

Getting Stuff Done with Laravel 4 (TR)
PHP’nin en popüler yeni Framework’ü ile uygulama
tasarımı ve geliştirme üzerine bir yolculuk

Chuck Heintzelman ve Sinan Eldem

Bu kitap şu adreste satılmaktadır http://leanpub.com/gsd-laravel-tr

Bu versiyon şu tarihte yayımlandı 2013-12-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 Chuck Heintzelman ve Sinan Eldem

http://leanpub.com/gsd-laravel-tr
http://leanpub.com
http://leanpub.com/manifesto

Kitabı tweetleyin!
Chuck Heintzelman ve Sinan Eldem’a kitabını şu adresten Twitter tanıtarak yardımcı olun!

Kitap için önerilen hashtag #LaravelGSD.

Kitap için diğerleri ne demiş merak ediyorsanız bağlantıya tıklayarak hashtagları arayabilirsiniz:

https://twitter.com/search?q =#LaravelGSD

http://twitter.com
https://twitter.com/search?q=%23LaravelGSD
https://twitter.com/search?q=%23LaravelGSD

İçindekiler

Teşekkürler . i

Revizyon Geçmişi . ii
Özel bir teşekkür . ii

Örnek Sürüm Hakkında . iii
Ücretli Sürümün İçeriği . iii

Hoş Geldiniz . 1

Bölüm 1 - Bu kitabın amacı . 2
Bu kitapta neler yoktur . 2
Bu kitapta neler vardır . 3

Bölüm 2 - Siz kimsiniz? . 4

Bölüm 3 - Ben kimim? . 5
Çevirenin Notu . 6

Bölüm 4 - Laravel Nedir? . 7

Bölüm 5 - Laravel nasıl savunulur . 8

Bölüm 6 - Programcılar Laravel’i Neden Sever . 10

Bölüm 7 - Wordpress: İyi, Kötü ve Çirkin . 12

Bölüm 8 - Bu Kitapta Kullanılan Düzenler . 13
Ben hangi işletim sistemi kullanıyorum? . 14

Kısım 1 - Tasarım Felsefeleri ve İlkeleri . 15

Bölüm 16 - SOLID Nesne Tasarımı . 16
Tek Bir Sorumluluk İlkesi . 16
Açık/Kapalı İlkesi . 18

İÇINDEKILER

Liskov İkame İlkesi . 20
Interface Ayrımı İlkesi . 22
Bağımlılığı Tersine Çevirme İlkesi . 24

Örneği kontrol ettiğiniz için teşekkürler . 28

Teşekkürler
Bu kitabı aldığınız için içtenlikle teşekkür ediyorum. Umarım onu çekici, eğlenceli ve en önemlisi
yararlı bulursunuz.

Laravel Öğrenilecek Diğer Yerler

• Laravel websitesi¹. Bir şey aramak için ilk durağım her zaman budur. Oradaki forumlara göz
atın. Bilgilerle dopdoludur.

• NetTuts². Bu sitede bazı güzel Laravel dersleri mevcut.
• Laravel Testing Decoded³. Jeffery Way tarafından yazılmış bu kitap Laravel kodunuzu nasıl
test edeceğiniz hususunda müthiş bir kaynaktır.

• Code Bright⁴. Dayle Rees tarafından yazılan bu kitap hem eğlenceli hem de bilgilendiricidir.
• From Apprentice to Artisan⁵. Laravel’in geliştirici Taylor Otwell tarafından yazılmış … fazla
söze gerek yok.

• Implementing Laravel⁶. Chris Fidao tarafından yazılan bu kitap Laravel’le proje uygulanma-
sına odaklanmıştır. Yapıları ve sık kullanılan desenleri anlatır. Büyük bir kitaptır.

• Laravel 4 Cookbook⁷. Christopher Pitt tarafından yazıldı. Bu kitap Laravel 4’te inşa edilen
çeşitli projeler içermektedir.

Çevirenin Notu

• Laravel Türkiye websitesi⁸. Türkçe destek alabileceğiniz hızla büyüyen Laravel Türkiye Ailesi.
• Ne kadar şanslısınız ki, elinizdeki bu kitaptan başka, bu listedeki son dört kitabın Türkçelerine
de ulaşabilirsiniz. Laravel 4 Türkçe Kitapları⁹

¹http://laravel.com
²http://net.tutsplus.com/
³http://leanpub.com/laravel-testing-decoded
⁴https://leanpub.com/codebright-tr
⁵https://leanpub.com/laravel-4-tr
⁶https://leanpub.com/implementinglaravel-tr
⁷https://leanpub.com/laravel4cookbook-tr
⁸http://laravel.gen.tr
⁹http://leanpub.com/u/sineld

http://laravel.com
http://net.tutsplus.com/
http://leanpub.com/laravel-testing-decoded
https://leanpub.com/codebright-tr
https://leanpub.com/laravel-4-tr
https://leanpub.com/implementinglaravel-tr
https://leanpub.com/laravel4cookbook-tr
http://laravel.gen.tr
http://leanpub.com/u/sineld
http://laravel.com
http://net.tutsplus.com/
http://leanpub.com/laravel-testing-decoded
https://leanpub.com/codebright-tr
https://leanpub.com/laravel-4-tr
https://leanpub.com/implementinglaravel-tr
https://leanpub.com/laravel4cookbook-tr
http://laravel.gen.tr
http://leanpub.com/u/sineld

Revizyon Geçmişi
Güncel sürüm: 1.1

Sürüm Tarih Notlar

1.1 28-Kas-2013 Yazım hataları ve genel temizlik.
1.0 2-Kas-2013 Birçok yazım hatası düzeltildi ve Leanpub’da yayımlandı.
0.9 27-Eki-2013 Tamamlandı ve Leanpub’da yayımlandı.
0.8 20-Eki-2013 4 bölüm eklendi, Leanpub’da yayımlandı.
0.7 13-Eki-2013 3 bölüm, iki ek eklendi. Leanpub’da yayımlandı.
0.6 6-Eki-2013 8 bölüm eklenerek Kısım 3 tamamlandı. Leanpub’da yayımlandı.
0.5 29-Eyl-2013 Kısım 3’e 7 bölüm eklendi ve Leanpub’da yayımlandı.
0.4 22-Eyl-2013 Kısım 3’e 7 bölüm eklendi ve Leanpub’da yayımlandı.
0.3 15-Eyl-2013 Kısım 2’ye kadar olan taslaklar temizlendi. Leanpub’da ilk sürümü yayımlama

kararı verildi.
0.2 8-Eyl-2013 Kısım 2’nin ilk taslağı bitirildi
0.1 31-Aug-

2013
Hoş Geldiniz ve Kısım 1’in ilk taslakları bitirildi

0.0 3-Aug-2013 İlk taslak yazılmaya başlandı

Özel bir teşekkür

Bu sayfalardaki yazım hatalarını ve diğer sorunları bulmak suretiyle bana yardımcı olan isimsiz-
olmayan insanların bir listesi:

• Peter Steenbergen
• Jeremy Vaught

Size çok teşekkür ediyorum!

Kapak Görüntüsü

Kapak görüntüsü telif hakkı © Kemaltaner¹⁰ | Dreamstime.com¹¹

¹⁰http://www.dreamstime.com/kemaltaner_info
¹¹http://www.dreamstime.com/

http://www.dreamstime.com/kemaltaner_info
http://www.dreamstime.com/
http://www.dreamstime.com/kemaltaner_info
http://www.dreamstime.com/

Örnek Sürüm Hakkında
Bu kitabın “Örnek” sürümünü indirdiğiniz için, her şeyi almış olmuyorsunuz.

Hoş Geldiniz Kısımından kendi bütünlüğündeki sekiz bölümü veriyorum. Artı SOLID Nesne
Tasarımı bölümünü. Bu size yazdığım şeyin lezzetini tattıracak ve bu kitabın nasıl yararlı olacağını
açıklayacaktır.

Ücretli Sürümün İçeriği

Leanpub Sayfasına¹² bakarsanız İçindekiler tablosunun tüm içeriği incelemeniz için sunulmuştur.

Oraya gidin. Kontrol edin. Bu kitabın tam sürümünü satın almanıza karar vermenize yardımcı olacak
bir şeyler görebilirsiniz.

¹²https://leanpub.com/gsd-laravel-tr

https://leanpub.com/gsd-laravel-tr
https://leanpub.com/gsd-laravel-tr

Hoş Geldiniz

Getting Stuff Done with Laravel ‘e hoş geldiniz. Kitabın Hoş Geldiniz Kısmı bu kitaptan ne elde
edeceğinizi açıklamaktadır.

Genel olarak şu şekilde organize edilmiştir.

Hoş Geldiniz
Kitabın ilk kısmı bu kitaptan ne elde edeceğinizi açıklamaktadır.

Kısım 1 - Tasarım Felsefeleri ve İlkeleri
Bu kısım uygulama oluştururken izleyeceğimiz genel tasarım ilkelerinden bahseder.

Kısım 2 - Uygulama Tasarımı
Bu, gerçek uygulama tasarladığımız kısımdır.

Kısım 3 - Konsol Uygulaması
Daha sonra, konsolda kullanılabilir uygulama yapıyoruz.

Kısım 4 - Web Uygulaması
Şimdi yaptığımızı alacağız ve ona bir web postu giydireceğiz.Mwaa, haa, ha.

Ekler
Tamamlayıcı bilgiler. Composer’ın nasıl yükleneceği gibi.

Bölüm 1 - Bu kitabın amacı
Bu kitap sizi Laravel boyunca bir yolculuğa çıkaracak. Umuyorum ki, hiç gitmediğiniz yerlere
gideceksiniz ve hiç görmediğiniz şeyleri göreceksiniz. Bu bir tür seyahatnamedir. Varacağımız kesin
bir yer var (oluşturduğumuz uygulama) ve yol boyunca ben şaşırtıcı bazı manzaralar göstereceğim.
Sonuna geldiğiniz zaman bana bir not bırakın chuckh@gmail.com¹³. Yolculukla ilgili düşüncenizle
çok ilgileniyorum.

Bu kitap yaşanmak içindir. Kullanılmalıdır. Lütfen bölüm bölüm takip ve inşa edin. Her bölüm bir
sonrakine götürür. Bir bölüm içindeki kesimler ileriye doğru akar. Kitabın her kısmı önceki üzerine
inşa edilir.

Her bölümdeki kesimleri şehirler olarak düşünün. Bu durumda bölümlerin kendileri ülkeler oluyor
ve kitabın kısımları kıtalardır ve … Tamam, yeterince yorucu bir yolculuk benzetmesi.

Kitap boyunca odak noktamız Laravel 4 kullanarak adım adım bir uygulama oluşturulmasıdır.

Bu kitap tipik bir teknik el kitabı değildir
Ben tasarım ve geliştirme konusunda mümkün olduğunca gerçeği taklit etmeyi dene-
yeceğim. Bunun anlamı yanlış başlama, tasarım değişiklikleri ve yol boyunca yeniden
düzenleme demektir.

Uyarıldınız <sırıtış>.

Bu kitapta neler yoktur

• Laravel’in her yönü. Bu, bütün framework üzerine bir başvuru kitabı değildir.
• Caching, Events veya Logging. Önbellekleme, olaylar ve günceye yazma önemli konulardır,
fakat bizim oluşturacağımız uygulama bunları gerektirmez.

• Queues, Authentication, Cookies veya Sessions. Aynı şekilde kuyruklar, kimlik doğrulaması,
çerezler ve oturumlar önemli şeylerdir, ancak onlara ihtiyacımız yok.

• Database. Evet, bunu itiraf etmek bana çok acı geliyor. Laravel’in en büyük yönlerinden birisi
onun Fluent Query Builder ve Eloquent ORM sidir. Ne büyük isimler olduğunu anlıyorum.
Tatbikatını tam karşılayan isimler. Maalesef bu konuya temas etmiyorum, çünkü … tahmin
ettiniz onu … oluşturacağımız uygulama onu gerektirmiyor.

¹³mailto:chuckh@gmail.com

mailto:chuckh@gmail.com
mailto:chuckh@gmail.com

Bölüm 1 - Bu kitabın amacı 3

Bu kitapta neler vardır

Çoğunlukla, uygulama oluştururken ne yapıyorum, neden yapıyorum diye gevezelik ederim. Kimi
zaman benimle aynı fikirde olursunuz. Kimi zaman bana karşı çıkabilirsiniz. Bazen benim tam
bir aptal olduğumu düşünebilirsiniz. Umarım bazen de “Ha evet. İyi biri” diye düşünürsünüz.
Fakat sonunda, kullanabileceğiniz gerçek bir sistem oluşturmanın esaslarını ve pratik yönlerini elde
edeceksiniz.

Bölüm 2 - Siz kimsiniz?
Çoğu kitap yazar hakkında bilgi ile başlar ama daha önemli soru aslında “siz kimsiniz”dir.

Ben aşağıdaki varsayımları yapıyorum:

• Siz bilgisayarlar hakkında çoğu insandan daha fazla şey biliyorsunuz.
• Siz bir programcısınız.
• Siz PHP’de nasıl program yapılacağını biliyorsunuz. Belki pek az. Belki pek çok.
• Laravel’i¹⁴ duydunuz. (Bu anlaşma-bozucu değil, çünkü size onu anlatacağım.)
• Siz programlamayı seviyorsunuz veya bilgisayarlara teklif ettiğiniz ilk tutkunuzu tekrar elde
etmek istiyorsunuz.

• Adınız Taylor Otwell değil, çünkü eğer öyleyse ben buna layık değilim.

Malzemelerin yararlı olması amacıyla, yeni başlayanlara araçları yaklaşılabilir ve cana yakın, ara
programcılara hala ilginç ve yeterince derinlemesine yapmak için elimden geleni yapacağım.

En alt satır
Siz Laravel konusunda daha çok şey öğrenmek istiyorsunuz.

¹⁴http://laravel.com

http://laravel.com
http://laravel.com

Bölüm 3 - Ben kimim?

Burası tipik bir rah-rah, ben harika bir bölüm değilim kısmı. Burada Laravel hakkında tek
bir şey öğrenmeyeceksiniz. Yapabileceğiniz en akılcı hareket doğruca bir sonraki bölüme
atlamak.

Merhaba. Adım Chuck Heintzelman ve bilgisayar programları yazıyorum.

(Kendimi bir destek grubunun karşısında gibi hissettim. Umarım kimse “Hi Chuck” demedi.)

Cidden. Dokuzuncu sınıftayken bir gün hastalık nedeniyle okula gidemeyip ödünç aldığım birBASIC
Language Reference el kitabı ile evde kaldığımdan beri program yazıyorum. O gün kağıt üzerinde
Asteroids¹⁵ benzeri bir oyun yazdım, uçan asteroidler dışında diğer gemiler size ölüm kusan uzun
beyaz bloklar ateşliyordu.

Saatler süren hata ayıklama ve programımı “kütle deposuna” (bir teyp kaseti) yüklemek/kaydetmek
için TRS-80 bekledikten sonra oyun nihayet çalıştı. Bu 33 yıl önceydi. Bilgisayar dinazorlarının, iri
vahşi canavarların klimalı odaları doldurduğu günlere geri döndüm. Hayır, delikli kartları fiilen hiç
kullanmadım ama kullanıldığını görmüştüm.

O zamandan bu yana Fortran, COBOL (evet, biliyorum), Assembly Dili, Basic, C, C++, C#, Java,
Pascal, Perl, Javascript ve PHP’de programlar yazdım. Diğer birçok, pek çok dille uğraştım ama
insanların fiilen kullandığı programlar yazmadım.

Küçük aile dükkanları yanında Fortune 500 şirketleri için de sistemler oluşturdum. Xenix’te çalışan
mail order sistemlerinden PHP’de çalışan web uygulamalarına kadar her şey. İnternet günlerinin ön-
cesinde (İnternet’in gerçek başlangıcından önce değil, 90’lı yılların ortasında başlayan heyecandan
hemen önce) birkaç şirkette ve ondan sonra da birkaç nokta komda çalıştım. Ve yaptığım şeylerin
hepsi yapmayı sevdiğim şeylerdi–bilgisayar programları yazmak.

Vay be! Peki, ne kadar büyük olduğum konusunda bu kadar yeter.

İşte benim meselem
Kariyerim boyunca programlama konusunda bir kitap oluşturma gereğini şimdiye kadar
hiç duymadım. Bunu yazıyor olmamın tek sebebi Laravel yüzündendir.

¹⁵http://en.wikipedia.org/wiki/Asteroids_(video_game)

http://en.wikipedia.org/wiki/Asteroids_(video_game)
http://en.wikipedia.org/wiki/Asteroids_(video_game)

Bölüm 3 - Ben kimim? 6

Çevirenin Notu

Bu kitap, diğer çevirilerden farklı olarak, revaçta olan teknolojileri bir araya getirme açısından daha
özel bir yere sahip. Chuck’ın anlatım üzerindeki hakimiyeti farklı bir havaya sokuyor okuyucuyu
ve sayfalar kendiliğinden akıp gidiyor.

Öncelikle sevgili eşim Bilge ve gözümün ışığı kızım Tuana Şeyma’ya teşekkürler. İyi ki varsınız!

Gerek dokümantasyon, gerekse tüm kitapların çevirisinde tüm süreç boyunca yanımda olan ve çok
katkı sağlayan değerli Sergin Arı’ya, kattıklarından dolayı minnettarım. Sen olmadan olmazdı!

Bölüm 4 - Laravel Nedir?
Bu tanıdık geliyorsa elinizi kaldırım

Şirketinizin mevcut sistemine bir özellik eklemekle görevlendirildiniz. Ne yazık ki,
sistem PHP 4’te yazılmış ve orijinal programcılar her kimse, siz onların çok fazla
“Wordpress Çıldırmış” videosu izlediğinden kuşkulandınız.

Hiçbir sınıfı olmayan, global değişkenlerle tıka basa dolu ve 50.000 parçalı bir yap boz
oyunundan farklı olmayan bir yapıdaki bu kod temelini devraldınız.

İlk etapta işinize, yönetim ekibinin kısa görüşlülüğüne ve programlamayla para kazan-
mak istediğiniz için sahip olduğunu her şeye lanet okudunuz.

Sonuçta, programlama eğlenceli olmalı. Değil mi?

Biz hepimiz oradayız.

Laravel’e katılın.

(Tam tam sesleri geliyor: duh-duh duh-duh duh-da-duh)

Laravel programlamayı tekrar eğlenceli yapan bir PHP frameworküdür.

Haydi dostum … o sadece bir framework

Laravel yeni bir dil değildir. O sadece bir frameworktür. Eğer abartıyı keser ve işin özüne bakarsanız,
Laravel sadece bir PHP Frameworküdür.

Ancak ben, Laravel web sitesindeki slogana katılıyorum:

The PHP Framework for Web Artisans (Web Ustalarının PHP Atölyesi).

Ruby On Rails sadece bir frameworktür. Ama, arkasındaki hayranlara bakın.

Laravel sizin PHP spagetti kodunuzu sihirli bir biçimde düzeltmeyecek ama bu şeyleri yapmak için
size yeni, hızlı ve zarif bir yol sağlar. (Not, Getting Stuff Done kavramı bu kitapta yinelenen bir
temadır.)

Kısaca, Laravel PHP programlamayı bir eğlence haline getiren bir mimari sağlar. Mevcut kodunuzu
etkileyici, zarif ve ileride sürdürülmesi ve genişletilmesi kolay olacak bir yolla yeniden düzenleye-
bileceksiniz.

Laravel her derde deva bir ilaç değildir. Eğer elinizdeki mevcut kod berbatsa, o şimdi nerede den o
nerede olmalı ya kadar gelmek bir azap olacaktır. Bizim sektörün doğası bu.

Fakat basit anlatımcılığa imkan veren bir frameworke geçmek istiyorsanız (hatta bir kelimeyle mi?)
o zaman cevap Laravel’dir.

Bölüm 5 - Laravel nasıl savunulur
İşte problem (veya bir problem) …

Şirketinizin koyduğu sınırlandırmalar altında çalışmak zorundasınız, Yani, mevcut
yazılımı desteklemek ve mevcut sistemlerinizle iyi oynayan yeni kod geliştirmek zo-
rundasınız. Orada .NET, bir miktar Java’nın bir karışımı var, fakat mevcut kodun çoğu
PHP’dir.

Son zamanlarda Laravel’i keşfettiniz ve onu sevdiniz ve yeni geliştirmenizde onu kullanmak
istiyorsunuz.

Laravel’e geçişi nasıl savunabilirsiniz?

Bir an için dedektif şapkamızı takalım.

Hmmm. Dedektiflerin şüphelileri ve nedenleri ararken parayı takip ettiklerini biliyorum (tabi ki
TV’den). Öyleyse parayı takip edelim …

Müşteriler mal ve hizmet karşılığında işletmelere para verirler. Ürün ne kadar iyiyse ve ne kadar çok
müşteri bu ürünü gerçekten talep ederse, işletmeye o kadar çok para öderler.

Yöneticiler işletmeyi geliştirmek ister. Onlar mümkün olan en sıklıkta mümkün olan en çok parayı
verecek mümkün olan en çok müşteri isterler.

Yönetimin bakış açısından düşünün …

• Müşterilerim mutlu olsun istiyorum.
• Yeni müşteriler istiyorum.
• Müşterilerin mutluluğu beklentilerinin karşılanmasına eşittir.
• Programcılarımın gereksinimleri zamanında teslim edebilmesini istiyorum.
• Programlama ekibinin çevik (agile) olmasını istiyorum. (Anlamı her neyse … aşağıdaki kutuya
bakınız.)

• Müşterilerimin isteklerini zamanında kolaylaştırmak istiyorum.
• Büyük ürünler teslim eden büyük geliştiriciler istiyorum.

Bölüm 5 - Laravel nasıl savunulur 9

..

Çevik ne anlama geliyor?
Bir kelimeyi çok sık söyler veya yazarsanız anlamını kaybetmez mi? Tıpkı Şirinler gibi … her şey
şirinleniyor, şirinlenebilir, şirinimsidir. Çevik bu kelimelerden birine benziyor. Kelimenin geçmişte
geçirdiği evreleri. Her şey Çevik bu, çevik şu. İnsanlar yinelemeli yazılım sürecindenmi bahsediyor,
yoksa başka bir şeyden mi? Büyülü bir şey mi? Gerçekten bilmiyorum.

Eğer yukarıdaki liste yönetimin bakış açısıysa, bu durumda Laravel kolaylıkla savunulabilir:

• Müşteriler gereksinimleri ele alınıp karşılandığı zaman mutlu olurlar.
• Müşteriler beklentileri aşıldığı zaman daha da mutlu olurlar.
• Laravel şunları sağlayan bir frameworktür…

– İşlevselliğin genişletilmesini kolay bir hale getirir.
– Tasarımda en iyi uygulamalar desenini izler.
– Çok sayıda programcının verimli bir işbirliğine imkan verir.
– Programcıları mutlu yapar. (Yöneticileri unutmayın: mutlu bir programcı üretken bir

programcıdır.)
– Daha hızlı stuff get done’a izin verir.
– Test yapmayı her uygulamanın çekirdek bir bileşeni olarak kabul ederek unit testini
teşvik eder.

Laravel yöneticiler için programcılarının daha çok, daha hızlı işler yapabilmesini sağlar ve web
geliştirmenin özünde bulunan engellerin birçoğunu ortadan kaldırır. İleride bunu açacağım.

Oldukça kolay bir savunma, değil mi?

Bölüm 6 - Programcılar Laravel’i
Neden Sever
Sadede gelelim … Neden siz, bir programcı olarak, bir framework olarak Laravel kullanmak
istiyorsunuz?

Bırakın biraz Framework Envy hakkında konuşayım.

(Burada bir terapistle görüştüğümü düşünüyorum. Başını bilgece sallıyor, piposundan
bir fırt çekiyor ve diyor ki, “zee framework envy hakkında konuşun.”)

Bana, yazılmış PHP projeleri verildi. Bunlar iyice şişmiş, sahip olduğu “sınıf” kavramı sadece okulda
geçilen bir şey olan bir geliştirici tarafından yazılmış PHP 4 projeleri idi. Ve ben sokak boyunca Ruby
geliştiricilerine bakıyor ve onların bina seviyeleri için sessizce doğal afetler–deprem, fırtına, hatta
yıldırım–diliyorum.

Bu beni kötü bir insan yapar mı?

Bütün bunlar Ruby’nin tümden parlak ve yeni olduğu bir zamanda oldu. Ruby’yi harika yapan şey
dilin kendisi değildi (dilin çok güzel yönleri olmasına karşın). Hayır, Ruby’yi harika yapan şey Ruby
on Rails (RoR) idi.

Bütün geliştiriciler Ruby on Rails’e akın ediyordu.

Neden ona akın ediliyordu?

Çünkü, o eğlenceli olan bir geliştirme yolu vaad etmişti. Ve eğlenceli deyince, ben güçlü, anlamlı ve
uygulanması kolay anlıyorum. Programlama yapmakta zevkli bir atmosfer oluşturması konusunda
RoR’u tekrar şükranla anıyorum. RoR tarafından aşılanan kodlama keyfi, bizim hepimizin programcı
olma istememizdeki ilk ivme ile tam aynı duygudur.

PHP dünyasında saplanıp kalmış olmamız ne kadar üzücüydü? Bir Wordpress kurulumunu hackle-
yebildikleri için oradaki her Tom, Dick ve Henrietta bir “PHP Programcısı” olmuştu.

(Sonraki bölüme bakınız: Wordpress - İyi, Kötü ve Çirkin)

Fakat, hayır, projelerimizin PHP’de olması şartları ile sıkışmıştık. Tüm Ruby geliştiricilerinin olduğu
gibi serin, harika çocuklar olamazdık. Onlar en öndeydi. Onlar kendilerine bir isim yapan, sınırları
zorlayan birileriydiler.

Laravel’e gelince. Ruby on Rails’in en iyilerini alır ve onu PHP dünyasına getirir. Aniden, bir PHP
geliştirici tek tek scriptler yerine controllerler için rotalarla uğraşmaya başlar. DRY (Don’t Repeat
Yourself [Kendinizi Tekrar Etmeyin]) gibi kavramlar şimdi daha anlamlıdır. Aniden, tek rüyamız

Bölüm 6 - Programcılar Laravel’i Neden Sever 11

Smarty Şablonları gibi bir yolla, PHP’nin özüne katıştırılmış bir “Blade” şablon motorumuz olur.
Biz, kelimenin tam anlamıyla, PHP Nirvana potansiyeline sahibiz.

Laravel’in ne kadar harika olduğunu anlatabildim mi? Umarım öyledir.

Bölüm 7 - Wordpress: İyi, Kötü ve
Çirkin
Wordpress bloglama devrimi yaptı. Bloglamayı kitlelere taşıdı. Tabii, blogger ve livejournal gibi
diğer platformlar da var fakat Wordpress’in yaptığı şey PHP’de yazılmış büyük, popüler bir sistemi
kamu alanına koymaktı.

Wordpress’in çıkışıyla birlikte, herkes yapmak istediklerini gerçekleştiren bloglama platformu
yapmak için bu PHP scriptlerini hackleyebiliyordu.

“Büyük güç büyük sorumluluk getirir.” – Ben Amca(Örümcek Adam’dan)

Ne yazık ki, Wordpress’in gücü büyük sorumlulukla karşılanmadı. Scriptler genel tasarım veya kul-
lanılabilirlik düşüncesi olmadan hacklendi. Daha da kötüsü, Wordpress, dilin gerçek programcıların
sürdürülebilir sistemler inşa etmelerine imkan vermediği bir zamanda, PHP 4 günlerinde başlamıştı.

Wordpress PHP’nin başına gelmiş en iyi şeydi ama aynı zamanda dilin başına gelen en kötü şey
oldu.

Çok az zanaatkarın ellerinde çok fazla başarılı bir vakadır.

Bu durum PHP’ye bir damga yapıştırdı.

Softwarati¹⁶
Diller üzerine yorum yapan kendi kendine yok olan programlama aydınları.

Bir göz atmanız için … Softwarati tarafından söylenmiş sık duyulan bir alıntı:

“Ah. PHP bir varoş dilidir. Çirkindir, hemen hiç sürdürülebilir değildir, ama çalışır …
çoğu zaman”

Burnu kalkmış bu Softwarati’ye tekme atarak gelen Laravel’e teşekkürler.

¹⁶Evet, bu tamamen benim ürettiğim bir kelimedir.

Bölüm 8 - Bu Kitapta Kullanılan
Düzenler
Bu kitap boyunca çeşitli düzenler kullanılmıştır.

Kodlar 2 boşluk girintilidir

Genelde ben kodları 4 boşluk girintilerim ama bu kitap değişik eBook biçimlerinde olduğu için daha
küçük yatay ekranlara sığsın istedim.

1 for ($i = 0; $i < 10; $i++)

2 {

3 echo $i, " sayısına kadar sayabiliyorum", "\n";

4 }

Bu bir ipucudur
Özellikle yararlı bir bilgi parçasını vurgulamak için kullanılır.

Bu bir uyarıdır
Dikkatli olunması gereken bir şeyler hakkında sizi uyarmak için kullanılır.

Bu bir bilgi bloğudur
Önemli bir bilgi parçasını yinelemek için kullanılır.

Bu, yapılacak bir şeydir
Yapmanız gereken kod veya eylem olduğu zaman önüne hep bu sembol getirilmiştir.

Açma tagı kullanıldığı zaman kapatma tagı ?> kullanılmıştır.

Kod yazarken, ben bir dosyada kapatma ?> tagını her zaman için atlarım. Fakat bu kitabı yazdığım
editör öyle yaptığım zaman her şeyi sakat bir görünüme sokuyor. Bu yüzden, bu kitap içinde eğer
bir PHP bloğunu PHP tagıyla açarsam, her zaman için kapatma tagını da kullanıyorum. Örneğin:

Bölüm 8 - Bu Kitapta Kullanılan Düzenler 14

1 <?php

2 class SomethingOrOther {

3 private $dummy;

4 }

5 ?>

PHP Açma ve Kapatma Tagları

Kod örneklerinde bazen gerekli değilken (örneğin bir dosyanın bir kısmını gösterirken) PHP
açma tagı (<?php) kullanılmıştır. Bazen gerekli olmayan durumlarda PHP kapatma tagı (‘?>’)
kullanılmıştır.

1 <?php

2 function somethingOrOther()

3 {

4 $this->callSetup();

5 }

6 ?>

Gerçek PHP Kodunda ben dosyanın sonundaki kapatma tagını her zaman atlarım. Tagların gerekip
gerekmediği kararını size bırakıyorum. Kod örneklerindeki açma ve kapatma taglarının aynen
alınmaması gerektiğinin farkında olun.

Ben hangi işletim sistemi kullanıyorum?

Bu kitabı, kodu v.b. Debian ve Ubuntuya dayalı Linux Mint 14¹⁷ kullanarak yazıyorum. Bu Ubuntu
12.10¹⁸ ile temel olarak aynıdır.

¹⁷http://www.linuxmint.com/
¹⁸http://www.ubuntu.com/

http://www.linuxmint.com/
http://www.ubuntu.com/
http://www.ubuntu.com/
http://www.linuxmint.com/
http://www.ubuntu.com/

Kısım 1 - Tasarım Felsefeleri ve İlkeleri

Kitabın bu kısmında çok fazla kod yok. Üzgünüm, buradaki her şey tasarımla ilgili. Burada,
uygulama inşa ederken kullanılan genel tasarım ilkelerini tartışacağım.

“Beni direkt koda götür” diye düşünebilirsiniz. Çoğunlukla ben de aynı fikirdeyim. Sıklıkla en hızlı
ve en kolayı hemen koda geçmek ve yaparak öğrenmektir. Eğer şu kavramları biliyorsanız (SOLID
Nesne Tasarımı, Sözleşme Olarak Interface’ler, Bağımlılık Enjeksiyonu, Ayrık Tutma ve Kontrolün
Tersine Çevrilmesi), o zaman uygulama tasarlamaya başlamak için Kısım 2’ye atlayabilirsiniz.

Bölüm 16 - SOLID Nesne Tasarımı
Nesne yönelimli tasarımda SOLID adı verilen bir ilkeler kümesi bulunmaktadır. Şunları ifade eden
bir kısaltmadır:

• [S]ingle Responsibility Principle (Tek Bir Sorumluluk İlkesi)
• [O]pen/Closed Principle (Açık/Kapalı İlkesi)
• [L]iskov Substitution Principle (Liskov İkame İlkesi)
• [I]nterface Segregation Principle (Interface Ayırma İlkesi)
• [D]ependency Inversion Principle (Bağımlılığı Tersine Çevirme İlkesi)

Hep birlikte, en iyi uygulamalar kümesini temsil ediyorlar ve bu ilkelere uyulduğu zaman, geliştir-
diğiniz yazılımın geçen zamanla daha sürdürülebilir ve genişletilebilir olmasını sağlarlar.

Bu bölüm her bir ilkeyi daha ayrıntılı açıklamaktadır.

Bana bir SOLID yapar mısınız?
Eğer bir programcı size gelir ve “Bana bir SOLID yapabilir misiniz?” derse, ne sorulduğunu
anladığınızdan emin olun.

Tek Bir Sorumluluk İlkesi

SOLID kısaltmasının ilk harfi olan ‘S’ sorumluluğun tek olmasını ifade ediyor. Bu ilke der ki:

“Her sınıfın tek bir sorumluluğu olmalıdır ve bu sorumluluk o sınıf tarafından tamamen
yerine getirilmelidir. Onun tüm hizmetleri bu sorumluluk içerisine daraltılmalıdır.”

Bununla ilgili düşünülecek başka bir yol, bir sınıfı değiştirmek için bir ve yalnız bir sebep olmalıdır
şeklindedir.

Örneğin amacı bir pazarlama raporunu derlemek ve bunu kullanıcıya email göndermek olan
bir sınıfımız varsa, eğer teslim etme yöntemini değiştirirsek ne olur? Kullanıcının raporu metin
aracılığıyla veya web üzerinde alması gerekirse veya raporun biçimi değişirse ne olur? Bu örnek
için bunların hepsi de sınıfın değiştirilmesi için muhtemel sebep türleridir.

Bölüm 16 - SOLID Nesne Tasarımı 17

Sınıf Amacını VE Olmadan İfade Etmek
Tek bir sorumluluk ilkesini implemente etmek için basit bir yol sınıfın ne yaptığını VE
kelimesi kullanmadan tanımlayabilmektir.

Bunu bir miktar kodla gösterelim …

1 // Sınıf Amacı: Bir pazarlama raporunu derlemek ve bir kullanıcıya e postalamak.

2 class MarketingReport {

3 public function execute($reportName, $userEmail)

4 {

5 $report = $this->compileReport($reportName);

6 $this->emailUser($report, $userEmail);

7 }

8 private function compileReport($reportName) { ... }

9 private function emailUser($report, $email) { ... }

10 }

Bu örnekte, sınıfı iki sınıfa bölebilir ve hangi rapor ve kime/nasıl gönderileceği kararını besin
zincirinde daha yukarıda olana itebiliriz.

1 // Sınıf Amacı: Bir pazarlama raporunu derlemek.

2 class MarketingReporter {

3 public function compileReport($reportName) { ... }

4 }

5

6 interface ReportNotifierInterface {

7 public function sendReport($content, $destination);

8 }

9

10 // Sınıf Amacı: Bir kullanıcıya bir raporu Email göndermek

11 class ReportEmailer implements ReportNotifierInterface {

12 public function sendReport($content, $email) { ... }

13 }

Orada bir interface’i nasıl gizlice yerleştirdiğimi fark ettiniz mi? Evet, Ben onlar için interface’lerden
daha güvenilmez bir adam olabilirim.

Daha Sağlam Sınıflar
Tek Bir Sorumluluk İlkesini izlemekle sonunda sağlam sınıflara ulaşacaksınız. Tek bir
konuya odaklanacağınız için, bu sınıf içinde yapılan herhangi bir kod değişikliğinin bu
sınıfın dışındaki işlevselliği bozma ihtimali daha az olacaktır.

Bölüm 16 - SOLID Nesne Tasarımı 18

Açık/Kapalı İlkesi

SOLID kısaltmasının ikinci harfi bu ilkeyi (Open/Closed) temsil ediyor. Bu ilke der ki:

“Yazılım antiteleri (sınıflar, modüller, fonksiyonlar v.b.) genişletmeler için açık ama
değişiklikler için kapalı olmalıdır.”

Diğer bir deyişle, bir sınıfı kodladıktan sonra bu kodu hataları düzeltmek dışında asla değiştirme-
melisiniz. Eğer ek işlevsellik gerekirse, bu durumda sınıf genişletilebilir.

Bu ilke sizi “bu nasıl değiştirilebilir?” diye düşünmeye zorlar. Deneyim burada en iyi öğretmendir.
Siz önceki durumlarda sıklıkla kullandığınız desenleri kurarak yazılım tasarlamayı öğrenirsiniz.

Çok Katı Kurallı Olmayın
Ben bu ilkeye sıkı yapışmanın aşırı tasarlanmış yazılımla sonuçlandığını buldum. Bu,
programcılar bir sınıfın kullanılabileceği her potansiyel yolu düşünmeye çalıştıklarında
meydana geliyor. Bu düşüncenin bir miktar olması iyi bir şeydir ama çok fazla olursa,
gerçekte karmaşık olması gerekmediği halde daha karmaşık sınıf veya sınıf gruplarıyla
sonuçlanır.

Bu ilkenin fanatik hayranlarını rahatsız ettimse özür dilerim, ama bakın ben sadece ne
görürsem onu söylüyorum. O bir ilkedir, bir kanun değil.

Bununla birlikte, yaygın bir örnek verebiliriz. Diyelim ki, bir hesap faturası kesimi üzerinde, özellikle
iadeleri işleyen kısmıyla çalışıyorsunuz.

1 class AccountRefundProcessor {

2 protected $repository;

3

4 public function __construct(AccountRepositoryInterface $repo)

5 {

6 $this->repository = $repo;

7 }

8 public function process()

9 {

10 foreach ($this->repository->getAllAccounts() as $account)

11 {

12 if ($account->isRefundDue())

13 {

14 $this->processSingleRefund($account);

15 }

16 }

Bölüm 16 - SOLID Nesne Tasarımı 19

17 }

18 }

Tamam, yukarıdaki koda bir bakalım. Bağımlılık Enjeksiyonu kullanıyoruz ve böylece hesapların
deposunu kendi repository sınıfından ayırıyoruz. Güzel.

Ne yazık ki, bir gün işe vardığınızda patronunuzu üzgün buldunuz. Anlaşılan, yönetim büyük iadeler
nedeniyle hesapların elle gözden geçirilmesine karar vermiş. Uggh.

Peki, yukarıdaki kodda yanlış olan ne ki? Onu değiştirmek zorundasınız, çünkü o değişikliklere
kapalı değildir. Onu bir alt sınıfla genişletebilirdiniz ama bu durumda process() kodunun çoğunu
tekrar etmek zorunda olacaksınız.

Yani, sonuç olarak iade işlemcisini yeniden düzenleyeceksiniz.

1 interface AccountRefundValidatorInterface {

2 public function isValid(Account $account);

3 }

4 class AccountRefundDueValidator extends AccountRefundValidatorInterface {

5 public function isValid(Account $account)

6 {

7 return ($account->balance < 0) ? true : false;

8 }

9 }

10 class AccountRefundReviewedValidator extends AccountRefundValidatorInterface {

11 public function isValid(Account $account)

12 {

13 if ($account->balance < 1000)

14 {

15 return $account->hasBeenReviewed;

16 }

17 return true;

18 }

19 }

20 class AccountRefundProcessor {

21 protected $repository;

22 protected $validators;

23

24 public function __construct(AccountRepositoryInterface $repo,

25 array $validators)

26 {

27 $this->repository = $repo;

28 $this->validators = $validators;

29 }

Bölüm 16 - SOLID Nesne Tasarımı 20

30 public function process()

31 {

32 foreach ($this->repository->getAllAccounts() as $account)

33 {

34 $refundIsValid = true;

35 foreach ($this->validators as $validator)

36 {

37 $refundIsValid = ($refundIsValid and $validator->isValid($account));

38 }

39 if ($refundIsValid)

40 {

41 $this->processSingleRefund($account);

42 }

43 }

44 }

45 }

Şimdi AccountRefundProcess sınıfı oluşturulma sırasında bir validatorler dizisi alıyor. İş kural-
larınızın değiştiği bir sonraki sefer yeni bir validator çekebilecek ve sınıf konstrüksiyonuna onu
ekleyebileceksiniz ve siz altınsınız.

Liskov İkame İlkesi

SOLID’deki “L”, Liskov İkame İlkesini ifade eder. Bu ilke der ki:

“Bir bilgisayar programında eğer S, T’nin bir alt tipi ise, bu durumda T tipindeki
nesneler yerine, programın arzu edilen özelliklerinden herhangi birini (doğruluğu,
yaptığı işi v.b.) bozmaksızın, S tipindeki nesneler konabilir (yani, T tipindeki nesneler,
S tipindeki nesnelerle ikame edilebilir).”

Huh? Korkarım SOLID tasarımın bu ilkesi diğerlerinden daha fazla kafa karışıklığına yol açacak.

İkame Edilebilirlik hakkında hepsi bu kadardır fakat bu ikame edilebilirliğin ingilizcesi Substitu-
tability’nin ‘S’si kullanılırsa, o zaman kısaltma SOLID yerine SOSID olurdu. Konuşmaları hayal
edebiliyor musunuz?

Programcı 1: “Biz sınıf tasarlarken S.O.S.I.D. ilkelerine uyuyoruz.”

Programcı 2: “Sosis?”

Bölüm 16 - SOLID Nesne Tasarımı 21

Programcı 1: “Hayır, SOSID.”

Programcı 2: “Sosssu?”

Programcı 1: Telefonla Michael Feathers’i arar… “Hey, daha iyi bir kısaltma gerekiyor.”

Basitçe ifade edilirse, Liskov İkame ilkesi programınızın, bir sınıfı kullandığı her yerde o sınıfın alt
tiplerini kullanabilmesi anlamına gelir.

Başka bir deyişle, eğer bir Dikdörtgen sınıfınız var ve sizin programınız bir Dikdörtgen sınıfı
kullanıyor ve Dikdörtgenden türetilmiş bir Kare sınıfınız varsa. Bu durumda bu program bir
Dikdörtgen kullandığı herhangi bir yerde Kare sınıfını kullanabilmelidir.

Hala anlaşılmaz mı? Benim başlangıçta kafam karışmıştı, çünkü “Yaa? Bu oldukça açık” demek
istiyordum ama bir şeyleri anlamamış olmamdan korkuyordum. Yani, SOLID tasarımın önemli bir
ilkesi niye bu kadar açık olsundu ki?

Bu ilkenin alt tiplerde ön koşulların güçlendirilemeyeceğini ve son koşulların zayıflatılamayacağını
söyleyen bazı belirsiz yönleri olduğu ortaya çıkıyor. Ya da bunun tersi mi? Ve üst tipin fırlattığı
istisnaların aynısı (veya ondan türetilmiş) olmayan istisnalar atan alt tipleriniz olamaz.

Vay canına! Başka? Liskov ilkesinin burada girmeyeceğim diğer bazı ayrıntıları vardır ve korkarım
onunla gerçekten çok fazla zaman harcadım.

Liskov prensibi önemli değil.

Ne?

Evet! Öyle söyledim. (Teknik açıdan bu ilke önemlidir, bu nedenle size yalan söylüyorum ama
kendimi bu yalana inandırmaya çalışıyorum.)

PHP’de, eğer aşağıdaki üç kılavuzu izlerseniz, zamanın % 99’unda Liskova’a uymuş olursunuz.

1 - Interfaceler Kullanın

Interfaceler kullanın. Mantıklı olan her yerde onları kullanın. Interface eklemek çok fazla iş
yüküne yol açmaz ve sonuç Liskov ikame ilkesine uyduğunuzu neredeyse garantiye alan “saf” bir
soyutlamaya sahip olmanızdır.

2 - Implementasyon ayrıntılarını interface’lerin dışında tutun

Interfaceleri kullandığınız zaman, interfaceleri herhangi bir implementasyon ayrıntısına maruz
bırakmayın. Depoda boş kalan bir ayrıntıyı sağlayan bir UserAccountInterfaceiniz neden olsun
ki?

Bölüm 16 - SOLID Nesne Tasarımı 22

3 - Tip denetimi kodunuzu gözetleyin.

Belirli tipler üzerinde farklı işler yapan kod yazdığınız zaman, Liskov ikame ilkesini bozabilirsiniz
(ve büyük ihtimalle diğer birkaç SOLID ilkesini).

Aşağıdaki kodu ele alın:

1 class PluginManager {

2 protected $plugins; // plugins dizisi

3

4 public function add(PluginInterface $plugin)

5 {

6 if ($plugin instanceof SessionHandler)

7 {

8 // Sadece kullanıcı giriş yapmışsa ekle.

9 if (! Auth::check())

10 {

11 return;

12 }

13 }

14 $this->plugins[] = $plugin;

15 }

16 }

Bu kod parçasında yanlış olan nedir? Bu, Liskov ilkesini ihlal etmektedir çünkü yapılan iş nesne
tipine bağlı olarak değişmektedir. Bu yeterli bir kod parçasıdır ve küçük bir uygulamada, getting
stuff done ruhuyla, onu gösterdiğim için mutluyum.

Fakat… bir add() metodu ne eklendiği hakkında neden bilgi alsın ki. Eğer düşünürseniz, add() bir
parça kontrol ucubesi oluyor. Derin bir nefes almanız ve kontrolü bırakmanız gerekir. (Hmmm,
Inversion of Control)

Interface Ayrımı İlkesi

SOLID’deki ‘I’, Interface Ayrımı İlkesini ifade eder. Interface Ayrımı der ki:

“Hiçbir istemci kullanmadığı metodlara bağlı olmaya zorlanamaz.”

Düz ifade edersek şişkin interface’leriniz olmasın demektir. Eğer interface’lerinizde “Tek Bir Sorum-
luluk İlkesine” uyuyorsanız, o zaman bu genellikle bir sorun değildir.

Burada tasarlayacağımız uygulama küçük bir uygulama olacaktır ve bu ilke büyük ihtimalle çok
fazla uygulanmayacaktır. Uygulamanız daha büyük bir hale geldiği zaman Interface Ayrımı daha
önemli hale gelir.

Bölüm 16 - SOLID Nesne Tasarımı 23

Bu ilke sıklıkla sürücüler tarafından ihlal edilir. Diyelim ki bir cache sürücünüz var. En basitleş-
tirilmiş haliyle, bir cache gerçekte bir veri değeri için geçici depodan başka bir şey değildir. Bu
nedenle bir save() veya put() metodu ve bunlara karşılık gelen bir load() veya get() metodu
gerekli olacaktır. Fakat çoğu keresinde olan, ekstra davullar ve zurnalar olmasını isteyen ve şuna
benzer bir interface tasarlayacak bir tasarımcıdır:

1 interface CacheInterface {

2 public function put($key, $value, $expires);

3 public function get($key);

4 public function clear($key);

5 public function clearAll();

6 public function getLastAccess($key);

7 public function getNumHits($key);

8 public function callBobForSomeCash();

9 }

Varsayalım ki, bu cache’yi implemente edeceğiz ve depomuz ona imkan vermediği için getLastAccess()
metodunu implemente etmemizin imkansız olduğunu fark ettik. Benzer şekilde, getNumHits() de
problemlidir. Ve biz callBobForSomeCash() hakkında hiçbir ipucuna sahip değiliz. Kim bu Bob
denen adam? Ve çağıran birine nakit verir mi? Bu interface’i implemente ederken sadece istisna
fırlatmaya karar veririz.

1 class StupidCache implements CacheInterface {

2 public function put($key, $value, $expires) { ... }

3 public function get($key) { ... }

4 public function clear($key) { ... }

5 public function clearAll() { ... }

6 public function getLastAccess($key)

7 {

8 throw new BadMethodCallException('implemente edilmedi');

9 }

10 public function getNumHits($key)

11 {

12 throw new BadMethodCallException('implemente edilmedi');

13 }

14 public function callBobForSomeCache()

15 {

16 throw new BadMethodCallException('implemente edilmedi');

17 }

18 }

Ugh. Çirkin değil mi?

İşte Interface Ayrımı İlkesi. Bunun yerine şöyle daha küçük interfaceler oluşturmalısınız:

Bölüm 16 - SOLID Nesne Tasarımı 24

1 interface CacheInterface {

2 public function put($key, $value, $expires);

3 public function get($key);

4 public function clear($key);

5 public function clearAll();

6 }

7 interface CacheTrackableInterface {

8 public function getLastAccess($key);

9 public function getNumHits($key);

10 }

11 interface CacheFromBobInterface {

12 public function callBobForSomeCash();

13 }

Mantıklı, değil mi?

Bağımlılığı Tersine Çevirme İlkesi

SOLID’deki son ‘D’ Dependency Inversion Principle (Bağımlılığı Tersine Çevirme İlkesi) demektir.
Bu, iki şey söyler:

“A. Yüksek düzeyli modüller düşük düzeyli modüllere dayandırılamaz. Her ikisi de
soyutlamalara dayanmalıdır.”

“B. Soyutlamalar ayrıntılara dayandırılamaz. Ayrıntılar soyutlamalara bağımlı olmalı-
dır.”

Harika, peki ne anlama geliyor?

Yüksek Düzeyli
Yüksek düzeyli kod genellikle daha karmaşıktır ve düşük düzeyli kodun işlevselliğine dayanır.

Düşük Düzeyli
Düşük düzeyli kod dosya sistemlerine erişme veya bir veritabanını yönetme gibi temel,
odaklanmış operasyonlar yapar.

Düşük düzey ile yüksek düzey arasında bir yelpaze vardır. Örneğin, ben oturum yönetimini düşük
düzeyli kod olarak kabul ederim. Ama oturum yönetimi oturum depolaması için başka düşük düzeyli
koda dayanır.

Yüksek düzey ve düşük düzeyi bir diğeriyle ilişkisi bağlamında düşünmek yararlıdır. Oturum
yönetimi bir kullanıcının giriş yapması gibi uygulamaya özgü işlevsellikten kesinlikle daha düşüktür,
ancak session yönetimi veritabanı erişim katmanı için daha yüksek düzeydir.

Bölüm 16 - SOLID Nesne Tasarımı 25

Şöyle diyen insanlar duydum … “Oh, Bağımlılık inversiyonu, Inversion of Controlu implemente
ettiğinizde olan şeydir.” veya “Hayır. Bağımlılık enjeksiyonu neyse Bağımlılık inversiyonu da odur.”
Her iki cevap da kısmen doğrudur, çünkü her iki cevap Bağımlılık İnversiyonunu implemente
edebilir.

Bağımlılığı Tersine Çevirme İlkesi sınıf bağımlılığının ayrık tutulması tekniklerinden biri olarak
daha iyi ifade edilir. Ayrık tutmakla, hem yüksek düzeyli mantık hem de düşük düzeyli nesne
birbirine doğrudan dayanmazlar, bunun yerine soyutlamalara dayanırlar.

PHP dünyasında… Bağımlılığı Tersine Çevirme en iyi ne şekilde elde edilir? Tahmin ettiğiniz gibi:
interfaceler.

Tüm bu tasarım ilkelerinin birlikte nasıl çalıştığı ilginç değil mi? Ve bu ilkelerin nasıl PHP’nin en
kullanılmayan yapısıyla (interface) oyuna katıldıkları?

..

Bağımlılığı Tersine Çevirmenin Basit Kuralı
Yüksek düzeyli kod kullanan nesneleriniz her zaman interfaceler yoluyla olsun. Ve düşük düzeyli
kod interfaceleri implemente ediyorsa, bu ilkeyi uyguluyorsunuz demektir.

Bir Örnek

Kullanıcı kimlik doğrulaması iyi bir örnektir. En yüksek düzeyde olan, bir kullanıcının kimliğini
doğrulayan koddur.

1 <?php

2 interface UserInterface {

3 public function getPassword();

4 }

5

6 interface UserAuthRepositoryInterface {

7 /**

8 * $username'den UserInterface döndür

9 */

10 public function fetchByUsername($username);

11 }

12

13 class UserAuth {

14 protected $repository;

15

16 /**

Bölüm 16 - SOLID Nesne Tasarımı 26

17 * Repository bağımlılığı enjekte ediyor

18 */

19 public function __construct(UserAuthRepositoryInterface $repo)

20 {

21 $this->repository = $repo;

22 }

23

24 /**

25 * Eğer $username ve $password geçerli ise true döndürür

26 */

27 public function isValid($username, $password)

28 {

29 $user = $this->repository->fetchByUsername($username);

30 if ($user and $user->getPassword() == $password)

31 {

32 return true;

33 }

34 return false;

35 }

36 }

37 ?>

Yani, UserAuthRepositoryInterface ve UserInterface soyutlamalarına dayanan yüksek düzeyli
UserAuth sınıfımız var. Şimdi, bu iki soyutlamanın implemente edilmesi oldukça basittir.

1 <?php

2 class User extends Eloquent implements UserInterface {

3 public function getPassword()

4 {

5 return $this->password;

6 }

7 }

8 class EloquentUserRepository implements UserAuthRepositoryInterface {

9 public function fetchByUsername($username)

10 {

11 return User::where('username', '=', $username)->first();

12 }

13 }

14 ?>

Limon sıkmak kadar kolay.

Şimdi, UserAuth sınıfını kullanmak için onu EloquentUserRepository ile inşa edebiliriz veya onu
otomatik olarak enjekte etmesi için interface’i EloquentUserRepository sınıfına bağlayabiliriz.

Bölüm 16 - SOLID Nesne Tasarımı 27

Bu bölümde kullanılan kimlik doğrulama örneğini Laravel’in Auth facade’ı ile karıştır-
mayın. Bunlar sadece ilkeyi gösteren örneklerdir. Laravel’in implementasyonu, bunlara
benzemekle birlikte, çok daha iyidir.

Örneği kontrol ettiğiniz için
teşekkürler

Umarım ondan zevk aldınız.

Aslında, Getting Stuff Done with Laravel¹⁹ üzerine tıklamaktan ve geri kalan bölümlerine yatırım
yapmaktan hoşlanacağınızı umuyorum.

¹⁹https://leanpub.com/gsd-laravel-tr

https://leanpub.com/gsd-laravel-tr
https://leanpub.com/gsd-laravel-tr

	İçindekiler
	Teşekkürler
	Revizyon Geçmişi
	Özel bir teşekkür

	Örnek Sürüm Hakkında
	Ücretli Sürümün İçeriği

	Hoş Geldiniz
	Bölüm 1 - Bu kitabın amacı
	Bu kitapta neler yoktur
	Bu kitapta neler vardır

	Bölüm 2 - Siz kimsiniz?
	Bölüm 3 - Ben kimim?
	Çevirenin Notu

	Bölüm 4 - Laravel Nedir?
	Bölüm 5 - Laravel nasıl savunulur
	Bölüm 6 - Programcılar Laravel'i Neden Sever
	Bölüm 7 - Wordpress: İyi, Kötü ve Çirkin
	Bölüm 8 - Bu Kitapta Kullanılan Düzenler
	Ben hangi işletim sistemi kullanıyorum?

	Kısım 1 - Tasarım Felsefeleri ve İlkeleri
	Bölüm 16 - SOLID Nesne Tasarımı
	Tek Bir Sorumluluk İlkesi
	Açık/Kapalı İlkesi
	Liskov İkame İlkesi
	Interface Ayrımı İlkesi
	Bağımlılığı Tersine Çevirme İlkesi

	Örneği kontrol ettiğiniz için teşekkürler

