

Graylog
Log Management with Graylog, Elasticsearch,
MongoDB, Nginx, Fluentd, Vagrant and Docker

Jorge Acetozi

This book is for sale at http://leanpub.com/graylog

This version was published on 2018-03-25

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2017 - 2018 Jorge Acetozi

http://leanpub.com/graylog
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Jorge Acetozi by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought Graylog Book

The suggested hashtag for this book is #graylogbook.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#graylogbook

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20Graylog%20Book
https://twitter.com/search?q=%23graylogbook
https://twitter.com/search?q=%23graylogbook

Also By Jorge Acetozi
Continuous Delivery for Java Apps

http://leanpub.com/u/jorgeacetozi
http://leanpub.com/continuous-delivery-for-java-apps

Contents

About the Author . i

Introduction . 1

Why do I need a Centralized Logging System Like Graylog? 2

Hands-on Introduction to Graylog . 5
Graylog Components . 6
Set up Graylog using Vagrant and Docker 8
Inputs . 14
Forwarding VM Logs using Rsyslog . 20

Appendices . 30

Introduction to Docker . 31

Difference Between Container and Image 33

About the Author
Jorge Acetozi is a software engineer who spends almost his whole day having fun
with things such as AWS, Kubernetes, Docker, Terraform, Ansible, Cassandra, Redis,
Elasticsearch, Graylog, New Relic, Sensu, Elastic Stack, Fluentd, RabbitMQ, Kafka,
Java, Spring, and much more! He loves deploying applications in production while
thousands of users are online, monitoring the infrastructure, and acting quickly when
monitoring tools decide to challenge his heart’s health!

Author’s Books

You can reach him at:

• Web site1

1https://www.jorgeacetozi.com

https://www.jorgeacetozi.com/
https://www.jorgeacetozi.com/

About the Author ii

• This Book’s web site2

• GitHub3

• LinkedIn4

• Facebook5

• Twitter6

• Medium7

2https://www.graylogbook.com
3https://github.com/jorgeacetozi
4https://www.linkedin.com/in/jorgeacetozi
5https://www.facebook.com/jorgeacetozi
6https://twitter.com/jorgeacetozi
7https://medium.com/jorgeacetozi

https://www.graylogbook.com/
https://github.com/jorgeacetozi
https://www.linkedin.com/in/jorgeacetozi
https://www.facebook.com/jorgeacetozi
https://twitter.com/jorgeacetozi
https://medium.com/jorgeacetozi
https://www.graylogbook.com/
https://github.com/jorgeacetozi
https://www.linkedin.com/in/jorgeacetozi
https://www.facebook.com/jorgeacetozi
https://twitter.com/jorgeacetozi
https://medium.com/jorgeacetozi

Introduction

Development is Development. Production is Production. Typically, in order to
deploy a new feature to production, the new code written is manually tested (by
developers and sometimes a QA team) and automated tested (unit, integration, ac-
ceptance, performance, smoke, security tests) against several different environments
like development and staging before eventually landing on production. Basically,
all this process is done to ensure that when the release candidate is ready to be
deployed to production, the team has a significant level of confidence that the code
actually works as intended.

Well, although I wrote a 600-pages book called Continuous Delivery for Java Apps:
Build a CD Pipeline Step by Step Using Kubernetes, Docker, Vagrant, Jenkins, Spring,
Maven and Artifactory8 guiding the reader on how to implement all these steps and
much more in practice using top-notch technologies and deployment strategies like
Canary Release, I have a little secret to confess: most of the steps of a continuous
delivery pipeline actually take place in controlled environments (internal networks,
predictable traffic, and so on), and as I mentioned at the beginning of this section:
development is development and production is production. Many things can (and
I bet they will) go wrong in production, especially if your application is accessible
on the Internet.When something crashes, guess who is your best friend? That’s
right: Logs.

8https://leanpub.com/continuous-delivery-for-java-apps

https://leanpub.com/continuous-delivery-for-java-apps
https://leanpub.com/continuous-delivery-for-java-apps
https://leanpub.com/continuous-delivery-for-java-apps
https://leanpub.com/continuous-delivery-for-java-apps

Why do I need a Centralized
Logging System Like Graylog?
Suppose that your application is designed on top of Microservices architecture9 and a
particular request goes through service A, B, and C. Each of these services run a load
balancer that spreads requests among 10 different servers running application servers
and reverse proxies (Nginx, for example). Also, these services use PostgreSQL and
Redis instances running on Amazon RDS10 and Amazon Elasticache11 respectively.

Now answer me, how can you keep track of what’s going on when something goes
wrong in this particular scenario? Are you going to ssh 10 production servers from
service A, 10 production servers from service B, 10 production servers from service
C, and for each of them use commands like tail -f logfile | grep "ERROR" for
the Nginx access.log and error.log as well as the application server logs? Don’t
forget that on top of that you would have to monitor the AWS logs for PostgreSQL
and Redis as well.

Well, I think you got the idea. The bottom line is that the traditional way of
visualizing logs (analyzing specific log files stored on the disk) doesn’t scale at all.
In fact, there are many other problems related to this traditional approach. Let’s list
out some of them:

• Security issues: you have to ssh production servers every time you want to
see the logs, and as you know, some angry system administrators that fight on
UFC for fun don’t like that for security reasons, especially if you are not an
infrastructure expert. As a result, you can get very hurt;

• Logs are streams, not files: you cannot assume that logs are being directly
stored into files on the disk for cloud-native applications that follows the 12-
Factor logging12 practices. Instead, the only guarantee you have in the cloud

9https://www.nginx.com/blog/introduction-to-microservices/
10https://aws.amazon.com/rds/
11https://aws.amazon.com/elasticache/
12https://12factor.net/logs

https://www.nginx.com/blog/introduction-to-microservices/
https://aws.amazon.com/rds/
https://aws.amazon.com/elasticache/
https://12factor.net/logs
https://12factor.net/logs
https://www.nginx.com/blog/introduction-to-microservices/
https://aws.amazon.com/rds/
https://aws.amazon.com/elasticache/
https://12factor.net/logs

Why do I need a Centralized Logging System Like Graylog? 3

is that the disk is ephemeral. Later on this book we will learn more about 12-
Factor logging practices and this will become clearer;

• Filtered content: some log entries might contain sensitive information and
must be hiddenwhile others don’t. How to control that and avoid that someone
that is directly logged into the server could see the sensitive log entries?

• Inefficiency: when something goes wrong, the time spent on logging into
many machines and greping log files one by one is probably the time that
would take to query Graylog, figure out what’s wrong and start working on
the fix.

Now, let’s list out some benefits you instantaneously get when you use Graylog as
your centralized logging system:

• Increased Security: people don’t need to have access to the production servers
as the log visualization is displayed on the beautiful Graylog Web Interface
through their preferred modern browser. Keep in mind that if you try to use
something like Internet Explorer 6, your problem is not logs, my friend!;

• Authentication and Authorization: it’s possible to manage users and roles
very easily. Actually, it’s even possible to integrate it with your existing LDAP
solution (if you have one);

• Powerful Querying Capabilities: you can use a beautiful and powerful search
syntax very close to the Apache Lucene syntax rather than relying on insanely
ugly regular expressions;

• Built-in Alerting: Graylog has a build-in alerting mechanism, so you don’t
need to be all the time worried about your applications behavior and suffering
with nightmares at night. Instead, you can define certain patterns that would
trigger an alert and then get alerted on your mobile with a graceful message
like this one: “Sorry to bother you, Mr. Jorge Acetozi, but it looks like someone
attempted to ssh your production server (IP: XXX.XXX.XXX.XXX) for 5
consecutive times in less than a minute, so I was wondering here if you could
take a look at it. By the way, your coffee is ready and waiting for you on your
desk. Thank you very much for your time!”;

• Input Everything: you don’t have to restrict the centralized logging system to
your application logs only. You can input every type of logs in it, such as the
sshd daemon in the alerting example before, operating system logs, firewall
logs… Well, pretty much everything!;

Why do I need a Centralized Logging System Like Graylog? 4

• Custom Dashboards: create custom dashboards and display them on televi-
sions spread around your company’s office;

• Geolocation: add geolocation metadata to log specific log entries (such as
Nginx access.log) so that you can visualize where the requests are coming
from;

• Reports: create reports that could even be useful on Marketing decisions, such
as the more frequently accessed pages.

Well, and the list goes on!

However, everything comes at a price.Maintaining a production infrastructure of
a centralized logging system like Graylog is neither easy nor cheap. As far as Graylog
is concerned, it relies on different tools such as Elasticsearch13 and MongoDB14

to get the work done. In production, such tools should be deployed as clusters to
allow high-availability, performance, and scalability, which of course leads to a
increased complexity of the overall solution. Hopefully, this book will provide a good
understanding of each technology involved in Graylog’s architecture in a hands-on
(and not boring) fashion so that you can get started with Graylog as soon as possible.

13https://www.elastic.co/
14https://www.mongodb.com/

https://www.elastic.co/
https://www.mongodb.com/
https://www.elastic.co/
https://www.mongodb.com/

Hands-on Introduction to
Graylog
Graylog is a powerful open-source log management platform written in Java15

that ingests logs from various sources and allows to search and visualize the logs
in a beautiful web interface. It provides many useful built-in features like user
management, alerting, custom dashboards, amazing querying capabilities, a REST
API and others (most of them are covered in this book), which makes it ideal as the
logging solution for your company (whether it’s a small or huge one).

Graylog is built on top of a master-slave architecture, which means that slaves can be
added for horizontal scalability. As we are going to learn later on this book, clustering
Graylog is pretty straightforward.

Horizontal scalability happens when you add more nodes to your cluster
of machines. Vertical scalability happens when you increase a machine’s
hardware power.

15https://github.com/Graylog2/graylog2-server

https://github.com/Graylog2/graylog2-server
https://github.com/Graylog2/graylog2-server

Hands-on Introduction to Graylog 6

Graylog Components

Basically, Graylog stores the log data in Elasticsearch, which is a powerful open-
source, RESTful, distributed search and analytics engine built on top of Apache
Lucene. Besides, Graylog also uses MongoDB, which is a document-oriented NoSQL
database16, to store configuration data such as user information, inputs and streams
configurations, and so on.

Graylog Components

So, as you can see, getting started with Graylog is as simple as setting up an instance
for Elasticsearch, MongoDB, and Graylog itself. Basically, a Graylog instance is
composed by two components:

16https://en.wikipedia.org/wiki/Document-oriented_database

https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Document-oriented_database

Hands-on Introduction to Graylog 7

• Graylog Web Interface: offers capabilities for searching and analyzing the
indexed log data and allows configuring the Graylog environment (inputs,
dashboards, etc). It communicates with the Graylog Server through the Gray-
log REST API;

• Graylog Server: encapsulates all the logic related to Graylog (a fancy way to
say “does all the hard work”) and provides the Graylog REST API.

Note that none of the log messages are ever stored in MongoDB. Thus,
MongoDB does not have a big system impact, and you won’t have
to worry too much about scaling it even though Graylog is ingesting
thousands of log messages per second. When it comes to scaling the
system, the challenges typically involve scaling Graylog and Elasticsearch.

In this section, we are not going to worry about high-availability, scalability,
performance, and others non-functional requirements (we will have the whole book
to have fun and dive into these exciting subjects). Instead, it will provide a hands-
on introduction to Graylog, showcasing some of its handy features so that you can
actually understand in practice the concept of Centralized Logging System that we
have discussed earlier. So, let’s get our hands dirty!

Hands-on Introduction to Graylog 8

Set up Graylog using Vagrant and Docker

Now that you’ve got the ebook-graylog directory on your machine, go into the
vagrant subdirectory and check its structure:

$ cd vagrant

$ tree

├── Vagrantfile-fluentd-high-availability

├── Vagrantfile-fluentd-single-instance

├── Vagrantfile-hello-world

├── Vagrantfile-without-fluentd

├── Vagrantfile-without-fluentd-nginx-contentpacks

└── conf

├── fluentd

│ ├── aggregator

│ │ └── fluentd-aggregator.conf

│ ├── forwarder

│ │ └── fluentd-forwarder.conf

│ └── single-instance

│ └── fluentd-single-instance.conf

├── graylog

│ ├── graylog-server-master

│ │ ├── graylog-contentpacks.conf

│ │ └── graylog.conf

│ ├── graylog-server-slave

│ │ ├── graylog-contentpacks.conf

│ │ └── graylog.conf

│ └── nginx

│ ├── nginx-with-fluentd.conf

│ ├── nginx-without-fluentd-contentpacks.conf

│ └── nginx-without-fluentd.conf

└── log-generator-app

└── nginx

├── nginx-fluentd-forwarder-aggregator.conf

├── nginx-fluentd-single-instance.conf

└── nginx-without-fluentd-contentpacks.conf

As you can see, there are five Vagrantfiles that we are going to use along this
book. The idea is to start very simple and evolve our architecture according to the
problems presented until we get to a really beautiful solution that is pretty much
what you would be doing in production.

Hands-on Introduction to Graylog 9

Note that in this book we are using Vagrant to orchestrate local virtual
machines and Docker containers. So, obviously, this is not a production
environment. However, the logging architecture we are going to imple-
ment and evolve throughout this book is pretty much what successful
companies are doing in production, except that instead of local virtual
machines, they run it on the cloud (most of them). Note that the concepts
still exactly the same.

For this introductory example, we are going to use the Vagrantfile-hello-world as
our Vagrantfile. By default, Vagrant will look for a file named Vagrantfile in the
current directory, so let’s instruct it to look for the file Vagrantfile-hello-world by
setting up the VAGRANT_VAGRANTFILE environment variable instead:

$ export VAGRANT_VAGRANTFILE=Vagrantfile-hello-world

Let’s check the contents of this file:

-*- mode: ruby -*-

vi: set ft=ruby :

$script = <<SCRIPT

sysctl -w vm.max_map_count=262144

SCRIPT

Vagrant.configure("2") do |config|

config.vm.box = "ubuntu/trusty64"

config.vm.define "vm_hello_world" do |helloworld|

helloworld.vm.hostname = "helloworld"

helloworld.vm.network "private_network", ip: "10.0.0.10"

helloworld.vm.provider "virtualbox" do |vb|

vb.memory = "4096"

end

helloworld.vm.provision "shell", inline: $script

helloworld.vm.provision "docker" do |d|

d.run "mongo",

image: "mongo"

Hands-on Introduction to Graylog 10

end

helloworld.vm.provision "docker" do |d|

d.run "elasticsearch",

image: "docker.elastic.co/elasticsearch/elasticsearch:5.6.8",

args: "-e 'xpack.security.enabled=false'"

end

helloworld.vm.provision "docker" do |d|

d.run "graylog",

image: "graylog/graylog:2.4.3-1",

args: "--link mongo \

--link elasticsearch \

-p 9000:9000 -p 12201:12201 -p 514:514 -p 5555:5555 \

-e 'GRAYLOG_WEB_ENDPOINT_URI=http://10.0.0.10:9000/api'"

-e 'GRAYLOG_TRANSPORT_EMAIL_ENABLED=true' \

-e 'GRAYLOG_TRANSPORT_EMAIL_HOSTNAME=AWS_SMTP_SERVER' \

-e 'GRAYLOG_TRANSPORT_EMAIL_PORT=587' \

-e 'GRAYLOG_TRANSPORT_EMAIL_USE_AUTH=true' \

-e 'GRAYLOG_TRANSPORT_EMAIL_USE_TLS=true' \

-e 'GRAYLOG_TRANSPORT_EMAIL_USE_SSL=false' \

-e 'GRAYLOG_TRANSPORT_EMAIL_AUTH_USERNAME=AWS_SMTP_USERNAME' \

-e 'GRAYLOG_TRANSPORT_EMAIL_AUTH_PASSWORD=AWS_SMTP_PASSWORD'"

end

end

end

Basically, it instructs Vagrant to:

• Set up a single VM named vm_hello_world using the ubuntu/trusty64 box;
• Configure the VM with the IP address 10.0.0.10;
• Increase the VM memory to 4GB;
• Executes the shell provisioner to increase the maximum map count check
(needed for Elasticsearch17);

• Start three Docker containers (MongoDB, Elasticsearch, and Graylog) using
the Docker provisioner18.

17https://www.elastic.co/guide/en/elasticsearch/reference/5.6/_maximum_map_count_check.html
18https://www.vagrantup.com/docs/provisioning/docker.html

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/_maximum_map_count_check.html
https://www.vagrantup.com/docs/provisioning/docker.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/_maximum_map_count_check.html
https://www.vagrantup.com/docs/provisioning/docker.html

Hands-on Introduction to Graylog 11

Note that there are a bunch commented Graylog environment variables
in the Graylog container configuration. We are going to use it later to set
up the alerting mechanism via e-mail.

Execute the vagrant up command and grab a cup of coffee while your VM is being
started:

$ vagrant up

...

==> vm_hello_world: Running provisioner: shell...

vm_hello_world: Running: inline script

vm_hello_world: vm.max_map_count = 262144

==> vm_hello_world: Running provisioner: docker...

vm_hello_world: Installing Docker onto machine...

==> vm_hello_world: Starting Docker containers...

==> vm_hello_world: -- Container: mongo

==> vm_hello_world: Running provisioner: docker...

==> vm_hello_world: Starting Docker containers...

==> vm_hello_world: -- Container: elasticsearch

==> vm_hello_world: Running provisioner: docker...

==> vm_hello_world: Starting Docker containers...

==> vm_hello_world: -- Container: graylog

Smooth! Let’s ssh the VM to see our three containers up and running:

$ vagrant ssh vm_hello_world

List the containers:

vagrant@helloworld:~$ docker container ls

CONTAINER ID CREATED NAMES

cf62bb96df30 3 minutes ago graylog

68f875c59858 4 minutes ago elasticsearch

c4c3ec17e890 6 minutes ago mongo

The docker container ls output was truncated to fit better in the book.

Let’s check that the port 9000 (Graylog Web Interface) is waiting for connections:

Hands-on Introduction to Graylog 12

vagrant@helloworld:~$ netstat -an | grep 9000

tcp6 0 0 :::9000 :::* LISTEN

Awesome! Exit the VM:

$ exit

Open your browser and navigate to http://10.0.0.10:9000. The Graylog Web
Interface should pops up with an authentication form:

Login

Congratulations, your Graylog instance is up and running! Type in admin for the
username and password fields and click on Sign In. You should see the Graylog Web
Interface starting page:

Hands-on Introduction to Graylog 13

Graylog Web Interface: Starting Page

Basically, the top bar includes:

• The menu items;
• The amount of log messages being ingested per second;
• A counter with the system notifications (in red). When a relevant event takes
place, a new notification will pop up on the top menu as shown.

Besides, a Getting Started guide is shown in the middle page, which is pretty much
what we are going through right now.

Hands-on Introduction to Graylog 14

Inputs

Back to the Graylog interface, click on the notification to see what is it about.

Notification: No Inputs Found

As you may guess, Graylog is useless if no log messages are coming in. So, before
you can start sending data to it, you have to set up the so called Inputs. Basically,
inputs are the Graylog components responsible for accepting log messages.

As you have just created your Graylog instance, there are no inputs yet. As a result,
Graylog friendly reminds you that you have to create an input if you want to start
accepting log messages.

Let’s create our first Input using the web interface. Navigate to the System -> Inputs
menu item:

Hands-on Introduction to Graylog 15

Menu: Inputs

It’s also possible to create Inputs using the REST API.

Note that we still have neither global nor local inputs configured. Select Raw/Plain-

Hands-on Introduction to Graylog 16

text TCP and click on Launch new input:

Input: Launch New Raw/Plaintext TCP Input

Let’s launch a local input, which is essentially one that runs on top of a specific
Graylog node (as we currently have just one node, it doesn’t really matters whether
it’s a global or a local input). Select the Node and give it the Title raw-tcp:

Hands-on Introduction to Graylog 17

Raw/Plaintext TCP Input Configuration

Note that it will run on port 5555. Click on Save and you should end up with the
raw-tcp input in the Running status as follows:

Hands-on Introduction to Graylog 18

Raw/Plaintext TCP Input Status: Running

Click on Show received messages so that you can visualize the log messages
received by this input. Nothing should be found as we haven’t sent anything yet:

No Messages Found

Aswe have set up a Raw/Plaintext input, let’s send a “hello world” plain-text message

Hands-on Introduction to Graylog 19

from the terminal using Netcat19:

$ echo "hello world" | nc 10.0.0.10 5555

After sending the message, if you quickly return to Graylog web interface
you will be able to see the message throughput updating to In 1 / Out
1 msg/s on the top menu, indicating that the message was received and
properly indexed in Elasticsearch.

Return to the browser and click on the green search icon:

Hello World Message

Here we go, the message was successfully received and indexed! On the left sidebar
you can select which fields you want to visualize in the main panel. Of course this
was a simple message with just few fields, but later we are going to send log messages
with lots of fields, so it’s quite helpful to have the ability to filter by field.

19https://en.wikipedia.org/wiki/Netcat

https://en.wikipedia.org/wiki/Netcat
https://en.wikipedia.org/wiki/Netcat

Hands-on Introduction to Graylog 20

Forwarding VM Logs using Rsyslog

The Syslog protocol20 is a standard for message logging. Basically, it decouples the
software that generates the logs, the system that stores them, and the software used
to visualize and analyze them (which in our case is Graylog).

Rsyslog is the newest (out of three) implementations of the Syslog protocol and it’s
available by default on a number of Unix systems and Linux distributions. Besides
implementing the Syslog protocol, it also extends its functionalities with:

• Support for buffered operation modes where messages are buffered locally if
the receiver is not ready;

• Reliable transport using TCP;
• ISO 8601 timestamp with millisecond granularity and timezone information;
• Support for TLS;

And many other relevant features.

The other two implementations are Syslog (yes, this implementation has
the same name as the protocol, so don’t get confused!) and syslog-ng.

What’s the first step we have to take in order get log messages in Graylog? That’s
correct, creating an Input! Navigate to System -> Inputs menu item, select Syslog
TCP and click on Launch new input:

Input: Launch New Syslog TCP Input

20https://tools.ietf.org/html/rfc5424

https://tools.ietf.org/html/rfc5424
https://tools.ietf.org/html/rfc5424

Hands-on Introduction to Graylog 21

Select the Node, give it the Title syslog-tcp and keep the port 514 as follows:

Syslog TCP Input: Configuration

Finally, click on Save.

Hands-on Introduction to Graylog 22

Syslog TCP Input: Failed to Launch

As you can see, the Input has failed to launch. Let’s try to figure out why is that.
First, ssh the vm_hello_world:

$ vagrant ssh vm_hello_world

Check the Graylog logs using the docker container logs command:

Hands-on Introduction to Graylog 23

vagrant@helloworld:~$ docker container logs graylog

018-02-26 20:52:46,359 ERROR: org.graylog2.shared.inputs.InputLauncher - The [org.gra\

ylog2.inputs.syslog.tcp.SyslogTCPInput] input with ID <5a94739d4cedfd0001f21f10> misf\

ired. Reason: Permission denied.

org.graylog2.plugin.inputs.MisfireException: org.graylog2.plugin.inputs.MisfireExcept\

ion: org.jboss.netty.channel.ChannelException: Failed to bind to: /0.0.0.0:514

at org.graylog2.plugin.inputs.MessageInput.launch(MessageInput.java:158) ~[graylog.j\

ar:?]

at org.graylog2.shared.inputs.InputLauncher$1.run(InputLauncher.java:84) [graylog.ja\

r:?]

at com.codahale.metrics.InstrumentedExecutorService$InstrumentedRunnable.run(Instrum\

entedExecutorService.java:176) [graylog.jar:?]

at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) [?:1.8.0_\

151]

at java.util.concurrent.FutureTask.run(FutureTask.java:266) [?:1.8.0_151]

at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [\

?:1.8.0_151]

at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [\

?:1.8.0_151]

at java.lang.Thread.run(Thread.java:748) [?:1.8.0_151]

Caused by: org.graylog2.plugin.inputs.MisfireException: org.jboss.netty.channel.Chann\

elException: Failed to bind to: /0.0.0.0:514

at org.graylog2.plugin.inputs.transports.NettyTransport.launch(NettyTransport.java:1\

55) ~[graylog.jar:?]

at org.graylog2.plugin.inputs.MessageInput.launch(MessageInput.java:155) ~[graylog.j\

ar:?]

... 7 more

Caused by: org.jboss.netty.channel.ChannelException: Failed to bind to: /0.0.0.0:514

at org.jboss.netty.bootstrap.ServerBootstrap.bind(ServerBootstrap.java:272) ~[graylo\

g.jar:?]

at org.graylog2.plugin.inputs.transports.NettyTransport.launch(NettyTransport.java:1\

41) ~[graylog.jar:?]

at org.graylog2.plugin.inputs.MessageInput.launch(MessageInput.java:155) ~[graylog.j\

ar:?]

... 7 more

Caused by: java.net.SocketException: Permission denied

at sun.nio.ch.Net.bind0(Native Method) ~[?:1.8.0_151]

at sun.nio.ch.Net.bind(Net.java:433) ~[?:1.8.0_151]

at sun.nio.ch.Net.bind(Net.java:425) ~[?:1.8.0_151]

at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:223) ~[?:1.8\

.0_151]

at sun.nio.ch.ServerSocketAdaptor.bind(ServerSocketAdaptor.java:74) ~[?:1.8.0_151]

at org.jboss.netty.channel.socket.nio.NioServerBoss$RegisterTask.run(NioServerBoss.j\

Hands-on Introduction to Graylog 24

ava:193) ~[graylog.jar:?]

at org.jboss.netty.channel.socket.nio.AbstractNioSelector.processTaskQueue(AbstractN\

ioSelector.java:391) ~[graylog.jar:?]

at org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.ja\

va:315) ~[graylog.jar:?]

at org.jboss.netty.channel.socket.nio.NioServerBoss.run(NioServerBoss.java:42) ~[gra\

ylog.jar:?]

at org.jboss.netty.util.ThreadRenamingRunnable.run(ThreadRenamingRunnable.java:108) \

~[graylog.jar:?]

at org.jboss.netty.util.internal.DeadLockProofWorker$1.run(DeadLockProofWorker.java:\

42) ~[graylog.jar:?]

... 3 more

As the exception states, we got a Permission denied error. Basically, that happened
because the ports ranging from 0-1023 are reserved for the root user. So, back to the
Graylog web interface, click onMore actions and edit the syslog-tcp input:

Syslog TCP Input: Edit

Hands-on Introduction to Graylog 25

Change the port to 12514 and save it.

Syslog TCP Input: Port 12514

The input status should change from Failed to Not Running:

Syslog TCP Input Status: Not Running

Now just click on Start Input and voila!

Hands-on Introduction to Graylog 26

Syslog TCP Input Status: Running

Click on Show Received Messages to see the incoming messages handled by our
newly created Syslog TCP Input. As we have not set up the VMRsyslog configuration
to forward log messages to Graylog, obviously there should be no messages in it yet.

Let’s set up the Rsyslog running on the VM so that it can forward the VM logs to the
Graylog instance. You should probably already be logged into the VM as we were
checking the Graylog container logs earlier, but if not, just vagrant ssh it again. Edit
the Rsyslog configuration file as sudo:

vagrant@helloworld:~$ sudo vim /etc/rsyslog.conf

Scroll down to the bottom of the file, activate the insertion mode hitting i and add
the following line in it:

. @@10.0.0.10:12514;

Basically, this line means that we want to send every log message from every facility
(*.*) using TCP as the transport protocol (@@) to server 10.0.0.10 on port 12514.

Save it (esc : wq and hit return) and restart the Rsyslog service so that the changes
take place:

vagrant@helloworld:~$ sudo service rsyslog restart

rsyslog stop/waiting

rsyslog start/running, process 5341

Return to the Graylog web interface, search for messages again and select all fields
on the left sidebar:

Hands-on Introduction to Graylog 27

VM Logs

Awesome! The VM logs are now being sent to our Graylog instance. Use the logger
shell utility to send a test message:

vagrant@helloworld:~$ logger "Graylog rocks!"

Search for messages again and click on theGraylog rocks!message to see its details:

Hands-on Introduction to Graylog 28

Message Details

Note that the facility for this message is user-level (which makes sense, doesn’t
it?) and the message was stored in Elasticsearch index graylog_0.

Now, log out the VM and log in again:

vagrant@helloworld:~$ exit

logout

Connection to 127.0.0.1 closed.

$ vagrant ssh vm_hello_world

Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-141-generic x86_64)

Return to the Graylog web interface and search for messages again. You should start
seeing security/authorization facility messages popping up:

sshd Messages

Hands-on Introduction to Graylog 29

Awesome, isn’t it? Even though some bad guy gets ssh access to your servers and try
to wipe off the trail out of the filesystem, the logs would have already been sent to
our centralized logging system!

Appendices

Introduction to Docker
Let’s forget for a while that this is a book about Graylog so that we can focus on
learning Docker.

Have you ever heard the sentence “I don’t know what is happening; it works on my
machine”?What about the famous “this versionwasworking perfectly on staging but
it’s not working on production”? One of the main reasons why these issues happen
is because environments often become different over time, especially those managed
manually. People are often installing different libraries on different versions in
different environments (which can also run different operating systems, by the way).
The result is that, for example, the staging environment is no longer a mirror from
production over time. If the staging is not a mirror from production anymore, of
course that the application running on these environments could behave different
on each environment, what leads to bugs that happen in an environment but not in
another.

In short, Docker allows you to easily run services (Graylog, Elasticsearch, MongoDB,
MySQL, Jenkins, Nginx, your own application, etc) on a machine. Docker guarantees
that these services will always be in the same state across executions, regardless of
the underlying operating system or system libraries. In other words, if your staging
environment is very different from your production environment (system libraries,
operating systems, etc) and you run an application as a Docker container on both
environments, it’s guaranteed that the application would behave exactly the same
on these environments regardless of their differences.

In my humble opinion, this is the most important benefit got from using Docker, but
there are many more:

• It’s easy to run services as Docker containers. Thus, it also helps a lot in
the development phase because you don’t have to waste time installing and
configuring tools on your operating system.

• Docker is a highly collaborative tool. You can reuse Docker images that people
build and share publicly.

Introduction to Docker 32

• It encourages the infrastructure as code model because a Docker image is
entirely described on a file called a Dockerfile that can (and should) be
versioned in the source control.

• Docker has a great community, and it’s expanding quickly.

Difference Between Container
and Image
Docker images are binary files that contain everything needed to run a specific
service. When you instantiate a service from a Docker image, you say that you create
a Docker container. As an analogy, if a Docker image is a Java class, then a Docker
container is an object. Many containers can be created from a single image.

Image vs Container

As the figure above shows, an image is like a house scheme whereas the container is
the concrete house where people actually live in.

Technically speaking, a container is a group of processes contained in
an isolated environment, but running on the same kernel as the host
operating system. This isolation is provided by concepts like cgroups and
namespaces. For example, if you create a file inside a container, this file
cannot be accessed from the host operating system (unless you explicitly
specify this).

Difference Between Container and Image 34

Docker images can be either created from a container state (like a snapshot of a
running container) or describing the image state (like the operating system, libraries
and applications) on a special file called Dockerfile. Both work, but which way do
you think it’s better? That’s right, the Dockerfile way, because it encourages the
infrastructure as code model, that is, the image state is easily tracked using a source
control and safely evolves as every single change would go through a pull request,
code review, and so on.

You create a Docker image from a Dockerfile using the docker image build
command and create a Docker container by executing the docker container run
command.

	Table of Contents
	About the Author
	Introduction
	Why do I need a Centralized Logging System Like Graylog?
	Hands-on Introduction to Graylog
	Graylog Components
	Set up Graylog using Vagrant and Docker
	Inputs
	Forwarding VM Logs using Rsyslog

	Appendices
	Introduction to Docker
	Difference Between Container and Image

