The Grails

Email Confirmation
Plugin

by Marc Palmer

The Grails Email Confirmation Plugin
A Grailsrocks Guide

Marc Palmer

This book is for sale at http://leanpub.com/grails-email-confirmation
This version was published on 2013-01-22

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process.

Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book and build traction once you

do.
To learn more about Lean Publishing, go to http://leanpub.com/manifesto.

To learn more about Leanpub, go to http://leanpub.com.

©2013 Marc Palmer

http://leanpub.com/grails-email-confirmation

Tweet This Book!

Please help Marc Palmer by spreading the word about this book on Twitter!
The suggested tweet for this book is:

I just bought "The Grails Email Confirmation Plugin” e-book #grails https://leanpub.com/grails-
email-confirmation

The suggested hashtag for this book is #grails.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search/#grails

http://twitter.com
https://twitter.com/search/#grails
https://twitter.com/search/#grails

Contents

This is a sample
About the author

Foreword

A word on the Grails plugin community L.

Assumptions about thereader oo Lo

1 Introduction

What exactly does the plugindo forme? o L.

Installing the plugin . .

The example application

2 Concepts and flow

Links must be obscured and non-guessable 0oL

Single use tokens

Tell the user what is happening Lo L o

Invalid confirmation links must be handled gracefully

Unused confirmations should be trackable

Multiple concurrent confirmations peruser Lo Lo

Confirmations for different purposes

The flow

Resources and links

Other documentation . .

Grailsrocks plugin news & updates L

Other Grailsrocks plugins

ii

iii

iii

iii

This is a sample

This e-book is an exerpt of the full guide book. Chapters are missing and the chapter numbers may
not match that of the full book.

About the author

This short guide book is written by me, Marc Palmer.

I'm a freelancer providing consulting on application usability & user experience in addition to
Grails/Groovy development and mentoring for established companies and startups.

I create lots of Open Source Grails stuff under the banner Grailsrocks® including a bunch of popular
Grails plugins such as the Resources® framework, Platform Core®, Platform UI*, Feeds®, Bean-Fields®
and Cache-Headers’. I get excited about using Grails to hide development complexity.

The depth of my contributions to the Grails framework have waxed and waned over the years, but
as a Grails developer you are likely using some of my code or ideas every day. From sanitized and
reformatted stacktraces to the Resource framework used in Grails 2, there’s lots of little bits all over
the place.

I am also a founder of the Grails-based startup NoticeLocal®, and I'm also developing some iOS
applications.

You can follow me on Twitter as @wangjammer5 for my no-holds-barred views on Development,
Apple, Android and more, or as @grails_rocks for just the Grails bits. More detailed articles are
posted on my blog at www.anyware.co.uk’.

Please do e-mail me with suggestions and corrections for this book at marc@grailsrocks.com

"http://grailsrocks.com
*http://grck.it/grails-resources-plugin
*http://grails.org/plugin/platform-core
“http://grails.org/plugin/platform-ui
*http://grails.org/plugin/feeds
Shttp://grails.org/plugin/bean-fields
"http://grails.org/plugin/cache-headers
®http://noticelocal.com
*http://www.anyware.co.uk

ii

http://grailsrocks.com
http://grck.it/grails-resources-plugin
http://grails.org/plugin/platform-core
http://grails.org/plugin/platform-ui
http://grails.org/plugin/feeds
http://grails.org/plugin/bean-fields
http://grails.org/plugin/cache-headers
http://noticelocal.com
http://www.anyware.co.uk
http://grailsrocks.com
http://grck.it/grails-resources-plugin
http://grails.org/plugin/platform-core
http://grails.org/plugin/platform-ui
http://grails.org/plugin/feeds
http://grails.org/plugin/bean-fields
http://grails.org/plugin/cache-headers
http://noticelocal.com
http://www.anyware.co.uk

Foreword

First, I would like to thank you for buying this guide to one of my Grails plugins.

If you didn’t in fact buy it, please consider going to LeanPub™ to pay for it or one of my other titles.
I do not get paid for working on the many Grailsrocks'* plugins that I have been developing for over
five years.

I would love to spend more time on them making them better, and at the moment selling e-book
guides looks like a possible way of sustaining my Grails plugin development. The contracting work
that results from having a high profile in the Grails community is great, but it only serves to do the
exact opposite by preventing me actively working on the plugins. As a result, I have more than my
share of outstanding JIRA issues across all the plugins - far more than I will ever have time to tackle
unless I can fund the time.

It would be fair to say that I have created too many plugins to be able to maintain them reasonably
myself in spare time and that this is my own stupid fault. I think this sometimes too. The trouble is
that I need almost all of these plugins myself for my own applications and client work, and frankly
even flawed solutions are better than no solutions at all.

A word on the Grails plugin community

I firmly believe that the quality of the plugin ecosystem is pivotal to the continued success of Grails.
I love using Grails to develop web applications and that is why I feel so strongly about finding ways
to improve the quality of plugins. Plugins are Grails’ biggest advantage over many of the myriad
other web application frameworks out there.

I am pretty adamant that Grails plugins should:

1. Work out of the box without any mandatory config or code generation scripts
2. Add significant value rather than just wrapping existing Java libraries
3. Be Grailsy

If plugins don’t meet these criteria, the developer experience is poor and not befitting the “Grails

»

way’.

Assumptions about the reader

I have not included full instructions in this book for creating the necessary Grails artefacts. This
won’t be a step-by-step guide for writing a complete application.

Yhttp://grck.it/grailsrocks-books
http://grailsrocks.com

iii

http://grck.it/grailsrocks-books
http://grailsrocks.com
http://grck.it/grailsrocks-books
http://grailsrocks.com

Foreword iv

The assumption is that the reader is a reasonably proficient Grails developer who knows that when
I suggest they create a controller with a given name, they don’t have to worry about how to achieve
this or at least are happy to Google it. They will also know that they need to create view GSPs for
the actions etc.

1 Introduction

Sending e-mail to users so that they can confirm their identity is a common feature of web-
applications. Even in today’s world of OAuth authentication with third party services such as
Facebook and Twitter, you will often need to verify that the user owns the email address they have
entered.

While some product managers may not realise this, asking people to enter their email address twice
and checking they match is pretty pointless. You still don’t know they will receive e-mail sent to that
address.

Now, you could be forgiven for thinking that e-mail confirmation is just about account sign up. In
reality web applications often perform actions that may need to be double checked with the user,
and an email with a click-through link can be useful for this. Furthermore, if you think of e-mail
confirmations as generic click through links, you can use them for other e-mail related tasks such
as one-time offers, subscription opt-ins, or event targeted opt-outs that can work without the user
having to log in to your site.

The Email Confirmation plugin makes it really easy to do all of these things in a Grails application
or plugin.

This release of the book is written for Email Confirmation version 2.0.7 and higher.

What exactly does the plugin do for me?

The Email Confirmation plugin for Grails supports all of these confirmation scenarios by providing:

+ A single service method to send a confirmation mail

« Unlimited discrete confirmation requests per user

+ Single-use obscured links

« Per-confirmation application data

« Events for confirmation callbacks

« Automatic culling of stale confirmations

« Redirection of the user to any URL after they have confirmed

« Fully customisable e-mail templates

» Testing hooks for getting confirmation URLs without parsing the sent emails

Later in the book we’ll see how to use all these features by implementing a simple Grails application
for subscribing to a data feed.

It is worth repeating that all of these features are available to plugins as well as applications. As of
Email Confirmation 2.0 the use of Platform Core Events API for callbacks means that application
and plugins do not have problems co-existing, opening up many possibilities for new plugins that
use confirmations.

Introduction 2

Installing the plugin

The phrase “install the plugin” is become less appropriate these days with Grails as most people are
using BuildConfig.groovy to specify their dependencies. Nevertheless you should still be able to
use both methods of installing the plugin in Grails versions 1.3.7 through to 2.2.

To install the plugin the recommended way, edit Bui 1dConfig.groovy and edit your plugins section
to include the Email Confirmation plugin:

Adding the plugin to your BuildConfig.groovy

plugins {
// other existing dependencies
runtime ":email-confirmation:2.0.8"

Important: this is the latest version of the plugin at the time of writing. You should check the Grails
plugin portal page' for the number of the latest release.

Alternatively you can try the old-fashioned way of installing the latest release:
> grails install-plugin email-confirmation

Note however that you may have more dependency pain this way.

Email Confirmation 2.0 and higher, to which this book is applicable, has a transitive dependency on
Platform Core? so do not be surprised to see this being pulled into your application. It is of course
a great plugin that I heartily recommend you take advantage of if you have not already done so -
you can watch me talking about it’. Email Confirmation also depends on the Grails Mail plugin for
mail sending.

The example application

Through this book we’ll work with a single example application. If you want to follow with working
examples you’ll need to create the application and call it Subomatic.

All this simple application will do is take form submissions containing email addresses, store them
in a database and update them when the email address is known.

We’ll add files to this as we go, and you’ll run the app and see the effect of the changes.

"http://grails.org/plugin/email-confirmation
*http://grailsrocks.github.com/grails-platform-core
*http://grck.it/platform-core-talk

http://grails.org/plugin/email-confirmation
http://grails.org/plugin/email-confirmation
http://grailsrocks.github.com/grails-platform-core
http://grck.it/platform-core-talk
http://grails.org/plugin/email-confirmation
http://grailsrocks.github.com/grails-platform-core
http://grck.it/platform-core-talk

Introduction 3
First off, as per the previous section, you’ll need to add the email-confirmation plugin to your
BuildConfig.groovy.

Next, we need to create a controller called SubscriptionController in the subomatic package:

Creating the controller

package subomatic

class SubscriptionController {
def index = {
}

def subscribe = {

}

We'll also need to create a form in a GSP for the index action to take peoples’ details and submit
them to the subscribe controller.

Creating the subscribe form

<html>
<body>
<h1>Please enter your e-mail address to subscribe with Subomatic</h1>

<g:form action="subscribe">
<label for="email">Your e-mail address:</label>
<input name="email"/>
<input type="submit" value="Go Subomatic!"/>
</g: form>
</body>
</html>

Let’s also create a simple domain class to store subscriptions, for use later on.

Introduction

Creating the domain class

package subomatic

class Subscription {
String email
boolean optedIn

static constraints = {
email(email:true)

With all that out of the way we’re ready to start.

2 Concepts and flow

Before we start looking at code and using the plugin, we’ll quickly go through the concepts
surrounding confirmations, in order to fully understand what the plugin is doing for us.

If you don’t care about these issues, you can skip to the next chapter and start coding. Should you do
this, you may get some suprises later because you didn’t consider all of the details of this non-trivial
user experience flow. It’s not a lot of reading, and you have been warned.

First of all, we’ll look at the requirements and how Email Confirmation meets them. Aside from the
basic process of sending an e-mail to a user containing a link, there are some nuances to the process.

Links must be obscured and non-guessable

In many use cases it would be a catastrophe if your confirmation links used a numbered id such as
/confirm/45435. If you don’t know why this is then you’re obviously pure of heart. When creating
web applications with any kind of security or privacy issues, you actually have to try to put yourself
into the mind of somebody a little more evil than yourself.

Take a scenario where you use e-mail confirmations to verify and unlock somebody’s account,
automatically logging them in to your site after they confirm'. If you used a numeric URL for
confirmations it would be trivial to write a script that hits your server thousands of times to confirm
all pending confirmations, perhaps revealing e-mail address data in the page responses which would
be valuable information. It would also mean people could tell roughly how many customers you
have.

To this end, the Email Confirmation plugin generates a unique code and encodes it in URL-safe
characters. This is stored in the database with the pending confirmation information and used to
retrieve that information when the link is clicked.

This means that it would take a lot of CPU and network time to hit a real confirmation using a script.

Single use tokens

The confirmation page that the user is taken to must record the fact they used the confirmation
token so that it cannot be re-used. This is important because if a user forgot that they had already
clicked the link, they might do so again in the future and this might confuse your application. You’d
have to write a lot of defensive code to ensure actions were not performed twice.

"The detail of your user flows, particularly around security sensitive actions like sign up and password reset, is critically important. You must
spend a lot of time considering the scenarios and “attack vectors” to make sure you do not create a system that has inherent flaws that can be exploited.
This, for example, is why most sites that confirm your e-mail address on sign-up do not automatically log you in straight after. This would allow
anybody who “sniffs” the network to use your confirmation URL before you do, then log in and change your password or worse.

Concepts and flow 6

In addition, it means that bad people cannot profit from packet sniffing or hacking e-mail accounts
and using old confirmation e-mails that have not been removed from the user’s mail account.

So when the user has successfully confirmed, the pending confirmation is automatically removed
from the database.

Tell the user what is happening

The user must see a meaningful web page when they have confirmed. This is a user experience
consideration. Now that the user has confirmed, they should be taken to a relevant page in your
application. Perhaps this would be their user profile page, or a welcome page.

Whatever it is, this page needs to come from your application. The plugin provides a default page
for this, but this is only to make sure it all works out of the box. What you do is return parameters
for a redirect to occur after they have confirmed, and the plugin will send the user there for you.

This is great because it means you can change what happens in response to a confirmation depending
on the particular user and confirmation type that you received.

Invalid confirmation links must be handled gracefully

Whatever you do this will happen sometimes. Confirmation links can be vulnerable to a few
problems that cause them to be invalid. Invalid means they are not found in the pending
confirmations database.

The possible causes are:

1. The user already redeemed the link previously, or someone else did by stealing their URL
2. The user’s e-mail client wrapped the link (contained in a plain text e-mail) in a strange way
and failed to send the browser to the full URL

3. The user decided to copy the URL out of a plain text mail and paste it into the browser, and
missed the last few characters?

So when these things happen, you need to give the user some content that explains some of these
issues and who they should contact and what they should do to remedy the situation.

The plugin will generate an event that your application or plugins can receive to indicate where the
user should be taken when this happens.

Don’t laugh too hard at this one. I dealt with numerous support requests from an unlucky NoticeLocal user who could not confirm their account.
She said the URL was too difficult to type in, and as a result kept getting it wrong. Turns out her AOL e-mail client was not detecting URLs correctly
and as a result they were not clickable. Yes, the AOL mail client being used in 2012.

Concepts and flow 7

Unused confirmations should be trackable

It is often useful to detect un-redeemed confirmations, as this is important information. It can
indicate problems with your user experience, ineffective copy writing in your confirmation e-mails,
or a problem with the attractiveness of your product.

The plugin has a background job that culls stale confirmations, removing them from the database
to ensure your database doesn’t grow to more rows than Gangnam Style has had YouTube views.
When it finds each of these stale confirmations it will send your application or plugin an event with
the information about the lapsed confirmation.

Multiple concurrent confirmations per user

This may not be intuitive but you do need to allow multiple confirmations per user. This is because
they may “lose” the original e-mail and request a confirmation again via your application.

It says “lose” above because often it may appear that a confirmation e-mail did not arrive, but
actually it was simply stuck in a mail backlog somewhere or in the “wrong” e-mail folder in the
recipient’s e-mail client and so on. What can then happen is that the user requests a second
confirmation and in the meantime the first one is found in their inbox and they click the original
link. This is why new confirmation requests can’t cancel the previous request. In e-mail perhaps
more than any other area of applications we have to remember that we are dealing with humans.

The plugin can’t reliably reuse the previous confirmation code again because the metadata your
application or plugin provides may not match the previous one’s data (for good reasons), and it
would add unnecessary load by querying the database every time a new confirmation is requested.

Confirmations for different purposes

As mentioned earlier, e-mail confirmations can be used for many things. In the most basic cases
any sign-up based web application will need user registration confirmation and password reset
confirmations. If you are using them for different tasks you don’t want to be storing state in your
own data to indicate which confirmation is for which task. In fact the plugin is designed to be
opaque to your application level code. You just make requests for confirmations and receive events
back some time later.

As a result, the plugin supports an id string that you can provide when requesting a confirmation. It
also supports custom event prefixes for callbacks on a per confirmation basis so you can get very fine
grained control over which code gets the callback for each confirmation. It turns out this is really
powerful, and marks version 2.0+ of the plugin from the previous generation in which this was
hard if not impossible to achieve. As a result other plugins could not safely hook into confirmation
callbacks in the past.

Concepts and flow 8

The application-supplied information is stored in the database along with the pending confirmation
data.

The flow

Now that we've thought about the various issues, it makes sense to take a look at the flow of
interactions that the plugin supports.

Confirmation e-mail sent

X

Never responds

E-mail received

Clicks link
A

!

Bad link Confirmation page

"confirmed"
event sent

"timeout” "invalid”
event sent event sent

Confirmation interaction and event flow

Resources and links

Other documentation

Email Confirmation reference documentation http://grck.it/email-confirmation-docs
Platform Core documentation http://grck.it/platform-core-docs
Platform Core cheat sheet PDF http://grck.it/platform-core-cheat

Grailsrocks plugin news & updates

Twitter @grails_rocks
Blog http://grailsrocks.com

Other Grailsrocks plugins

This book is a guide to just one of many Grailsrocks plugins. These may also be useful to you.

Bean Fields Grails Plugin http://grails.org/plugin/bean-fields

Cache Headers Grails Plugin http://grails.org/plugin/cache-headers
Cached-Resources Grails Plugin http://grails.org/plugin/cached-resources
Email-Confirmation Grails Plugin http://grails.org/plugin/email-confirmation

Feeds Grails Plugin http://grails.org/plugin/feeds
Functional Test Grails Plugin http://grails.org/plugin/functional-test
Invitation-Only Grails Plugin http://grails.org/plugin/invitiation-only
Lamer Filter Grails Plugin http://grails.org/plugin/lamer-filter
One Time Data Grails Plugin http://grails.org/plugin/one-time-data
Platform Core Plugin http://grails.org/plugin/platform-core
Platform UI Plugin http://grails.org/plugin/platform-ui
Resources framework for Grails http://grails.org/plugin/resources
Rocks Plugin http://grails.org/plugin/rocks
Taxonomy Grails Plugin http://grails.org/plugin/taxonomy

Zipped-Resources Grails Plugin http://grails.org/plugin/zipped-resources

http://grck.it/email-confirmation-docs
http://grck.it/platform-core-docs
http://grck.it/platform-core-cheat
http://grailsrocks.com
http://grails.org/plugin/bean-fields
http://grails.org/plugin/cache-headers
http://grails.org/plugin/cached-resources
http://grails.org/plugin/email-confirmation
http://grails.org/plugin/feeds
http://grails.org/plugin/functional-test
http://grails.org/plugin/invitiation-only
http://grails.org/plugin/lamer-filter
http://grails.org/plugin/one-time-data
http://grails.org/plugin/platform-core
http://grails.org/plugin/platform-ui
http://grails.org/plugin/resources
http://grails.org/plugin/rocks
http://grails.org/plugin/taxonomy
http://grails.org/plugin/zipped-resources

	Contents
	This is a sample
	About the author
	Foreword
	A word on the Grails plugin community
	Assumptions about the reader

	Introduction
	What exactly does the plugin do for me?
	Installing the plugin
	The example application

	Concepts and flow
	Links must be obscured and non-guessable
	Single use tokens
	Tell the user what is happening
	Invalid confirmation links must be handled gracefully
	Unused confirmations should be trackable
	Multiple concurrent confirmations per user
	Confirmations for different purposes
	The flow

	Resources and links
	Other documentation
	Grailsrocks plugin news & updates
	Other Grailsrocks plugins

