


Groovy Goodness Notebook
Experience the Groovy programming language through code
snippets

Hubert A. Klein Ikkink (mrhaki)

This book is for sale at http: / /leanpub.com /groovy-goodness-notebook

This version was published on 2023-04-19

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the
right book and build traction once you do.

© 2012 - 2023 Hubert A. Klein Ikkink (mrhaki)


http://leanpub.com/groovy-goodness-notebook
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!

Please help Hubert A. Klein Ikkink (mrhaki) by spreading the word about this book on
Twitter!

The suggested tweet for this book is:

I just bought Groovy Goodness Notebook with Groovy Goodness blog posts bundled into
one book. #groovy @mrhaki

The suggested hashtag for this book is #groovygoodnessnotebook.

Find out what other people are saying about the book by clicking on this link to search
for this hashtag on Twitter:

#groovygoodnessnotebook


http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20Groovy%20Goodness%20Notebook%20with%20Groovy%20Goodness%20blog%20posts%20bundled%20into%20one%20book.%20%23groovy%20@mrhaki
https://twitter.com/intent/tweet?text=I%20just%20bought%20Groovy%20Goodness%20Notebook%20with%20Groovy%20Goodness%20blog%20posts%20bundled%20into%20one%20book.%20%23groovy%20@mrhaki
https://twitter.com/search?q=%23groovygoodnessnotebook
https://twitter.com/search?q=%23groovygoodnessnotebook

Also By Hubert A. Klein Ikkink (mrhaki)

Grails Goodness Notebook
Gradle Goodness Notebook
Spocklight Notebook

Awesome Asciidoctor Notebook

Ratpacked Notebook


https://leanpub.com/u/mrhaki
https://leanpub.com/grails-goodness-notebook
https://leanpub.com/gradle-goodness-notebook
https://leanpub.com/spockframeworknotebook
https://leanpub.com/awesomeasciidoctornotebook
https://leanpub.com/ratpacked-notebook

This book is dedicated to my lovely family. I love you.



Contents

Strings. . . . . . .
Turn Methodsinto Closures. . . . . ... ... . . . i 1
New Dollar Slashy Strings . . . ... ... ... 2
Get to Know More Abouta GString . . . .......... ... .. ... .. ... 2
Checkif StringisaNumber . . .. ... ... ... . . . . . . . . . 3
What Character Are You? . ........ ... ... ... 3
Access Strings with Subscript Operator . . .. ........... .. ... .. ..... 4
Capitalize Strings. . . . . . . .. 4
Uncapitalize Strings . . . . . . ... 4
Base64 Encoding . . . . . . . . ... 5
Check if a String Only Contains Whitespaces. . . ... .................. 5
Convert StringtoBoolean . . . ... ... ... . . .. 5
Padding Strings . . . . . . . .. 6
Working with Linesin Strings . . . . .. ... .. . . . . . 7
Getting Parts Of A String Enclosed By Strings . . .. ................... 8
Using the replaceAll Methods from String . . . .. ..................... 9
Replace Characters in a String with CollectReplacements . .............. 10
Text Translation . . ... ... ... 10
Remove PartsofaString . . . . ... ... . ... 1
Remove Part of String With Regular Expression Pattern. . . .. ............ 1
Taking Or Dropping Number Of Characters From A String . . ... .......... 12
Splitting Strings . . . . . . . .. 12
Get Unique CharactersinaString . . . .. ... ... . . . . . .. ... ... ... 13
Partial Matches . . . . .. ... . . 13
Transform StringintoEnum . . .. ... ... . . . 14
String Continuation . . . . ... ... 14
Strip Leading Spaces from Lines . . . .. ... ... ... ... 14
Strip Leading Spaces from Lines with Margin . ... ................... 15
Formatted Strings with sprintf . . . ... .. ... ... . ... .. 16
Expand or Unexpand Space or Tab Delimited Text . .. ................. 16
Normalize and Denormalize Linefeeds and Carriage Returns . . ... ... ... .. 17
Base64 URL and Filename Safe Encoding . . ........................ 18
Calculate MD5 And SHAHash Values . . .. ......... ... ... .. ....... 18
Converting Byte Arrayto Hex String . . ... ....... ... ... .. ......... 19
GStringasWritable . .. ... ... 20
Closure as Writable . . .. ... ... . . 20

Maps . . . . 22
Checkif Mapsare Equal .. ... ... ... . . . . . . . . . . 22

SortingaMap . . . ... e 22



CONTENTS

TurnalistintoaMap. ... ... .. e 22
Complex Keysin Maps . .. ... . 23
Useinject MethodonaMap. .. ...... ... ... ... . . . ... .. 23
Intersect Maps . . . . . .. 24
Subtracting Map Entries . . . . ... ... ... 24
Process Map EntriesinReverse . .. ... .. ... ... ... . ... . ... . ... 25
Gettinga Submap fromaMap ... ... .. . ... 25
Grouping Map Elements . . . . ... ... . 25
Get Value from MaporaDefaultValue . . . .. ... ... ... ......... 26
Map with Default Values . . . ... ... .. . . . . . 27
Determine Min and Max EntriesinaMap . . ... .......... .. ......... 27
Represent Map AS String . . . . . . . .. o 28

Turn AMap Or List As String ToMap Or List . . .. .............. ... ... 28



Strings

Turn Methods into Closures

Groovy supports closures and they are very useful when we create Groovy applications.
For example we can pass closures as arguments to methods to execute them. We can
create closures ourselves, but we can also convert a method to a closure with the .&
operator. And we can use the converted method just like a normal closure. Because Groovy
can use Java objects we can also convert a Java method into a closure.

Let’s start with a simple Java class:

public class JavaObject {

public static void javaSays(final String s) {
System.out.println("Java says: Hello " + s + "I");
}

}

With the following script we use this Java class and convert the javaSays method to a
closure:

// Simple list with names.
def names = ['groovy', 'grails', 'mrhaki']

// Simple closure.
names.each { println 'Normal closure says: Hello ' + it + '!' }

// Groovy method to convert to closure.
def groovySays(s) {
"Groovy says: Hello ${s}!"
}
// Use .& syntax to convert method to closure.
names.each(this.&groovySays)

// Convert Java method to closure and use it.

def javaSays = JavaObject.&javaSays
names.each javaSays

If we run this script we get the following output:



Strings 2

Normal closure says: Hello groovy!
Normal closure says: Hello grails!
Normal closure says: Hello mrhaki!
Groovy says: Hello groovy!

Groovy says: Hello grails!

Groovy says: Hello mrhaki!

Java says: Hello groovy!

Java says: Hello grails!

Java says: Hello mrhaki!

Original post written on August 19, 2009

New Dollar Slashy Strings

Groovy already has a lot of ways to define a String value, and with Groovy 1.8 we have
another one: the dollar slashy String. This is closely related to the slashy String definition
we already knew (which also can be multi-line by the way, added in Groovy 1.8), but with
different escaping rules. We don’t have to escape a slash if we use the dollar slashy String
format, which we would have to do otherwise.

def source = 'Read more about "Groovy" at http://mrhaki.blogspot.com/'

// 'Normal' slashy String, we need to escape / with \/
def regexp = /.*¥"(.*)".*\/(.*)\//

def matcher = source =~ regexp
assert matcher[0][1] == 'Groovy'
assert matcher[0][2] == 'mrhaki.blogspot.com'

// Dollar slash String.
def regexpDollar = $/.*"(.*)".*/(.*)//$

def matcherDollar = source =~ regexpDollar
assert matcherDollar[0][1] == 'Groovy'
assert matcherDollar[0][2] == 'mrhaki.blogspot.com'

def multiline = $/
Also multilines
are supported.

/%

Original post written on April 27, 2011

Get to Know More About a GString

One of Groovy’s great features is the GString. With the GString we can write strings
containing expressions that are evaluated. We create a GString if our string is inside double
quotes. We can found out information about the expressions in our GString with some
simple methods and properties:


https://blog.mrhaki.com/2009/08/groovy-goodness-turn-methods-into.html
https://blog.mrhaki.com/2011/04/groovy-goodness-new-dollar-slashy.html

Strings 3

def user = 'mrhaki'
def language = 'Groovy'

def s = "Hello ${user}, welcome to ${language}."

assert 2 == s.valueCount

assert ['mrhaki', 'Groovy'] == s.values

assert 'mrhaki' == s.getValue(0)

assert 'Groovy' == s.getValue(1l)

assert 32 == s.length()

assert 'Hello ' == s.strings[0]

assert ', welcome to ' == s.strings[1]

assert '.' == s.strings[2]

assert 'Hello mrhaki, welcome to Groovy.' == s

Original post written on July 14, 2010

Check if String is a Number

Groovy adds several methods to the String class to see if the string value is a number. We
can check for all kind of number type like Integer, Double, BigDecimal and more.

assert '42'.isNumber()
assert '42'.isInteger() && '42'.islong() && '42'.isBigInteger()
assert '42.42'.isDouble() && /42.42/.isBigDecimal() && '42.42'.isFloat()

Original post written on January 3, 2010

What Character Are You?

Groovy adds a couple of methods to the Character class to determine of the character is a
letter, digit, whitespace, upper- or lowercase.

def str = 'alcB \n.9'
def characters = str.chars // Convert to char[]

assert characters[0].isLetter() // 'a'
assert characters[1].isDigit() // '1'
assert characters[2].isLowerCase() // 'c
assert characters[3].isUpperCase() // 'B'
assert characters[4].isWhitespace() // ' '
assert characters[5].isWhitespace() // '\n'
assert !characters[6].isLetterOrDigit() // '.
assert characters[7].isLetterOrDigit() // '9'

Original post written on December 29, 2009


https://blog.mrhaki.com/2010/07/groovy-goodness-get-to-know-more-about.html
https://blog.mrhaki.com/2010/01/groovy-goodness-check-if-string-is.html
https://blog.mrhaki.com/2009/12/groovy-goodness-what-character-are-you.html

Strings 4

Access Strings with Subscript Operator

Groovy adds alot of support to the String class. The getAt method is added and that means
we can use the subscript operator ([]) to access parts of a String.

def s = 'Accessing Strings in Groovy is easy.'
assert 'A' == s[0]

assert 'A' == s.getAt(0)

assert 'Groovy' == s[21..26] // We can use ranges.

assert 'easy.' == s[s.index0f('ea')..-1]

// We can also use each method on a String.
s[21..26].each { println "$it-" } // Output: G-r-o0-o0-v-y-

Original post written on October 31, 2009

Capitalize Strings

Groovy 1.7.3 adds the capitalize() method to the String class. This will capitalize the first
letter of the String:

assert 'MrHaki' == 'mrHaki'.capitalize()
assert 'Groovy' == 'groovy'.capitalize()
assert 'Groovy is Gr8!' == 'groovy is Gr8!'.capitalize()

Original post written on June 14, 2010

Uncapitalize Strings

Since Groovy 2.4.8 we can use the uncapitalize method on CharSequence objects. The
capitalize method was already available for a long time, but now we have the opposite
as well.

In the following example we see that the uncapitalize method only replaces the first letter
of a String value to lower case:

assert 'Groovy'.uncapitalize() == 'groovy'
assert 'MrHaki'.uncapitalize() == 'mrHaki'
String message = 'Groovy Rocks!'

assert message.uncapitalize() == 'groovy Rocks!'
Written with Groovy 2.4.8.

Original post written on January 16, 2017


https://blog.mrhaki.com/2009/10/groovy-goodness-access-strings-with.html
https://blog.mrhaki.com/2010/06/groovy-goodness-capitalize-strings.html
https://blog.mrhaki.com/2017/01/groovy-goodness-uncapitalize-strings.html

Strings 5

Base64 Encoding

The byte[] and String classes in Groovy’s GDK have methods to Base64 encode and decode
Strings.

def s = 'Argh, Groovy you say, mate?'

String encoded = s.bytes.encodeBase64().toString()
assert 'QXJnaCwgR3Jvb3Z5IHlvdSBzYXksIGlhdGU/' == encoded

byte[] decoded = encoded.decodeBase64()
assert s == new String(decoded)

Run this script on Groovy web console.

Original post written on November 4, 2009

Check if a String Only Contains Whitespaces

In Groovy we can check if a String value only contains whitespaces with the isAllwhites-
pace () method. The method checks for spaces, but also takes into account tab and newline
characters as whitespace.

assert ''.allWhitespace
assert ' '.allWhitespace
assert '\t '.allWhitespace
assert ' \r\n '.allWhitespace

assert !'mrhaki'.allWhitespace

Original post written on September 9, 2013

Convert String to Boolean

Groovy adds the toBoolean() method to the String class. If the value of the string is true, 1
or y the result is true, otherwise it is false.

assert "y".toBoolean()

assert 'TRUE'.toBoolean()
assert ' trUe '.toBoolean()
assert " y".toBoolean()
assert "1".toBoolean()

assert ! 'other'.toBoolean()
assert ! '0'.toBoolean()
assert ! 'no'.toBoolean()
assert ! ' FalSe'.toBoolean()

Original post written on November 13, 2009


https://groovyconsole.appspot.com/view.groovy?id=35001
https://blog.mrhaki.com/2009/11/groovy-goodness-base64-encoding.html
https://blog.mrhaki.com/2013/09/groovy-goodness-check-if-string-only.html
https://blog.mrhaki.com/2009/11/groovy-goodness-convert-string-to.html

Strings 6
Padding Strings

Groovy extends the String class with a couple of padding methods. These methods allows
us to define a fixed width a String value must occupy. If the String itself is less than the
fixed width then the space is padded with spaces or any other character or String we
define. We can pad to the left or the right of the String or both left and right and put the
String in the center.

These methods are especially useful when we create Groovy scripts that run on the
console and we want to format some output.

assert ' Groovy ' == 'Groovy'.center(12)

assert 'Groovy ' == "Groovy".padRight(12)

assert ' Groovy' == /Groovy/.padLeft(12)

assert '---Groovy---' == "Groovy".center(12, '-'")

assert 'Groovy * * *' == "Groovy".padRight(12, ' *')

assert 'Groovy Groovy Groovy' == 'Groovy'.padLeft(20, 'Groovy ')

def createOutput = {

def table = [
// Page, Response time, Size
['pagel.html', 200, 12017,
['page2.html’, 42, 88531,
['page3.html', 98, 3432],
['paged4.html', 432, 9081]

def total = { data, index ->

data.inject(0) { result, row -> result += row[index] }
}
def totalTime
def totalSize

total.curry(table, 1)
total.curry(table, 2)

def out = new StringBuffer()

out << ' Summary '.center(15, "*") << '\n\n'

out << 'Total pages:'.padRight(25)

out << table.size().toString().padLeft(6) << '\n'
out << 'Total response time (ms):'.padRight(25)
out << totalTime().toString().padLeft(6) << '\n'
out << 'Total size (KB):'.padRight(25)

out << totalSize().toString().padLeft(6) << '\n\n'

out << ' Details '.center(15, "*") << '\n\n'
table.each {
out << it[0].padRight(14)
out << it[1l].toString().padLeft(5)
out << it[2].toString().padLeft(8)
out << '\n'
}
out.toString()

assert '''\



Strings 7

**x Summary ***

Total pages: 4
Total response time (ms): 772
Total size (KB): 22567

*** Details ***

pagel.html 200 1201
page2.html 42 8853
page3.html 98 3432
page4.html 432 9081

""" == createQutput()

Original post written on September 20, 2009

Working with Lines in Strings

In Groovy we can create multiline strings, which contain line separators. But we can also
read text from an file containing line separators. The Groovy String GDK contains method
to work with strings that contain line separators. We can loop through the string line by
line, or we can do split on each line. We can even convert the line separators to the platform
specific line separators with the denormalize() method or linefeeds with the normalize()
method.

def multiline = '''\
Groovy is closely related to Java,
so it is quite easy to make a transition.

// eachLine takes a closure with one argument, that
// contains the complete line.
multiline.eachLine {
if (it =~ /Groovy/) {
println it // Output: Groovy is closely related to Java,

// or eachLine has a closure with two argument, the current line
// and the line count.
multiline.eachLine { line, count ->
if (count == 0) {
println "line $count: $line" // Output: line 0: Groovy is closely related to Java,

def platformLinefeeds = multiline.denormalize()
def linefeeds = multiline.normalize()

// Read all lines and convert to list.
def list = multiline.readlLines()
assert list instanceof ArraylList


https://blog.mrhaki.com/2009/09/groovy-goodness-padding-strings.html

Strings 8

assert 2 == list.size()
assert 'Groovy is closely related to Java,' == list[0]

def records = """\
mrhaki\tGroovy
hubert\tJava

// splitEachLine will split each line with the specified
// separator. The closure has one argument, the list of
// elements separated by the separator.
records.splitEachLine('\t') { items ->

println items[0] + " likes " + items[1]
}
// Output:
// mrhaki likes Groovy
// hubert likes Java

Run this script in Groovy web console.

Original post written on November 1, 2009

Getting Parts Of A String Enclosed By Strings

Groovy 3 adds the takeBetween method to the String class. With this method we can get all
the characters that are enclosed by string values. We can specify one enclosed string value
and then all text between the the first occurrence of the string and the second occurrence
is returned. If multiple parts are enclosed by the string values we can also specify which
occurrence we want. If the text is enclosed by different string values we can use a variant
of takeBetween that takes two string values to indicate the boundaries of the text we want.
Also with two different enclosed string values we can use an argument to get the n-th
occurrence of the string that is found.\ Since Groovy 3 we can also use takeBefore and
takeAfter to get the string before or after a given string value. All three methods will return
an empty string if no text can be found.

In the following example we use the takeBefore, takeAfter and takeBetween methods with
different arguments:

def text = 'Just saying: "Groovy is gr8!"'

// Return all characters before the first quote.

assert text.takeBefore('"') == 'Just saying: '

// Return everything after the colon.

assert text.takeAfter(': ') == '"Groovy is gr8!"'
// Return everything between two quotes.

assert text.takeBetween('"') == 'Groovy is gr8!'
// Return text between is and !.

assert text.takeBetween('is', '!') == ' gr8'

// When no value can be found
// an empty string is returned.
assert text.takeBefore('?') ==


https://groovyconsole.appspot.com/view.groovy?id=34005
https://blog.mrhaki.com/2009/11/groovy-goodness-working-with-lines-in.html

Strings

assert text.takeAfter('Java') == "'
assert text.takeBetween('-') == "'
assert text.takeBetween('[', '/') == "'

def sample = 'JVM languages are "Groovy", "Clojure", "Java".'
assert sample.takeBetween('"') == 'Groovy'
// We can also specify which occurrence we
// want for a text between same strings.

assert sample.takeBetween('"', 0) == 'Groovy'
assert sample.takeBetween('"', 1) == 'Clojure'
assert sample.takeBetween('"', 2) == 'Java'
def users = "Users: [mrhaki], [hubert]"

assert users.takeBetween('[', ']') == 'mrhaki'

// We can also specify which occurrence we
// want for a text between to strings.

assert users.takeBetween('[', ']', 0) == 'mrhaki'
assert users.takeBetween('[', ']', 1) == 'hubert'
// When no occurrence an empty string is returned.
assert users.takeBetween('[', ']', 2) == "'
Written with Groovy 3.0.2.

Original post written on March 11, 2020

Using the replaceAll Methods from String

Groovy adds two extra replaceAll methods to the String class. First we can pass a

Pattern instead of a String argument with replaceAll(Pattern, String)

. And with the

other method we can use a closure to replace a value found with replaceAll(String,

Closure).

def s = "Programming with Groovy is fun!"

assert "Programming with Groovy rocks!" == s.replaceAll(~/is fun!/, "rocks!")
String.

assert "Programming with Groovy is awesome." == s.replaceAll("fun!", "awesome.
replaceAll.

// Replace found String with result of closure.
def replaced = s.replaceAll(/fun/) {
def list = ['awesome', 'cool', ‘'okay'l]
list[new Random().nextInt(list.size())]
}
assert [
"Programming with Groovy is awesome!",
"Programming with Groovy is cool!",
"Programming with Groovy is okay!"
].contains(replaced)

// Groovy extension to \

") // java.lang.String.\


https://blog.mrhaki.com/2020/03/groovy-goodness-getting-parts-of-string.html
https://groovy.codehaus.org/groovy-jdk/java/lang/String.html

Strings 10

// Use closure to replace text and use grouping.
// First closure parameter is complete string and following
// parameters are the groups.
def txt = "Generated on 30-10-2009 with Groovy."
def replacedTxt = txt.replaceAll(/.*(\d{2}-\d{2}-\d{4}).*(Gr.*)./) { all, date, lang ->
def dateObj = Date.parse('dd-MM-yyyy', date)
"The text '$all' was created with $lang on a ${dateObj.format('EEEE')}."
}
assert "The text 'Generated on 30-10-2009 with Groovy.' was created with Groovy on a Friday." == repla\
cedTxt

Original post written on October 22, 2009

Replace Characters in a String with CollectReplacements

We can use the collectReplacements(Closure) method to replace characters in a String.
We pass a closure to the method and the closure is invoked for each character in the
String value. If we return null the character is not transformed, otherwise we can return
the replacement character.

def s = 'GrOOvy is gr8'

def replacement = {

// Change 8 to eat

if (it == '8') {
‘eat’

// Change 0 to o

} else if (it == '0') {
o

// Do not transform

} else {
null
}
}
assert s.collectReplacements(replacement) == 'Groovy is great'

Code written with Groovy 2.1.6
Original post written on September 6, 2013

Text Translation

In Groovy 1.7.3 the tr() method is added to the String class. With this method we can do
translations in String values. We define a source set of characters that need to be replaced
by a replacement set of characters. We can also use a regular expression style (remember
it is not a real regular expression) to define a range of characters.

If the replacement set is smaller than the source set, than the last character of the
replacement set is used for the remaining source set characters.


https://blog.mrhaki.com/2009/10/groovy-goodness-using-replaceall.html
https://blog.mrhaki.com/2013/09/groovy-goodness-replace-characters-in.html

Strings 1

// Source set and replacement set are equal size.
assert 'I 10v3 9r00vy' == 'I love Groovy'.tr('loeG', '1039')

// Regular expression style range
assert 'mrHAKI' == 'mrhaki'.tr('a-k', 'A-K')

// Replacement set is smaller than source set.

assert 'Gr8888' == 'Groovy'.tr('ovy', '8")

Original post written on June 15, 2010

Remove Parts of a String

Groovy has added the minus () method to the String class. And because the minus () method
is used by the - operator we can remove parts of a String with this operator. The argument
can be a String or a regular expression Pattern. The first occurrence of the String or
Pattern is then removed from the original String.

def s = 'Groovy and Strings are fun and versatile.'

assert 'Groovy and Strings are fun' == s - and versatile.'
assert 'Groovy and Strings are fun.' == s.minus(" and versatile")
assert 'Groovy Strings are fun and versatile.' == s - ~/\b\w{3}\b/

Original post written on November 2, 2009

Remove Part of String With Regular Expression Pattern

Since Groovy 2.2 we can subtract a part of a String value using a regular expression pattern.
The first match found is replaced with an empty String. In the following sample code we
see how the first match of the pattern is removed from the String:

// Define regex pattern to find words starting with gr (case-insensitive).
def wordStartsWithGr = ~/(?1)\s+Gr\w+/

assert ('Hello Groovy world!' - wordStartsWithGr) == 'Hello world!'

assert ('Hi Grails users' - wordStartsWithGr) == 'Hi users'

// Remove first match of a word with 5 characters.
assert ('Remove first match of 5 letter word' - ~/\b\w{5}\b/) == 'Remove match of 5 letter word'

// Remove first found numbers followed by a whitespace character.
assert ('Line contains 20 characters' - ~/\d+\s+/) == 'Line contains characters'

Code written with Groovy 2.2.

Original post written on November 18, 2013


https://blog.mrhaki.com/2010/06/groovy-goodness-text-translation.html
https://blog.mrhaki.com/2009/11/groovy-goodness-remove-parts-of-string.html
https://blog.mrhaki.com/2013/11/groovy-goodness-remove-part-of-string.html

Strings 12

Taking Or Dropping Number Of Characters From A String

Groovy adds a lot of methods to the Java String class. For example we can use the take
method to get a certain number of characters from the start of a string value. With the drop
method we remove a given number of characters from the start of the string. In Groovy
3 we can now also take and drop a certain number of characters from the end of a string
using the methods takeRight and dropRight.

In the following example we see how we can use the methods:

def s = "Groovy rocks!"

// Drop first 7 characters.
assert s.drop(7) == "rocks!"

// Drop last 7 characters.
assert s.dropRight(7) == "Groovy"

// Take first 6 characters.
assert s.take(6) == "Groovy"

// Take last 6 characters.
assert s.takeRight(6) == "rocks!"

Written with Groovy 3.0.2.
Original post written on March 10, 2020

Splitting Strings

In Java we can use the split() method of the String class or the StringTokenizer class
to split strings. Groovy adds the methods split() and tokenize() to the String class, so
we can invoke them directly on a string. The split() method return a String[] instance
and the tokenize() method return a List. There is also a difference in the argument we
can pass to the methods. The split() method takes a regular expression string and the
tokenize () method will use all characters as delimiter.

def s = """\
username; language, like
mrhaki,Groovy;yes

assert s.split() instanceof String[]

assert ['username;language,like', 'mrhaki,Groovy;yes'] == s.split() // Default split on whitespace. (\
\t\n\r\f)

assert ['username', 'language', 'like', 'mrhaki', 'Groovy', 'yes'] == s.split(/(;|,|\n)/) // Split ar\
gument is a regular expression.

def result = []
s.splitEachLine(",") {


https://blog.mrhaki.com/2020/03/groovy-goodness-taking-or-dropping.html

Strings 13

result << it // it is list with result of split on ,

}
assert ['username;language', 'like'] == result[0]
assert ['mrhaki', 'Groovy;yes'] == result[1l]

assert s.tokenize() instanceof List

assert ['username;language,like', 'mrhaki,Groovy;yes'] == s.tokenize() // Default tokenize on whitesp\
ace. ( \t\n\nr\f)
assert ['username', 'language', 'like', 'mrhaki', 'Groovy', 'yes'] == s.tokenize("\n;,") // Argument \

is a String with all tokens we want to tokenize on.

Run script on Groovy web console.

Original post written on November 5, 2009

Get Unique Characters in a String

Groovy adds the toSet() method to the String class in version 1.8. With this method we
get a Set of unique String values from the original String value.

String s = 'Groovy is gr8!'

assert s.toSet().sort().join() == 18Ggiorsvy'

Original post written on April 27, 2011

Partial Matches

Groovy 2.0 adds the matchesPartially() method to the Matcher class. This method returns
true if a String value matches the pattern or if it matches the first part of the pattern. So
with the matchesPartially() we get the result true if a String value or a longer String value
matches the pattern.

def identification = /[A-Z]1{2}\-\d{3,5}/

def matcher = 'AB-1234' =~ identification
assert matcher.matchesPartially()

matcher = 'XY-90' =~ identification
assert matcher.matchesPartially()

matcher = 'HA' =~ identification
assert matcher.matchesPartially()

matcher = 'A-431' =~ identification
assert Imatcher.matchesPartially()

matcher = 'YK-901201' =~ identification
assert Imatcher.matchesPartially()

Original post written on June 28, 2012


https://groovyconsole.appspot.com/view.groovy?id=34003
https://blog.mrhaki.com/2009/11/groovy-goodness-splitting-strings.html
https://blog.mrhaki.com/2011/04/groovy-goodness-get-unique-characters.html
https://blog.mrhaki.com/2012/06/groovy-goodness-partial-matches.html

Strings 14

Transform String into Enum

After reading Groovy, State of the Union - Groovy Grails eXchange 2010 by Guillaume
Laforge I discovered that in Groovy 1.7.6 we can transform a String into a Enum value. We
can use type coersion or the as keyword to turn a String or GString into a corresponding
Enum value (if possible).

enum Compass {
NORTH, EAST, SOUTH, WEST
}

// Coersion with as keyword.
def north = 'NORTH' as Compass
assert north == Compass.NORTH

// Coersion by type.
Compass south = 'south'.toUpperCase()
assert south == Compass.SOUTH

def result = ['EA', 'WE'].collect {
// Coersion of GString to Enum.
"${it}ST" as Compass

}
assert result[0] == Compass.EAST
assert result[1l] == Compass.WEST

Original post written on December 16, 2010

String Continuation

Groovy makes writing concise code easy,. We can use the continuation character (\) in a
String to split up the definition over multiple lines.

def name ='mrhaki'
def s = "This is not a multiline\
String, $name, but the continuation\

character (\\) makes it more readable."

assert 'This is not a multiline String, mrhaki, but the continuation character (\\) makes it more read\
able.' == s

Original post written on November 29, 2010

Strip Leading Spaces from Lines

Multiline strings are very useful in Groovy. But sometimes they can mess up our code
formatting especially if we want to use the multiline string’s value literally. If our lines
cannot start with spaces we must define our multiline string that way:


https://www.slideshare.net/glaforge/groovy-state-of-the-union-groovy-grails-exchange-2010-guillaume-laforge-6190839
https://www.slideshare.net/glaforge/groovy-state-of-the-union-groovy-grails-exchange-2010-guillaume-laforge-6190839
https://blog.mrhaki.com/2010/12/groovy-goodness-transform-string-into.html
https://blog.mrhaki.com/2010/11/groovy-goodness-string-continuation.html

Strings 15

class Simple {

String multi() {
"I\
Multiline string
with simple 2 space
indentation.'"'

}

// Now in Groovy 1.7.3:
String multil73() {
T\
Multiline string
with simple 2 space
indentation.'''.stripIndent()

Since Groovy 1.7.3 we can strip leading spaces from such lines, so we can align the
definition of our multiline string the way we want with the stripIndent() method. Groovy
finds the line with the least spaces to determine how many spaces must be removed from
the beginning of the line. Or we can tell the stripIndent() method how many characters
must be removed from the beginning of the line.

def multi = '''\
Multiline string
with simple 2 space
indentation."'"'

assert '''\
Multiline string
with simple 2 space

indentation.''' == multi.stripIndent()

assert '''\

ine string

imple 2 space

ation.''' == multi.stripIndent(8) // We can define the number of characters ourselves as well.

Original post written on June 14, 2010

Strip Leading Spaces from Lines with Margin

Since Groovy 1.7.3 we can use the stripMargin() method to strip characters up to and
including a margin character from multiline strings. The default character is the pipe
symbol (), but we can pass a parameter to the method and use a custom character.


https://blog.mrhaki.com/2010/06/groovy-goodness-strip-leading-spaces.html

Strings
def s = """\
|Groovy
|Grails
|Griffon'"'
assert '''\
Groovy
Grails
Griffon''' == s.stripMargin()
def s1 = ''"'\
* Gradle
* GPars
* Spock' "'
assert '''\
Gradle
GPars
Spock''' == sl.stripMargin("* ")

Original post written on June 20, 2010

Formatted Strings with sprintf

16

Groovy adds the sprintf() method to the Object class. This means we can use the method
in all of the classes, because it is defined at the top of the hierarchy. The sprintf() method
uses the Java Formatter syntax to format values. We get a String as a result from the

method.
assert 'Groovy is cool!' == sprintf(
assert '00042' == sprintf('%05d', 42)

Original post written on December 11, 2009

Expand or Unexpand Space or Tab Delimited Text

'%2%$s %3%$s %1$s', ['cool!',

Groovy 1.7.3 adds new functionality to the String class. For example we can use the
expand () method to expand tabs in a String to spaces with a default tab stop size of 8.

We can use a parameter to use a different tab stop size. But we can also go the other way

around.

So if we have a tabular text based on spaces we can convert the String to a tab separated
String. Here the default tab stop size is also 8, but we can use the parameter to define a

different tab stop size.


https://blog.mrhaki.com/2010/06/groovy-goodness-strip-leading-spaces_20.html
https://groovy.codehaus.org/groovy-jdk/java/lang/Object.html
https://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html
https://blog.mrhaki.com/2009/12/groovy-goodness-formatted-strings-with.html

Strings 17

// Simple ruler to display 0 up to 30
def ruler = (0..30).inject('\n') { result, c ->
result += (c % 10)

def stringWithTabs = 'Groovy\tGrails\tGriffon'

println ruler
println stringWithTabs.expand() // default tab stop is 8
println stringWithTabs.expand(10) // tab stop is 10

// Output:

// 0123456789012345678901234567890
// Groovy Grails Griffon

/ /Groovy Grails Griffon

assert 'Groovy Grails Griffon' == stringWithTabs.expand()
assert 'Groovy Grails Griffon' == stringWithTabs.expand(10)

def stringWithSpaces = 'Hubert Klein Ikkink'

def stringWithSpacesl0 = 'Hubert Klein Ikkink'
println ruler

println stringWithSpaces

println stringWithSpaces10

// Output:
// 0123456789012345678901234567890
// Hubert Klein Ikkink

// Hubert Klein ITkkink
assert 'Hubert\tKlein\tIkkink' == stringWithSpaces.unexpand()
assert 'Hubert\tKlein\tIkkink' == stringWithSpacesl0.unexpand(10)

Original post written on June 14, 2010

Normalize and Denormalize Linefeeds and Carriage Returns

Each platform where we can run Java and Groovy applications has different line separators.
Groovy adds two methods to the String class to convert the specific platform line
separator to linefeeds and vica versa.

def text = 'First line\r\nSecond line\r\n'
def textNormalized = text.normalize()
def platformLineSeparator = System.properties['line.separator']

assert 'First line\nSecond line\n' == textNormalized
assert "First line${platformLineSeparator}Second line${platformLineSeparator}" == textNormalized.denor\
malize()

Original post written on January 2, 2010


https://blog.mrhaki.com/2010/06/groovy-goodness-expand-or-unexpand.html
https://blog.mrhaki.com/2010/01/groovy-goodness-normalize-and.html

Strings 18

Base64 URL and Filename Safe Encoding

Groovy supported Base64 encoding for a long time. Since Groovy 2.5.0 we can also
use Base64 URL and Filename Safe encoding to encode a byte array with the method
encodeBase64Url. The result is a Writable object. We can invoke the toString method on
the Writable object to get a String value. An encoded String value can be decoded using
the same encoding with the method decodeBase64Ur1 that is added to the String class.

In the following example Groovy code we encode and decode a byte array:

import static java.nio.charset.StandardCharsets.UTF 8
def message = 'Groovy rocks!'

// Get bytes array for String using UTF8.
def messageBytes = message.getBytes(UTF 8)

// Encode using Base64 URL and Filename encoding.
def messageBase64Url = messageBytes.encodeBase64Url().toString()

// Encode using Base64 URL and Filename encoding with padding.
def messageBase64UrlPad = messageBytes.encodeBase64Url(true).toString()

assert messageBase64Url == 'R3Jvb3Z5IHIvY2tzIQ'
assert messageBase64UrlPad == 'R3Jvb3Z5IHJIvY2tzIQ=="

// Decode the String values.

assert new String(messageBase64Url.decodeBase64Url()) == 'Groovy rocks!'
assert new String(messageBase64UrlPad.decodeBase64Url()) == 'Groovy rocks!'
Written with Groovy 2.5.0.

Original post written on June 11, 2018

Calculate MD5 And SHA Hash Values

Groovy adds a lot of useful methods to the String class. Since Groovy 2.5.0 we can even
calculate MD5 and SHA hash values using the methods md5 and digest. The md5 method
create a hash value using the MD5 algorithm. The digest method accepts the name of the
algorithm as value. These values are dependent on the available algorithms on our Java
platform. For example the algorithms MD2, MD5, SHA-1, SHA-256, SHA-384 and SHA-512
are by default available.

In the next example we use the md5 and digest methods on a String value:


https://blog.mrhaki.com/2018/06/groovy-goodness-base64-url-and-filename.html

Strings 19

def value = 'IamASecret'
def md5 = value.md5()

// We can provide hash algorithm with digest method.
def md2 = value.digest('MD2')

def shal = value.digest('SHA-1')

def sha256 = value.digest('SHA-256")

assert md5 == 'a5f3147c¢32785421718513f38a20ca44"’

assert md2 == '832cbe3966e€186194b1203c00ef47488'

assert shal == '52ebfed118e0a411e9d9cbd60636fc9dea718928"

assert sha256 == '4f5e3d486d1fd6c822a8laalb93d884a2a44daf2eb69ac779a91bc76de512che’

Written with Groovy 2.5.0.
Original post written on June 12, 2018

Converting Byte Array to Hex String

To convertabyte[] array toaString we can Simply use the new String(byte[]) constructor.
But if the array contains non-printable bytes we don't get a good representation. In Groovy
we can use the method encodeHex () to transform a byte[] array to a hex String value. The
byte elements are converted to their hexadecimal equivalents.

final byte[] printable = [109, 114, 104, 97, 107, 105]

// array with non-printable bytes 6, 27 (ACK, ESC)
final byte[] nonprintable = [109, 114, 6, 27, 104, 97, 107, 105]

assert new String(printable) == 'mrhaki'
assert new String(nonprintable) != 'mr haki'

// encodeHex () returns a Writable

final Writable printableHex = printable.encodeHex()

assert printableHex.toString() == '6d7268616b69"'

final nonprintableHex = nonprintable.encodeHex().toString()
assert nonprintableHex == '6d72061b68616b69'

// Convert back
assert nonprintableHex.decodeHex() == nonprintable

Code written with Groovy 2.2.1
Original post written on April 3, 2014


https://blog.mrhaki.com/2018/06/groovy-goodness-calculate-md5-and-sha.html
https://blog.mrhaki.com/2014/04/groovy-goodness-converting-byte-array.html

Strings 20

GString as Writable

The Groovy API has the interface Writable. Classes that implement this interface are
capable of writing their selves to a java.io.Writer object. The interface has one method
writeTo() where the code is that writes the contents to a given Writer instance. Most
implementations will also use the implementation of the writeTo() method in their
toString() implementation.

The GString implementation in Groovy also implements the Writable interface. This means
we can redirect the GString contents to some Writer instance if we want to. In the
following code we use a FileWriter to write the contents of a GString to a file:

def data = [
new Expando(id: 1, user: 'mrhaki', country: 'The Netherlands'),
new Expando(id: 2, user: 'hubert', country: 'The Netherlands'),

]

data.each { userData ->
new File("${userData.id}.txt").withWriter('UTF-8') { fileWriter ->
// Use writeTo method on GString to save
// result in a file.
"User $userData.user lives in $userData.country".writeTo(fileWriter)

}
}
assert new File('l.txt').text == 'User mrhaki lives in The Netherlands'
assert new File('2.txt').text == 'User hubert lives in The Netherlands'

Code written with Groovy 2.2.2
Original post written on April 4, 2014

Closure as Writable

In a previous post we learned about the Writable interface and how the GString implemen-
tation implements this interface. In Groovy we can also use a closure as an implementation
of the Writable interface. The Closure class has the method asWritable() that will return a
version of the closure with an implementation of the writeTo() method. The Writer object
that is used as an argument for the writeTo() method will be passed as argument to the
closure. The asWritable() method also adds a toString() implementation for the closure
to return the result of a closure as a String.

In the following code we write a sample make() method. The make() method return a
Writable closure. The closure is only executed when the writeTo() or toString() method
is invoked.


https://groovy.codehaus.org/api/groovy/lang/Writable.html
https://blog.mrhaki.com/2014/04/groovy-goodness-gstring-as-writable.html

Strings

Writable make(Map binding = [:], Closure template) {
// Use asWritable() to make the closure
// implement the Writable interface.
def writableTemplate = template.asWritable()

// Assing binding map as delegate so we can access
// the keys of the maps as properties in the

// closure context.

writableTemplate.delegate = binding

// Return closure as Writable.
writableTemplate

// Use toString() of Writable closure.
assert make { Writer out -> out << "Hello world!" }.toString() == 'Hello world!'

// Provide data for the binding.

// The closure is not executed when the

// make method is finished.

final writable = make(user:'mrhaki', { out ->
out.println "Welcome ${user},"
out.print "Today on ${new Date(year: 114, month: 3, date: 4).format('dd-MM-yyyy')}, "
out.println "we have a Groovy party!"

})

// We invoke toString() and now the closure
// is executed.
final result = writable.toString()

assert result == '''Welcome mrhaki,
Today on 04-04-2014, we have a Groovy party!

// Append contents to a file.

// NOTE: The leftShift (<<) operator on File is implemented
// in Groovy to use the File.append() method.

// The append() method creates a new Writer and

// invokes the write() method which

// is re-implemented in Groovy if the argument

// is a Writable object. Then the writeTo() method

// 1is invoked:

// Writer.write(Writable) becomes Writable.writeTo(Writer).
// So a lot of Groovy magic allows us to use the following one-liner
// and still the writeTo() method is used on Writable.

new File('welcome.txt') << writable

assert new File('welcome.txt').text == '''Welcome mrhaki,
Today on 04-04-2014, we have a Groovy party!

Code written with Groovy 2.2.2
Original post written on April 4, 2014

21


https://blog.mrhaki.com/2014/04/groovy-goodness-closure-as-writable.html

Maps

Check if Maps are Equal

With Groovy 1.8 the equals() method is added to Map. This means we can check if maps
are equals. They are equals if both maps have the same size, and keys and values are the
same.

def mapl = [user: 'mrhaki', likes: 'Groovy', age: 37]
def map2 = [age: 37.0, likes: 'Groovy', user: 'mrhaki']
def map3 = [user: 'Hubert Klein Ikkink', likes: 'Groovy']

assert mapl.equals(map2)

assert mapl == map2
assert Imapl.equals(map3)
assert map2 != map3

Original post written on April 27, 2011

Sorting a Map

Maps don't have an order for the elements, but we may want to sort the entries in the map.
Since Groovy 1.7.2 we can use the sort() method which uses the natural ordering of the
keys to sort the entries. Or we can pass a Comparator to the sort() method to define our
own sorting algorithm for the keys.

def m = [sort: 'asc', name: 'test', paginate: true, max: 100]

def expectedKeys = ['max', 'name', 'paginate', 'sort']
assert expectedKeys == m.sort()*.key // Since 1.7.2
assert expectedKeys == m.sort( { k1, k2 -> k1l <=> k2 } as Comparator )*.key // Since 1.7.2

// Sorting before Groovy 1.7.2
assert expectedKeys == new TreeMap(m)*.key
assert expectedKeys == m.sort { el, e2 -> el.key <=> e2.key }*.key // Sort by closure.

Original post written on April 20, 2010

Turn a List into a Map

With Groovy we can use the values of an Object array and transform them to a map with
the toSpreadMap () method. The array must have an even number of elements, because the
odd elements are the keys for the new map and the even numbers are the values for the
keys. The SpreadMap object, which now contains the keys and values, is an immutable map,
so we cannot change the contents once we have created the map.


https://blog.mrhaki.com/2011/04/groovy-goodness-check-if-maps-are-equal.html
https://blog.mrhaki.com/2010/04/groovy-goodness-sorting-map.html

Maps 23

def list = ['key', 'value', 'name', 'mrhaki'] as Object[]
def map = list.toSpreadMap()

assert 2 == map.size()
assert 'value' == map.key
assert 'mrhaki' == map['name']

Original post written on January 4, 2010

Complex Keys in Maps

In Groovy we can use non-string keys for maps. We only have to place parenthesis around
the key to make it work. This way we can use variables and types like Date and Boolean as
keys for our map. When we use parenthesis around the key when using the . notation the
key is converted to a String, otherwise the key is not converted and keeps it type.

def key = 100 // Variable to be used a key.
def m = [

(new Date(109, 11, 1)): 'date key',
(-42): 'negative number key',
(false): 'boolean key',
(key): 'variable key'

1

m.(true) = 'boolean key' // Key is converted to String.
m.(2 + 2) = 'number key'

m[(key + 1)1 = 'number key' // Key keeps to be Integer.

assert 'date key' == m[new Date(109, 11, 1)]

assert 'negative number key' == m.get(-42)

assert 'boolean key' == m[(false)]

assert 'variable key' == m[100]

assert 'variable key' == m.getAt(key)

assert 'boolean key' == m['true'] // Key is String so we can use it to get the value.
assert 'number key' == m.'4'

assert 'number key' == m.get(101)

Original post written on November 7, 2009

Use inject Method on a Map

The inject() method is since Groovy 1.8.1 also available for Map objects. The closure
arguments accepts two or three arguments. With the three-argument variant we get the
key and value separately as arguments. Otherwise we get a map entry as closure argument.


https://blog.mrhaki.com/2010/01/groovy-goodness-turn-list-into-map.html
https://blog.mrhaki.com/2009/11/groovy-goodness-complex-keys-in-maps.html

Maps 24

// 3-argument closure with key, value.

def m = [user: 'mrhaki', likes: 'Groovy']

def sentence = m.inject('Message: ') { s, k, v ->
s += "${k == 'likes' ? 'loves' : k} $v "

assert sentence.trim() == 'Message: user mrhaki loves Groovy'
// 2-argument closure with entry.

def map = [sort: 'name', order: 'desc']

def equalSizeKeyValue = map.inject([]) { list, entry ->

list << (entry.key.size() == entry.value.size())

}

assert equalSizeKeyValue == [true, false]

Original post written on September 27, 2011

Intersect Maps

Since Groovy 1.7.4 we can intersect two maps and get a resulting map with only the entries
found in both maps.

def ml = [a: 'Groovy', b: 'rocks', c: 'I']
def m2 = [a: 'Groovy', b: 'rocks', c: '?', d: 'Yes!']
assert [a: 'Groovy', b: 'rocks'] == ml.intersect(m2)

assert [1: 1.0, 2: 2] == [1: 1.0, 2: 2].intersect([1: 1, 2: 2.0])

Original post written on August 9, 2010

Subtracting Map Entries

Groovy 1.7.4 adds the minus() method to the Map class. The result is a new map with the
entries of the map minus the same entries from the second map.

def ml [user: 'mrhaki', age: 37]
def m2 = [user: 'mrhaki', name: 'Hubert']
def m3 [user: 'Hubert', age: 37]

assert [age: 37] == ml - m2
assert [user: 'mrhaki'] == ml - m3

Original post written on August 9, 2010


https://blog.mrhaki.com/2011/09/groovy-goodness-use-inject-method-on.html
https://blog.mrhaki.com/2010/08/groovy-goodness-intersect-maps.html
https://blog.mrhaki.com/2010/08/groovy-goodness-subtracting-map-entries.html

Maps 25

Process Map Entries in Reverse

Since Groovy 1.7.2 we can loop through a Map in reverse with the reversetach(). The order
in which the content is processed is not guaranteed with a Map. If we use a TreeMap the
natural ordering of the keys of the map is used.

def reversed = [:]
[a: 1, c: 3, b: 2].reversekEach { key, value ->
reversed[key] = value ** 2

assert [b: 4, c: 9, a: 1] == reversed

// TreeMap uses natural ordering of keys, so
// reverseEach starts with key 'c'.
def tree = [a: 10, c: 30, b: 20] as TreeMap
def reversedMap = [:]
tree.reverseEach {
reversedMap[it.key] = it.value * 2
}
assert [c: 60, b: 40, a: 20] == reversedMap

Original post written on August 24, 2010

Getting a Submap from a Map

To get only a subset of a map we can use the subMap () method. We provide a list of keys as
parameter to define which elements from the map we want returned.

def map = [name: 'mrhaki', country: 'The Netherlands', blog: true, languages: ['Groovy', 'Java'll]

def keys = ['name', 'blog']
assert [name: 'mrhaki', blog: true] == map.subMap(keys)

def booleanKeys = map.findAll { it.value instanceof Boolean }.collect { it.key }
assert [blog: true] == map.subMap(booleanKeys)

def words ['a': 'Apple', 'j': 'Java', 'g': 'Groovy', 'c': 'Cool']

def range 'c'..'h' // Range is also a list and can be used here.

def rangeWords = words.subMap(range).findAll{ it.value }

// words.subMap(range) returns [c:Cool, d:null, e:null, f:null, g:Groovy, h:null]
// so we use the findAll method to filter out all null values.

assert ['c': 'Cool', 'g': 'Groovy'] == rangeWords

Original post written on October 29, 2009

Grouping Map Elements

In a previous Groovy Goodness post we learned how to use the groupBy method on
collections. The Map class has an extra method: groupEntriesBy. We must provide a closure


https://blog.mrhaki.com/2010/08/groovy-goodness-proces-map-entries-in.html
https://blog.mrhaki.com/2009/10/groovy-goodness-getting-submap-from-map.html

Maps 26

for this method to define how we want the elements of the map to be grouped. The result
is a new Map with keys and a list of Map$Entry objects for each key. This is different from
the result of the groupBy method. Because then we get a Map with keys and a Map for each
key.

// A simple map.
def m = [ql: 'Groovy', sort: 'desc', g2: 'Grails']

// Closure we use to define the grouping.
// We want all keys starting with 'q' grouped together
// with the key 'params', all other keys are not grouped.
def groupIlt = { key, value ->
if (key.startsWith('q')) {
'params’
} else {
key

// Use groupEntriesBy.

def groupEntries = m.groupEntriesBy(groupIt)

assert 2 == groupEntries.size()

assert groupEntries.params & groupEntries.sort

assert 'desc' == groupEntries.sort[0].value // Key for a list of Map$Entry objects.
assert 2 == groupEntries.params.size()

assert 'Groovy' == groupEntries.params[0].value

assert 'gql' == groupEntries.params[0].key

assert 'Grails' == groupEntries.params.find { it.key == 'q2' }.value
assert groupEntries.params instanceof ArraylList

assert groupEntries.params[0] instanceof Map$Entry

// Use groupBy.

def group = m.groupBy(groupIt)

assert 2 == group.size()

assert group.params & group.sort

assert 'desc' == group.sort.sort // Key for Map with key/value pairs.
assert 2 == group.params.size()

assert 'Groovy' == group.params.ql

assert 'ql' == group.params.keySet().toArray()[0]
assert 'Grails' == group.params.q2

assert group.params instanceof Map

assert group.params.gl instanceof String

Original post written on October 14, 2009

Get Value from Map or a Default Value

The get () method in the Groovy enhanced Map interface accepts two parameters. The first
parameter is the name of the key we want to get a value for. And the second parameter is
the default value if there is no value for the key.


https://blog.mrhaki.com/2009/10/groovy-goodness-grouping-map-elements.html

Maps 27

// Simple map.
def m = [name: 'mrhaki', language: 'Groovy']

assert 'mrhaki' == m.getAt('name')

assert 'mrhaki' == m['name']

assert 'Groovy' == m.language

assert 'mrhaki' == m."name"

assert 'mrhaki' == m.get('name') // We can omit the default value if we know the key exists.
assert 'Groovy' == m.get('language', 'Java')

assert null == m.get('expression') // Non-existing key in map.

assert 'rocks' == m.get('expression', 'rocks') // Use default value, this also creates the key/value \
pair in the map.

assert 'rocks' == m.get('expression')

assert [name: 'mrhaki', language: 'Groovy', expression: 'rocks'] ==m

Run this script in Groovy web console.

Original post written on November 3, 2009

Map with Default Values

In Groovy we can create a map and use the withDefault() method with a closure to define
default values for keys that are not yet in the map. The value for the key is then added to
the map, so next time we can get the value from the map.

def m = [start: 'one'].withDefault { key ->

key.isNumber() ? 42 : 'Groovy rocks!'
}
assert 'one' == m.start
assert 42 == m['1']
assert 'Groovy rocks!' == m['I say']
assert 3 == m.size()

// We can still assign our own values to keys of course:
m['mrhaki'] = 'Hubert Klein Ikkink'

assert 'Hubert Klein Ikkink' == m.mrhaki

assert 4 == m.size()

Original post written on July 14, 2010

Determine Min and Max Entries in a Map

Since Groovy 1.7.6 we can use the min() and max() methods on a Map. We use a closure to
define the condition for a minimum or maximum value. If we use two parameters in the
closure we must do a classic comparison. We return a negative value if the first parameters
is less than the second, zero if they are both equal, or a positive value if the first parameter
is greater than the second parameter. If we use a single parameter we can return a value
that is used as Comparable for determining the maximum or minimum entry in the Map.


https://groovyconsole.appspot.com/view.groovy?id=34004
https://blog.mrhaki.com/2009/11/groovy-goodness-get-value-from-map-or.html
https://blog.mrhaki.com/2010/07/groovy-goodness-map-with-default-values.html

Maps 28

def money = [cents: 5, dime: 2, quarter: 3]

// Determine max entry.
assert money.max { it.value }.value ==
assert money.max { it.key }.key == 'quarter' // Use String comparison for key.
assert money.max { a, b ->
a.key.size() <=> b.key.size()
}.key == 'quarter' // Use Comparator and compare key size.

// Determine min entry.
assert money.min { it.value }.value ==
assert money.min { it.key }.key == 'cents' // Use String comparison for key.
assert money.min { a, b ->
a.key.size() <=> b.key.size()
}.key == 'dime' // Use Comparator and compare key size.

Original post written on December 16, 2010

Represent Map As String

Groovy adds to Map objects the toMapString method. With this method we can have a String
representation of our Map. We can specify an argument for the maximum width of the
generated String. Groovy will make sure at least the key/value pairs are added as a pair,
before adding three dots (.. .) if the maximum size is exceeded.

def course = [
name: 'Groovy 101',
teacher: 'mrhaki',
location: 'The Netherlands']

assert course.toMapString(15) == '[name:Groovy 101, ...]'
assert course.toMapString(25) == '[name:Groovy 101, teacher:mrhaki, ...]'

As mentioned in a previous post we can use the toListString method to represent a List
as a String:

def names = ['mrhaki', 'hubert']
assert names.tolListString(5) == '[mrhaki, ...]'
Written with Groovy 2.4.7.

Original post written on June 21, 2016

Turn A Map Or List As String To Map Or List

In a previous post we learned how to use the toListString or toMapString methods. With
these methods we create a String representation of a List or Map object. With a bit of
Groovy code we can take such a String object and turn it into a List or Map again.


https://blog.mrhaki.com/2010/12/groovy-goodness-determine-min-and-max.html
https://blog.mrhaki.com/2016/06/groovy-goodness-represent-map-as-string.html

Maps

In the following code snippet we turn the String value [abc,

with three items:

// Original List with three items.
def original = ['abc', 123, 'Groovy rocks!']

// Create a String representation:
// [abc, 123, Groovy rocks!]
def listAsString = original.tolListString()

// Take the String value between

// the [ and 1 brackets, then

// split on , to create a List

// with values.

def list = listAsString[l..-2].split(', ')

assert list.size() ==

assert list[0] == 'abc'
assert list[1] == '123' // String value
assert list[2] == 'Groovy rocks!'

29

123, Groovy rocks!]toalist

We can do something similar for a String value representing a map structure:

// Original Map structure.
def original = [name: 'mrhaki', age: 42]

// Turn map into String representation:
// [name:mrhaki, age:42]
def mapAsString = original.toMapString()

def map =
// Take the String value between
// the [ and ] brackets.
mapAsString[1l..-2]
// Split on , to get a List.
split(', ')
// Each list item is transformed
// to a Map entry with key/value.
.collectEntries { entry ->
def pair = entry.split(':")
[(pair.first()): pair.last()]

assert map.size() ==

assert map.name == 'mrhaki'’
assert map.age == '42'
Written with Groovy 2.4.7.

Original post written on June 22, 2016


https://blog.mrhaki.com/2016/06/groovy-goodness-turn-map-or-list-as.html

	Table of Contents
	Strings
	Turn Methods into Closures
	New Dollar Slashy Strings
	Get to Know More About a GString
	Check if String is a Number
	What Character Are You?
	Access Strings with Subscript Operator
	Capitalize Strings
	Uncapitalize Strings
	Base64 Encoding
	Check if a String Only Contains Whitespaces
	Convert String to Boolean
	Padding Strings
	Working with Lines in Strings
	Getting Parts Of A String Enclosed By Strings
	Using the replaceAll Methods from String
	Replace Characters in a String with CollectReplacements
	Text Translation
	Remove Parts of a String
	Remove Part of String With Regular Expression Pattern
	Taking Or Dropping Number Of Characters From A String
	Splitting Strings
	Get Unique Characters in a String
	Partial Matches
	Transform String into Enum
	String Continuation
	Strip Leading Spaces from Lines
	Strip Leading Spaces from Lines with Margin
	Formatted Strings with sprintf
	Expand or Unexpand Space or Tab Delimited Text
	Normalize and Denormalize Linefeeds and Carriage Returns
	Base64 URL and Filename Safe Encoding
	Calculate MD5 And SHA Hash Values
	Converting Byte Array to Hex String
	GString as Writable
	Closure as Writable

	Maps
	Check if Maps are Equal
	Sorting a Map
	Turn a List into a Map
	Complex Keys in Maps
	Use inject Method on a Map
	Intersect Maps
	Subtracting Map Entries
	Process Map Entries in Reverse
	Getting a Submap from a Map
	Grouping Map Elements
	Get Value from Map or a Default Value
	Map with Default Values
	Determine Min and Max Entries in a Map
	Represent Map As String
	Turn A Map Or List As String To Map Or List


