
N A I L A C O D I N G
I N T E R V I E W

S i x - S t e p M e n t a l F r a m e w o r k

By Grace Huang 

1

Copyright © 2022-2023 Grace Huang

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the
publisher's prior written permission.

The information in this book is provided for educational and
informational purposes only. It is not intended as a substitute for
professional advice. The author and publisher shall have neither liability
nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book.

Trademarks: All terms mentioned in this book known as trademarks or
service marks have been appropriately capitalized. The author cannot
attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or
service mark.

First Edition: April 2022

Second Edition: September 2023 

2

To the engineers whose code can make computers
dance yet find themselves frozen at the interviews,

This book is dedicated to you. 

3

Introduction	
7

End Goal	
8

Structure	
8

Assumptions	
9

Programming Languages	
9

Suggestions	
9

Step 1: Write Down The Problem	
11

Why?	
11

Example: The English Number Conversion problem	
12

Takeaways	
12

Step 2: Clarify The Problem Space	
13

Assumptions	
13

Clarifying Questions	
14

Good Judgment	
16

Example: the English Number Conversion problem	
16

Takeaways	
17

Step 3: Write Down Test Cases	
18

Why?	
18

Example: the English Number Conversion problem	
18

Takeaways	
19

Step 4: Describe and Write Down the Algorithm	
21

Pick Data Structures	
21

Describe Your Thinking	
22

Complexity Analysis	
23

Example: the English Number Conversion problem	
24

Takeaways	
25

4

Step 5: Start Coding	
26

Example: the English Number Conversion problem	
26

Takeaways	
28

Step 6: Test	
29

Example: the English Number Conversion problem	
29

Takeaways	
30

Conclusion	
31

Established Process At Work	
31

The Case of Performing Under Pressure	
31

Practice, Practice, Practice	
32

Example Problem #1: Arrays: Move Zeros to the Left	
33

Step 1: Write Down The Problem	
33

Step 2: Clarify The Problem Space	
33

Step 3: Write Down Test Cases	
34

Step 4: Describe and Write Down the Algorithm	
36

Step 5: Start Coding	
37

Step 6: Test	
38

Example Problem #2: Longest Path In The Matrix	
39

Step 1: Write Down The Problem	
39

Step 2: Clarify The Problem Space	
39

Step 3: Write Down Test Cases	
40

Step 4: Describe and Write Down the Algorithm	
42

Step 5: Start Coding	
42

Step 6: Test	
46

Example Problem #3: Find All the Possible Subsets	
48

Step 1: Write Down The Problem	
48

5

Step 2: Clarify The Problem Space	
48

Step 3: Write Down Test Cases	
50

Step 4: Describe and Write Down the Algorithm	
51

Step 5: Start Coding	
52

Step 6: Test	
52

About Author	 54

6

I N T R O D U C T I O N

By now, having practiced hundreds of coding questions on HackerRank
and LeetCode for weeks, you must feel quite confident about the
upcoming interview.

After the interviewer gives the introduction and finally reveals the
coding problem, a sense of nervousness starts to creep in within you.
While you are internalizing the coding problem, for a split second, your
mind gets lost. Now you don’t know where to start.

Suddenly you also notice the 45-minute clock has been ticking, so your
mind goes blank again. A well-prepared coding interview is off to a bad
start.

I have been there, and I know that feeling.

I have interviewed hundreds of software engineer candidates while
working for big tech companies and also hiring for my own company
Roxy. I have interviewed new grads, industry veterans from Google,
Amazon & Facebook, quantitative engineers from Hedge Funds, and
indie entrepreneurs.

After meeting each of the stellar interview candidates, I often pondered
on what makes them shine in the interviews. Their coding styles were
very different. They preferred different languages. However, they had
something in common — they seemed to follow a similar mental
framework to solve problems within a limited amount of time.

From the interviews that didn't result in job offers, I also noticed some
common themes or attributes.

After analyzing hundreds of interviews, I noticed that the same six
steps, forming a mental framework, were often at work.

• Problem: Write down the problem statement.

• Clarifying: Clarify the problem space.

7

• Cases: Document the test cases.

• Algorithm: Describe and document the algorithm, including
complexity analysis.

• Code: Start coding

• Test: Test the code with the test cases and fix any bugs

This mental framework can be applied to almost every coding problem.

This brought me to write this book.

End Goal

By the end of the book, the goal is for you to be familiar with the six-
step mental framework and be able to apply it to any coding problem in
an interview.

Structure

The book has two major parts: Introduction to the Six-Step Mental
Framework and Examples.

Part 1

The first part of the book provides this framework and a set of specific,
actionable techniques for each step.

In every step, I will utilize an example coding interview question—
“convert a number to English words”—to illustrate how to apply this
framework during a coding interview.

Part 2

8

The second part of the book offers two examples to illustrate how to use
the Six-Step Mental Framework to solve coding problems in real-life
interviews.

The examples are as follows:

• Code Problem 1: Arrays: Move Zeros to the Left (asked by Meta/
Facebook)

• Code Problem 2: Longest Path In The Matrix (asked by Alphabet/
Google)

• Code Problem 3: Find All the Possible Subsets (asked by Netflix)

Assumptions

This book assumes that you have a foundational knowledge of
programming, a grasp of computer science fundamentals (including data
structures, algorithms, and object-oriented programming), and prior
coding experience.

However, it doesn't assume that you have necessarily undergone
interviews conducted by hiring companies.

Programming Languages

This book uses JavaScript to solve coding problems, solely for the
purpose of demonstrating the algorithms.

During actual interviews, you should feel free to use any programming
language you are comfortable with.

Suggestions

9

Please don't hesitate to provide feedback if anything is unclear or if you
spot any typos in this book.

You can contact me through any of the following methods:

Email: higracehuang@gmail.com

Twitter: https://twitter.com/imgracehuang

LinkedIn: https://www.linkedin.com/in/lghuang/

Ready? Let’s dive right in! 

1 0

S T E P 1 : W R I T E D O W N
T H E P R O B L E M

E s t i m a t e d t i m e i n i n t e r v i e w : 1 m i n u t e

"I write to discover what I know."

— Flannery O'Connor

Why?

Some interviewers just verbally describe the question, while some paste
the question on the whiteboard. In case they do not, you need to write it
down yourself.

Why?

• Firstly, it helps you internalize what that problem is.

• Secondly, you can use it to “force” the interviewer to confirm your
understanding.

This is the power of writing in communication!

If you are in a phone interview or via Zoom or Google Hangout, you can
type down the whole question on the online shared editor (such as
CollabEdit, or HackerRank). If you are doing it on the whiteboard, write
it down on the board.

If the interviewer provides an example along with the problem, do write
down the examples as well. Every little detail may be important to solve
the problem.

In case what you’ve written down is different from what the interviewer
wants you to do, they should let you know, before your solution deviates
too much from the problem.

1 1

The last thing you want is when you realize you and the interviewer do
not share the same understanding, 30 minutes have passed.

For whatever reason (you did not hear correctly or your interviewer's
accent), it will eventually punish you by taking away your precious time
for showcasing your strength.

Example: The English Number
Conversion problem

Here is what you hear from the interviewer, and you can write down or
type:

Then you can pose a question to the interviewer: "Is my understanding
correct?"

Takeaways

• Listen attentively.

• Write down the interview coding question and examples.

• Confirm the question with the interviewer.

Write a function to convert a given number to English words.

For example, the input is 123, and the output is “one hundred twenty
three”.

1 2

S T E P 2 : C L A R I F Y T H E
P R O B L E M S PA C E

E s t i m a t e d t i m e i n i n t e r v i e w : 5 m i n u t e s

“The most misleading assumptions are the ones you
don't even know you're making.”

— Douglas Adams

It is incredibly rare for interviewers to present you with a fully defined
problem.

Correct, you read it right. The majority of problems they provide are
intentionally incomplete and vague. Some might lack definitions for
certain edge cases. The scope of the problem may be much bigger than it
sounds.

The problem statement is often the bait in a trap. They require your
curious mind to ask questions to complete them.

Interviewers want to assess:

• Whether you make assumptions easily

• Whether you have the technical intuition to ask good questions

• Whether you make good judgment

Assumptions

Avoid making assumptions. An assumption is “a thing that is accepted
as true or as certain to happen, without proof”. It is a common pitfall in
any technical interview, and also the hardest thing to notice.

1 3

This tendency isn't your fault. As Yale neurobiology Professor Frank Han
explained, the brain’s vast neural network requires huge amounts of
energy to keep it running :
1

“There are over one hundred billion cells in our brain and each of
them makes over ten thousand connections with other brain
cells. While the large number of possible combinations of cell
connections allows for higher-ordered thinking, this is a big
problem evolutionarily in terms of energy cost…Therefore, the
brain has to encode things efficiently to save energy.”

One way our brain saves energy is through making assumptions, i.e.,
drawing on our past experiences to find patterns in how the world
works. In front of new situations, we apply these patterns—or
assumptions—to them.

The problem with assumptions is that we apply our own past
experiences to understand the situation. To avoid assumptions, we need
to ask questions to bring you and the interviewer to the same page.

Clarifying Questions

Ask good questions. There is a difference between good questions and
not-so-good questions in clarification.

Good clarifying questions themselves have information and directions.
They show the interviewer that you are a careful thinker who considers
a problem from all angles. This kind of question will make you take the
lead in the interview.

Not-so-good questions are dry without much direction. They show the
interviewer that you are still relying on the interviewer to drive.

 Frank Han, How the Brain Saves Energy: The Neural Thermostat, 1

https://www.yalescientific.org/2010/09/how-the-brain-saves-energy-
the-neural-thermostat/

1 4

So, what kinds of questions can we ask?

We can ask millions of questions, but they may not be useful in solving
the problem. Here are some general areas you can ask with some
examples:

• Edge cases

• Does the method accept null?

• The scale of the problem

• How big can the integer be?

• What if we have to calculate 1 million (or even larger) of the
records?

• Implementation Limitations

• Can we use the pop and push methods of the array?

• What APIs are available for this problem?

• Implementation Objectives

• Do you optimize for time or space?

• What is our expectation in terms of time and space
complexities?

• Usage of the solution

• What is the purpose of the method?

Not-so-good Questions Good Questions

“Do you have any other
requirements?”

“Do we want to return exceptions
when the input is null?”

“How about the input is a negative
number?”

“Do we prefer speed or optimize for
space?”

1 5

• Do we want to turn it into a library?

The answers to the questions can provide you with a clearer
understanding of the type of problem you are solving.

Good Judgment

Make good judgment. Good questions pave the way for good judgment.
Interviewers often follow up with a question after yours, “What do you
think it should return?”, or “Yeah, that's a good call. But I want to hear
what you think?”

An experienced engineer may have faced this kind of question many
times at work, and they often know what is the best way to deal with
edge cases. They may consider maintainability, scalability, readability,
and ease of debugging before making a decision.

How you made a judgment also shows your decision-making process.
Do you make a decision with your gut feeling? Or do you consider all
the possible options and compare the trade-offs before making a
decision? Obviously, the latter shows maturity.

Why do all these matters in a coding interview? They mirror the
attributes that your colleagues, including engineers, designers, and
product managers, expect out of you in day-to-day work. They expect
you to challenge their assumptions by asking good questions, and
always making reasonable judgments when facing ambiguity.

Unfortunately, 5 out of 10 candidates that I have met do not clarify
problems and jump to code immediately. The final solution will
definitely be affected. Even though the candidate later realizes the
missing cases and tries to patch them into the logic, the code may not
look pretty or clean by then.

Example: the English Number
Conversion problem

1 6

Let’s continue with the same example question: “Convert a number to
English words”.

Here is a list of questions that a candidate can clarify:

If the interviewer has been waiting for your clarifying questions, they
will provide concrete answers, for example:

Takeaways

• Avoid assumptions.

• Ask good clarifying questions.

• Make sound judgment. 

What is the range of the input number? 0? 1–999? 1–999,999?

Can the input be negative?

Can the input be fractional?

Does the output have dashes? e.g. “twenty-three”

Does the output have “and” between hundred and the rest? e.g. “one
hundred and thirty one”

Question Answer

What is the range of the input
number? 0? 1–999? 1–999,999?

The range will be 1 to 999.

Can the input be negative? Only positive number.

Can the input be fractional? Only whole numbers.

Does the output have dashes? e.g.
“twenty-three”

No dashes.

Does the output have “and”
between hundred and the rest? e.g.
“one hundred and thirty one”

No “and” word or dashes.

1 7

S T E P 3 : W R I T E D O W N
T E S T C A S E S

E s t i m a t e d t i m e i n i n t e r v i e w : 5 m i n u t e s

Why?

Wait! Six minutes have passed, yet we haven’t started coding. However,
it is not the time to code just yet.

Before even writing a single line of code, let’s list all the test cases,
including both common cases and corner/edge cases. Having test cases
ready before coding provides a better picture than the actual product
requirements about what you want to build. It materializes the problem
space.

A benefit of this: it allows you to continue clarifying the problem as you
discover more cases.

Example: the English Number
Conversion problem

Here are all the possible types of test cases for the example question:

1 8

First of all, to translate from a number to words, you need a dictionary.

From the test cases above, you can get an exhaustive list of unique
words you need for this dictionary. As you enumerate all the possible
cases, your mind starts to pick up some patterns.

In addition, here is a list of edge cases to be considered:

Some candidates don’t test at all. Some candidates test in the end. Some
candidates only test good cases. Only a few that I have met start with an
exhaustive list of test cases before coding.

Takeaways

1…9 → one…nine

10…19 → ten…nineteen

20, 30,…90 → twenty, thirty,…ninety

21 → twenty one

100 → one hundred

101…109 → one hundred one…one hundred nine

110…119 → one hundred ten…one hundred nineteen

120 → one hundred twenty

123 → one hundred twenty three

200 → two hundred

999 → nine hundred ninety nine

-1 → throws an exception

0 → throws an exception

1000 → throws an exception

1.1 → throws an exception

1 9

• Write down test cases, as thoroughly as possible

• Include both common use cases and edge cases

2 0

S T E P 4 : D E S C R I B E A N D
W R I T E D O W N T H E

A L G O R I T H M

E s t i m a t e d t i m e i n i n t e r v i e w : 15 m i n u t e s

“An hour of planning can save you 10 hours of
doing.”

— Dale Carnegie

Any step before this one is a preparation for this step. This step is to
demonstrate your computer science fundamental skills.

Pick Data Structures

Data structure is the way data is stored which can help efficiently solve
this problem.

Here are the common data structures:

• Arrays

• Linked List

• Stack

• Hash Map

• Tree

• Heap

• Graph

For each data structure, its unique features make a complex problem
easier.

2 1

For one problem, you can use different data structures to solve it. But
that does not mean you can choose any of them to solve. This is why
you should ask interviewers what they would like the solution to
optimize for, space, speed, or anything else.

Besides that, you can use more than one data structure to solve.

Describe Your Thinking

You may be asked to elaborate on how you would solve the problem, or
describe the algorithm before coding.

Some interviewers may just watch what you will do — will you rush
into code, or have a clear solution ready before coding?

From my observations of all the past candidates, the ones who
immediately jumped to code often struggled to solve the problem in
time, or had a working solution that was difficult to follow.

Only those who had formed a clear idea before the implementation
managed to solve the problem with precise and readable code.

Based on the test cases, craft a solution with appropriate data structures
and algorithms.

Interestingly, a book about why stellar engineers (often Russian) on
Wall Street are so good at problem-solving in interviews also mentions a
similar process.

Russians had a reputation for being the best programmers on
Wall Street, and Serge thought he knew why: They had been
forced to learn to program computers without the luxury of
endless computer time.

Many years later, when he had plenty of computer time, Serge
still wrote out new programs on paper before typing them into
the machine. “In Russia, time on the computer was measured in
minutes,” he said. “When you write a program, you are given a

2 2

tiny time slot to make it work. Consequently, we learned to write
the code in ways that minimized the amount of debugging. And
so you had to think about it a lot before you committed it to
paper. . . . The ready availability of computer time creates this
mode of working where you just have an idea and type it and
maybe erase it ten times. Good Russian programmers, they tend
to have had that one experience at some time in the past — the
experience of limited access to computer time.”

— Michael Lewis. Flash Boys: A Wall Street Revolt

Complexity Analysis

Complexity Analysis, also known as Big O analysis, is a way to measure
runtime data storage your algorithm will require, and how fast your
algorithm can run.

To understand how Big O analysis works, GeeksForGeeks provides the
best explanation .
2

Not all optimal solutions demand minimal storage or the fastest
runtime; often, there's a trade-off within the context.

Complexity analysis is in almost every coding interview. Interviewers
either instruct you to perform it or expect you to have it in mind when
designing your approach. Obviously, the latter shows your maturity the
most.

If you use any of the common structures and understand the space and
time complexity, the complexity of the entire solution is built upon
them.

 How to do Big O Complexity Analysis https://www.geeksforgeeks.org/2

analysis-algorithms-big-o-analysis/

2 3

Example: the English Number
Conversion problem

Before the number 20, all the words are unique words, such as “one”,
“five”, “ten”, and “thirteen”.

Therefore, the most effective data structure is a hashmap, also called a
dictionary. The time complexity for the hashmap is O(1). Its space
complexity is O(n), however, the words in this dictionary are known, so
the size of the hashmap is predefined and limited, so it can be considered
as O(1).

After 20, there is a pattern to combine unique words.

Here is the first draft of my algorithm:

All roads lead to Rome — there are often multiple ways to solve a single
problem.

I noticed that the solution above did not flow smoothly, because, in
English, hundreds come before tens and ones.

I immediately noticed that I needed to do step #6, then #5 and #4, as
follows:

1. Create a dictionary for all the unique words (one … ten, eleven …
nineteen, twenty, thirty, forty, … ninety)

2. Check the boundaries: <1 and > 999

3. Check simple unique words: <20

4. Check ones: if ones, look up the word in the dictionary; otherwise, do
nothing

5. Check tens: if tens, look up the word in the dictionary; otherwise, do
nothing

6. Check hundreds: if hundreds, look up the word in the dictionary, plus
“<space>hundred”; otherwise, do nothing

7. Put all the words together

2 4

Overall, the time complexity of this algorithm is O(1) and the space
complexity is O(1). It is a very efficient solution by far.

If the complexity goes over O(1), I would find ways to optimize it.

Takeaways

• Choose appropriate data structures with reasons.

• Describe your thinking.

• Analyze the time and space complexity.

• Explain the system impact.

• Offer optimization if possible.

1. Create a dictionary for all the unique words (one … ten, eleven …
nineteen, twenty, thirty, forty, … ninety)

2. Check the boundaries: <1 and >999

3. Check simple unique words: <20

4. Check hundreds: if hundreds, look up the word in the dictionary, plus
“<space>hundred”; otherwise, do nothing

5. Check tens: if tens, look up the word in the dictionary; otherwise, do
nothing

6. Check ones: if ones, look up the word in the dictionary; otherwise, do
nothing

7. Put all the words together

2 5

S T E P 5 : S TA R T C O D I N G

E s t i m a t e d t i m e i n i n t e r v i e w : 5 m i n u t e s

Once you have completed all the previous steps, the actual coding
becomes the easiest part.

Based on the algorithm you have come up with in Step 4, you translate
it into code. This step should be relatively quick, as the work is a direct
translation from human language to a programming language of your
choice.

Maintaining a clear mindset also provides a boost of confidence.

Example: the English Number
Conversion problem

It took me 5 minutes to type all the code below and get it running:

// Create a dictionary for all the unique words (one … ten,
eleven … nineteen, twenty, thirty, forty, … ninety)

var WORD_DICT = {

 0: "",

 1: "one",

 2: "two",

 3: "three",

 4: "four",

 5: "five",

 6: "six",

 7: "seven",

 8: "eight",

 9: "nine",

 10: "ten",

 11: "eleven",

 12: "twelve",

 13: "thirteen",

 14: "fourteen",

 15: "fifteen",

 16: "sixteen",

 17: "seventeen",

 18: "eighteen",

 19: "nineteen",

 20: "twenty",

2 6

 30: "thirty",

 40: "forty",

 50: "fifty",

 60: "sixty",

 70: "seventy",

 80: "eighty",

 90: "ninety",

 100: "hundred"

};

function convertNumberToWords(inputNumber) {

 var outputWords = []

 // Check the boundaries: <1 and > 999

 if (!inputNumber || inputNumber < 1 || inputNumber > 999)
{

 throw new Error("Invalid input");

 }

 // Check simple unique words: <20

 if (inputNumber < 20) {

 return WORD_DICT[inputNumber];

 }

 var hundredsPosition = Math.floor(inputNumber / 100);

 var tensPosition = hundredsPosition % 100;

 var onesPostion = hundredsPosition % 10;

 // Check hundreds: if hundreds, look up the word in
dictionary, plus "<space>hundred"; otherwise, do nothing

 if (hundredsPosition > 0) {

 outputWords.push(WORD_DICT[hundredsPosition],
WORD_DICT[100]);

 }

 // Check tens: if tens, look up the word in dictionary;
otherwise, do nothing

 if (tensPosition >= 2) {

 outputWords.push(WORD_DICT[10 * tensPosition]);

 // Check ones: if ones, look up the word in dictionary;
otherwise, do nothing

 if (onesPostion) {

 outputWords.push(WORD_DICT[onesPostion])

 }

 } else {

 outputWords.push(WORD_DICT[inputNumber -
hundredsPosition * 100]);

 }

 // Put all the words together

 return outputWords.join(" ");

}

2 7

Takeaways

• Use your most comfortable programming language.

• Fix bugs and syntax errors on your own.

• Refactor as you go.

• Finish the implementation in time.

2 8

S T E P 6 : T E S T

E s t i m a t e d t i m e i n i n t e r v i e w : 5 m i n u t e s

“The man of science has learned to believe in
justif ication, not by faith, but by verif ication.”

— Thomas H. Huxley

Once you have completed the coding, it's time to test your code. How?
Use the test cases you provided in Step 3. If any test case does not pass,
fix it.

How can you ensure your test coverage is comprehensive? I have an
effective technique: check every code branch. A code branch is where the
code diverges and the results can be different based on the inputs. For
example, if, while, switch, and for statements. If an if statement is used,
two test cases will need to be added.

For example, in this if statement:

if (inputNumber < 20) {

 return true;

}

return false

There are 2 code branches around if statement. So we can easily come
up with 2 test cases: inputNumber = 19, and inputNumber = 20.

As a best practice, since 20 is the boundary for this if statement, we can
have 3 test cases, to cover the left of the boundary (19), the boundary
(20), and the right of the boundary (21).

Example: the English Number
Conversion problem

1…9 → one…nine Part of the dictionary. It looks up
the dictionary and returns early.

2 9

Takeaways

• Verify the code with test cases

• Check all the code branches 

10…19 → ten…nineteen Part of the dictionary. It looks up
the dictionary and returns early.

20, 30,…90 → twenty, thirty,…
ninety

Part of the dictionary. It looks up
the dictionary and returns early.

21 → twenty one It goes into the tensPosition and
onesPosition checks.

100 → one hundred The hundred position is parsed. It
looks up the dictionary and returns
early.

101…109 → one hundred one…one
hundred nine

The hundred position is parsed. It
looks up the dictionary for ones
and returns.

110…119 → one hundred ten…one
hundred nineteen

The hundred position is parsed. It
looks up the dictionary for teens
and returns.

120 → one hundred twenty The hundred position is parsed. It
looks up the dictionary for 20 and
returns.

123 → one hundred twenty three The hundred position is parsed. It
looks up the dictionary for tens and
ones and returns.

200 → two hundred The hundred position is parsed and
returned.

999 → nine hundred ninety nine The hundred position is parsed. It
looks up the dictionary for tens and
ones and returns.

-1 → throws an exception It returns an exception.

0 → throws an exception It returns an exception.

1000 → throws an exception It returns an exception.

3 0

C O N C L U S I O N

Those are all six steps!

Established Process At Work

In case you are not aware yet, whether you can solve the coding problem
is not the only thing that is evaluated, but your whole package of
performance has been evaluated since the very beginning:
communication, requirement gathering, data structures, algorithms, and
testing.

They reflect the critical functions of an engineer day in and day out.

Most candidates can perform better if they have a process to follow,
improve, and optimize. This Six-Step Mental Framework is to help you
establish this process in your interview and day-to-day work.

The Case of Performing Under
Pressure

Now, you may wonder whether this framework would work during
interviews when you have to problem-solve under pressure. That’s often
the key reason why brilliant engineers perform well at work but perform
poorly at interviews.

This phenomenon of underperformance under pressure is known as
choking. The cognitive psychologist Sian Beilock explains in her book
“Choke: What the Secrets of the Brain Reveal About Getting It Right
When You Have To” that choking often happens because of the brain's
response to stress, which can disrupt the cognitive processes required
for skilled performance. 
 
Some key factors contributing to choking are overthinking, stress, and

3 1

negative self-talk. As she suggests for preventing choking, chunking
information is one of the five strategies (Practice Under Pressure,
Cognitive Techniques, Chunking Information, Mental Rehearsal, Self-
Awareness, Breathing and Relaxation Techniques).

The Six-Step Mental Framework is a way to chunk information into
meaningful groups. This can reduce cognitive load and improve
performance.

Practice, Practice, Practice

Now you can head to LeetCode, pick a random coding problem, and try
again with this Six-Step Mental Framework.

If you are not sure yet, we can review this framework in the examples in
the following chapters. The goal of the examples is to showcase the
thought process when adopting the Six-Step Mental Framework in real-
life interviews.

3 2

E X A M P L E P R O B L E M # 1 :
A R R AYS : M OV E Z E R O S

T O T H E L E F T
3

Step 1: Write Down The Problem

Given an integer array, move all elements that are 0 to the left while
maintaining the order of other elements in the array.

Example input:

Output:

Step 2: Clarify The Problem Space

Here are the questions I would ask and the answers I may get from the
interviewer:

Edge Cases

Index 0 1 2 3 4 5 6

Value 32 43 0 7 98 0 8

Index 0 1 2 3 4 5 6

Value 0 0 32 43 7 98 8

 Problem source: https://www.educative.io/blog/cracking-top-3

facebook-coding-interview-questions

3 3

Scale

Objectives

Step 3: Write Down Test Cases

Test 1: Happy Case

Input:

Output:

Question Answer

Can the elements be other types,
such as strings?

No. Integer only

Can the elements be positive and
negative?

Yes, they can be positive and
negative

Can the elements be empty, such as
null?

No. The array will be non-empty

Question Answer

How large is the array? Can it be fit
in memory on one machine?

It will be a limited size, for
example, 100 at most.

How big can the integers be? It can be just a regular int.

Question Answer

Do we optimize by time? Or space? Time complexity is O(n) and space
complexity is O(1).

Can we use any functions like push
and pop?

Yes, you can.

Index 0 1 2 3 4 5 6

Value 32 43 0 7 98 0 8

3 4

Test 2: Zero Case

Input:

Output:

Test 3: Non-Zero Case

Input:

Output:

Test 4: No Change Case

Input:

Index 0 1 2 3 4 5 6

Value 0 0 32 43 7 98 8

Index 0 1 2 3 4 5 6

Value 0 0 0 0 0 0 0

Index 0 1 2 3 4 5 6

Value 0 0 0 0 0 0 0

Index 0 1 2 3 4 5 6

Value 32 43 45 343 43 34 43

Index 0 1 2 3 4 5 6

Value 32 43 45 343 43 34 43

Index 0 1 2 3 4 5 6

Value 0 0 45 343 43 34 43

3 5

Output:

Test 5: Zeroes on the other side

Input:

Output:

Step 4: Describe and Write Down the
Algorithm

I can think of several ways to solve this:

1. Pop the array as a stack, and insert the non-zero elements at the
front. Keep track of the number of 0s, and put them back at the end.

2. Traverse the array, find all the 0s, and then move elements one by
one.

While Approach #2 seems straightforward, keeping the indexes and
moving accordingly seems very messy.

Approach #1 seems clever, as it offers a simple solution that meets the
desired time complexity of O(n) and extra space complexity of O(1).

So the steps of Approach #1 are the following:

Index 0 1 2 3 4 5 6

Value 0 0 45 343 43 34 43

Index 0 1 2 3 4 5 6

Value 23 23 45 343 43 0 0

Index 0 1 2 3 4 5 6

Value 0 0 23 23 45 343 43

3 6

1. Pop the element from the far right of the array.

2. If the element is 0, increment the zero counter; if not, place it at the
leftmost position.

3. Continue this process for iterations equal to the size of the array.

4. If the zero counter is greater than 0, add 0 to the leftmost position
for a number of times equal to the zero counter value.

5. Return the modified array.

Check the algorithm above with all the test cases, and confirm they
work.

Assess the complexity. Apart from the array, the extra space complexity
remains O(1). The time complexity is O(n), where n represents the array
size.

Step 5: Start Coding

function moveZeroesToLeft(inputArray) {

 var zeroCounter = 0;

 var arraySize = inputArray.length;

 for (var i = 0; i < arraySize; i++) {

 var poppedElement = inputArray.pop();

 if (poppedElement == 0) {

 zeroCounter++;

 } else {

 inputArray.unshift(poppedElement);

 }

 }

 for (var j = 0; j < zeroCounter; j++) {

 inputArray.unshift(0);

 }

 return inputArray;

}

3 7

Step 6: Test

console.log(moveZeroesToLeft([1,2,3,4,0,0]))

>[0, 0, 1, 2, 3, 4]

console.log(moveZeroesToLeft([1,2,3,4,5,6]))

>[1, 2, 3, 4, 5, 6]

console.log(moveZeroesToLeft([0,0,3,4,5,6]))

>[0, 0, 3, 4, 5, 6]

console.log(moveZeroesToLeft([1,2,0,4,0,6]))

>[0, 0, 1, 2, 4, 6]

console.log(moveZeroesToLeft([0,0,0,0,0,0]))

>[0, 0, 0, 0, 0, 0]

console.log(moveZeroesToLeft([0,0,0,0,-1,0]))

>[0, 0, 0, 0, 0, -1]

3 8

E X A M P L E P R O B L E M # 2 :
L O N G E S T PAT H I N T H E

M AT R I X
4

Step 1: Write Down The Problem

Given a matrix with N rows and M columns, where each cell m[i][j]
represents a value, you can move to m[i+1][j] if m[i+1][j] > m[i][j], or
to m[i][j+1] if m[i][j+1] > m[i][j].

The task is to print the longest path length if we start from (0, 0).

Based on the above description, I draw down an example matrix to help
my understanding of the problem.

I noticed that all possible paths lead towards the bottom-right corner.
Whenever the anchor has moved, the same logic applies. So the problem
could be solved using a recursive approach.

Step 2: Clarify The Problem Space

General

2 (0,0) 23 2 4 5

3 43 12 2 4

5 2 4 43 5

1 3 3 4 87

 Question source: https://igotanoffer.com/blogs/tech/google-software-4

engineer-interview#questions

3 9

Edge Cases

Scale

Objectives

Step 3: Write Down Test Cases

Test 1: Happy Case

Input:

Question Answer

Can the input be a two-dimensional
array?

Yes

Question Answer

What if m[i+1][j] = m[i][j] and m[i]
[j+1] = m[i][j]?

It should not move forward. It
should just stop.

What if m[i+1][j] > m[i][j] and m[i]
[j+1] > m[i][j]?

It presents two routes.

Can any element be empty? We can assume the matrix has non
empty elements.

Can the number of the dimensions
be more than 2?

No.

Question Answer

How large can this matrix be? Can
it be fit in memory on one
machine?

Yes, it can fit into the memory

Question Answer

Do we optimize by time? Or space? As efficient as possible.

4 0

[

 [1, 2, 3],

 [2, 3, 4]

]

Output: 3

Test 2: Empty Cases

Input:

[]

Output: 0

Input:

[[]]

Output: 0

Test 3: With Identical Elements

Input:

[

 [1, 1, 1],

 [1, 1, 1]

]

Output: 0

Test 4: Three plus Dimensional Array

Input:

[

 [[1, 2, 3]],

 [[2, 3, 4]]

]

Output: (throws an error)

Test 5: Irregular Matrix

Input:

[

 [1, 2, 3],

4 1

 [2, 3, 4],

 [100, 300]

]

Output: 3

Step 4: Describe and Write Down the
Algorithm

The input will be an array of arrays containing integers, and the output
will be an integer.

The output starts with 0.

1. Set the element at inputArray[0][0] as an anchor.

2. Compare the value at inputArray[1][0] with the value at
inputArray[0][0]. If inputArray[1][0] > inputArray[0][0], set the
element at inputArray[1][0] as the anchor, and increment the output
by 1. If the size of inputArray is greater than 1, repeat step #2.

3. Alternatively, compare the value at inputArray[0][1] with the value at
inputArray[0][0]. If inputArray[0][1] > inputArray[0][0], set the
element at inputArray[0][1] as the anchor, and increment the output
by 1. If the size of inputArray[0] is greater than 1, repeat step #2.

4. If neither condition in step #2 or #3 is met, return the output value.

Step 5: Start Coding

First, I started with the version based on the algorithm I had above.

function getLongestPathLength(inputArray) {

 var allLengths = [];

 getPathLength(inputArray, 0, 0, 0, allLengths);

 return Math.max(allLengths);

}

4 2

function isValidMatrixElement(inputArray, x, y) {

 if (inputArray[x] === undefined) {

 return false;

 }

 if (inputArray[x][y] === undefined) {

 return false;

 }

 return true;

}

function getPathLength(inputArray, currentX, currentY,
currentLength, allLengths) {

 if (!isValidMatrixElement(inputArray, currentX,
currentY)) {

 return currentLength;

 }

 var ySize = inputArray[currentX].length

 var xSize = inputArray.length

 var anchorValue = inputArray[currentX][currentY];

 if (xSize > currentX &&

 isValidMatrixElement(inputArray, currentX + 1,
currentY) &&

 inputArray[currentX + 1][currentY] > anchorValue) {

 return getPathLength(inputArray, currentX + 1,
currentY, currentLength + 1, allLengths);

 } else if (ySize > currentY &&

 isValidMatrixElement(inputArray, currentX, currentY +
1) &&

 inputArray[currentX][currentY + 1] > anchorValue) {

 return getPathLength(inputArray, currentX, currentY +
1, currentLength + 1, allLengths);

 } else {

 allLengths.push(currentLength);

 return currentLength;

 }

}

console.log(getLongestPathLength([]));

console.log(getLongestPathLength([

 []

]));

console.log(getLongestPathLength([

 [1, 1],

 [1, 1]

]));

4 3

console.log(getLongestPathLength([

 [1, 2],

 [1, 2]

]));

console.log(getLongestPathLength([

 [1, 2, 3],

 [1, 2, 3]

]));

console.log(getLongestPathLength([

 [1, 2, 3],

 [2, 3, 4]

]));

console.log(getLongestPathLength([

 [1, 2, 3],

 [2, 3, 4],

 [100, 300, 400]

]));

By testing with the cases above, I found some of my code that was
broken and fixed it accordingly.

In the initial solution, the time complexity is O(NM), where N and M
represent the size of either dimension. The space complexity is also
O(NM) because, for each length, it needs to be stored in the array.

Then I noticed that I could optimize by eliminating the array allLengths.
This adjustment reduces the space complexity to O(1), in addition to
the input array.

function getLongestPathLength(inputArray) {

 return _getLongestPathLength(inputArray, 0, 0, 0, 0);

}

function isValidMatrixElement(inputArray, x, y) {

 if (inputArray[x] === undefined) {

 return false;

 }

 if (inputArray[x][y] === undefined) {

 return false;

 }

4 4

 if (typeof inputArray[x][y] !== 'number') {

 throw 'invalid element entry, expect number, but got '
+ typeof inputArray[x][y] + ': ' + inputArray[x][y];

 }

 return true;

}

function _getLongestPathLength(inputArray, currentX,
currentY, currentLength, maxLength) {

 if (!isValidMatrixElement(inputArray, currentX,
currentY)) {

 return currentLength;

 }

 var ySize = inputArray[currentX].length

 var xSize = inputArray.length

 var anchorValue = inputArray[currentX][currentY];

 if (xSize > currentX &&

 isValidMatrixElement(inputArray, currentX + 1,
currentY) &&

 inputArray[currentX + 1][currentY] > anchorValue) {

 return _getLongestPathLength(inputArray, currentX + 1,
currentY, currentLength + 1, maxLength);

 } else if (ySize > currentY &&

 isValidMatrixElement(inputArray, currentX, currentY +
1) &&

 inputArray[currentX][currentY + 1] > anchorValue) {

 return _getLongestPathLength(inputArray, currentX,
currentY + 1, currentLength + 1, maxLength);

 } else {

 return Math.max(currentLength, maxLength);

 }

}

console.log(getLongestPathLength([]));

console.log(getLongestPathLength([

 []

]));

console.log(getLongestPathLength([

 [1, 1],

 [1, 1]

]));

console.log(getLongestPathLength([

 [1, 2],

 [1, 2]

]));

4 5

console.log(getLongestPathLength([

 [1, 2, 3],

 [1, 2, 3]

]));

console.log(getLongestPathLength([

 [1, 2, 3],

 [2, 3, 4]

]));

console.log(getLongestPathLength([

 [1, 2, 3],

 [2, 3, 4],

 [100, 300, 400]

]));

console.log(getLongestPathLength([

 [1, 2, 3],

 [2, 3, 4],

 [100, 300]

]));

console.log(getLongestPathLength([

 [

 [1, 2, 3]

],

 [

 [2, 3, 4]

]

]));

Step 6: Test

console.log(getLongestPathLength([]));

0

console.log(getLongestPathLength([

 []

]));

0

console.log(getLongestPathLength([

 [1, 1],

 [1, 1]

]));

0

4 6

console.log(getLongestPathLength([

 [1, 2],

 [1, 2]

]));

1

console.log(getLongestPathLength([

 [1, 2, 3],

 [1, 2, 3]

]));

2

console.log(getLongestPathLength([

 [1, 2, 3],

 [2, 3, 4]

]));

3

console.log(getLongestPathLength([

 [1, 2, 3],

 [2, 3, 4],

 [100, 300, 400]

]));

4

console.log(getLongestPathLength([

 [1, 2, 3],

 [2, 3, 4],

 [100, 300]

]));

3

console.log(getLongestPathLength([

 [[1, 2, 3]],

 [[2, 3, 4]]

]));

Uncaught invalid element entry, expect number, but got
object: 1,2,3

4 7

E X A M P L E P R O B L E M # 3 :
F I N D A L L T H E

P O S S I B L E S U B S E T S
5

Step 1: Write Down The Problem

Given a set of integers, find all the possible subsets.

For example,

Input

Output

Step 2: Clarify The Problem Space

General

2 3 4

2 3 2,3 4 2,4 3,4 2,3,4

Question Answer

Does the order of elements in the
subsets matter? In other words,
should [1, 2] and [2, 1] be
considered as different subsets or
the same?

No. [1,2] and [2,1] should be
considered as the same subset.

 https://www.codinginterview.com/netflix-interview-questions5

4 8

Edge Cases

Scale

Objectives

What is the format of the input
data? Is it a list, array, or some
other data structure?

It is an array.

What is the expected format of the
output? Should the subsets be
represented as lists, arrays, or
some other data structure?

An array of arrays should be okay.

Question Answer

Question Answer

Should the empty set be included
as a valid subset?

Yes.

Can the input contain duplicate
elements?

Yes, the input can have duplicate
elements. But the output has no
duplicate elements.

Input: [1, 1]

Output: [[], [1]]

What happens when the input set
contains only one element?

Input: [1]

Output: [[], [1]]

Question Answer

Do you expect this algorithm to
work efficiently for large input sets,
or is it primarily designed for
smaller sets?

Work for small sets for now.

4 9

Step 3: Write Down Test Cases

Test 1: Happy Case

Input: [1, 2]

Output: [[], [1], [2], [1, 2]]

Test 2: Empty Set

Input: []

Output: [[]]

Test 3: Single Element Set

Input: [42]

Output: [[], [42]]

Test 4: Set with Duplicates

Input: [1, 2, 2]

Output: [[], [1], [2], [1, 2], [2, 2], [1, 2, 2]]

Test 5: Set with Repeated Elements

Input: [1, 1, 2, 2]

Output: [[], [1], [2], [1, 2], [1, 1], [2, 2], [1, 1, 2], [1, 2, 2], [1, 1, 2, 2]]

Test 6: Set with Repeated Elements, Not Ordered

Question Answer

Are there any constraints on the
time or space complexity of the
solution?

As efficient as possible.

5 0

Input: [2, 1, 1, 2]

Output: [[], [1], [2], [1, 2], [1, 1], [2, 2], [1, 1, 2], [1, 2, 2], [1, 1, 2, 2]]

Step 4: Describe and Write Down the
Algorithm

Based on the test cases, I noticed the recursive nature of the outputs as
well as the need to backtrack to avoid duplicates.

The algorithm I'm using to find all possible subsets of a given set of
integers is based on a recursive approach with backtracking.

Here’s a step-by-step description of the algorithm:

1. Sort the input array.

2. Initialize an empty array to store subsets.

3. Define a recursive function to backtrack.

4. In the function, if the current index is equal to the array length, add
the current subset to the result.

5. Iterate through the array elements starting from the current index.

1. Include the element in the current subset, recursively call the
function with an updated index, and remove the last element
from the subset.

6. Remove the last element from the subset after each recursive call.

7. Start the recursion with an initial index of 0 and an empty subset.

8. Return the result array containing all subsets.

Now assess the complexity.

The Time Complexity is exponential, O(2^n), with n representing the
number of elements in the input set. This is because, for each element

5 1

in the input set, there are two choices: either include it in the current
subset or exclude it. This leads to a branching factor of 2^n, where n is
the number of elements in the input set. In the worst case, you will
explore all possible subsets, resulting in 2^n subsets.

The Space Complexity is linear, O(n), with n as the number of elements
in the input set. In the worst case, when you include all elements in the
current subset, the maximum depth of the recursion is n.

Step 5: Start Coding

function findSubsets(nums) {

 const subsets = [];

 function backtrack(start, currentSubset) {

 subsets.push(currentSubset.slice()); // Clone the
current subset and add it to the result

 for (let i = start; i < nums.length; i++) {

 if (i > start && nums[i] === nums[i - 1]) {

 // Skip duplicate elements to avoid duplicate
subsets

 continue;

 }

 currentSubset.push(nums[i]);

 backtrack(i + 1, currentSubset); // Recursively
generate subsets

 currentSubset.pop(); // Backtrack by removing the
last element

 }

 }

 nums.sort((a, b) => a - b); // Sort the input to handle
duplicates

 backtrack(0, []); // Start the recursion

 return subsets;

}

Step 6: Test

console.log("Test 1: Happy Case");

console.log(findSubsets([1, 2]));

5 2

// Output: [[], [1], [2], [1, 2]]

console.log("Test 2: Empty Set");

console.log(findSubsets([]));

// Output: [[]]

console.log("Test 3: Single Element Set");

console.log(findSubsets([42]));

// Output: [[], [42]]

console.log("Test 4: Set with Duplicates");

console.log(findSubsets([1, 2, 2]));

// Output: [[], [1], [2], [1, 2], [2, 2], [1, 2, 2]]

console.log("Test 5: Set with Repeated Elements");

console.log(findSubsets([1, 1, 2, 2]));

// Output: [[], [1], [2], [1, 2], [1, 1], [2, 2], [1, 1,
2], [1, 2, 2], [1, 1, 2, 2]]

console.log("Test 6: Set with Repeated Elements, Not
Ordered");

console.log(findSubsets([2, 1, 1, 2]));

// Output: [[], [1], [2], [1, 2], [1, 1], [2, 2], [1, 1,
2], [1, 2, 2], [1, 1, 2, 2]] 

5 3

A B O U T A U T H O R

Grace Huang was a software engineer at several big tech companies,
including Amazon, and Bloomberg. Grace co-founded a hardware / AI
company, Roxy. The product line was later acquired and the team joined
Twitter. Since leaving Twitter, Grace has been focusing on writing and
teaching.

Other technical books that Grace wrote:

• Build macOS Apps With SwiftUI: A Practical Learning Guide (https://
amzn.to/40PUpzu)

• Dynamic Trio: Building Web Applications with React, Next.js &
Tailwind (https://amzn.to/3sHbnDV)

• Code Reviews In Tech: The Missing Guide (https://
gracehuang.gumroad.com/l/codereviews)

• A Practical Guide to Writing a Software Technical Design Document
(https://gracehuang.gumroad.com/l/mqmUt)

You can reach Grace at @imgracehuang on Twitter.

5 4

https://amzn.to/40PUpzu
https://amzn.to/40PUpzu
https://amzn.to/3sHbnDV
https://gracehuang.gumroad.com/l/codereviews
https://gracehuang.gumroad.com/l/codereviews
https://gracehuang.gumroad.com/l/mqmUt

	Introduction
	End Goal
	Structure
	Assumptions
	Programming Languages
	Suggestions

	Step 1: Write Down The Problem
	Why?
	Example: The English Number Conversion problem
	Takeaways

	Step 2: Clarify The Problem Space
	Assumptions
	Clarifying Questions
	Good Judgment
	Example: the English Number Conversion problem
	Takeaways

	Step 3: Write Down Test Cases
	Why?
	Example: the English Number Conversion problem
	Takeaways

	Step 4: Describe and Write Down the Algorithm
	Pick Data Structures
	Describe Your Thinking
	Complexity Analysis
	Example: the English Number Conversion problem
	Takeaways

	Step 5: Start Coding
	Example: the English Number Conversion problem
	Takeaways

	Step 6: Test
	Example: the English Number Conversion problem
	Takeaways

	Conclusion
	Established Process At Work
	The Case of Performing Under Pressure
	Practice, Practice, Practice

	Example Problem #1: Arrays: Move Zeros to the Left
	Step 1: Write Down The Problem
	Step 2: Clarify The Problem Space
	Step 3: Write Down Test Cases
	Step 4: Describe and Write Down the Algorithm
	Step 5: Start Coding
	Step 6: Test

	Example Problem #2: Longest Path In The Matrix
	Step 1: Write Down The Problem
	Step 2: Clarify The Problem Space
	Step 3: Write Down Test Cases
	Step 4: Describe and Write Down the Algorithm
	Step 5: Start Coding
	Step 6: Test

	Example Problem #3: Find All the Possible Subsets
	Step 1: Write Down The Problem
	Step 2: Clarify The Problem Space
	Step 3: Write Down Test Cases
	Step 4: Describe and Write Down the Algorithm
	Step 5: Start Coding
	Step 6: Test

	About Author

