AppM,andRIO
223 Effectsystems

23 Testing
231 TESLIUNNEIS . . v vttt e e e e e e e e e e e
23.2 Property-basedtesting

91
91
94

97
97
100
102

103
103
106

109
109
111

13
M4
116
119

123
123
125

129
129
132

133
133
136

139
139
143
145

24 Inspecting the runtime

244 Logging
24.2 Monitoring

25 Reflection
251 Typechecks
25.2 Generictraversals
25.3 Automatic derivation, explained

Index

155
155
158

161
161
162
166

171

Summary of libraries

Preludes

base — standard library bundled with GHC

relude — removes unsafe functions like head
classy-prelude — additional type classes

protolude — basis for a Prelude with light dependencies
Utilities

extra — useful utility functions not found in base

split — functions to split lists in different ways

safe — replacements for unsafe functions like head
foldl — combine folds for better performance

Containers

containers — sets, trees, maps

unordered-containers — sets and maps based on hashing
mono-traversable — type classes for monomorphic containers

fgl — graphs and most traditional algorithms

algebraic-graphs — algebraic graphs, highly-customizable algorithms

Text
text — everything to deal with strings in a performant way
text-1icu — algorithms for Unicode strings
regex-base — type classes for regular expressions
regex-posix, regex-pcre, regex—tdfa, regex-parsec
— implementations of regular expressions as instances of regex-base
regex—-applicative — regular expressions based on Applicative

Bytes

bytestring — packed sequences of bytes

array — arrays with custom indices, largely superseeded by vector
vector — efficient arrays indexed by Ints

Mutability

primitive — mutable references, generalizes 10 and ST
vector — mutable arrays indexed by Ints
vector-algorithms — algorithms over mutable vectors

Serialization
aeson — serialize from and to JSON
binary — serialize and deserialize binary formats

Validation
validation — validation with error accumulation

Parsing

attoparsec — fast backtracking parsers for ByteString and Text

megaparsec — general parser library with an eye in error messages
parser—-combinators — common functions for parsers, based on type classes
replace-attoparsec, replace-megaparsec — match and replace with parsers

Optics
optics, microlens — manipulation of immutable data
aeson-optics, microlens-aeson — optics for JSON documents

Controlling evaluation
deepseq — fully evaluate values in thunks

Exceptions

safe-exceptions — safer versions of base’s Control.Exception
exceptions — type classes which generalize the throw and catch operations
retry — policies for working with possibly-failing computations

Resources
resourcet — safe and deterministic resource management
resource-pool — management of pools of resources

Files

filepath — manipulate file names and paths

directory — operations over files and directories (move, copy...)
temporary — create temporary files and folders

Processes
optparse-applicative — parsing command-line arguments
typed-process — start and communicate with external processes

Streaming
conduit, pipes — high-level streaming pipelines

Randomness

random — generate random values of Haskell types

mwc-random — random generator suitable for statistical applications
uuid — generate and work with UUIDs

Time
time — represent and work with times

Async

async — spawn and manage threads for 10 actions

stm — communication between threads based on optimistic locking
stm-chans, stm-containers — queues, maps, and sets for STM
monad-par — parallelism based on dataflow programming
parallel — parallelism based on strategies

Network

req, wreq — HTTP client libraries

network-simple — high-level TCP socket programming
network — low-level networking primitives

Web applications

wai — common Web Application Interface

warp, warp-tls — server for WAI-based applications
wai-extra, wai-cors — useful middleware for WAI applications

Functors
base — functor, contravariant, bifunctor
profunctors — profunctors

Transformers

transformers — most common monad transformers

mt1l — monadic classes to facilitate working with transformers
unliftio — lifted version of base which works on MonadIo
rio — implementation of the ReaderT design pattern

Testing

hspec, tasty — test runners

HUnit — unit testing, integrations in hspec and tasty-hunit

QuickCheck — property-based testing, integrations in hspec and tasty-quickcheck

Logging
fast-logger — basic logging
monad-logger, rio — integration of logging into architecture

Monitoring
ekg, ekg-wai — remote monitoring of a running process

Reflection
base — reflection with Data and Gener-ics
syb — generic traversals using the Data mechanism

Introduction

Welcome, traveler of the Haskell world! I'm sure you've learnt about lists, monads,
and patterns, but maybe you're now faced with the question: what is my next
destination? Unfortunately this book can't give you the answer, but instead tries
to tell you about all the “boring” things you’ll find along the way. At the end of
the day, a Haskell program is like any other, and needs to manipulate text, talk to
databases, or ping a server on the other side of the world.

Compared to the Java or .NET ecosystems, the base library — the “standard
library” in this case — which comes with the GHC" distribution, is all but batteries
included. This means that novices face the question of which libraries in the
community repositories they need to use earlier and more often, and this is typically
a source of frustration. Even worse, after checking a few of them, they might
figure out that the “community-blessed” library is yet another one that hasn’t
been explored yet! For that reason, this book takes a very broad definition of
what standard libraries mean, pointing to the original meaning of the term: those
libraries which are considered good by a fair share of Haskellers.

Think of this book as a high-level guide. The goal is for you to find your way
among the catalogue of libraries, not to give a detailed description of each type,
function, and class in each library. Some topics - like regular expressions - are
treated because many other language ecosystems consider them part of their
standard library, while other - like reflection with Typeable — discuss elements
which are indeed part of Haskell's standard library but not so well-known.

"Glasgow Haskell Compiler, the main compiler used in the Haskell community.

11 The Haskell ethos

One fair question to ask is why is the base library so slim? This comes from the
ethos of the Haskell community: always keep improving." An important implication
is that the barrier to bless a particular concept or design as part of the standard
library is a very high one.

Take for example regular expressions. There are many ways in which one could
solve this problem:

- Write a pure and straightforward implementation in Haskell,
- Write bindings to the native Perl PCRE library,
« Implement them on top of a generic parsing library.

Those solutions have different trade-offs with respect to speed, memory con-
sumption, or portability. The Haskell community prefers to put the decision in the
hands of the developer, and in fact regex-tdfa, regex-pcre, and regex-parsec
are implementations of each idea.

But Haskell shines in abstraction, and there’s a lot which can be abstracted
among those libraries. Hence the existence of regex-base, which provides a
common API which can later be instantiated to particular requirements. In fact,
one could say those types or classes which make their way to base are those which
express a very general concept: think of Functor or Monad.

The downside of this approach is, as we have discussed above, that beginners
need to figure out which are the good libraries at a very early stage of their learning
path. Depending on libraries even for trivial programs also adds a feeling of
instability, but fear not, since most of the libraries discussed in this book have had
their main APl unchanged for more than a decade.

Keep in mind that even though these libraries form a good starting point, the
Haskell community is a vibrant one, and new libraries may replace the old standard
ones. If you have already worked with Haskell, your choice in some area may not
coincide with the one in this book. My goal in any case is not to judge which library
is “better”, but to offer a good first selection; but others may be more advantageous
with different coding styles or have different trade-offs.

1.2 Alternative Preludes

Prelude is the name of the module which is implicitly imported in every Haskell
file.¥ The base package defines one such module, but we can decide to remove

"Haskell's semi-official motto is avoid “success at all costs.”
*Unless you enable the NoImplicitPrelude extension in GHC.

that dependency and obtain the Prelude module from somewhere else. There is in
fact no shortage of those alternative Preludes in the Haskell community, ranging
from slimmer incarnations to Preludes which import almost every type we are
going to discuss in the rest of the book. Popular alternative Preludes are relude,
which focus on adding an additional layer of type-safety by removing functions
like head, classy-prelude, which adds additional type classes not found in base,
and protolude, which tries to stay light while providing the most useful functions.

The general consensus in the community is that these alternative Preludes
are very useful in applications, especially as a way to keep a whole team in sync
with respect to dependencies. However, they are advised against for libraries, as
depending on that package would pull the alternative Prelude and maybe many
more dependencies alongside it, increasing compile times and the possibility of a
version conflict.

Dependencies

Many introductory Haskell materials glance over build and dependency manage-
ment, a must for any project with more than a hundred lines. This chapter introduces
the main names and concepts. In this regard Haskell does not reinvent the wheel;
build tools are quite similar to what is found in other ecosystems.

All the information to build a Haskell project is stated in a Cabal” file, which
resides in the root of the project and whose name must be that of the project
followed by .cabal. In most cases the folder where the project is located also
shares the name with the Cabal file. The following is a typical folder organization.

cool-project/

S C/ vt teeeeneneeseneneseenesesesneassesnenesesasnssssesnenssesssnenenans code files
LCoolProject.hs module CoolProject
TS/ ettt s test files
COOL-ProJect.cabaleiiiiiiiiiieiieeeeerriiieeeeeeenennieeeeeeennnns project file
README .M+t ttviiiintteeteiiiiiieteeetiiiiiineeeeetiiiinnneeeeeeinns other files

Cabal files are written in a YAML-esque format, with a few syntactical quirks."
The file starts with a few key-value pairs describing the project as a whole - name,
version, author - and then a sequence of stanzas are defined. Each stanza roughly
corresponds to an artifact: a library, an executable, or a test suite. Each stanza
also defines where to find the input files, dependencies upon other libraries, and
options for the build.

“Common Architecture for Building Applications and Libraries.
"Some Haskellers think that using pure YAML is better, and have created hpack, an alternative format
to describe Haskell projects.

By running the cabal {init --interactive command inside a folder you can
create a project skeleton quite easily. Here is a (trimmed down) result.

cabal-version: 2.4

name: haskell-stdlibs
version: 0.1.0.0

author: Alejandro Serrano
library

exposed-modules: MyLib

-— other-modules:

-- other-extensions:
build-depends: base ">= 4.14
hs-source-dirs: src
default-language: Haskell2010

executable haskell-stdlibs
main-is: Main.hs
build-depends:
base ">= 4.14,
haskell-stdlibs
hs-source-dirs: app
default-language: Haskell2010

We are particularly interested in the build-depends property in each stanza.
As you can see in the executable, this property takes a list of package names,
separated by commas. In addition, you can specify a version number or range; in
our case we specify that our project should build with any version of base from
4.14 onwards, but lower than the next major release 5.0. In older Cabal files you
may see base >= 4.14 && < 5 instead.

In many cases throughout this book we’ll talk about a package different from
base. That means that if you want to use it, you need to add it to the corresponding
build-depends property. Note that dependencies are not shared among stan-
zas, this is the reason why we need to specify base both for the library and the
executable.

Once you have a Cabal file in place, you have two options to build the project:
cabal build and stack build. True to its ethos of putting decisions in the hands

10

of developers, the Haskell ecosystem has two separate build tools, Cabal* and
Stack. The main different among the two are:

1. Stack takes care of downloading the compiler and setting up the toolchain if
not present, whereas Cabal expects the toolchain to be readily available. In
the latter case, you can use ghcup to set your environment up.

2. Cabal defaults to using Hackage as a repository and the latest version of
each package which satisfies the constraints in the build-depends property,
whereas Stack requires you to specify a snapshot which dictates the version
of every package.

If you choose Cabal, remember to run cabal update from time to time to
refresh the package information. If you use Stack, before building anything you
should run stack init atthe root of your project. This command selects the best
stable snapshot and records that choice in a stack.yaml file.

21 Repositories

Hackage, at hackage.haskell.org, is the community package repository. Every-
body can upload their packages and make them available to humankind. Package
names are dealt with on a first-come first-served basis: once a user uploads a pack-
age with a certain name, only they, their collaborators, and the Hackage trustees
can upload a new version of the same package. Apart from hosting the code, Hack-
age generates documentation for each library based on the Haddock comments -
Haskell's rendition of docstrings, Javadoc, and the like.

Hackage has a search feature which by default searches by name and descrip-
tion. My personal recommendation is to order the results by number of downloads
in the last month (the column named DLs), because it serves as a good proxy of
the popularity of the library. For example, these are the results for “json”.

Name DLs Rating Description Tags Last U/L Maintainer
Support for DonaldStewart,
json 287 1.75 serialising Haskell to (bsd3, library, web) 2020-01-14 lavorDiatchki,
and from JSON SigbjornFinne
AdamBergmark,

BasVanDijk,

2022-01-01 BryanOSullivan,
HerbertValerioRiedel,
phadej, lyxia

Fast JSON parsing (bsd3, json, library,

aeson 3131 275 and encoding text, web)

*Yes, we all find it confusing that project files are referred to as Cabal files even if you don't build
them using Cabal-the-tool.

1

hackage.haskell.org

You can see that even though json has literally what we searched for in its
name, aeson is way more popular. In fact, when talking about JSON serialization,
we'll take the latter as the “standard library” for that purpose.

When you click the name of the library you go directly to its documentation.
Nice packages have an introduction or tutorial right there, below the list of modules.
At the right-hand side you can find the released versions of that package; here’s
what it looks like for aeson at the end of January 2022.

1.5.4.1,1.5.5.0, 1.5.5.1, 1.5.6.0, 2.0.0.0, 2.0.1.0,
2.0.2.0, 2.0.3.0 (info)

You can use aeson as a dependency by simply adding it to your build-depends.
Most of the times you want to support from the latest minor release to the next
major release, which is achieved with a “>= range.

library
build-depends: base ">= 4.14, aeson ">= 2.0

A common pain when maintaining large Haskell codebases is to keep the
dependencies up-to-date. Unfortunately many libraries are still in their 0. x series,
which do not guarantee backwards- nor forwards-compatibility. Cabal comes with
a powerful constraint solver which can figure out a good solution for a build plan,
but unfortunately it cannot foresee problems caused by function or types changing
from one version to the other. Stackage follows a different route: instead of trying
each time to figure out a build plan, it fixes the versions of an entire set of libraries.
Such a snapshot is only updated in bulk, and an automated process ensures that
compiling any subset of dependencies from it always succeeds.

Stackage, at stackage.org, lists the available snapshots in its home page. Most
of the time you either want to use the latest Long-Term Support (LTS) release, or
check that the project still compiles with the latest GHC version by using the Nightly
release.

Latest releases per GHC version

o Stackage Nightly 2022-01-27 (ghc-9.0.2), 4 days ago
e LTS 18.23 for ghc-8.10.7, published a week ago
e LTS 18.8 for ghc-8.10.6, published 5 months ago

Clicking on the snapshot name shows the packages and versions included in it.
At the moment of writing the latest LTS, 18.23, lists aeson-1.5.6.0, which means
that it lags behind the current 2.x series. This is common, since such a major release

12

stackage.org

often involves lack of backwards-compatibility, and requires other packages in the
snapshot to be updated.

Other than working by snapshots, Stackage works like Hackage. Clicking on a
package shows its documentation, usually starting with an introduction or tutorial.

2.2 Search by type

In many cases, looking around the documentation is enough to find the function
you need. However, there’s a a core Haskell feature which makes it harder to find
those functions directly: type classes.

Let me give an example: you can use the length function in a Set a, one of the
types defined in the containers library. However, in the documentation length is
not mentioned at all;* where does it come from? In this case, from the Foldable
instance. You can find it under the header Instances in the documentation for the
type. Additionally, each entry in the list can be expanded to show the functions
defined in that type class. There you'll find length, among dozens of other functions
defined by Foldable.

data Set a
A set of values a.

- Instances

v Foldable Set # Source Folds in order of increasing key.

Defined in Data.Set.Internal

Methods

fold :: Monoid m => Set m —> m #
foldMap :: Monoid m => (a -> m) —> Set a -> m #
null :: Set a —> Bool W
length :: Set a —> Int #

Figuring out this kind of information would be almost impossible, had Hoogle
not been invented. Available at hoogle.haskell.org, Hoogle gives you the super-

$Truth being told, maybe you should use the more specific size in this case.

13

hoogle.haskell.org

power of searching by type of the desired function. In our example above, we know
that a function returning the size or length of a Set must in any case return an Int.
We type Set a -> Intinthe search bar, and look through the results.

Seta -> Int set:included-with-ghc + || Search |

:: Set a -> Int set:included-with-ghc

size :: Set a -> Int

containers Data.Set Data.Set.Internal
O(1). The number of elements in the set.

length :: Foldablet=>t a -> Int

base Prelude Data.List Data.Foldable
Returns the sizeflength of a finite structure as an Int. The default implementation just counts elements starting with the leftrr

Hoogle understands Haskell's type system, so it can return a more polymorphic
function that what you asked for, since that would also work. In fact, length has
the type Foldable f => f a -> Int, which would be specialized to Set ato get
the function you are looking for. You may also try with an even more specialized
type like Set String -> Int, and the same results would be returned.

Note that in the image above the “Included with GHC” package set has been
chosen, because looking around the whole of Hackage gives just too many results.
You can also select a particular package, or a particular Stackage snapshot.

2.3 Advice on choosing a library

Given the huge amount of libraries in Hackage, it may be hard to choose one for a
particular task, especially once we go out of the realm of super-popular libraries
like the ones we treat in this book. The choice of a library is an investment, since
you need to study its documentation, and it becomes part of the maintenance
budget of the project. Here are some tips.

Popularity. Those libraries on which many others depend are usually a good op-
tion; they've already had some scrutiny about their set of features, how performant
they are, and its trade-offs. Maybe even somebody has written a blog post about it.
Popularity is hard to measure, but here are some indicators:

+ The number of monthly downloads in Hackage, which you can find in the DLs
column. My suggestion is to order by this column for any search you make in
Hackage.

A

« The number of reverse dependencies of the package, which you can check
at packdeps.haskellers.com/reverse. Although this page only indexes
packages in Hackage, knowing that many other people depend on a package
is a strong signal.

Maintenance. The feeling of continuous experimentation in the Haskell commu-
nity sometimes leads to packages being left unmaintained. Depending on such a
package involves a risk. Hackage gives the date of the last upload of the package,
which you can use as an initial measure.

However, some packages are “finished”, in the sense that authors are not adding
more features. Still, sometimes updates are required when a GHC version with a
breaking change becomes available, like the latest move from GHC 8.10 to0 9.0. A
fairer indication can be obtained from these two sources:

- Whether it's part of the latest Stackage LTS release. Stackage has an auto-
mated process to ensure that libraries are updated in response to breaking
changes in dependencies and the compiler; being there ensures that some-
body is taking care of the duty of maintenance.

+ Look at the issue tracker for the project - found on its Hackage page - and
check that there are no important issues regarding maintenance or compati-
bility lingering for a long time.

Finally, note that both Cabal and Stack allow depending on a source repository,
like Git, instead of a published package. This is useful for quickly checking the
development version of a library if the published one has some conflict with the
rest of your project.

15

packdeps.haskellers.com/reverse

16

Utilities

The default Prelude in base exports many common data types, like lists, tuples,
or string, alongside a bunch of useful functions over those. However, it does not
export everything that base has to offer, so it's useful to know where to look for
more.

Although Hoogle remains the first best option, it's less useful with basic types
like integers, because so many functions have type Int -> Int. Talking about
integers, the Data.Int module contains types ranging from Int8 to Inté4 which
have explicit bounds, as opposed to Int which does not guarantee them.

The modules Data.List and Data.Maybe also contain a wide range of small
utility functions. My favorite one is mapMaybe, which allows you to map and filter in
one single step. Other functions which work over those types and many others live
in Control.Monad; | don't know how anybody could live without importing guard,
which allows a very declarative way to express validations (more in the Validation
and parsing chapter).

validPerson first last age = do
guard $ not (null first)
guard $ not (null last)
guard (age >= 0)

Data.Monoid contains many data type definitions which can be used to select
a particular operation when a type supports several of them, via newtypes. This is
the case of Booleans, for which both conjunction (&&) and disjunction (| |) form
monoids. A general pattern when using container types is to aggregate information
using the foldMap method from Foldable, as we discuss in the Containers chapter.

17

The elem function, which checks whether a value lives in the data structure, can
be defined as the result of aggregating the function “is this the element we are
looking for?” using disjunction - one single True value is enough to answer “yes”
to the question. The corresponding newtype in this case is Any.

elem :: (Eq a, Foldable t) => a -> t a -> Bool
e “elem” xs = getAny $ foldMap (\x -> Any (x == e)) xs

We do not produce a Bool, but an Any, hence the need for the additional constructor
call. As a consequence, the result of foldMap is of type Any, from which we obtain
the underlying Bool via getAny. Had we chosen the other Boolean operation via
All, we would instead be answering the question “are all the elements in this
container equal to e?”

Still you may find yourself writing a small utility function and thinking “that
should be in the standard library”. In most cases you'll find it in the extra library.
For each module, like Data.List, the library defines a Data.List.Extra with more
functions. One particular example: functions like dropEnd, takeEnd, breakEnd, ...
which start their behavior at the end of the list. Something that in many cases you
could have done by a clever combination of the basic functions and reverse, but
that can also get hairy very quickly if you need to do it yourself.

One area in which base and extra still fall a bit short is in separating parts of
a list in different ways. The split library comes to the rescue here. For example,
imagine you need to have a sliding window of 3 elements, starting every 2 elements.
The divvy function is there for you:

> dmport Data.List.Split
> divvy 3 2 [1 .. 7]
[[13273]’[3)4)5]7[5’677]]

Another interesting utility library is safe, whose goal is to provide safe variants
of unsafe functions in Prelude. The main example is head, which throws an exception
when confronted with an empty list.

> head []

***x Exception: Prelude.head: empty list

The safe library defines different variations of head, by either optionally returning
or having a default value:

headMay :: [a] -> Maybe a
headDef :: a -> [a] -> a

18

Its popularity is witnessed by the great amount of libraries in Hackage which
depend on safe. As we discussed in the Introduction, some alternative Preludes
like relude make this kind of safety a core design decision, and fully replace the
unsafe variants with safe ones.

3.1 Better folds

Many problems in Haskell can be solved using a fold, a higher-order function
which aggregates the information from a container into a single value. Almost
every introductory material for Haskell talks about foldr and fold1, the concrete
functions for lists. You can define the length and the sum of a list using fold1l.

> mySum = foldl (+) O

> myLength = foldl (\1 _ -> 1 + 1) 0
> (myLength [1,2,3], mySum [1,2,3])
(3,6)

When we are using several folds over the same structure, we can do better. Even
in the small example above we are traversing the list twice, when one traversal is
actually enough. If we don't mind manually constructing and deconstructing tuples,
we can write a version which uses foldl yet only traverses the list once.

> myLengthSum = foldl (\(l, s) x -> (1L + 1, s + x)) (0, 0)
> myLengthSum [1,2,3]
(3,6)

It's clear, though, that having to write these functions for every combination of
folds is not sustainable. Fortunately, the foldl package comes to our rescue.

The key idea in fold1l is that if we define the shape of the fold independently
of its application, we can optimize it before being applied to a particular data
structure. The language we use for combining folds is Applicative, which also
plays an important role in the Validation and Parsing chapter. As a small reminder
of that type class, it gives us the ability to combine computations via (<$>) and
(<*x>), applying a function at the end. In the example below, we combine the results
of Fold.length and Fold.sum using the tuple constructor.

> dimport qualified Control.Foldl as Fold

> lengthSum = (,) <$> Fold.length <x> Fold.sum
> Fold.fold lengthSum [1,2,3]

(3,6)

19

Applying lengthSum using Fold. fold is guaranteed to traverse the data structure
only once. The magic is that all the micro-managing of tuples is baked in the library
and hidden from us.

20

