
Happy Learn JavaScript Tutorial Vol 1
http://www.happylearnjavascripttutorial.com/

Written and Illustrated by GetContented
(enquiries@getcontented.com.au)

Updated on: March 31, 2016.

Contents

1 How to learn JavaScript enjoyably 1

1.1 Fascination . 1

1.2 Wish to Create . 1

1.3 Too Many Details? . 1

1.4 The Journey Begins . 1

1.5 And Now You... 2

1.6 No Magic, But Why Pain? 2

1.7 Precise Language . 2

1.8 Taking Care . 2

1.9 Two Phases of Learning . 2

1.10 Stages Build Skill . 2

1.11 Simple, but Fun Examples 2

1.12 Progressive Learning . 3

1.13 Natural Assmiliation . 3

1.14 Motivation is King . 4

http://www.happylearnjavascripttutorial.com/

Happy Learn JavaScript Tutorial Vol 1

2 Display a Message 4

2.1 Let’s Begin . 4

2.2 Our First Program . 5

2.3 What Happened? . 5

2.4 Calling a Function . 6

2.5 Values . 7

2.6 The Next Step . 7

2.7 Function Parameters . 7

2.8 Homework . 8

3 ChatterBot Mark 1 9

3.1 The prompt Function . 10

3.2 Strings and Characters . 10

3.3 Programming from Files 11

3.4 String Concatenation . 13

3.5 Some Input . 13

3.6 Variables . 13

3.7 Our Final Program . 15

3.8 Homework . 16

4 Guess the Number 16

4.1 Objects . 16

4.2 Object Properties . 17

4.3 Object Methods . 18

4.4 Math and Random . 18

4.5 Cleaning The Number Up 18

4.6 Floats . 19

4.7 A Little Refactoring . 20

4.8 The If Statement . 20

4.9 Giving Another Chance . 21

4.10 Homework . 23

5 End of the Free Sample 23

5.1 Thanks! . 23

0

Happy Learn JavaScript Tutorial Vol 1

1 How to learn JavaScript enjoyably

1.1 Fascination

Just like you, when we discovered computers we were taken in, fasci-
nated by their potential. We watched happily as programs seemed to
make anything possible. Such amazing works by the programmers
who created them.

1.2 Wish to Create

Delight quickly changed to desire: desire to write our own programs,
but how best to begin? Discovering many books, we filled our heads
with knowledge, sadly not finding much guidance about proceeding
with the practical craft.

1.3 Too Many Details?

Trying our hand at making programs ourselves, we discovered de-
tails cluttered us. Losing our delight, we’d stop. We simply didn’t
understand how to use our dusty book-learning. Our programs stank.

1.4 The Journey Begins

We felt bound by our knowledge,needing to return to the freedom of
before we began, so we endured tedious practice and failure, mak-
ing the theory our own, slowly understanding. Again we found no
guide lighting our path, but after an arduous journey, finally the fog
lifted and we could write excellent programs and still be excited and
joyous.

1

Happy Learn JavaScript Tutorial Vol 1

1.5 And Now You...

So you too want to become a programmer. Luckily, you’ve found this
guide, crafted by people who have lived this path to the end, and
would save you the pain and boredom we endured.

1.6 No Magic, But Why Pain?

There’s no magic here, but there are more-, or less-difficult paths to
choose. If you want mastery, you always need deep practice, but why
should this mean pain and boredom? Small steps will be our guide,
and fun our companion. But, how to journey?

1.7 Precise Language

Far more precise language than ours is needed to program. To write
in such a language, we need to know the correct words and their
strict arrangements; and how to tease our intent apart and clothe it
nicely as a program. This is not all.

1.8 Taking Care

A little knowledge, that dangerous thing, produces some success,
and worlds of possibilities arise, bringing excitement with them. The
eager beginner quickly gets into a flurried muddle, as enthusiasm

has them tackling too much too soon. Initial elation slowly turns
into bitter disappointment and they give up or worse, spread hate.
We don’t want this for you.

1.9 Two Phases of Learning

Instead, your learning will proceed in two staggered stages. Each
lesson will introduce several programs. Reading, understanding and
typing these in yourself will embed them in your own experience.
You need this practice to recognise the pieces and to know what
they do. We’ll then adjust them slightly and see how they change.

1.10 Stages Build Skill

This proceeds in a graded, staged way. Using real-world problems
to illustrate simple solutions with the language constructs seen so
far, our reading will slowly increase in difficulty until we have seen
the core of the language and beyond.

1.11 Simple, but Fun Examples

The second stage starts further along, when enough reading means
you know how to do small things. Again, we’ll take care to work
within enjoyable limits as we show you how begin to build a path
the other way: from problem solving, to intention, to code. This

2

Happy Learn JavaScript Tutorial Vol 1

stage will solidify your understanding. Proceeding, we slowly take
the training wheels off and before you know it, you’ll be able to make
some well-designed programs that read well, are easy to understand
and are enjoyable to change.

Many books don’t address the subject of how to craft solutions,
or they just leave you with nothing but some exercises and your
own intuition. Most are focussed heavily on programming language
topics first, and how you use them to do things second, if at all. You’ll
notice we’re primarily interested in you learning how to do useful
things, rather than the language for its own sake. Practical things
will anchor the language more in your memory and experience.

1.12 Progressive Learning

Our material is cleverly crafted to gradually introduce you to the
entire language. We do this over the course of the various, inter-
esting examples which are present in every chapter, across all the

volumes. We chose this way because the other way bores people to
sleep, which is inconsiderate and tedious.

1.13 Natural Assmiliation

Countless people have found programming difficult to learn because
of boring examples, unpolished writing, or material being organised
for language features rather than learner interest.

On the other hand, we’ve seen great success in material that uses
varied repetition, amusing useful pictures, fun examples using real-
world topics and small graded steps. This guided our choices in
building the entire series, one volume of which you have in your
hands.

3

Happy Learn JavaScript Tutorial Vol 1

1.14 Motivation is King

If motivation really is what pulls us through practice, then we sin-
cerely hope we’ve inspired motivation and excitement in you with
this series, and wish you never forget the love that we all share for
learning and programming. May it guide you always.

2 Display a Message

This chapter is where you start to become a beginner programmer
by learning how to read your first few simple programs.

Using programs that put an alert on the screen, our aim for this
lesson is to get you familiar with some basic JavaScript and the ac-
companying terms.

We’ll open the Chrome web-browser now, because it’s easier to
start programming in. If you don’t have it, visit https://www.
google.com/chrome/.

2.1 Let’s Begin

Each window in Chrome has a place to enter small programs directly
called the JavaScript console, which is normally hidden. Let’s go to
it now:

4

https://www.google.com/chrome/
https://www.google.com/chrome/

Happy Learn JavaScript Tutorial Vol 1

Open a new window with File... New Window, then a
console with View... Developer... JavaScript con-

sole. To select it, click beside the > symbol:

We can type any text we like here, and pressing the return key, the
browser will interpret it as JavaScript. If it makes sense, our program
will do its work (run or execute).

2.2 Our First Program

Below you’ll see your first program — just one line. Type it into the
console carefully and press return to run it. If you make a mistake,
try again on the next line, or start again.

alert();

Congratulations on your first step into the world of JavaScript pro-
gramming! We’re now going to walk through what this line means
and explain some of the terms and pieces common to all programs.

2.3 What Happened?

When you pressed return, a dialog box appeared, so-named because
the computer is “talking” to us, and needs a response. We give one
by clicking the button on that window which will dismiss it, and it
will disappear. This tells the computer you’ve seen the window.

After it’s gone, you’ll see undefined is “printed” to the console. This
is normal, but for now ignore this.

What actually happened, though? Well, JavaScript programs are
written as a sequence of statements of actions to take. These end
in a semi-colon, and each tells the computer what to do.

For simplicity, our first program is only one statement. We’ll see
programs with more soon.

5

Happy Learn JavaScript Tutorial Vol 1

When you run a program, JavaScript executes its statements. In
our case, we have a function call in our statement, so it looks at the
word alert, and knows we’re talking about its built-in alert function.
A function is a kind of block, or parcel of code, like a mini-program!

When it gets to the round brackets written after alert (these brack-
ets are called parentheses), it knows it means we’re telling it to call
that function.

2.4 Calling a Function

Calling a function means executing all of the statements inside the
definition of that function, in the proper sequence: evaluating its
contents and responding with a return value.

The term value in JavaScript just means a piece of data, such as
the number 100 or the word ”cats”.

6

Happy Learn JavaScript Tutorial Vol 1

2.5 Values

This particular built-in function displays an alert box on the screen
and waits for you to click the button. Until you click it, JavaScript
pauses program execution. When you do, the alert function responds
with the undefined value.

The undefined value is returned when the computer hasn’t got
anything more meaningful to respond with. It’s returned here be-
cause all function calls must return a value.

2.6 The Next Step

Putting a blank alert on the screen is ok, but it’d probably be more
useful and interesting if we could actually display a text message.

Let’s call the alert function with a message now:

alert("hi");

If you run this program (by typing it into the console, then pressing
the return key), an alert will pop up with the message in it. As before
when you dismiss it undefined is printed in the console.

We can tell from doing this that the message shown is whatever
value we put in quotes in-between the parentheses (the rounded
brackets).

2.7 Function Parameters

So the alert function can take a parameter, or not: the message to
display. JavaScript programmers call the parameters that a function
takes its arguments.

7

Happy Learn JavaScript Tutorial Vol 1

What about if we write two statements on the one line:

alert("hello") ; alert("hello, again") ;

If you try this, you’ll see that it does the left statement first, then
the statement on the right,displaying an alert each time and waiting
for you to dismiss it: it runs them in sequence.

So we can see that the semi-colon tells JavaScript where the end
of a statement is, even if there are more than one of them on a single
line of code.

You may notice that extra spaces don’t change anything for
JavaScript. We usually won’t write our code like this, but it’s good
to know it’s possible, so you don’t get confused when you read other
people’s programs that do this.

Well we made it to the end of the first lesson. Well done! Take a
breather, and then try the homework.

2.8 Homework

Your homework is to type the code in and try it if you haven’t. This
will make it more your experience. Then try writing five different
alerts with your own messages in them. Don’t forget the quotation
marks around the messages, or you’ll get an error. We’d also like you
to do an internet search for JavaScript code and make sure you can
see the statements in any code you see in a few pages. You shouldn’t
try anything more complicated yet. We want to make sure you only
do a little bit at a time and not get confused.

8

Happy Learn JavaScript Tutorial Vol 1

3 ChatterBot Mark 1

Welcome back. You’ve seen some simple code, so using a silly little
talky program, we’re now going to show you how to write code in
files,get input from the user, join text together,do some simple math,
and introduce variables, too!

The ChatterBot program’s purpose is to ask a few questions and
give a reply.

It may surprise you to find out that computers can only perform
four main basic tasks: input, processing, storage and output. What-
ever it appears they’re doing from moment to moment, however
complex it is, it will just be a combination of these four tasks. We

already saw some output, ChatterBot will use the remaining three,
too.

We’re going to use a text editor — an application for editing un-
formatted text — to make our source code. We can’t use a word
processor because its saved format is incorrect. Download the
one we’ll use so it’ll be ready when we need it from the website
https://atom.io — just use the download button on the front
page.

9

https://atom.io

Happy Learn JavaScript Tutorial Vol 1

Meantime, we’ll play with some new functions, so open the
JavaScript console again. It’s normal to not remember how, just go
back and remind yourself.

Take a look at the code below. It’s a statement with a function
call again. This one is named prompt. As before, the semi-colon
marks the end of the statement, and the parentheses show that we’re
calling the function.

3.1 The prompt Function

prompt();

When you hit return, a box comes up with a field, an area to type
into. Type "jelly", and press OK. The console prints your entered

string "jelly" as its response.

3.2 Strings and Characters

We’ve seen strings before. The quotes tell JavaScript what’s inside is
text data; a series of characters. If you don’t know, a character is any
unit of written data, such as the letter "F", and even non-textual
ones, like the character for new-line, or the space that appears be-
tween words.

This prompt function is like alert: we can call it with or without
an argument. If you give it one, it’ll use the argument in the window
to prompt for input.

Of course the main difference compared to alert is that prompt
lets the user input some text. On pressing OK, that input becomes

10

Happy Learn JavaScript Tutorial Vol 1

the string value returned. If cancel is pressed instead, a null value
is returned rather than a string —this is an intentionally empty value.
By contrast, we saw that JavaScript uses undefined when the
alert function returned because it didn’t actually return a value
at all. Don’t worry too much about this, it will become clearer when
we see it more.

Try running this again a few times, pressing cancel or OK, and
using different string values in the prompt dialog box.

What about when we call prompt with a string as its argument?

prompt("Your name?");

As expected, the string appears in the dialog box above the field.
We can see prompt is one way to have the computer collect input
from the user into our programs. We’ll see how we can use these
responses shortly.

By now Atom should have downloaded, so install and open it.

3.3 Programming from Files

We’ll use it to create a web page to hold our ChatterBot program
because it’ll be larger than just a few lines entered into the browser.

Make a new file, and save it as chatterbot.html in a location you’ll
be able to find later.

Now type the following HTML. We’re not going to explain the
HTML, but It contains an embedded program in JavaScript. You’ll
probably recognise what this program does: it displays an alert on
the screen.

<html>

11

Happy Learn JavaScript Tutorial Vol 1

<body>
<script>
alert("Hi");

</script>
</body>

</html>

To load this into our browser, save it, go to the browser and choose
Open File from the File menu. Choose the file you just saved. When
you choose it, the page will load and the JavaScript will run imme-
diately. To re-run it, simply reload the page (either with the button,
or from the View menu).

Well done on creating your first file-based JavaScript program and
running it. Next we’ll modify it to ask your name using the prompt
function.

<html>
<body>
<script>
prompt("What’s your name?");

</script>
</body>

</html>

If you save this, then use reload in the browser, it will load the
new program in and run it, and so ask for your name.

When you do that and press OK, what happens to the return value
from prompt? We didn’t tell JavaScript to use it, so it just disap-
peared. On the console it would print out the result, but when we’re

inside a program the result is just thrown away. Soon we’ll find out
how to capture it instead.

We’d like our ChatterBot to produce a greeting alert after asking
for the name of the user.

<html>
<body>
<script>
prompt("What’s your name?");
alert("Hello, ");

</script>
</body>

</html>

When you run this, it does what we’d expect: asks for a name, and
gives you a message "Hello, ".

However, we’d really like it to actually put the entered name into
the greeting. Let’s put a dummy name in first, then change it out for
the actual one. We could just put it into the existing string argument
to the alert, but let’s do something else instead:

<html>
<body>
<script>
prompt("What’s your name?");
alert("Hello, " + "Penelope");

</script>
</body>

</html>

12

Happy Learn JavaScript Tutorial Vol 1

3.4 String Concatenation

We used an operator called + here to show how to join our dummy-
name "Penelope" to the greeting. Operators are symbols used
with values to form expressions that produce other values. Try this
program out.

An expression is any JavaScript code that the computer can work
out a value for. Joining two strings with + is an expression. Function
calls are expressions, too. Operators can be used to help make ex-
pressions. All expressions can be used as statements (we call them
expression statements when they are), and can also be part of a
statement, but not all statements are expressions. This will become
clearer when you see more. Don’t worry about it.

So we now know that the + operator used with two strings joins
them into one. This joining together operation is called concatena-
tion, a word originating from Latin that means “chain on to”.

3.5 Some Input

This doesn’t do what we want yet, though. We want the actual return
value from the call to prompt to be concatenated to the greeting,
not just "Penelope" every time. Let’s see an adjusted program that
does this in a simple way.

<html>
<body>

<script>
alert("Hello, " + prompt("What’s your name?"));

</script>
</body>

</html>

Ok this is kind of crazy. We’ve embedded the call to prompt

into the call to alert! We know prompt returns its field contents
as a string, so we just inserted the whole call to prompt into the
alert function’s argument concatenating it to the end of "Hello,
". When you run this, you’ll see it does what we want.

When evaluating a function call, JavaScript looks at its arguments
and evaluates them first, then feeds that result into the function. In
the case of alert, that means prompt is evaluated to get its return
value so we can concatenate that to "Hello, " and then feed that
whole string into alert. So prompt happens first, and then alert
displays its window with the greeting string!

This does work, but it’s not very elegant. We programmers tend to
prefer when code is clear, and this isn’t very clear.

3.6 Variables

It would be nicer if we had some kind of temporary named storage
location we could put the result of prompt into, then pass that to
the call to alert so it would be clearer what our intention is, and
what sequence things happen in.

13

Happy Learn JavaScript Tutorial Vol 1

Well, JavaScript definitely has something like this. It’s called a
variable. This is a named value that can change: a value that is able
to be varied! You can assign values to it, and if you refer to it, its
value evaluates to whatever you last put in it.

Let’s take a step backward and see another program that says
hello to someone named Stella, but uses a variable.

<html>
<body>
<script>
var name = "Stella";
alert("Hello, " + name);

</script>
</body>

</html>

Ok the first statement declares and assigns a variable named
name. Declaration is when we use the var keyword to indicate that
we’re going to use the word name as a variable in our program. As-
signment is when you use the = operator to assign a value to a vari-
able. We’re doing both at once, putting the value "Stella" into
name. Here, we’re using the name name as a variable identifier. This
means it is used by Javascript to identify the variable.

This means later on when we refer to the identifier name,
JavaScript looks up the value stored for it, and uses that. As you
can imagine, this is incredibly useful.

On the next line, we have our old friend the alert function, in a
statement that uses the value from the variable, the string concate-
nation operator +, and the string "Hello, " to produce a greeting
alert.

14

Happy Learn JavaScript Tutorial Vol 1

Obviously again, we’d prefer if the variable’s contents are the
result of prompting the user for their name rather than just
"Stella":

<html>
<body>
<script>
var name = prompt("What’s your name?");
alert("Hello, " + name);

</script>
</body>

</html>

3.7 Our Final Program

Finally, we’ll see a program that also asks for your age and does
some simple math on it.

<html>
<body>
<script>
var name = prompt("What’s your name?"),

age = prompt("What’s your age?");
alert("Hello, " + name +

". Half of your age is " + age / 2 +
". Triple your age is " + age * 3);

</script>
</body>

</html>

Notice that we have one single variable assignment statement
that is declaring and defining two variables as the result of prompt-
ing the user? We can split a statement across lines like this if we
need to. Notice the use of the comma to separate out definitions.
We could have used two separate statements. Either is fine.

Next,we’ve split the statements with the alert on it across three
lines, and we’re making extensive use of the string concatenation
operator to join some response string together into the one alert,
and using some math operators on the age value to tell the user
some things about their age. We use the / operator to divide one
number by another, and the * operator to multiply two numbers.

Now we’ll see a program that does exactly the same thing, but
goes about it slightly differently. Use this to compare to the previous
one.

<html>
<body>
<script>
var name, age, alert_value;
name = prompt("What’s your name?");
age = prompt("What’s your age?");
alert_value = "Hello, " + name + ". " +

"Half of your age is " + age / 2 ". " +
"Triple your age is " + age * 3);

alert(alert_value);
</script>

</body>
</html>

We notice that we’re declaring three variables by using the var

15

Happy Learn JavaScript Tutorial Vol 1

keyword. This simply tells JavaScript that we want to set these
names aside as variables that we’ll assign values to them later. Then,
in separate statements we’re assigning values to these variables.
These are similar values to the program before, but we’re using a
variable for the call to alert this time instead of putting the ex-
pression directly into alert as an argument.

3.8 Homework

Your homework is to try adjusting the strings of either of the final
programs and seeing what effect this has on the program. Don’t try
to do anything tricky, though. We’ll see more things in good time.
We don’t want you to get confused or frustrated. Make sure you try
inputting each of the programs in this chapter and try them all out
at least once.

4 Guess the Number

Making a simple guessing game, we’ll introduce objects, setting &
retrieving properties on objects, calling methods on objects, the
Math object, Math.floor, Math.random, the if statement and
conditionals.

Our game will make up a secret number, and we’ll take some turns
guessing it. Make a new file called guessing game.html and
open it in our browser.

4.1 Objects

Javascript has a concept called objects, which is a way of bundling
a bunch of named values into a single value. For example, we might
decide to model some information about Angelina Jolie:

16

Happy Learn JavaScript Tutorial Vol 1

<html>
<body>
<script>
var angelina = { firstName: "Angelina",

lastName: "Jolie",
born: 1975 };

</script>
</body>

</html>

4.2 Object Properties

This program simply creates a variable calledangelinawhich is an
object that bundles three properties together, named firstName,
lastName and born. The fancy squiggly brackets (called braces)
are how you define an object literal in JavaScript. Each named place
for data in an object is called a property of the object. The proper-
ties are written as name-value pairs, and are separated from each
other by commas. Each property has a name, then a colon and then
its value. This is kind of like having a bunch of variables inside a
variable!

If we want to get one of the property values out, we can do so
pretty easily by using a dot and its name, like this:

<html>
<body>
<script>
var angelina = { firstName: "Angelina",

lastName: "Jolie",
born: 1975 };

alert(angelina.firstName + " " +
angelina.lastName + " was born in " +
angelina.born);

</script>
</body>

</html>

Running this will alert "Angelina Jolie was born in

1975". So you can use angelina.firstName to get the data
out of the firstName property of the angelina object. This

17

Happy Learn JavaScript Tutorial Vol 1

works for whatever the property is named. You can also use an-

gelina.lastName = "Angoyloona" to set the last name to
something else (Angoyloona here). This will actually change the
value of the lastName property of the object.

4.3 Object Methods

Functions are also values, so if an object’s property is a function,
it’s called a method and we can call it just like a regular function.
We can retrieve it using the same syntax that we saw for retrieving
property values, but if we add parentheses to the end, we can call it
just like any function.

Ok, that’s enough to do with Angelina.

4.4 Math and Random

JavaScript has a whole range of objects built into it with properties
and methods for doing all kinds of things.

For our guessing game we’re going to use an object called Math
that has a method called random. Each time random is called, it
will return a new random number value between 0 and 1 (but never
actually 1).

Let’s see a program that alerts a random number every time you
refresh the page:

<html>
<body>
<script>
alert(Math.random());

</script>
</body>

</html>

Try it out a few times, by loading then reloading the page.

We’d like our program to give us a number between 1 and 10, so
let’s start see how to build toward this functionality.

4.5 Cleaning The Number Up

By using the * operator to multiply the result of random by 10 —
we can call this “scaling” the result — we can get a number between
0 and 9. We’ll use some variables to show our steps, too:

<html>
<body>
<script>
var secret_float =

Math.random();
var secret_float_scaled =

secret_float * 10;
alert(secret_float_scaled);

</script>
</body>

</html>

18

Happy Learn JavaScript Tutorial Vol 1

4.6 Floats

Why name them float? Well, these numbers are called floating point
numbers, it’s just the name of the type of numbers, they’re sort of like
decimals, but less accurate. Our number is scaled by a factor of 10,
then displayed as an alert.

Ok this number is between 0 and 9, so we have to add one to get
it between 1 and 10. We’ll call this shifting it, and name our variable
accordingly:

<html>
<body>
<script>

var secret_float = Math.random();
var secret_float_scaled =
secret_float * 10;

var secret_float_scaled_shifted =
secret_float_scaled + 1;

alert(secret_float_scaled_shifted);
</script>

</body>
</html>

If you want to, reload the page with this new program until you’re
confident it’s giving us different numbers between 1 and 10.

Ok, but we don’t actually want the numbers after the decimal
point. Removing them can be done by another method of the Math
object called floor, which will take anything after the decimal
point and round it down to zero. This means we now have the secret
number we want for our guessing game!

<html>
<body>
<script>
var secret_float = Math.random();
var secret_float_scaled =
secret_float * 10;

var secret_float_scaled_shifted =
secret_float_scaled + 1;

var secret_number =
Math.floor(secret_float_scaled_shifted);

alert(secret_number);
</script>

</body>
</html>

19

Happy Learn JavaScript Tutorial Vol 1

4.7 A Little Refactoring

Ok we’ll stop at this point and do some of what’s called refactor-
ing. This is where we improve the way the code works. In our case,
we’ll collapse the four lines into one single variable assignment and
expression, for simplicity:

<html>
<body>
<script>
var secret_number =

Math.floor(1 + Math.random() * 10);
alert(secret_number);

</script>
</body>

</html>

This is an expression that does all of the previous code in
one single step. It calls Math.floor on the result of calling
Math.random, multiplying by 10 and adding 1 to it. We can do
this because each expression results in a value, which in turn is fed
in as argument(s) to another function or expression.

Now we can ask the user for their guess:

<html>
<body>
<script>
var secret_number =

Math.floor(1 + Math.random() * 10);
var guess =

prompt("Guess a number between 1 and 10");
</script>

</body>
</html>

4.8 The If Statement

We want the computer to tell the user if they got the answer right.
To do this, we’ll see a new statement called the if statement.

<html>
<body>
<script>
var secret_number =

Math.floor(1 + Math.random() * 10);
var guess =
prompt("Guess a number between 1 and 10");

if(guess == secret_number) {
alert("You got it!");

}
</script>

</body>
</html>

We can see that if looks similar to a function call, except it has
some braces afterward that are wrapping a statement with a call to
alert in it. The if statement is how we can get our program to
check the truth of something, such as an expression, and do different
things depending on that check.

20

Happy Learn JavaScript Tutorial Vol 1

We can put as many statements as we like within these braces.
These are not being used to show an object definition here, they’re
the same type of braces, but they’re doing something different:
they’re being used to create a block of code. That is, this if state-
ment will test the expression within its parentheses and if that ex-
pression evaluates to true, it will execute the block of code that
follows it in sequence. If the test expression is false, it won’t do
anything.

Here we’re using the == operator, which tests whether the expres-
sion on its left is equal to the expression to its right. Here that means
if guess is equal to the secret number!

4.9 Giving Another Chance

When you play this game, you’ll quickly realise it’s no fun: we only
get one chance, and it doesn’t tell us when we’re wrong. Let’s make
it more playful.

There is more to the if statement... we can use an else state-
ment on the end to indicate what the program should do if the test
fails.

Let’s put something telling us what the number was when we
were wrong. This won’t make it any more fun, but we’ll get to that.

<html>
<body>
<script>
var secret_number =
Math.floor(1 + Math.random() * 10);

var guess =
prompt("Guess a number between 1 and 10");

if(guess == secret_number) {
alert("You got it!");

} else {
alert("Wrong. The number was " +
secret_number);

}
</script>

</body>
</html>

So if the test expression evaluates to false, the second block of
statements executes. If it evaluates to true, the first block executes.

21

Happy Learn JavaScript Tutorial Vol 1

Notice we’ve also added another variable but set it to null for
now, called guess2. We’re going to embed another guess in the
failing block, which will mean we can give the user a second chance
at guessing. Don’t be worried, we’ll explain how it works:

<html>
<body>
<script>
var secret_number =

Math.floor(1 + Math.random() * 10);
var guess =

prompt("Guess a number between 1 and 10");
var guess2 = null;
if(guess == secret_number) {
alert("You got it!");

} else {
if(guess < secret_number) {
guess2 =
prompt("Guess a number between " +
guess + " and 10");

} else {
guess2 =
prompt("Guess a number between 1 and " +
guess);

}
if(guess2 == secret_number) {

alert("You got it!");
} else {

alert("Wrong. The number was " +
secret_number);

}
}

</script>
</body>

</html>

If you try this program out a few times you’ll realise while it’s
still hard, it’s a actually possible to guess now, because this program
gives you a second chance, and tells you which side of your guess
the secret number is on after your first guess.

If we just look at the block inside the first else,we’ll see there are
two if. . .else statements. The first compares the guess to the se-
cret and gives the user a different prompt depending on the answer,
and the second if. . .else statement gives them their results.

Notice that the last two if. . .else statements and their blocks
are all included within the first else block?

Blocks can contain other blocks just fine, and can have more than
one statement inside them, too.

The if statement is what’s called a conditional, which means it

22

Happy Learn JavaScript Tutorial Vol 1

changes what the program does depending on some values or other
expressions.

4.10 Homework

Your homework is to type each of these programs in and try them
out. Also, notice in the secret number expression, the * operator
is performed before the + operator, because of order of operations,
just like in arithmetic in maths.

The second part of your homework is to try, without looking, to
create a single line program that puts a message window on the
screen with a greeting on it, similarly to what we saw in the “Display
a Message” chapter. Try to do it without looking it up. If you have to
look, do it while looking, but then try again in an hour or so. We’re
trying to connect up making a single line program into your memory.
Try as many times as you need to until you can do it without looking
at all.

The third part of your homework is to make a single line program,
but to try to break it in as many ways as you can think of. See what
happens when you miss pieces off, or when you do crazy things to
your program. Get familiar with all the ways you can fail. If we make
failure our friend, it won’t be so bad when we unexpectedly see it
in a program, because we’ll already have lots of experience with all
the ways things can go wrong. This is the mark of a master.

5 End of the Free Sample

5.1 Thanks!

We really hope you’ve enjoyed this free sample of the book.

Please consider purchasing the full book, and letting as many peo-
ple know about our works as possible.

This will enable us to make more great works like this for you in
the future!

— GetContented

http://happylearnjavascripttutorial.com

23

http://happylearnjavascripttutorial.com

	How to learn JavaScript enjoyably
	Fascination
	Wish to Create
	Too Many Details?
	The Journey Begins
	And Now You...
	No Magic, But Why Pain?
	Precise Language
	Taking Care
	Two Phases of Learning
	Stages Build Skill
	Simple, but Fun Examples
	Progressive Learning
	Natural Assmiliation
	Motivation is King

	Display a Message
	Let’s Begin
	Our First Program
	What Happened?
	Calling a Function
	Values
	The Next Step
	Function Parameters
	Homework

	ChatterBot Mark 1
	The prompt Function
	Strings and Characters
	Programming from Files
	String Concatenation
	Some Input
	Variables
	Our Final Program
	Homework

	Guess the Number
	Objects
	Object Properties
	Object Methods
	Math and Random
	Cleaning The Number Up
	Floats
	A Little Refactoring
	The If Statement
	Giving Another Chance
	Homework

	End of the Free Sample
	Thanks!

