-~
-

4 Lo S — = / e
A Lo % 3 L o = S :
> / / y ' 5 £ 53 /3 / /

PHP'nin en popiiler yeni Framework'i ile uygulama
tasarimi ve gelistirme iizerine bir yolculuk

Yazarlar Chuck Heintzelman ve Sinan Eldem

Getting Stuff Done with Laravel 4 (TR)
PHP'nin en popduler yeni Framework'u ile uygulama
tasarimi ve gelistirme Gzerine bir yolculuk

Chuck Heintzelman ve Sinan Eldem

Bu kitap su adreste satilmaktadir http://leanpub.com/gsd-laravel-tr

Bu versiyon su tarihte yayimlandi 2013-12-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 Chuck Heintzelman ve Sinan Eldem

http://leanpub.com/gsd-laravel-tr
http://leanpub.com
http://leanpub.com/manifesto

Kitabi tweetleyin!

Chuck Heintzelman ve Sinan Eldem’a kitabini su adresten Twitter tanitarak yardimeci olun!

Kitap i¢in 6nerilen hashtag #LaravelGSD.

Kitap icin digerleri ne demis merak ediyorsaniz baglantiya tiklayarak hashtaglar arayabilirsiniz:

https://twitter.com/search?q =#Laravel GSD

http://twitter.com
https://twitter.com/search?q=%23LaravelGSD
https://twitter.com/search?q=%23LaravelGSD

icindekiler

Tesekkiirler e i
Revizyon Gecmisi ii
Ozel bir tesekkiir ii
Ornek Siirim Hakkinda iii
Ucretli Siirimiin Igerifi iii
Hos Geldiniz 1
Bolim 1 -Bukitabmamact. 2
Bu kitapta neler yoktur 2
Bukitaptaneler vardir 3
Bolim 2 - Siz kimsiniz? 4
Bolim 3 - Ben kimim? 5
Cevirenin Notu e e 6
Bolim 4 - Laravel Nedir? 7
Bolim 5 - Laravel nasil savunulur L 8
Boliim 6 - Programcilar Laravel’i Neden Sever 10
Boliim 7 - Wordpress: Iyi, Kétiive Cirkin 12
Boliim 8 - Bu Kitapta Kullanilan Diizenler 13
Ben hangi isletim sistemi kullaniyorum? 00000 0oL 14
Kisim 1 - Tasarim Felsefelerive Illkeleri 15
Boliim 16 - SOLID Nesne Tasarimi. i ittt 16
Tek Bir Sorumluluk Ilkesi 16

Acik/Kapalillkesi 18

ICINDEKILER

Liskov Tkamellkesi 20
Interface Ayrmilkesi 22
Bagimlilig1 Tersine Cevirme Ilkesi 24

Ornegi kontrol ettiginiz icin tesekkiirler 28

Tesekkurler

Bu kitab1 aldiginiz igin ictenlikle tesekkiir ediyorum. Umarim onu cekici, eglenceli ve en 6nemlisi
yararli bulursunuz.

Laravel Ogrenilecek Diger Yerler

« Laravel websitesi'. Bir sey aramak i¢in ilk duragim her zaman budur. Oradaki forumlara goéz
atin. Bilgilerle dopdoludur.

+ NetTuts’. Bu sitede bazi giizel Laravel dersleri mevcut.

« Laravel Testing Decoded®. Jeffery Way tarafindan yazilmis bu kitap Laravel kodunuzu nasil
test edeceginiz hususunda miithis bir kaynaktur.

+ Code Bright*. Dayle Rees tarafindan yazilan bu kitap hem eglenceli hem de bilgilendiricidir.

« From Apprentice to Artisan®. Laravel’in gelistirici Taylor Otwell tarafindan yazilmas ... fazla
soze gerek yok.

« Implementing Laravel®. Chris Fidao tarafindan yazilan bu kitap Laravel’le proje uygulanma-
sina odaklanmuigtir. Yapilar1 ve sik kullanilan desenleri anlatir. Biiyiik bir kitaptur.

« Laravel 4 Cookbook’. Christopher Pitt tarafindan yazildi. Bu kitap Laravel 4’te insa edilen
cesitli projeler icermektedir.

Cevirenin Notu

« Laravel Tirkiye websitesi®. Tiirkce destek alabileceginiz hizla biiyiiyen Laravel Tirkiye Ailesi.

« Ne kadar sanslisiniz ki, elinizdeki bu kitaptan bagka, bu listedeki son dort kitabin Tiirkgelerine
de ulasabilirsiniz. Laravel 4 Tiirkce Kitaplar1®

"http://laravel.com

®http://net.tutsplus.com/
*http://leanpub.com/laravel-testing-decoded
“https://leanpub.com/codebright-tr
*https://leanpub.com/laravel-4-tr
®https://leanpub.com/implementinglaravel-tr
"https://leanpub.com/laravel4cookbook-tr
®http://laravel.gen.tr
*http://leanpub.com/u/sineld

http://laravel.com
http://net.tutsplus.com/
http://leanpub.com/laravel-testing-decoded
https://leanpub.com/codebright-tr
https://leanpub.com/laravel-4-tr
https://leanpub.com/implementinglaravel-tr
https://leanpub.com/laravel4cookbook-tr
http://laravel.gen.tr
http://leanpub.com/u/sineld
http://laravel.com
http://net.tutsplus.com/
http://leanpub.com/laravel-testing-decoded
https://leanpub.com/codebright-tr
https://leanpub.com/laravel-4-tr
https://leanpub.com/implementinglaravel-tr
https://leanpub.com/laravel4cookbook-tr
http://laravel.gen.tr
http://leanpub.com/u/sineld

Revizyon Gecmisi

Guncel sirum: 1.1

Siirim Tarih

Notlar

1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2
0.1

0.0

28-Kas-2013
2-Kas-2013

27-Eki-2013
20-Eki-2013
13-Eki-2013
6-Eki-2013

29-Eyl-2013
22-Eyl-2013
15-Eyl-2013

8-Eyl-2013
31-Aug-

2013
3-Aug-2013

Yazim hatalar1 ve genel temizlik.

Bircok yazim hatasi diizeltildi ve Leanpub’da yayimlandi.

Tamamlandi ve Leanpub’da yayimlandi.

4 bolim eklendi, Leanpub’da yayimlandi.

3 bolim, iki ek eklendi. Leanpub’da yayimlandi.

8 boliim eklenerek Kisim 3 tamamlandi. Leanpub’da yayimlandu.

Kisim 3’e 7 bolim eklendi ve Leanpub’da yayimlandi.

Kisim 3’e 7 boliim eklendi ve Leanpub’da yayimland.

Kisim 2’ye kadar olan taslaklar temizlendi. Leanpub’da ilk siirtmi yayimlama

karar verildi.
Kisim 2’nin ilk taslag bitirildi

Hos Geldiniz ve Kisim 1’in ilk taslaklar: bitirildi

[k taslak yazilmaya basland:

Ozel bir tesekkiir

Bu sayfalardaki yazim hatalarini ve diger sorunlari bulmak suretiyle bana yardime olan isimsiz-
olmayan insanlarin bir listesi:

+ Jeremy Vaught

« Peter Steenbergen

Size ¢ok tesekkiir ediyorum!

Kapak Goruntusu

Kapak goriintisi telif hakki © Kemaltaner'® | Dreamstime.com®

1

http://www.dreamstime.com/kemaltaner_info

http://www.dreamstime.com/

http://www.dreamstime.com/kemaltaner_info
http://www.dreamstime.com/
http://www.dreamstime.com/kemaltaner_info
http://www.dreamstime.com/

Ornek Stiriim Hakkinda

Bu kitabin “Ornek” siiriimiinii indirdiginiz icin, her seyi almig olmuyorsunuz.

Hos Geldiniz Kisimindan kendi bitinligiindeki sekiz bolimii veriyorum. Artt SOLID Nesne
Tasarimi boliimiint. Bu size yazdigim seyin lezzetini tattiracak ve bu kitabin nasil yararli olacagini
aciklayacaktir.

Ucretli SGirimiin icerigi

Leanpub Sayfasma'? bakarsaniz I¢indekiler tablosunun tiim icerigi incelemeniz i¢in sunulmustur.

Oraya gidin. Kontrol edin. Bu kitabin tam stiriimiinii satin almaniza karar vermenize yardimci olacak
bir seyler gorebilirsiniz.

2https://leanpub.com/gsd-laravel-tr

https://leanpub.com/gsd-laravel-tr
https://leanpub.com/gsd-laravel-tr

Hos Geldiniz

Getting Stuff Done with Laravel ‘e hos geldiniz. Kitabin Hos Geldiniz Kism1 bu kitaptan ne elde
edeceginizi aciklamaktadir.

Genel olarak su sekilde organize edilmistir.
Hos Geldiniz
Kitabin ilk kismi bu kitaptan ne elde edeceginizi aciklamaktadir.

Kisim 1 - Tasarim Felsefeleri ve ilkeleri
Bu kisim uygulama olustururken izleyecegimiz genel tasarim ilkelerinden bahseder.

Kisim 2 - Uygulama Tasarimi
Bu, gercek uygulama tasarladigimiz kisimdir.

Kisim 3 - Konsol Uygulamasi
Daha sonra, konsolda kullanilabilir uygulama yapiyoruz.

Kisim 4 - Web Uygulamasi
Simdi yaptigimiz1 alacagiz ve ona bir web postu giydirecegiz. Mwaa, haa, ha.

Ekler
Tamamlayic bilgiler. Composer’in nasil yiiklenecegi gibi.

Bolum 1 - Bu kitabin amaci

Bu kitap sizi Laravel boyunca bir yolculuga ¢ikaracak. Umuyorum ki, hi¢ gitmediginiz yerlere
gideceksiniz ve hi¢ gormediginiz seyleri goreceksiniz. Bu bir tiir seyahatnamedir. Varacagimiz kesin
bir yer var (olusturdugumuz uygulama) ve yol boyunca ben sasirtici baz1 manzaralar gosterecegim.
Sonuna geldiginiz zaman bana bir not birakin chuckh@gmail.com*. Yolculukla ilgili diisiincenizle
cok ilgileniyorum.

Bu kitap yasanmak i¢indir. Kullanilmalidir. Liitfen b6lim boliim takip ve insa edin. Her bolim bir
sonrakine gotiirtr. Bir boliim icindeki kesimler ileriye dogru akar. Kitabin her kismi dnceki tizerine
insa edilir.

Her bolimdeki kesimleri sehirler olarak diisiiniin. Bu durumda béliimlerin kendileri iilkeler oluyor
ve kitabin kisimlar kitalardir ve ... Tamam, yeterince yorucu bir yolculuk benzetmesi.

Kitap boyunca odak noktamiz Laravel 4 kullanarak adim adim bir uygulama olusturulmasidur.

A Bu kitap tipik bir teknik el kitabi degildir

Ben tasarim ve gelistirme konusunda mimkiin oldugunca gercegi taklit etmeyi dene-
yecegim. Bunun anlami yanlis baslama, tasarim degisiklikleri ve yol boyunca yeniden
diizenleme demektir.

Uyarildiniz <siritig>.

Bu kitapta neler yoktur

« Laravel’in her yonii. Bu, biitiin framework tizerine bir bagvuru kitab1 degildir.

« Caching, Events veya Logging. Onbellekleme, olaylar ve giinceye yazma 6nemli konulardir,
fakat bizim olusturacagimiz uygulama bunlar1 gerektirmez.

+ Queues, Authentication, Cookies veya Sessions. Ayn1 sekilde kuyruklar, kimlik dogrulamasi,
cerezler ve oturumlar 6nemli seylerdir, ancak onlara ihtiyacimiz yok.

« Database. Evet, bunu itiraf etmek bana ¢ok aci1 geliyor. Laravel’in en biiyiik yonlerinden birisi
onun Fluent Query Builder ve Eloquent ORM sidir. Ne biiyiik isimler oldugunu anliyorum.
Tatbikatini tam karsilayan isimler. Maalesef bu konuya temas etmiyorum, ¢iinki ... tahmin
ettiniz onu ... olusturacagimiz uygulama onu gerektirmiyor.

mailto:chuckh@gmail.com

mailto:chuckh@gmail.com
mailto:chuckh@gmail.com

Bolum 1 - Bu kitabin amaci 3

Bu kitapta neler vardir

Cogunlukla, uygulama olustururken ne yapiyorum, neden yapiyorum diye gevezelik ederim. Kimi
zaman benimle ayni fikirde olursunuz. Kimi zaman bana karsi ¢ikabilirsiniz. Bazen benim tam
bir aptal oldugumu diisiinebilirsiniz. Umarim bazen de “Ha evet. Iyi biri” diye diisiiniirsiiniiz.
Fakat sonunda, kullanabileceginiz gercek bir sistem olusturmanin esaslarini ve pratik yonlerini elde
edeceksiniz.

Bolum 2 - Siz kimsiniz?

Cogu kitap yazar hakkinda bilgi ile baglar ama daha 6nemli soru aslinda “siz kimsiniz”dir.

Ben asagidaki varsayimlar: yapiyorum:

« Siz bilgisayarlar hakkinda ¢cogu insandan daha fazla sey biliyorsunuz.

« Siz bir programcisiniz.

« Siz PHP’de nasil program yapilacagini biliyorsunuz. Belki pek az. Belki pek cok.

« Laravel’i** duydunuz. (Bu anlasma-bozucu degil, ciinkii size onu anlatacagim.)

« Siz programlamay: seviyorsunuz veya bilgisayarlara teklif ettiginiz ilk tutkunuzu tekrar elde
etmek istiyorsunuz.

« Adiniz Taylor Otwell degil, ¢iinkii eger dyleyse ben buna layik degilim.

Malzemelerin yararli olmasi amaciyla, yeni baslayanlara araglar1 yaklasilabilir ve cana yakin, ara
programcilara hala ilging ve yeterince derinlemesine yapmak i¢in elimden geleni yapacagim.

En alt satir

Siz Laravel konusunda daha c¢ok sey 6grenmek istiyorsunuz.

“http://laravel.com

http://laravel.com
http://laravel.com

Bolum 3 - Ben kimim?

ﬁ Buras: tipik bir rah-rah, ben harika bir boliim degilim kismi. Burada Laravel hakkinda tek
bir sey 6grenmeyeceksiniz. Yapabileceginiz en akilci hareket dogruca bir sonraki boliime
atlamak.

Merhaba. Adim Chuck Heintzelman ve bilgisayar programlari yaziyorum.
(Kendimi bir destek grubunun karsisinda gibi hissettim. Umarim kimse “Hi Chuck” demedi.)

Cidden. Dokuzuncu siiftayken bir giin hastalik nedeniyle okula gidemeyip 6diing aldigim bir BASIC
Language Reference el kitabr ile evde kaldigimdan beri program yaziyorum. O giin kagit tizerinde
Asteroids' benzeri bir oyun yazdim, ugan asteroidler disinda diger gemiler size 6lim kusan uzun
beyaz bloklar atesliyordu.

Saatler siiren hata ayiklama ve programimi “kiitle deposuna” (bir teyp kaseti) yiiklemek/kaydetmek
icin TRS-80 bekledikten sonra oyun nihayet calists. Bu 33 yil 6nceydi. Bilgisayar dinazorlarinin, iri
vahsi canavarlarin klimali odalar1 doldurdugu giinlere geri déndiim. Hayir, delikli kartlar fiilen hic
kullanmadim ama kullanildigin1 gdrmistim.

O zamandan bu yana Fortran, COBOL (evet, biliyorum), Assembly Dili, Basic, C, C++, C#, Java,
Pascal, Perl, Javascript ve PHP’de programlar yazdim. Diger bircok, pek cok dille ugrastim ama
insanlarin fiilen kullandig1 programlar yazmadim.

Kiiciik aile ditkkanlar1 yaninda Fortune 500 sirketleri i¢in de sistemler olusturdum. Xenix’te ¢alisan
mail order sistemlerinden PHP’de ¢aligan web uygulamalarina kadar her sey. internet giinlerinin én-
cesinde (Internet’in gercek baslangicindan énce degil, 90l yullarin ortasinda baslayan heyecandan
hemen énce) birkag sirkette ve ondan sonra da birka¢ nokta komda calistim. Ve yaptigim seylerin
hepsi yapmay1 sevdigim seylerdi-bilgisayar programlar: yazmak.

Vay be! Peki, ne kadar biiyiik oldugum konusunda bu kadar yeter.

0 iste benim meselem

Kariyerim boyunca programlama konusunda bir kitap olusturma geregini simdiye kadar
hi¢ duymadim. Bunu yaziyor olmamin tek sebebi Laravel ytziindendir.

Phttp://en.wikipedia.org/wiki/Asteroids_(video_game)

http://en.wikipedia.org/wiki/Asteroids_(video_game)
http://en.wikipedia.org/wiki/Asteroids_(video_game)

Bolum 3 - Ben kimim? 6

Cevirenin Notu

Bu kitap, diger cevirilerden farkl olarak, revagta olan teknolojileri bir araya getirme agisindan daha
ozel bir yere sahip. Chuck’in anlatim tizerindeki hakimiyeti farkl: bir havaya sokuyor okuyucuyu
ve sayfalar kendiliginden akip gidiyor.

Oncelikle sevgili esim Bilge ve goziimiin 15181 kizim Tuana Seyma’ya tesekkiirler. Iyi ki varsiniz!

Gerek dokiimantasyon, gerekse tiim kitaplarin cevirisinde tiim siire¢ boyunca yanimda olan ve ¢ok
katk: saglayan degerli Sergin Ar1’ya, kattiklarindan dolay1 minnettarim. Sen olmadan olmazdi!

Bolum 4 - Laravel Nedir?

Bu tanidik geliyorsa elinizi kaldirim

Sirketinizin mevcut sistemine bir ozellik eklemekle gorevlendirildiniz. Ne yazik ki,
sistem PHP 4’te yazilmis ve orijinal programcilar her kimse, siz onlarin ¢ok fazla
“Wordpress Cildirmis” videosu izlediginden kuskulandiniz.

Higbir sinifi olmayan, global degiskenlerle tika basa dolu ve 50.000 parcalt bir yap boz
oyunundan farkli olmayan bir yapidaki bu kod temelini devraldiniz.

Ilk etapta isinize, yonetim ekibinin kisa gorisliiliigiine ve programlamayla para kazan-
mak istediginiz icin sahip oldugunu her seye lanet okudunuz.

Sonucta, programlama eglenceli olmali. Degil mi?

Biz hepimiz oradayiz.
Laravel’e katilin.

(Tam tam sesleri geliyor: duh-duh duh-duh duh-da-duh)

Laravel programlamay1 tekrar eglenceli yapan bir PHP frameworkiidiir.

Haydi dostum ... o sadece bir framework

Laravel yeni bir dil degildir. O sadece bir frameworktiir. Eger abartiy1 keser ve isin 6ziine bakarsaniz,
Laravel sadece bir PHP Frameworkiidiir.

Ancak ben, Laravel web sitesindeki slogana katiliyorum:
The PHP Framework for Web Artisans (Web Ustalarinin PHP Atélyesi).

Ruby On Rails sadece bir frameworktiir. Ama, arkasindaki hayranlara bakin.

Laravel sizin PHP spagetti kodunuzu sihirli bir bicimde diizeltmeyecek ama bu seyleri yapmak i¢in
size yeni, hizli ve zarif bir yol saglar. (Not, Getting Stuff Done kavrami bu kitapta yinelenen bir
temadir.)

Kisaca, Laravel PHP programlamayi bir eglence haline getiren bir mimari saglar. Mevcut kodunuzu
etkileyici, zarif ve ileride siirdiiriilmesi ve genisletilmesi kolay olacak bir yolla yeniden diizenleye-
bileceksiniz.

Laravel her derde deva bir ila¢ degildir. Eger elinizdeki mevcut kod berbatsa, o simdi nerede den o
nerede olmali ya kadar gelmek bir azap olacaktir. Bizim sektoriin dogas1 bu.

Fakat basit anlatimciliga imkan veren bir frameworke ge¢mek istiyorsaniz (hatta bir kelimeyle mi?)
o zaman cevap Laravel’dir.

Bolum 5 - Laravel nasil savunulur

iste problem (veya bir problem) ...

Sirketinizin koydugu simirlandirmalar altinda calismak zorundasiniz, Yani, mevcut
yazilimi desteklemek ve mevcut sistemlerinizle iyi oynayan yeni kod gelistirmek zo-
rundasiniz. Orada .NET, bir miktar Java’nin bir karisimi var, fakat mevcut kodun ¢cogu
PHP’dir.

Son zamanlarda Laravel’i kesfettiniz ve onu sevdiniz ve yeni gelistirmenizde onu kullanmak
istiyorsunuz.

Laravel'e gecisi nasil savunabilirsiniz?

Bir an i¢in dedektif sapkamizi takalim.

Hmmm. Dedektiflerin stiphelileri ve nedenleri ararken paray: takip ettiklerini biliyorum (tabi ki
TV’den). Oyleyse paray1 takip edelim ...

Misteriler mal ve hizmet kargiliginda isletmelere para verirler. Uriin ne kadar iyiyse ve ne kadar ¢ok
misteri bu Grlinii gergekten talep ederse, isletmeye o kadar ¢ok para 6derler.

Yoneticiler isletmeyi gelistirmek ister. Onlar miimkiin olan en siklikta miimkiin olan en ¢ok paray:
verecek miimkiin olan en ¢ok miisteri isterler.

Yonetimin bakis acisindan diistiniin ...

+ Miisterilerim mutlu olsun istiyorum.

+ Yeni miisteriler istiyorum.

« Misterilerin mutlulugu beklentilerinin karsilanmasina esittir.

+ Programcilarimin gereksinimleri zamaninda teslim edebilmesini istiyorum.

+ Programlama ekibinin ¢evik (agile) olmasini istiyorum. (Anlami her neyse ... asagidaki kutuya
bakiniz.)

+ Miisterilerimin isteklerini zamaninda kolaylastirmak istiyorum.

« Biiyiik triinler teslim eden biiytik gelistiriciler istiyorum.

Bolum 5 - Laravel nasil savunulur 9

Cevik ne anlama geliyor?

Bir kelimeyi ¢ok sik sdyler veya yazarsaniz anlamini kaybetmez mi? Tipki Sirinler gibi ... her sey
sirinleniyor, sirinlenebilir, sirinimsidir. Cevik bu kelimelerden birine benziyor. Kelimenin ge¢cmiste
gecirdigi evreleri. Her sey Cevik bu, cevik su. Insanlar yinelemeli yazilim siirecinden mi bahsediyor,
yoksa bagka bir seyden mi? Biiyiilii bir sey mi? Gercekten bilmiyorum.

Eger yukaridaki liste yonetimin bakis acisiysa, bu durumda Laravel kolaylikla savunulabilir:

« Misteriler gereksinimleri ele alinip karsilandigi zaman mutlu olurlar.
« Misteriler beklentileri asildig1 zaman daha da mutlu olurlar.
« Laravel sunlari saglayan bir frameworktiir...
— Islevselligin genisletilmesini kolay bir hale getirir.
— Tasarimda en iyi uygulamalar desenini izler.
— Cok sayida programcinin verimli bir igbirligine imkan verir.
— Programcilart mutlu yapar. (Yoneticileri unutmayin: mutlu bir programci tiretken bir
programcidir.)
— Daha hizli stuff get done’a izin verir.
— Test yapmay1 her uygulamanin cekirdek bir bileseni olarak kabul ederek unit testini
tesvik eder.

Laravel yoneticiler i¢in programcilarinin daha ¢ok, daha hizl isler yapabilmesini saglar ve web
gelistirmenin 6ziinde bulunan engellerin bircogunu ortadan kaldirir. Ileride bunu acacagim.

Oldukca kolay bir savunma, degil mi?

Bolum 6 - Programcilar Laravel’i
Neden Sever

Sadede gelelim ... Neden siz, bir programeci olarak, bir framework olarak Laravel kullanmak
istiyorsunuz?

Birakin biraz Framework Envy hakkinda konusayim.

(Burada bir terapistle goriistigimii diisiiniiyorum. Basini bilgece salliyor, piposundan
bir firt ¢ekiyor ve diyor ki, “zee framework envy hakkinda konusun.”)

Bana, yazilmis PHP projeleri verildi. Bunlar iyice sigsmis, sahip oldugu “sinif” kavrami sadece okulda
gecilen bir sey olan bir gelistirici tarafindan yazilmis PHP 4 projeleri idi. Ve ben sokak boyunca Ruby
gelistiricilerine bakiyor ve onlarin bina seviyeleri i¢in sessizce dogal afetler—deprem, firtina, hatta
yildirim-diliyorum.

Bu beni kétii bir insan yapar mi?
Biitiin bunlar Ruby’nin tiimden parlak ve yeni oldugu bir zamanda oldu. Ruby’yi harika yapan sey

dilin kendisi degildi (dilin ¢cok giizel yonleri olmasina karsin). Hayir, Ruby’yi harika yapan sey Ruby
on Rails (RoR) idi.

Biitiin gelistiriciler Ruby on Rails’e akin ediyordu.
Neden ona akin ediliyordu?

Ciinkd, o eglenceli olan bir gelistirme yolu vaad etmisti. Ve eglenceli deyince, ben giiclii, anlaml ve
uygulanmasi kolay anliyorum. Programlama yapmakta zevkli bir atmosfer olusturmasi: konusunda
RoR’u tekrar siikranla aniyorum. RoR tarafindan asilanan kodlama keyfi, bizim hepimizin programci
olma istememizdeki ilk ivme ile tam ayni duygudur.

PHP diinyasinda saplanip kalmis olmamiz ne kadar iiziiciydi? Bir Wordpress kurulumunu hackle-
yebildikleri i¢in oradaki her Tom, Dick ve Henrietta bir “PHP Programcisi” olmustu.

(Sonraki béliime bakiniz: Wordpress - lyi, Kétii ve Cirkin)

Fakat, hayur, projelerimizin PHP de olmasi sartlari ile stkigsmistik. Tim Ruby gelistiricilerinin oldugu
gibi serin, harika cocuklar olamazdik. Onlar en 6ndeydi. Onlar kendilerine bir isim yapan, sinirlar
zorlayan birileriydiler.

Laravel’e gelince. Ruby on Rails’in en iyilerini alir ve onu PHP diinyasina getirir. Aniden, bir PHP
gelistirici tek tek scriptler yerine controllerler icin rotalarla ugrasmaya baglar. DRY (Don’t Repeat
Yourself [Kendinizi Tekrar Etmeyin]) gibi kavramlar simdi daha anlamlidir. Aniden, tek rityamiz

Boliim 6 - Programcilar Laravel’i Neden Sever 11

Smarty Sablonlar1 gibi bir yolla, PHP’nin 6ziine katistirilmig bir “Blade” sablon motorumuz olur.
Biz, kelimenin tam anlamiyla, PHP Nirvana potansiyeline sahibiz.

Laravel’in ne kadar harika oldugunu anlatabildim mi? Umarim 6yledir.

Boliim 7 - Wordpress: iyi, Kétii ve
Cirkin

Wordpress bloglama devrimi yapti. Bloglamay: kitlelere tasidi. Tabii, blogger ve livejournal gibi
diger platformlar da var fakat Wordpress’in yaptig1 sey PHP de yazilmis biiyiik, popiiler bir sistemi
kamu alanina koymakti.

Wordpress’in cikisiyla birlikte, herkes yapmak istediklerini gerceklestiren bloglama platformu
yapmak icin bu PHP scriptlerini hackleyebiliyordu.

“Biiyiik gii¢ biiyiik sorumluluk getirir” — Ben Amca(Ortimcek Adam’dan)

Ne yazik ki, Wordpress’in giicti bitytik sorumlulukla karsilanmadi. Scriptler genel tasarim veya kul-
lanilabilirlik diisiincesi olmadan hacklendi. Daha da kétiisii, Wordpress, dilin gercek programcilarin
strduriilebilir sistemler insa etmelerine imkan vermedigi bir zamanda, PHP 4 giinlerinde baslamisgt.

Wordpress PHP’ nin basina gelmis en iyi seydi ama ayni zamanda dilin basina gelen en kétii sey
oldu.

Cok az zanaatkarin ellerinde cok fazla basarili bir vakadir.

Bu durum PHP’ye bir damga yapistird.

Softwarati'
Diller iizerine yorum yapan kendi kendine yok olan programlama aydinlari.

Bir g6z atmaniz icin ... Softwarati tarafindan sdylenmis sik duyulan bir alint::

“Ah. PHP bir varos dilidir. Cirkindir, hemen hig stirdirilebilir degildir, ama caligir ...
cogu zaman”

Burnu kalkmis bu Softwarati’ye tekme atarak gelen Laravel’e tesekkiirler.

1%Evet, bu tamamen benim rettigim bir kelimedir.

Bolum 8 - Bu Kitapta Kullanilan
Duzenler

Bu kitap boyunca cesitli diizenler kullanilmistir.

Kodlar 2 bosluk girintilidir

Genelde ben kodlar1 4 bosluk girintilerim ama bu kitap degisik eBook bi¢imlerinde oldugu i¢in daha
kiiciik yatay ekranlara sigsin istedim.

for ($i = 0; $i < 10; $i++)

{

echo $i, " sayisina kadar sayabiliyorum", "\n";

}
q Bu bir ipucudur
Ozellikle yararli bir bilgi par¢asini vurgulamak i¢in kullanilir.

A Bu bir uyaridir

Dikkatli olunmasi gereken bir seyler hakkinda sizi uyarmak icin kullanilir.

0 Bu bir bilgi blogudur

Onemli bir bilgi pargasini yinelemek i¢in kullanilir.

»* Bu, yapilacak bir seydir

p Yapmaniz gereken kod veya eylem oldugu zaman 6ntine hep bu sembol getirilmistir.

A¢ma tagi kullanildigi zaman kapatma tagi ?> kullaniimistir.

Kod yazarken, ben bir dosyada kapatma ?> tagini her zaman icin atlarim. Fakat bu kitab1 yazdigim
editor Oyle yaptigim zaman her seyi sakat bir goriiniime sokuyor. Bu yiizden, bu kitap icinde eger
bir PHP blogunu PHP tagiyla acarsam, her zaman i¢in kapatma tagini da kullaniyorum. Ornegin:

O b W N -

O O b W N

Bolim 8 - Bu Kitapta Kullanilan Diizenler 14

<?php
class SomethingOrOther {
private $dummy;

}

?2>

PHP Acma ve Kapatma Taglari

Kod o6rneklerinde bazen gerekli degilken (6rnegin bir dosyanin bir kismini gosterirken) PHP
acma tagi (<?php) kullanilmigtir. Bazen gerekli olmayan durumlarda PHP kapatma tagi (‘?>)
kullanilmistir.

<?php
function somethingOrOther()
{
$this->callSetup();
}
2>

Gercek PHP Kodunda ben dosyanin sonundaki kapatma tagini her zaman atlarim. Taglarin gerekip
gerekmedigi kararini size birakiyorum. Kod orneklerindeki agma ve kapatma taglarinin aynen
alinmamasi gerektiginin farkinda olun.

Ben hangi isletim sistemi kullaniyorum?

Bu kitabi, kodu v.b. Debian ve Ubuntuya dayali Linux Mint 14" kullanarak yaziyorum. Bu Ubuntu
12.10"® ile temel olarak aynidir.

Yhttp://www.linuxmint.com/

"®http://www.ubuntu.com/

http://www.linuxmint.com/
http://www.ubuntu.com/
http://www.ubuntu.com/
http://www.linuxmint.com/
http://www.ubuntu.com/

Kisim 1 - Tasarim Felsefeleri ve ilkeleri

Kitabin bu kisminda ¢ok fazla kod yok. Uzgiiniim, buradaki her gey tasarimla ilgili. Burada,
uygulama insa ederken kullanilan genel tasarim ilkelerini tartisacagim.

“Beni direkt koda gotiir” diye diigtinebilirsiniz. Cogunlukla ben de ayni fikirdeyim. Siklikla en hizh
ve en kolay1 hemen koda ge¢mek ve yaparak 6grenmektir. Eger su kavramlar: biliyorsaniz (SOLID
Nesne Tasarimi, Sozlesme Olarak Interface’ler, Bagimlilik Enjeksiyonu, Ayrik Tutma ve Kontroliin
Tersine Cevrilmesi), o0 zaman uygulama tasarlamaya baglamak i¢in Kisim 2’ye atlayabilirsiniz.

Bolum 16 - SOLID Nesne Tasarimi

Nesne yonelimli tasarimda SOLID ad: verilen bir ilkeler kiimesi bulunmaktadir. Sunlari ifade eden
bir kisaltmadir:

« [S]ingle Responsibility Principle (Tek Bir Sorumluluk ilkesi)

« [O]pen/Closed Principle (Agik/Kapali Ilkesi)

« [L]iskov Substitution Principle (Liskov Ikame Ilkesi)

« [Interface Segregation Principle (Interface Ayirma ilkesi)

« [D]ependency Inversion Principle (Bagimlilig1 Tersine Cevirme Ilkesi)

Hep birlikte, en iyi uygulamalar kiimesini temsil ediyorlar ve bu ilkelere uyuldugu zaman, gelistir-
diginiz yazilimin gegen zamanla daha siirdiirilebilir ve genisletilebilir olmasini saglarlar.

Bu boliim her bir ilkeyi daha ayrintili agiklamaktadir.

Bana bir SOLID yapar misiniz?

Eger bir programeci size gelir ve “Bana bir SOLID yapabilir misiniz?” derse, ne soruldugunu
anladigimizdan emin olun.

Tek Bir Sorumluluk ilkesi

SOLID kisaltmasinin ilk harfi olan ‘S’ sorumlulugun tek olmasini ifade ediyor. Bu ilke der ki:

“Her sinifin tek bir sorumlulugu olmalidir ve bu sorumluluk o sinif tarafindan tamamen
yerine getirilmelidir. Onun tiim hizmetleri bu sorumluluk icerisine daraltilmalidir.”

Bununla ilgili disiiniilecek baska bir yol, bir sinifi degistirmek i¢in bir ve yalniz bir sebep olmalidir
seklindedir.

Ornegin amaci bir pazarlama raporunu derlemek ve bunu kullaniciya email gondermek olan
bir sinifimiz varsa, eger teslim etme yontemini degistirirsek ne olur? Kullanicinin raporu metin
araciligryla veya web tizerinde almasi gerekirse veya raporun bicimi degisirse ne olur? Bu drnek
icin bunlarin hepsi de siifin degistirilmesi icin muhtemel sebep tiirleridir.

© 00 = O O b W N =

-
o

© 00 N O O b W N =

[T =Y
W N O

Bolum 16 - SOLID Nesne Tasarimi 17

Sinif Amacini VE Olmadan ifade Etmek

Tek bir sorumluluk ilkesini implemente etmek icin basit bir yol sinifin ne yaptigini VE
kelimesi kullanmadan tanimlayabilmektir.

Bunu bir miktar kodla gosterelim ...

// Sinif Amaci: Bir pazarlama raporunu derlemek ve bir kullaniciya e postalamak.
class MarketingReport {
public function execute($reportName, $userEmail)
{
$report = $this->compileReport($reportName);
$this->emailUser($report, $userEmail);

}
private function compileReport($reportName) { ... }
private function emailUser($report, $email) { ... }

}

Bu ornekte, sinifi iki smifa bolebilir ve hangi rapor ve kime/nasil gonderilecegi kararini besin
zincirinde daha yukarida olana itebiliriz.

// Sinif Amaci: Bir pazarlama raporunu derlemek.
class MarketingReporter {
public function compileReport($reportName) { ... }

interface ReportNotifierInterface {
public function sendReport($content, $destination);

// Sinif Amaci: Bir kullaniciya bir raporu Email gbndermek
class ReportEmailer implements ReportNotifierInterface {
public function sendReport($content, $email) { ... }

}

Orada bir interface’i nasil gizlice yerlestirdigimi fark ettiniz mi? Evet, Ben onlar icin interface’lerden
daha giivenilmez bir adam olabilirim.

0 Daha Saglam Siniflar

Tek Bir Sorumluluk Ilkesini izlemekle sonunda saglam siniflara ulasacaksiniz. Tek bir
konuya odaklanacaginiz icin, bu simif i¢cinde yapilan herhangi bir kod degisikliginin bu
sinifin digindaki islevselligi bozma ihtimali daha az olacaktir.

© 0 I O O & W N =

10
11
12
13
14
15
16

Bolum 16 - SOLID Nesne Tasarimi 18

Acik/Kapali llkesi
SOLID kisaltmasinin ikinci harfi bu ilkeyi (Open/Closed) temsil ediyor. Bu ilke der ki:

“Yazilim antiteleri (siniflar, modiiller, fonksiyonlar v.b.) genisletmeler icin acik ama
degisiklikler icin kapali olmalidir.”

Diger bir deyisle, bir sinifi kodladiktan sonra bu kodu hatalar1 dizeltmek disinda asla degistirme-
melisiniz. Eger ek islevsellik gerekirse, bu durumda simif genisletilebilir.

Bu ilke sizi “bu nasil degistirilebilir?” diye diisinmeye zorlar. Deneyim burada en iyi 6gretmendir.
Siz 6nceki durumlarda siklikla kullandiginiz desenleri kurarak yazilim tasarlamay1 6grenirsiniz.

A Cok Kati Kuralli Olmayin

Ben bu ilkeye siki yapismanin agir1 tasarlanmis yazilimla sonuglandigini buldum. Bu,
programcilar bir sinifin kullanilabilecegi her potansiyel yolu disiinmeye calistiklarinda
meydana geliyor. Bu diislincenin bir miktar olmasi iyi bir seydir ama c¢ok fazla olursa,
gercekte karmasik olmasi gerekmedigi halde daha karmagik siif veya sinif gruplariyla
sonuclanir.

Bu ilkenin fanatik hayranlarini rahatsiz ettimse 6ziir dilerim, ama bakin ben sadece ne
goriirsem onu soylityorum. O bir ilkedir, bir kanun degil.

Bununla birlikte, yaygin bir 6rnek verebiliriz. Diyelim ki, bir hesap faturasi kesimi iizerinde, 6zellikle
iadeleri isleyen kismiyla calisiyorsunuz.

class AccountRefundProcessor {
protected $repository;

public function __construct(AccountRepositorylInterface $repo)

{

$this->repository = $repo;
}
public function process()

{

foreach ($this->repository->getAllAccounts() as $account)
{
if ($account->isRefundDue())
{
$this->processSingleRefund($account);
}
}

17
18

© 00 N O O b W N =

NN N NN NN NN RS A R R)l
© 00 I O O B W N A O © W 3 0 O b whh~»r o

Bolum 16 - SOLID Nesne Tasarimi 19

Tamam, yukaridaki koda bir bakalim. Bagimlilik Enjeksiyonu kullaniyoruz ve bdylece hesaplarin
deposunu kendi repository sinifindan ayirtyoruz. Giizel.

Ne yazik ki, bir giin ise vardiginizda patronunuzu tizgiin buldunuz. Anlasilan, yonetim biytik iadeler
nedeniyle hesaplarin elle gézden gecirilmesine karar vermis. Uggh.

Peki, yukaridaki kodda yanlis olan ne ki? Onu degistirmek zorundasiniz, ¢iinki o degisikliklere
kapali degildir. Onu bir alt sinifla genisletebilirdiniz ama bu durumda process() kodunun ¢ogunu
tekrar etmek zorunda olacaksiniz.

Yani, sonug olarak iade islemcisini yeniden diizenleyeceksiniz.

interface AccountRefundValidatorInterface {
public function isValid(Account $account);

}

class AccountRefundDueValidator extends AccountRefundValidatorInterface {
public function isValid(Account $account)

{

return ($account->balance < Q) ? true : false;

}

class AccountRefundReviewedValidator extends AccountRefundValidatorInterface {
public function isValid(Account $account)

{
if ($account->balance < 1000)

{

return $account->hasBeenReviewed;

}

return true;

}

class AccountRefundProcessor {
protected $repository;
protected $validators;

public function __construct(AccountRepositorylInterface $repo,
array $validators)

$this->repository = $repo;
$this->validators = $validators;

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Bolum 16 - SOLID Nesne Tasarimi 20

public function process()

{

foreach ($this->repository->getAllAccounts() as $account)
{
$refundIisValid = true;
foreach ($this->validators as $validator)
{
$refundIisValid = ($refundisValid and $validator->isValid($account));
}
if ($refundIisvalid)
{
$this->processSingleRefund($account);
}
}
}
}

Simdi AccountRefundProcess sinifi olusturulma sirasinda bir validatorler dizisi aliyor. Is kural-
larinizin degistigi bir sonraki sefer yeni bir validator cekebilecek ve sinif konstritksiyonuna onu
ekleyebileceksiniz ve siz altinsiniz.

Liskov lkame llkesi
SOLID’deki “L”, Liskov Tkame Ilkesini ifade eder. Bu ilke der ki:

“Bir bilgisayar programinda eger S, T’nin bir alt tipi ise, bu durumda T tipindeki
nesneler yerine, programin arzu edilen ozelliklerinden herhangi birini (dogrulugu,
yaptigt isi v.b.) bozmaksizin, S tipindeki nesneler konabilir (yani, T tipindeki nesneler,
S tipindeki nesnelerle ikame edilebilir).”

Huh? Korkarim SOLID tasarimin bu ilkesi digerlerinden daha fazla kafa karisikligina yol acacak.

fkame Edilebilirlik hakkinda hepsi bu kadardir fakat bu ikame edilebilirligin ingilizcesi Substitu-
tability’nin ‘S’si kullanilirsa, o zaman kisaltma SOLID yerine SOSID olurdu. Konusmalar: hayal
edebiliyor musunuz?

Programci 1: “Biz sunif tasarlarken S.0.S.1.D. ilkelerine uyuyoruz.”

Programci 2: “Sosis?”

Bolum 16 - SOLID Nesne Tasarimi 21

Programci 1: “Hayur, SOSID.”
Programci 2: “Sosssu?”

Programci 1: Telefonla Michael Feathers’i arar... “Hey, daha iyi bir kisaltma gerekiyor.”

Basitce ifade edilirse, Liskov Ikame ilkesi programimizin, bir smifi kullandig1 her yerde o sinifin alt
tiplerini kullanabilmesi anlamina gelir.

Bagka bir deyisle, eger bir Dikdortgen sinifiniz var ve sizin programiniz bir Dikdortgen sinifi
kullaniyor ve Dikdértgenden tiiretilmis bir Kare sinifimiz varsa. Bu durumda bu program bir
Dikdortgen kullandig1 herhangi bir yerde Kare sinifini kullanabilmelidir.

Hala anlagilmaz mi? Benim baslangigta kafam karigmigti, ¢iinki “Yaa? Bu oldukca acik” demek
istiyordum ama bir seyleri anlamamis olmamdan korkuyordum. Yani, SOLID tasarimin énemli bir
ilkesi niye bu kadar ag¢ik olsundu ki?

Bu ilkenin alt tiplerde 6n kosullarin giiclendirilemeyecegini ve son kosullarin zayiflatilamayacagini
soyleyen bazi belirsiz yonleri oldugu ortaya cikiyor. Ya da bunun tersi mi? Ve st tipin firlattig
istisnalarin aynisi (veya ondan tiiretilmis) olmayan istisnalar atan alt tipleriniz olamaz.

Vay canina! Baska? Liskov ilkesinin burada girmeyecegim diger bazi ayrintilar1 vardir ve korkarim
onunla gercekten ¢ok fazla zaman harcadim.

Liskov prensibi 6nemli degil.
Ne?

Evet! Oyle soyledim. (Teknik acidan bu ilke 6nemlidir, bu nedenle size yalan soyliyorum ama
kendimi bu yalana inandirmaya caligtyorum.)

PHP’de, eger asagidaki ti¢ kilavuzu izlerseniz, zamanin % 99’unda Liskova’a uymus olursunuz.

1 - Interfaceler Kullanin

Interfaceler kullanin. Mantikli olan her yerde onlar1 kullanin. Interface eklemek c¢ok fazla is
yikiine yol agmaz ve sonug Liskov ikame ilkesine uydugunuzu neredeyse garantiye alan “saf” bir
soyutlamaya sahip olmanizdir.

2 - Implementasyon ayrintilarini interface’lerin disinda tutun

Interfaceleri kullandiginiz zaman, interfaceleri herhangi bir implementasyon ayrintisina maruz
birakmayin. Depoda bos kalan bir ayrintiy1 saglayan bir UserAccountInter faceiniz neden olsun

ki?

© 00 = O O b W N =

N S Y
O O b WO N =~ O

Bolum 16 - SOLID Nesne Tasarimi 22

3 - Tip denetimi kodunuzu gézetleyin.

Belirli tipler tizerinde farkli isler yapan kod yazdiginiz zaman, Liskov ikame ilkesini bozabilirsiniz
(ve buytk ihtimalle diger birkag SOLID ilkesini).

Asagidaki kodu ele alin:

class PluginManager {
protected $plugins; // plugins dizisi

public function add(PluginInterface $plugin)
{
if ($plugin instanceof SessionHandler)
{
// Sadece kullanici giris yapmissa ekle.
if (! Auth::check())
{
return;
}
}
$this->plugins[] = $plugin;
}
}

Bu kod parcasinda yanlis olan nedir? Bu, Liskov ilkesini ihlal etmektedir ciinkii yapilan is nesne
tipine bagh olarak degismektedir. Bu yeterli bir kod parcasidir ve kiigiik bir uygulamada, getting
stuff done ruhuyla, onu gosterdigim i¢in mutluyum.

Fakat... bir add() metodu ne eklendigi hakkinda neden bilgi alsin ki. Eger diistintirseniz, add() bir
parca kontrol ucubesi oluyor. Derin bir nefes almaniz ve kontrolii birakmaniz gerekir. (Hmmm,
Inversion of Control)

Interface Ayrimi ilkesi

SOLID’deki ‘T, Interface Ayrimu Ilkesini ifade eder. Interface Ayrimi der ki:
“Hicbir istemci kullanmadigi metodlara baglh olmaya zorlanamaz.”

Diiz ifade edersek siskin interface’leriniz olmasin demektir. Eger interface’lerinizde “Tek Bir Sorum-
luluk Ilkesine” uyuyorsaniz, o zaman bu genellikle bir sorun degildir.

Burada tasarlayacagimiz uygulama kii¢iik bir uygulama olacaktir ve bu ilke biiyiik ihtimalle ¢cok
fazla uygulanmayacaktir. Uygulamaniz daha biiyiik bir hale geldigi zaman Interface Ayrimi daha
onemli hale gelir.

© 00 N O O & W N =

© 00 N O O & W N =

S =N
0 I O O b 0N -~

Bolum 16 - SOLID Nesne Tasarimi 23

Bu ilke siklikla siriiciiler tarafindan ihlal edilir. Diyelim ki bir cache siiriiciiniiz var. En basitles-
tirilmis haliyle, bir cache gercekte bir veri degeri icin gecici depodan baska bir sey degildir. Bu
nedenle bir save() veya put() metodu ve bunlara karsilik gelen bir 1oad() veya get() metodu
gerekli olacaktir. Fakat ¢ogu keresinde olan, ekstra davullar ve zurnalar olmasini isteyen ve suna
benzer bir interface tasarlayacak bir tasarimecidir:

interface Cachelnterface ({

public
public
public
public
public
public
public
}

Varsayalim ki, bu cache’yi implemente edecegiz ve depomuz ona imkan vermedigi i¢in getLastAccess()

function
function
function
function
function
function
function

put($key, $value, $expires);
get($key);

clear($key);

clearAll();
getlLastAccess($key);
getNumHits($key);
callBobForSomeCash();

metodunu implemente etmemizin imkansiz oldugunu fark ettik. Benzer sekilde, getNumHits() de
problemlidir. Ve biz callBobForSomeCash() hakkinda hicbir ipucuna sahip degiliz. Kim bu Bob
denen adam? Ve cagiran birine nakit verir mi? Bu interface’i implemente ederken sadece istisna
firlatmaya karar veririz.

class StupidCache

public
public
public
public
public
{

function
function
function
function
function

implements Cachelnterface {
put($key, $value, $expires) { ... }
get($key) { ... }

clear($key) { ... }

clearAl1() { ... }
getLastAccess($key)

throw new BadMethodCallException('implemente edilmedi');

}

public function getNumHits($key)

{

throw new BadMethodCallException('implemente edilmedi');

}

public function callBobForSomeCache()

{

throw new BadMethodCallException('implemente edilmedi');

}

Ugh. Cirkin degil mi?

Iste Interface Ayrimi Ilkesi. Bunun yerine sdyle daha kiiciik interfaceler olusturmalisiniz:

© 0 N O O & W N =

_R
W N r o

Bolum 16 - SOLID Nesne Tasarimi 24

interface Cachelnterface ({
public function put($key, $value, $expires);
public function get($key);
public function clear($key);
public function clearAll();

}

interface CacheTrackablelnterface {
public function getlLastAccess($key);
public function getNumHits($key);

}

interface CacheFromBobInterface {
public function callBobForSomeCash();

}

Mantikli, degil mi?

Bagimlihg Tersine Cevirme ilkesi

SOLID’deki son ‘D’ Dependency Inversion Principle (Bagimlilig1 Tersine Cevirme Ilkesi) demektir.
Bu, iki sey soyler:

“A. Yiiksek diizeyli modiiller diisiik diizeyli modiillere dayandirilamaz. Her ikisi de
soyutlamalara dayanmalidir.”

“B. Soyutlamalar ayrintilara dayandirilamaz. Ayrintilar soyutlamalara bagimli olmali-

dir.”
Harika, peki ne anlama geliyor?

Yiiksek Diizeyli
Yiiksek diizeyli kod genellikle daha karmasiktir ve diisiik diizeyli kodun islevselligine dayanir.

Diisiik Diizeyli
Diisiik diizeyli kod dosya sistemlerine erisme veya bir veritabanini yénetme gibi temel,
odaklanmis operasyonlar yapar.

Diisiik diizey ile yiiksek diizey arasinda bir yelpaze vardir. Ornegin, ben oturum yonetimini diisitk
diizeyli kod olarak kabul ederim. Ama oturum y6netimi oturum depolamasi i¢in bagka diisiik diizeyli
koda dayanir.

Yiiksek diizey ve diisiik diizeyi bir digeriyle iliskisi baglaminda diisiinmek yararlidir. Oturum
yonetimi bir kullanicinin giris yapmasi gibi uygulamaya 6zgii islevsellikten kesinlikle daha disiiktiir,
ancak session yonetimi veritabani erisim katmani i¢in daha yiiksek diizeydir.

© 0 I O O & W N =

N U SN
O O b W N~ O

Bolum 16 - SOLID Nesne Tasarimi 25

Soyle diyen insanlar duydum ... “Oh, Bagimlilik inversiyonu, Inversion of Controlu implemente
ettiginizde olan seydir” veya “Hayir. Bagimlilik enjeksiyonu neyse Bagimlilik inversiyonu da odur”
Her iki cevap da kismen dogrudur, ciinkii her iki cevap Bagimlilik Inversiyonunu implemente

edebilir.

Bagimlilig1 Tersine Cevirme Ilkesi sinif bagimliliginin ayrik tutulmasi tekniklerinden biri olarak
daha iyi ifade edilir. Ayrik tutmakla, hem yiiksek diizeyli mantik hem de disiik diizeyli nesne
birbirine dogrudan dayanmazlar, bunun yerine soyutlamalara dayanirlar.

PHP diinyasinda... Bagimlilig1 Tersine Cevirme en iyi ne sekilde elde edilir? Tahmin ettiginiz gibi:
interfaceler.

Tim bu tasarim ilkelerinin birlikte nasil calistig1 ilging degil mi? Ve bu ilkelerin nasil PHP nin en
kullanilmayan yapisiyla (interface) oyuna katildiklari?

Bagimliligi Tersine Cevirmenin Basit Kurali

Yiiksek diizeyli kod kullanan nesneleriniz her zaman interfaceler yoluyla olsun. Ve diisiik diizeyli
kod interfaceleri implemente ediyorsa, bu ilkeyi uyguluyorsunuz demektir.

Bir Ornek

Kullanic1 kimlik dogrulamas iyi bir 6rnektir. En yiiksek diizeyde olan, bir kullanicinin kimligini
dogrulayan koddur.

<?php
interface Userlnterface {
public function getPassword();

}

interface UserAuthRepositorylInterface {
Rk
* $username 'den UserlInterface déndir
*/
public function fetchByUsername($username);

}

class UserAuth {
protected $repository;

/K

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

O 0 9 O U B W N =

I S Y
B W N~ O

Bolum 16 - SOLID Nesne Tasarimi 26

* Repository bagimliligi enjekte ediyor
*/
public function __construct(UserAuthRepositorylInterface $repo)

{

$this->repository = $repo;

Ve
* Eger $username ve $password gegerli ise true déndlirir
*/

public function isValid($username, $password)

{

$user = $this->repository->fetchByUsername($username);
if ($user and $user->getPassword() == $password)

{

return true;

}

return false;

}

2>

Yani, UserAuthRepositoryInter face ve UserInter face soyutlamalarina dayanan yiiksek diizeyli
UserAuth smifimiz var. $Simdi, bu iki soyutlamanin implemente edilmesi oldukca basittir.

<?php
class User extends Eloquent implements UserlInterface {
public function getPassword()

{

return $this->password;

}

class EloquentUserRepository implements UserAuthRepositorylInterface {
public function fetchByUsername($username)

{

return User: :where('username',

="', $username)->first();

}
2>
Limon sikmak kadar kolay.

Simdi, UserAuth sinifini kullanmak icin onu EloquentUserRepository ile insa edebiliriz veya onu
otomatik olarak enjekte etmesi i¢in interface’i EloquentUserRepository sinifina baglayabiliriz.

Bolum 16 - SOLID Nesne Tasarimi

Bu béliimde kullanilan kimlik dogrulama é6rnegini Laravel’in Auth facade’t ile karistir-
mayin. Bunlar sadece ilkeyi gosteren érneklerdir. Laravel’in implementasyonu, bunlara
benzemekle birlikte, ¢cok daha iyidir.

27

Ornegi kontrol ettiginiz icin
tesekkurler

Umarim ondan zevk aldiniz.

Aslinda, Getting Stuff Done with Laravel* iizerine tiklamaktan ve geri kalan bolimlerine yatirim
yapmaktan hoslanacaginizi umuyorum.

*https://leanpub.com/gsd-laravel-tr

https://leanpub.com/gsd-laravel-tr
https://leanpub.com/gsd-laravel-tr

	İçindekiler
	Teşekkürler
	Revizyon Geçmişi
	Özel bir teşekkür

	Örnek Sürüm Hakkında
	Ücretli Sürümün İçeriği

	Hoş Geldiniz
	Bölüm 1 - Bu kitabın amacı
	Bu kitapta neler yoktur
	Bu kitapta neler vardır

	Bölüm 2 - Siz kimsiniz?
	Bölüm 3 - Ben kimim?
	Çevirenin Notu

	Bölüm 4 - Laravel Nedir?
	Bölüm 5 - Laravel nasıl savunulur
	Bölüm 6 - Programcılar Laravel'i Neden Sever
	Bölüm 7 - Wordpress: İyi, Kötü ve Çirkin
	Bölüm 8 - Bu Kitapta Kullanılan Düzenler
	Ben hangi işletim sistemi kullanıyorum?

	Kısım 1 - Tasarım Felsefeleri ve İlkeleri
	Bölüm 16 - SOLID Nesne Tasarımı
	Tek Bir Sorumluluk İlkesi
	Açık/Kapalı İlkesi
	Liskov İkame İlkesi
	Interface Ayrımı İlkesi
	Bağımlılığı Tersine Çevirme İlkesi

	Örneği kontrol ettiğiniz için teşekkürler

