
The GPG Guide
Modern OpenPGP for Every Workflow

2026 Edition

TONY GIES

Table of Contents

61. The GPG Guide

71.1 What's Inside

82. Free Sample

93. I: Philosophy & Foundations

93.1 Part I: Philosophy & Foundations

103.2 1.1 The State of OpenPGP in 2026

10The Split: LibrePGP vs. RFC 9580

11The Ecosystem Map

11GnuPG Versions in 2026

12Sequoia PGP

12The Bottom Line

133.3 1.2 Cryptographic Choices

13The Golden Path: v4 + Ed25519 / Cv25519

14EUCLEAK: Why Ed25519 Is the Safe Choice

15When RSA-4096 Still Makes Sense

15The v6 Key Format: Not Yet

16Post-Quantum: A Preview

173.4 1.3 Key Architecture & Threat Model

17The Master + Subkeys Model

18Why This Separation Matters

18Subkey Expiration

18Cross-Certification

19Threat Scenarios

20The Three Tracks

223.5 1.4 Toolchain Choice: Two Paths

22Path 1: GnuPG-Only (The Universal Path)

22Path 2: Hybrid (Sequoia + GnuPG)

23The Bridge: How Hybrid Works

24Decision Matrix

24Recommendation

25What You Will Need Installed

264. II: Key Generation

264.1 Part II: The Air-Gapped Forge (Key Generation)

Table of Contents

2 / 72 Copyright © 2026 Tony Gies. All rights reserved.

274.2 2.1 Environment Preparation

27Option A: Tails OS (Recommended)

28Option B: Alpine Linux on Raspberry Pi

29Option C: drduh's NixOS LiveCD

29Common Setup: Temporary GNUPGHOME

314.3 2.2 Key Generation -- GnuPG Path

31Prerequisites

31Choosing a Passphrase

32Step 1: Set Your Identity

32Step 2: Generate the Master Key

33Step 3: Add Subkeys

33Step 4: Verify the Key Structure

34The gpg.conf Explained

34Next Steps

354.4 2.3 Key Generation -- Sequoia Path

35Prerequisites

35Step 1: Generate the Key

36Step 2: Add an Authentication Subkey

36Step 3: Inspect the Key

37Step 4: Bridge to GnuPG

38Step 5: Secure the Original File

38Differences from the GnuPG Path

38Next Steps

394.5 2.4 Identity & UIDs

39Adding UIDs

40What NOT to Put in UIDs

41Separate Keys for Separate Identities

41Revoking a UID

42Next Steps

434.6 2.5 Verification

43Reading gpg -K Output

44Verification Checklist

45Detailed Key Inspection

45Record Your Fingerprint

46Next Steps

Table of Contents

3 / 72 Copyright © 2026 Tony Gies. All rights reserved.

475. III: Backup & Recovery

475.1 Part III: Backup & Disaster Recovery

485.2 3.1 Export Everything

48The Four Exports

49Summary Table

49Verify the Exports

50Optional: SSH Public Key

50Next Steps

515.3 3.2 Paperkey -- The Gold Standard

51How Paperkey Works

51Creating the Paperkey Backup

52Printing

53Restoration

53The Restoration Drill

53Next Steps

545.4 3.3 QR Code Backup

54Prerequisites

54Generating QR Codes

55Verification: The Round-Trip Test

56Including the Public Key

56Storage Recommendations

57Next Steps

585.5 3.4 Encrypted USB Backup

58Why LUKS?

58Creating an Encrypted USB Drive

59How Many Drives?

60What to Copy

60Restoration from USB

61Media Health and Refresh

61Next Steps

625.6 3.5 Revocation Certificates

62Why You Need One Before You Need It

62Auto-Generated Revocation Certificate

62Generating Custom Revocation Certificates

63Storage

64Using a Revocation Certificate

Table of Contents

4 / 72 Copyright © 2026 Tony Gies. All rights reserved.

64The Backup Summary

665.7 3.6 Deterministic Keys (gpg-hd)

66How gpg-hd Works

67Why This Is Experimental

67Comparison with Standard Backup Methods

67The Bottom Line

686. Appendices

686.1 Appendix C: Cheat Sheet

68Key Management

68Encryption & Decryption

69Signing & Verification

69Keyservers

69Smartcard / YubiKey

70SSH with GPG

70Trust & Certification

70SOP (for scripting)

71Quick Recipes

727. End of Free Sample

727.1 What's in the Full Guide

Table of Contents

5 / 72 Copyright © 2026 Tony Gies. All rights reserved.

1. The GPG Guide

OpenPGP has been around since 1991, but the ecosystem in 2026 looks nothing like the one described
in the guides most people learned from. The protocol has forked into two competing standards. The
cryptographic recommendations have shifted. Keyserver infrastructure has collapsed and been rebuilt.
Sequoia PGP has matured into a real alternative to GnuPG. And entirely new tools -- age, Sigstore,
FIDO2 -- have taken over jobs that PGP used to do alone.

Most existing PGP guides either predate these changes or cover only one narrow workflow. This guide is
different. It covers the full lifecycle of a modern PGP identity -- from generating your first key on an air-
gapped machine, through hardware token provisioning and daily use, to maintenance, rotation, and
emergency recovery years later. Every command has been tested against GnuPG 2.5.x and Sequoia sq
1.3.1. Where PGP is the wrong tool for the job, this guide says so and points you to what works better.

The approach is opinionated: v4 keys, Ed25519 cryptography, hardware tokens where practical. Not
because there are no other valid choices, but because you have actual work to do and a clear "just do
this" path is more useful than a survey of every option. Three reader tracks let you skip what you don't
need -- if all you want is Git signing and SSH, you can be done in an afternoon without wading through
Debian packaging or the Web of Trust.

This guide is organized for both sequential reading (if you're setting up from scratch) and reference lookup (if
you need a specific workflow).

Choose your track:

Track A -- "I just need Git signing and SSH": Parts I, II, V, VI, VII

Track B -- "Full identity setup with YubiKey": Parts I through VII, then whatever workflows you need

Track C -- "Debian Developer / high-assurance identity": The whole guide, especially Parts XII–XIV

How to read this guide

•

•

•

1. The GPG Guide

6 / 72 Copyright © 2026 Tony Gies. All rights reserved.

1.1 What's Inside

Appendices: Config Reference · Troubleshooting · Cheat Sheet · Glossary · Migration Guides · Legal &
Compliance

PART TOPIC WHAT YOU'LL LEARN

I Philosophy &
Foundations

Why Ed25519, the LibrePGP/RFC 9580 split, threat
models

II Key Generation Air-gapped setup with GnuPG or Sequoia

III Backup & Recovery Paperkey, QR codes, encrypted USB, revocation

IV Hardware Provisioning YubiKey setup, touch policies, alternatives

V Daily Machine Setup GnuPG config, cross-platform, WSL2

VI SSH Authentication GPG-agent, FIDO2, PIV -- three paths compared

VII Git Signing GPG signing, SSH signing, GitHub/GitLab, CI/CD

VIII Email Encryption Thunderbird, Mutt, Autocrypt, ProtonMail

IX Password Management pass, gopass, passage

X File Encryption GPG encryption, age, encrypted backups

XI Secrets Management SOPS, git-crypt, comparison

XII Key Distribution Keyservers, WKD, Keyoxide

XIII Web of Trust caff, keysigning parties, Debian path

XIV Package Signing deb, RPM, releases, containers

XV Maintenance Expiry renewal, YubiKey switching, emergencies

XVI Complementary Tools Sequoia, age, SOP, when NOT to use PGP

1.1 What's Inside

7 / 72 Copyright © 2026 Tony Gies. All rights reserved.

2. Free Sample

You're reading a preview containing Parts I–III (Philosophy & Foundations, Key Generation, Backup & Recovery)
plus the Cheat Sheet appendix — everything you need to generate a solid key pair and back it up safely.

The complete guide continues with 13 more parts and 5 additional appendices covering hardware tokens, daily
machine setup, SSH, Git signing, email encryption, password management, secrets management, key distribution,
the Web of Trust, package signing, maintenance, and complementary tools.

Get the full guide at: https://leanpub.com/gpg-guide

This is a free sample of The GPG Guide

2. Free Sample

8 / 72 Copyright © 2026 Tony Gies. All rights reserved.

https://leanpub.com/gpg-guide

3. I: Philosophy & Foundations

3.1 Part I: Philosophy & Foundations

Before generating a single key, it pays to understand the landscape you are stepping into. OpenPGP has
been around since 1991, but 2026 looks nothing like 2016 -- the protocol has forked, the cryptographic
recommendations have shifted, and the tooling ecosystem has expanded far beyond GnuPG alone.

This part covers the strategic decisions every reader must make before touching a terminal:

The State of OpenPGP in 2026 -- The LibrePGP / RFC 9580 split, the ecosystem map, and why v4
keys remain the universal choice.

Cryptographic Choices -- Why Ed25519 + Cv25519 is the golden path, what EUCLEAK means for your
hardware, and when RSA still matters.

Key Architecture & Threat Model -- The master + subkeys model, threat scenarios, and the three
reader tracks (A, B, C).

Toolchain Choice: Two Paths -- GnuPG-only vs. Hybrid (Sequoia + GnuPG), with a decision matrix.

Throughout this guide, sections are tagged for three reader tracks:

Track A -- Minimal: "I just need Git signing and SSH." You can skip hardware provisioning entirely if you prefer
software keys.

Track B -- Standard: "Full identity setup with YubiKey." The path most readers will follow.

Track C -- Advanced: "Debian Developer / high-assurance identity." Keysigning parties, WoT, package signing.

Every reader should read Part I. After that, follow the track markers to skip sections that do not apply to you.

1.

2.

3.

4.

Which track are you?

•

•

•

3. I: Philosophy & Foundations

9 / 72 Copyright © 2026 Tony Gies. All rights reserved.

3.2 1.1 The State of OpenPGP in 2026

Tracks: A, B, C

OpenPGP is the most widely deployed public-key encryption standard outside of TLS. It underpins Git
commit signing, encrypted email, software package verification, and password management tools like
pass . But the ecosystem in 2026 is very different from the one described in older guides -- and

understanding the current landscape will save you from making choices that look reasonable on paper
but break in practice.

The Split: LibrePGP vs. RFC 9580

In 2023, the OpenPGP working group at the IETF finalized RFC 9580, a major update to the OpenPGP
standard. RFC 9580 introduces v6 keys -- a new packet format with improved cryptographic agility,
mandatory AEAD encryption, and cleaner metadata handling.

GnuPG's maintainer, Werner Koch, disagreed with several design decisions in RFC 9580 and published
an alternative specification called LibrePGP (draft-koch-librepgp). GnuPG follows LibrePGP, not
RFC 9580.

This means:

For 2026, use v4 keys. Both GnuPG and Sequoia fully support v4 keys. v6 keys work only between Sequoia
instances (and other RFC 9580 implementations). GnuPG will refuse to import v6 keys entirely.

If you have read older blog posts recommending v6 keys as "the future" -- they are correct about the direction, but
premature about the timeline. v6 adoption requires GnuPG support, and that has not happened.

FEATURE GNUPG (LIBREPGP) SEQUOIA PGP (RFC 9580)

v4 keys Full support Full support

v6 keys Not supported Supported (openpgp crate 2.0+)

AEAD encryption v5 AEAD (experimental) RFC 9580 AEAD

Interoperability Universal for v4 Universal for v4, limited for v6

What this means for you

3.2 1.1 The State of OpenPGP in 2026

10 / 72 Copyright © 2026 Tony Gies. All rights reserved.

The Ecosystem Map

OpenPGP is not just GnuPG. Multiple implementations exist, each with different strengths:

This is one of the most common sources of confusion. Thunderbird's built-in OpenPGP support uses RNP -- a
completely separate implementation. RNP does not support smartcards or hardware tokens. If you use a YubiKey,
you must configure Thunderbird to delegate private-key operations to your system GnuPG installation. See Part
VIII: Email Encryption for the setup steps.

GnuPG Versions in 2026

Ubuntu 24.04 LTS ships 2.4.4, Debian Trixie and Tails 7.x ship 2.4.7, and Fedora 41 ships 2.4.6. If you install GnuPG
from your package manager, you will almost certainly get 2.4.x. This is fine -- everything in this guide works on
GnuPG 2.4. Where a feature is 2.5-specific, it is called out explicitly.

IMPLEMENTATION LANGUAGE STANDARD USED BY

GnuPG C LibrePGP System GPG on Linux/macOS/Windows,
gpg-agent , smartcard support

Sequoia PGP Rust RFC 9580 sq CLI, Fedora tooling, security audits

RNP C++ RFC 4880 +
extensions

Thunderbird (built-in OpenPGP)

OpenPGP.js JavaScript RFC 4880 ProtonMail web client

GopenPGP Go RFC 4880 ProtonMail native apps

Thunderbird uses RNP, not GnuPG

BRANCH VERSION STATUS NOTES

2.5.x 2.5.17 Stable Current upstream recommended version

2.4.x 2.4.7 Oldstable End-of-life: 2026-06-30

2.2.x -- EOL Do not use

Most distributions still ship GnuPG 2.4

The Ecosystem Map

11 / 72 Copyright © 2026 Tony Gies. All rights reserved.

GnuPG 2.5 brings several improvements over 2.4:

Experimental Kyber (post-quantum) key support

Improved default cipher preferences (SHA-512, AES-256)

Better smartcard handling

If your distribution ships GnuPG 2.4, plan to upgrade before the June 2026 end-of-life date -- but there
is no urgency. Your distribution will likely provide 2.5.x as a routine update before then.

Sequoia PGP

Sequoia PGP is a modern, Rust-based OpenPGP implementation. Its CLI tool sq (current version: 1.3.1)
provides a cleaner interface for key management and cryptographic operations.

Key facts about sq :

Default profile: --profile rfc4880 produces v4 keys (correct for interoperability)

Alternative profile: --profile rfc9580 produces v6 keys (do NOT use for keys that will touch
GnuPG or YubiKey)

No smartcard support: sq cannot load keys onto hardware tokens. You must use GnuPG's
keytocard for that.

Best for: Key generation with saner defaults, key inspection, WKD publishing, and as a second opinion
on key operations

The Bottom Line

For 2026, the practical strategy is:

Generate v4 keys -- universally compatible

Use Ed25519/Cv25519 -- modern, fast, secure (see 1.2 Cryptographic Choices)

Use GnuPG at runtime -- required for smartcard operations, SSH agent, and the widest tool support

Optionally use Sequoia (sq) for generation -- if you prefer its interface (see 1.4 Toolchain Choice)

Ignore v6 keys for now -- revisit when GnuPG adds support (if ever)

This guide follows this strategy throughout. Every command, configuration file, and workflow has been
tested against this v4 + Ed25519 baseline.

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

Sequoia PGP

12 / 72 Copyright © 2026 Tony Gies. All rights reserved.

https://sequoia-pgp.org/

3.3 1.2 Cryptographic Choices

Tracks: A, B, C

Choosing your key algorithm is the first decision with lasting consequences -- you will live with it for the
lifetime of your key (potentially decades). This section explains why Ed25519 + Cv25519 is the right
choice for almost everyone in 2026, and when exceptions apply.

The Golden Path: v4 + Ed25519 / Cv25519

This combination gives you:

Universal compatibility: Works with GnuPG (all supported versions), Sequoia, Thunderbird/RNP,
OpenKeychain, YubiKey (firmware 5.2.3+), and every tool covered in this guide.

Modern cryptography: 128-bit security level, equivalent to RSA-3072 but with keys and signatures
that are a fraction of the size.

No known side-channel attacks on Ed25519: The signing algorithm uses constant-time operations
with no secret-dependent branching -- critical for hardware tokens (see EUCLEAK below).

Fast operations: Key generation, signing, and verification are all significantly faster than RSA.

GnuPG uses the name ed25519 for both EdDSA signing keys and the master (certification) key. The encryption
subkey uses cv25519 (Curve25519 in its Montgomery form for ECDH key exchange). These are the names you
will pass to --quick-generate-key and --quick-add-key .

SLOT ALGORITHM CURVE PURPOSE

Master [C] EdDSA Ed25519 Certify subkeys and UIDs

Signing [S] EdDSA Ed25519 Sign commits, emails, files

Encryption [E] ECDH Cv25519 Decrypt messages and files

Authentication [A] EdDSA Ed25519 SSH authentication

•

•

•

•

Ed25519 naming in GnuPG

3.3 1.2 Cryptographic Choices

13 / 72 Copyright © 2026 Tony Gies. All rights reserved.

EUCLEAK: Why Ed25519 Is the Safe Choice

In September 2024, researchers at NinjaLab published EUCLEAK (CVE-2024-45678), a side-channel
attack against Infineon's ECDSA cryptographic library. This library was used in all YubiKey 5 series
devices with firmware earlier than 5.7.

What EUCLEAK affects

ECDSA signatures using NIST curves (P-256, P-384): The Infineon library leaks timing information
during the modular inversion step of ECDSA signing.

Requires physical access: An attacker needs the YubiKey in their hands plus specialized
electromagnetic measurement equipment.

CVSS score: 4.9 (medium severity) -- reflects the physical access requirement.

What EUCLEAK does NOT affect

Ed25519 / EdDSA: Uses completely different mathematics (twisted Edwards curves with constant-time
scalar multiplication). The vulnerable Infineon code path is never invoked for Ed25519 operations.

RSA keys: Different algorithm entirely, not affected.

YubiKey firmware 5.7+: Yubico replaced the Infineon library with their own cryptographic
implementation. ECDSA on firmware 5.7+ is not vulnerable.

Run ykman info to see your YubiKey's firmware version. Firmware cannot be upgraded on YubiKey -- it is
burned at manufacture.

Firmware < 5.7 + NIST curve keys: Potentially vulnerable. But if you follow this guide's recommendation of
Ed25519, you are not affected.

Firmware 5.7+: Not vulnerable to EUCLEAK regardless of algorithm.

Any firmware + Ed25519: Not vulnerable. This is our golden path.

The bottom line on EUCLEAK

EUCLEAK is a real vulnerability, but it is not a reason to panic if you use Ed25519 keys. It is, however, a
strong argument for choosing Ed25519 over NIST curves -- even on newer hardware. Ed25519's
constant-time design provides defense-in-depth against future side-channel discoveries.

•

•

•

•

•

•

Check your firmware version

•

•

•

EUCLEAK: Why Ed25519 Is the Safe Choice

14 / 72 Copyright © 2026 Tony Gies. All rights reserved.

When RSA-4096 Still Makes Sense

RSA is not broken, and RSA-4096 remains a perfectly secure choice. However, it has practical
disadvantages compared to Ed25519:

Consider RSA-4096 if:

Your organization mandates RSA keys (some enterprise policies, government systems)

You need compatibility with very old OpenPGP implementations that predate Ed25519 support

You are interacting with legacy PGP Universal Server infrastructure

For everyone else, Ed25519 is the better choice.

The v6 Key Format: Not Yet

RFC 9580 introduces v6 keys with several improvements over v4:

Mandatory AEAD for symmetric encryption (no more CFB mode)

Key creation fingerprints based on SHA-256 instead of SHA-1

Cleaner separation of packet types

Better metadata privacy

However, v6 keys are not recommended for general use in 2026:

GnuPG does not support v6 -- it follows LibrePGP, which uses a different (incompatible) approach

YubiKey smartcards may not accept v6 keys -- the OpenPGP card applet expects v4 packet headers

Most ecosystem tools expect v4 -- email clients, key servers, verification tools

PROPERTY ED25519 RSA-4096

Security level ~128-bit ~128-bit

Public key size 32 bytes 512 bytes

Signature size 64 bytes 512 bytes

Key generation Milliseconds Seconds

Signing speed Fast Slower

Smartcard operations Fast Noticeably slower on YubiKey

•

•

•

•

•

•

•

•

•

•

When RSA-4096 Still Makes Sense

15 / 72 Copyright © 2026 Tony Gies. All rights reserved.

If you generate a v6 key with sq --profile rfc9580 , you will not be able to import it into GnuPG, load it onto a
YubiKey, or use it with most tools in this guide. v6 keys are for Track C experimenters who work exclusively within
Sequoia or other RFC 9580 implementations.

For a discussion of v6 migration when the ecosystem is ready, see Appendix E: Migration Guides.

Post-Quantum: A Preview

GnuPG 2.5 includes experimental Kyber support -- a post-quantum key encapsulation mechanism.
This is a hybrid approach where Cv25519 and Kyber are combined, so that the encryption remains
secure even if only one of the two algorithms holds.

Post-quantum keys are experimental in 2026. They are not covered as a primary path in this guide, but
are worth watching as quantum computing advances.

Do not generate v6 keys unless you know exactly what you are doing

Post-Quantum: A Preview

16 / 72 Copyright © 2026 Tony Gies. All rights reserved.

3.4 1.3 Key Architecture & Threat Model

Tracks: A, B, C

Your PGP key is not a single entity -- it is a hierarchy of keys with different roles and different risk
profiles. Understanding this architecture is essential before you generate anything, because the structure
you choose determines what you can recover from when things go wrong.

The Master + Subkeys Model

Every OpenPGP key consists of a master key and one or more subkeys. Each key has one or more
capabilities:

The critical insight is the separation of certification from daily use:

Your master key is your identity. It certifies that the subkeys belong to you, and it signs other people's
keys in the Web of Trust. Because it rarely needs to be used (only for adding/revoking subkeys, adding
UIDs, or signing others' keys), it can be kept offline on an air-gapped machine or encrypted backup.

Your subkeys do the daily work. They sign commits, decrypt emails, and authenticate SSH connections.
They live on your daily machine (ideally on a hardware token like a YubiKey).

CAPABILITY FLAG PURPOSE WHICH KEY?

Certify [C] Sign other keys and UIDs (your identity) Master key only

Sign [S] Sign commits, emails, files Subkey

Encrypt [E] Decrypt messages sent to you Subkey

Authenticate [A] SSH authentication Subkey

Master Key [C] (offline, air-gapped)

├── Signing Subkey [S] (on YubiKey or daily machine)

├── Encryption Subkey [E] (on YubiKey or daily machine)

└── Authentication Subkey [A] (on YubiKey or daily machine)

3.4 1.3 Key Architecture & Threat Model

17 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Why This Separation Matters

If a subkey is compromised (stolen laptop, malware), you can:

Revoke the compromised subkey using your offline master key

Generate a new subkey

Distribute the updated public key

Continue using the same identity -- your certifications, Web of Trust signatures, and key distribution all
remain intact

If you had put all capabilities on a single key and that key were compromised, you would need to start
over from scratch: new key, new fingerprint, new WoT signatures, new distribution.

Subkey Expiration

Subkeys should have an expiration date -- this guide recommends 2 years. Expiration is a safety net,
not a death sentence:

When subkeys approach expiry, you extend them from the air-gapped master (see Part XV:
Maintenance)

If you lose access to everything, expired subkeys stop working automatically -- no one can send you
encrypted mail you cannot read

Expiration encourages periodic backup verification ("can I still access my master key?")

Setting an expiration date does not destroy anything. You can always extend the expiration before (or even after) it
passes, as long as you have access to the master key. Think of it as a dead man's switch, not a time bomb.

The master key should have no expiration (never). Its lifetime is managed through revocation, not
expiration.

Cross-Certification

When GnuPG creates a subkey, it automatically cross-certifies it: the subkey signs the master key, and
the master key signs the subkey. This bidirectional signature prevents an attacker from detaching your
subkey and attaching it to their own master key (a "subkey theft" attack).

1.

2.

3.

4.

•

•

•

Expiration is reversible

Why This Separation Matters

18 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Cross-certification has been automatic in all modern GnuPG versions, but older keys may lack it. The
require-cross-certification option in gpg.conf ensures GnuPG rejects any subkey that is not

properly cross-certified.

Threat Scenarios

Understanding what each layer of protection covers:

Stolen laptop (subkeys on YubiKey)

Recovery: None needed. Your YubiKey is still in your pocket.

Compromised daily machine (malware)

Recovery: Revoke compromised subkeys, generate new ones from offline master. This is the primary
argument for using a hardware token.

Lost YubiKey (no known compromise)

COMPONENT STATUS WHY

Master key Safe Not on the laptop

Subkeys Safe On YubiKey (PIN + touch required)

Public key Not a secret Public by design

Passphrase N/A YubiKey uses PIN, not passphrase

COMPONENT STATUS WHY

Master key Safe Never on daily machine

Subkeys (YubiKey) Safe Malware cannot extract keys from hardware

Subkeys (software) Compromised Malware can read key files

Recent operations Exposed Malware could have intercepted plaintext

COMPONENT STATUS WHY

Master key Safe On air-gapped backup

Subkeys on lost
YubiKey

At risk Finder could attempt PIN brute-force (3 attempts before
lockout)

Threat Scenarios

19 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Recovery: Switch to backup YubiKey (see 4.5 Backup YubiKey). Optionally revoke the lost key's subkeys
and re-provision from master backup.

Forgotten passphrase

Recovery: If you have no written record of the passphrase -- none. This is why Part III: Backup
emphasizes paper records of the passphrase.

The Three Tracks

This guide supports three reader profiles. Each section is tagged with the tracks it applies to:

Track A: Minimal

"I just need Git signing and SSH."

Generate keys (software or hardware)

Set up Git commit signing

Set up SSH authentication

Skip: email encryption, WoT, keysigning, package signing

Track B: Standard

"Full identity setup with YubiKey."

Full key generation on air-gapped system

Hardware provisioning (YubiKey)

Git signing, SSH, email encryption

Password management with pass

Basic key distribution (keyservers, WKD)

COMPONENT STATUS WHY

Everything Inaccessible Passphrase protects the master key backup

•

•

•

•

•

•

•

•

•

The Three Tracks

20 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Track C: Advanced

"Debian Developer / high-assurance identity."

Everything in Track B, plus:

Web of Trust participation (keysigning parties, caff)

Package signing (debsign , RPM)

Key distribution to multiple keyservers

Advanced maintenance procedures

Legal/compliance considerations

•

•

•

•

•

•

The Three Tracks

21 / 72 Copyright © 2026 Tony Gies. All rights reserved.

3.5 1.4 Toolchain Choice: Two Paths

Tracks: A, B, C

With the landscape and cryptographic choices established, the final strategic decision is which tools to
use for key generation and day-to-day operations. This guide supports two paths -- choose one and
follow it consistently.

Path 1: GnuPG-Only (The Universal Path)

Generate and manage keys entirely with gpg . This is the path most readers should follow.

Advantages:

Battle-tested for decades; every tutorial, Stack Overflow answer, and man page assumes GnuPG

Direct smartcard support (keytocard , gpg-agent SSH)

Single toolchain -- no bridging between tools

Required for hardware token operations regardless of generation path

Ships with every major Linux distribution

Disadvantages:

The gpg CLI is famously arcane (120+ options for --edit-key alone)

Error messages are often cryptic

Configuration requires a well-tuned gpg.conf to get modern defaults (we provide one in Part II)

Best for: Most users, especially those who want the simplest possible setup with the most community
support.

Path 2: Hybrid (Sequoia + GnuPG)

Generate keys with Sequoia's sq CLI for its cleaner interface and saner defaults, then use GnuPG at
runtime for smartcard support and SSH agent functionality.

•

•

•

•

•

•

•

•

3.5 1.4 Toolchain Choice: Two Paths

22 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Advantages:

sq has better error messages and a more intuitive CLI

Key generation defaults are secure out of the box

RFC 9580-aligned (future-proofing, though we use v4 keys for now)

Useful as a second opinion: sq inspect gives clearer key analysis than gpg --list-keys

Disadvantages:

Two tools to install and learn

Must bridge keys from sq format into GnuPG keyring (straightforward but an extra step)

sq cannot perform smartcard operations -- GnuPG is still required for keytocard , gpg-agent ,
etc.

Smaller community; fewer troubleshooting resources online

Best for: Users comfortable with newer tooling who value a better CLI experience for key generation
and inspection, and who accept the minor overhead of maintaining two tools.

The Bridge: How Hybrid Works

If you choose Path 2, the workflow is:

The bridge works because both tools speak v4 OpenPGP -- the universal format. The key generated by
sq is bit-for-bit compatible with what gpg expects.

If you generate a v6 key with sq --profile rfc9580 , the bridge fails -- GnuPG will reject the import. Always
use --profile rfc4880 (the default in sq 1.3.1) for keys that will touch GnuPG.

•

•

•

•

•

•

•

•

sq key generate ──→ OpenPGP key file ──→ gpg --import ──→ GnuPG keyring

 ↑ ↓

 (v4 keys only!) keytocard, gpg-agent, etc.

Do NOT bridge v6 keys

The Bridge: How Hybrid Works

23 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Decision Matrix

Recommendation

If you are unsure, choose Path 1 (GnuPG-Only). It has the fewest moving parts and the most
documentation. You can always install sq later as a supplementary tool without changing your key
setup.

Choose Path 2 if you already use Sequoia tools, you want the better CLI experience during initial key
generation, or you plan to participate in the RFC 9580 ecosystem as it matures.

Because both paths produce the same v4 OpenPGP keys, you can install sq alongside gpg at any time and use
it for inspection, WKD publishing, or key manipulation -- without touching your existing keys. The choice here is
about generation and primary workflow, not a permanent commitment to a single tool.

FACTOR GNUPG-ONLY HYBRID (SQ + GPG)

Setup complexity Lower Slightly higher

CLI usability Arcane but documented everywhere Modern, clearer errors

Smartcard support Native Must use GnuPG

SSH agent Native (gpg-agent) Must use GnuPG

Key inspection gpg --list-keys (terse) sq inspect (detailed)

Community support Vast Growing

Future RFC 9580 readiness No (LibrePGP fork) Yes (when ecosystem is ready)

Required tools gpg only sq + gpg

You can switch later without re-generating keys

Decision Matrix

24 / 72 Copyright © 2026 Tony Gies. All rights reserved.

What You Will Need Installed

Regardless of path, you will need GnuPG installed. Here is a quick reference for the tools required at
each stage:

Installation instructions for each platform are covered in Part II: Environment Preparation.

STAGE GNUPG-ONLY HYBRID

Key generation (air-gapped) gpg sq + gpg

Hardware provisioning gpg , ykman gpg , ykman

Daily machine setup gpg , gpg-agent gpg , gpg-agent , optionally sq

SSH authentication gpg-agent gpg-agent

Git signing gpg gpg

Email gpg or Thunderbird gpg or Thunderbird

What You Will Need Installed

25 / 72 Copyright © 2026 Tony Gies. All rights reserved.

4. II: Key Generation

4.1 Part II: The Air-Gapped Forge (Key Generation)

Tracks: B, C (Track A: read 2.2 or 2.3 for non-air-gapped generation, then skip to Part V)

Your master key is your cryptographic identity. It will sign your subkeys, certify other people's keys, and
anchor your presence in the Web of Trust. Generating it on an air-gapped machine -- one that has never
been and will never be connected to a network -- ensures that no malware, keylogger, or remote attacker
can observe or steal it during the most sensitive moment of its lifecycle.

This part walks through:

Environment Preparation -- Setting up an air-gapped system (Tails, Alpine, or NixOS LiveCD).

Key Generation -- GnuPG Path -- Generating your master key and subkeys with gpg .

Key Generation -- Sequoia Path -- Generating with sq and bridging to GnuPG.

Identity & UIDs -- Adding email addresses, managing multiple identities.

Verification -- Reading gpg -K output and confirming your key structure.

If you are following Track B (YubiKey setup) or Track C (high-assurance), generating your master key on your daily
machine defeats the purpose of the entire offline master + hardware subkey architecture described in Part I.

Track A readers who do not plan to use a hardware token may generate keys on their daily machine -- but should
still use a strong passphrase.

1.

2.

3.

4.

5.

Do not skip air-gapping for Track B/C

4. II: Key Generation

26 / 72 Copyright © 2026 Tony Gies. All rights reserved.

4.2 2.1 Environment Preparation

Tracks: B, C

The goal is a clean, network-isolated system with GnuPG installed and a temporary keyring stored in
RAM. Three options, in order of convenience -- choose whichever matches your hardware and comfort
level.

Option A: Tails OS (Recommended)

Tails is an amnesic, Tor-based live operating system. When you shut it down, all data in RAM is wiped.
This makes it ideal for one-time key generation ceremonies.

Steps

Download and verify Tails from tails.net. Follow their verification instructions -- Tails provides a
browser extension and a GPG-signed SHA256 checksum.

Write to USB using the Tails Installer, Etcher, or dd .

Boot from USB. At the Tails greeter, set an administration password (needed for installing additional
packages if required).

Disable networking. In the Tails greeter's additional settings, choose "Disable all networking."
Alternatively, do not connect to any Wi-Fi after boot.

Verify GnuPG is installed:

Tails ships GnuPG by default.

1.

2.

3.

4.

5.

$ gpg --version

4.2 2.1 Environment Preparation

27 / 72 Copyright © 2026 Tony Gies. All rights reserved.

https://tails.net/
https://tails.net/install/

Tails does not ship sq . If you are following the Sequoia Path (2.3), download the Debian package on a networked
machine and transfer it to your Tails USB before booting offline.

Download the sq package (requires Docker):

Without Docker, download the .deb directly from packages.debian.org/trixie/sq -- use the amd64 download
link (or arm64 for Raspberry Pi).

Transfer to USB and install on Tails:

All of sq 's library dependencies (libnettle, libgmp, libssl, etc.) are already present on Tails 7+ because GnuPG
depends on them.

Option B: Alpine Linux on Raspberry Pi

For the hardware-inclined, a Raspberry Pi running Alpine Linux provides a cheap, physically air-gapped
environment free of opaque management coprocessors (Intel ME, AMD PSP). This approach is adapted
from the drduh secure environment guide.

Steps

Download Alpine for aarch64 (or armhf for older Pi models).

Prepare packages on a networked machine. On a separate machine (or Tails), download the
required packages and their dependencies:

Transfer packages to USB drive. Copy the .apk files to a FAT32 USB drive.

Sequoia Path users: stage sq package before booting Tails

On your networked machine

$ mkdir sq-deb

$ docker run --rm -v "$(pwd)/sq-deb:/output" debian:trixie bash -c '

 apt-get update -qq && cd /output && apt-get download sq 2>&1 | tail -1

'

Result: sq-deb/sq_1.3.1-*.deb (~5 MB)

Copy sq-deb/ to your Tails USB drive or a second USB drive.

After booting Tails with networking disabled:

$ sudo dpkg -i /media/amnesia/USB_DRIVE/sq-deb/sq_*.deb

$ sq version # Should print: sq 1.3.1

1.

2.

On the networked machine

$ apk fetch --recursive gnupg gnupg-scdaemon pcsclite-libs

3.

Option B: Alpine Linux on Raspberry Pi

28 / 72 Copyright © 2026 Tony Gies. All rights reserved.

https://packages.debian.org/trixie/sq

Boot the Pi from SD card with Alpine. Do NOT connect any network cable.

Install packages from USB:

Verify SHA256 checksums of the packages against known-good values recorded on the networked
machine.

Option C: drduh's NixOS LiveCD

The drduh YubiKey guide provides a NixOS configuration that builds a purpose-specific live ISO with all
required tools pre-installed.

Steps

Build the ISO on a networked NixOS machine:

Write to USB and boot.

No networking, no persistence -- everything runs in RAM.

This option is the most convenient if you already use NixOS, as the environment is fully reproducible.

Common Setup: Temporary GNUPGHOME

Regardless of which option you chose, set up a temporary GnuPG home directory in RAM before
generating any keys:

By default, GnuPG stores keys in ~/.gnupg . On a live system, this is already in RAM -- but using an explicit temp
directory makes it clear that nothing persists, and avoids accidentally mixing with any pre-existing keyring.

4.

5.

$ mount /dev/sda1 /mnt

$ apk add --allow-untrusted /mnt/*.apk

6.

1.

$ nix-build '<nixpkgs/nixos>' -A config.system.build.isoImage \

-I nixos-config=path/to/yubikey-guide/nix/yubikey-image.nix

2.

3.

$ export GNUPGHOME=$(mktemp -d -t gnupg_XXXXXXXXXX)

Why a temporary GNUPGHOME?

Option C: drduh's NixOS LiveCD

29 / 72 Copyright © 2026 Tony Gies. All rights reserved.

https://github.com/drduh/YubiKey-Guide

Next, create a hardened gpg.conf in this directory. The full annotated configuration is in Appendix A:
Configuration Reference. For the air-gapped key generation ceremony, copy the Appendix A gpg.conf
and add these two options that are specific to the air-gapped environment:

Or create it manually, adding these air-gapped-specific options:

See Appendix A for the complete annotated gpg.conf with all algorithm preferences, display options,
and keyserver settings.

You are now ready to generate your keys. Proceed to either 2.2 GnuPG Path or 2.3 Sequoia Path,
depending on your toolchain choice.

$ cp /path/to/appendix-a-gpg.conf "$GNUPGHOME/gpg.conf"

$ cat << 'EOF' >> "$GNUPGHOME/gpg.conf"

Air-gapped additions (not in daily config)

require-secmem

throw-keyids

EOF

OPTION PURPOSE WHY AIR-GAPPED ONLY?

require-

secmem

Refuse to run without secure
memory

Desktop environments sometimes interfere

throw-keyids Omit recipient key IDs in
encrypted output

Privacy; not needed on daily machine where
debugging matters more

Common Setup: Temporary GNUPGHOME

30 / 72 Copyright © 2026 Tony Gies. All rights reserved.

4.3 2.2 Key Generation -- GnuPG Path

Tracks: A, B, C -- Path 1 (GnuPG-Only)

This section generates a complete key hierarchy using only gpg : a certification-only master key and
three purpose-specific subkeys, all using Ed25519/Cv25519.

Prerequisites

Air-gapped environment set up (2.1)

Temporary $GNUPGHOME with hardened gpg.conf

A strong passphrase prepared (see below)

Choosing a Passphrase

Your passphrase protects the master key's private material. If an attacker obtains your encrypted key
backup, the passphrase is the only thing standing between them and your identity.

Roll physical dice (or use shuf on the air-gapped machine) to select 6 or more words from a Diceware word list.
Example:

Do NOT reuse a passphrase from any other system

Do NOT rely on a "clever" substitution pattern -- randomness beats cleverness every time

Write the passphrase on paper and store it in a physically secure location (separate from your digital
backups)

•

•

•

Use a Diceware passphrase

correct horse battery staple lunar quantum

•

•

•

4.3 2.2 Key Generation -- GnuPG Path

31 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Step 1: Set Your Identity

Define your identity string. GnuPG uses this as the primary UID on your key:

Step 2: Generate the Master Key

Create a certification-only Ed25519 master key with no expiration:

GnuPG will prompt you for a passphrase. Enter your Diceware passphrase.

ed25519 : Use the Ed25519 algorithm

cert : Certification capability only -- this key can sign other keys and UIDs but cannot sign data, encrypt, or
authenticate

never : No expiration date. The master key's lifetime is managed through revocation, not expiration.

Capture the fingerprint for subsequent commands:

$ IDENTITY="Alice Example <alice@example.com>"

$ gpg --quick-generate-key "$IDENTITY" ed25519 cert never

What cert never means

•

•

•

$ KEYFP=$(gpg --list-options show-only-fpr-mbox --list-secret-keys | awk '{print $1}')

$ echo "Key fingerprint: $KEYFP"

Step 1: Set Your Identity

32 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Step 3: Add Subkeys

Add three subkeys, each with a 2-year expiration:

Or run all three in sequence:

Subkey expiration is a safety net. If you lose access to everything, expired subkeys stop working automatically. You
can always extend the expiration before it passes (see Part XV: Maintenance). Two years balances convenience
against risk.

Step 4: Verify the Key Structure

List your secret keys:

You should see output like this:

Signing subkey [S] Encryption subkey [E] Authentication subkey [A]

$ gpg --quick-add-key $KEYFP ed25519 sign 2y

$ gpg --quick-add-key $KEYFP cv25519 encr 2y

$ gpg --quick-add-key $KEYFP ed25519 auth 2y

$ gpg --quick-add-key $KEYFP ed25519 sign 2y

$ gpg --quick-add-key $KEYFP cv25519 encr 2y

$ gpg --quick-add-key $KEYFP ed25519 auth 2y

Why 2-year expiration?

$ gpg -K

sec ed25519/0x1234567890ABCDEF 2026-02-09 [C]

 Key fingerprint = ABCD 1234 5678 90AB CDEF 1234 5678 90AB CDEF 1234

uid [ultimate] Alice Example <alice@example.com>

ssb ed25519/0x2345678901BCDEF0 2026-02-09 [S] [expires: 2028-02-09]

ssb cv25519/0x3456789012CDEF01 2026-02-09 [E] [expires: 2028-02-09]

ssb ed25519/0x456789012ADEF012 2026-02-09 [A] [expires: 2028-02-09]

Step 3: Add Subkeys

33 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Verify:

Master key: sec with [C] capability, ed25519 , no expiration

Signing subkey: ssb with [S] , ed25519 , 2-year expiry

Encryption subkey: ssb with [E] , cv25519 , 2-year expiry

Authentication subkey: ssb with [A] , ed25519 , 2-year expiry

UID: Your identity string with [ultimate] trust

If anything looks wrong, delete the key and start over -- you are on an air-gapped machine with nothing
to lose.

The gpg.conf Explained

The configuration from 2.1 is based on the full annotated reference in Appendix A: Configuration
Reference. See Appendix A for a line-by-line explanation of every option.

The key points for key generation:

Algorithm preferences (personal-cipher-preferences , cert-digest-algo , s2k-*): Ensure
SHA-512 and AES-256 are preferred

keyid-format 0xlong : Display full 16-character key IDs with 0x prefix (short IDs are collision-
prone)

require-cross-certification : Reject subkeys without back-signatures

require-secmem : Air-gapped only -- refuse to run without secure memory

throw-keyids : Air-gapped only -- omit recipient key IDs for privacy

If you are using GnuPG 2.5+, the default cipher and digest preferences are already sane (AES-256, SHA-512). The
explicit gpg.conf is still valuable for throw-keyids , no-comments , no-emit-version , and other privacy/
operational options that are not defaults.

Next Steps

Add additional UIDs: If you have multiple email addresses, see 2.4 Identity & UIDs

Verify your key: See 2.5 Verification

Back up immediately: Proceed to Part III: Backup before doing anything else with this key

•

•

•

•

•

•

•

•

•

•

GnuPG 2.5 defaults are improved

•

•

•

The gpg.conf Explained

34 / 72 Copyright © 2026 Tony Gies. All rights reserved.

4.4 2.3 Key Generation -- Sequoia Path

Tracks: A, B, C -- Path 2 (Hybrid: Sequoia + GnuPG)

This section generates a complete key hierarchy using Sequoia's sq CLI, then bridges it into GnuPG for
runtime use. Choose this path if you prefer sq 's cleaner interface and error messages (see 1.4
Toolchain Choice).

Prerequisites

Air-gapped environment set up (2.1)

sq installed on the air-gapped system (v1.0+ required -- see warning below)

gpg also installed (needed for the bridge and all subsequent hardware/runtime steps)

Ubuntu 24.04 ships sq 0.33, which has a completely different CLI from sq 1.0+. The commands in this section
will not work with 0.x. Check with sq version -- if it reports 0.x, install via cargo install --locked
sequoia-sq (requires Rust toolchain and build dependencies -- see 16.1 Sequoia).

Tails 7+ is based on Debian Trixie and can install the sq 1.3.1 package -- but you must stage the .deb on USB
before booting offline. See 2.1 Environment Preparation for instructions.

Step 1: Generate the Key

This creates a v4 key with:

Ed25519 master key with certification capability

Ed25519 signing subkey

Cv25519 encryption subkey

•

•

•

sq 1.0+ required -- distro packages are often too old

$ sq key generate \

--own-key \

--name "Alice Example" --email alice@example.com \

--cipher-suite cv25519 \

--output secret-key.pgp \

--rev-cert secret-key.rev

•

•

•

4.4 2.3 Key Generation -- Sequoia Path

35 / 72 Copyright © 2026 Tony Gies. All rights reserved.

sq will prompt for a passphrase to protect the private key material.

The default profile in sq 1.3.1 is --profile rfc4880 , which produces v4 keys. This is correct.

Do NOT use --profile rfc9580 -- it produces v6 keys that cannot be imported into GnuPG and may not load
onto YubiKey smartcards.

If a future version of sq changes the default, always specify explicitly:

Step 2: Add an Authentication Subkey

The default sq key generate creates signing and encryption subkeys but not an authentication
subkey. Add one (the command updates the file in place):

The authentication subkey [A] is used for SSH via gpg-agent . Not everyone needs it -- Track A readers who use
FIDO2 for SSH (see Part VI) can skip this step.

Step 3: Inspect the Key

Verify the key structure before bridging:

Profile check: v4 only

$ sq key generate --profile rfc4880 --cipher-suite cv25519 ...

$ sq key subkey add --can-authenticate --cert-file secret-key.pgp --output secret-key.pgp

Why authentication separately?

$ sq inspect secret-key.pgp

Step 2: Add an Authentication Subkey

36 / 72 Copyright © 2026 Tony Gies. All rights reserved.

You should see output showing:

A master key with C (certify) capability, algorithm EdDSA

A signing subkey with S capability

An encryption subkey with E capability

An authentication subkey with A capability (if added)

Your UID

Sequoia uses the RFC term "primary key" in its output. This guide uses "master key" for the same concept.

Step 4: Bridge to GnuPG

Import the Sequoia-generated key into GnuPG:

This import succeeds because both sq and gpg speak v4 OpenPGP. If you had generated a v6 key, gpg would
reject it with an error about unknown packet types.

Set the trust level to ultimate (this is your own key):

Verify the import:

You should see the same key structure as in 2.2 Verification -- master [C] key with three subkeys
[S] , [E] , [A] .

•

•

•

•

•

Sequoia terminology

$ gpg --import secret-key.pgp

The bridge only works for v4 keys

$ KEYFP=$(gpg --list-options show-only-fpr-mbox --list-secret-keys | awk '{print $1}')

$ echo -e "5\ny\n" | gpg --command-fd 0 --expert --edit-key $KEYFP trust

$ gpg -K

Step 4: Bridge to GnuPG

37 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Step 5: Secure the Original File

After a successful import and verification, securely delete the original Sequoia key file:

The key now lives only in the GnuPG keyring (in your temporary $GNUPGHOME). From this point forward,
all operations use gpg -- including backup, hardware provisioning, and daily use.

Differences from the GnuPG Path

After the bridge, the keys are indistinguishable. All subsequent sections in this guide work the same
regardless of which path you used to generate.

Next Steps

Add additional UIDs: See 2.4 Identity & UIDs

Verify your key: See 2.5 Verification

Back up immediately: Proceed to Part III: Backup

$ shred -u secret-key.pgp

ASPECT GNUPG PATH (2.2) SEQUOIA PATH (2.3)

Generation tool gpg --quick-generate-key sq key generate

Configuration Requires hardened gpg.conf Sane defaults built-in

Subkey expiry Set explicitly (2y) Set by sq defaults

Bridge required No Yes (gpg --import)

End result in GnuPG keyring Identical Identical

•

•

•

Step 5: Secure the Original File

38 / 72 Copyright © 2026 Tony Gies. All rights reserved.

4.5 2.4 Identity & UIDs

Tracks: A, B, C

A User ID (UID) binds a human-readable identity -- typically a name and email address -- to your key.
You can have multiple UIDs on the same key, one for each email address you want associated with your
cryptographic identity.

Adding UIDs

If you have additional email addresses (work, personal, project-specific), add them as UIDs to your key:

Repeat for each additional email address.

Setting the Primary UID

The primary UID is the one displayed by default when others view your key. To set a specific UID as
primary:

Then in the interactive prompt:

$ gpg --quick-add-uid $KEYFP "Alice Example <alice@work.example.com>"

$ gpg --edit-key $KEYFP

gpg> uid 2 # Select the UID you want as primary

gpg> primary # Set it as the primary UID

gpg> save # Save and exit

4.5 2.4 Identity & UIDs

39 / 72 Copyright © 2026 Tony Gies. All rights reserved.

The primary UID affects which name and email appear by default in:

gpg --list-keys output

Git commit signatures

Keyserver listings

Email client key selection

Choose the identity you use most frequently as your primary UID.

What NOT to Put in UIDs

Comment fields

The OpenPGP UID format allows a comment in parentheses:

Do not use comments. They are unnecessary metadata that:

Cannot be changed without revoking the UID and adding a new one

Leak information about your key's intended purpose

Clutter keyserver listings

If you need to distinguish between personal and work identities, use separate UIDs with the appropriate
email address -- the email itself provides context.

Photos

GnuPG supports embedding a photo in your key via addphoto in --edit-key . Do not do this --
photos:

Bloat your public key (JPEG adds kilobytes to a key that should be kilobytes)

Cause problems with keyserver uploads

Provide no cryptographic benefit

When primary UID matters

•

•

•

•

Alice Example (Personal) <alice@example.com>

•

•

•

•

•

•

What NOT to Put in UIDs

40 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Separate Keys for Separate Identities

If you need a pseudonymous identity (online handle, project persona) that must be completely
unlinkable to your real identity, do not add it as a UID on your main key. Instead:

Generate a separate master key with its own subkeys

Use a different passphrase (prevents correlation via passphrase reuse)

Never cross-sign between the two keys

Use different keyservers or distribution channels if possible

Generate and manage in separate sessions on the air-gapped machine

Anyone who retrieves your public key from a keyserver will see ALL UIDs on that key. If you add both
alice@example.com and darkwolf1337@mail.com as UIDs on the same key, those identities are permanently

and publicly linked.

For true separation, you need separate keys.

Revoking a UID

If you need to remove a UID (changed jobs, decommissioned email):

Revoking a UID does not delete it -- it adds a revocation signature that marks the UID as invalid. The old UID and
email address remain visible on the key when you distribute the updated public key; they are simply marked as
revoked.

1.

2.

3.

4.

5.

UIDs on the same key are inherently linked

$ gpg --edit-key $KEYFP

gpg> uid 2 # Select the UID to revoke

gpg> revuid # Revoke it

gpg> save

Revocation is permanent and public

Separate Keys for Separate Identities

41 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Next Steps

After adding all desired UIDs, proceed to 2.5 Verification to confirm your complete key structure, then
immediately to Part III: Backup.

Next Steps

42 / 72 Copyright © 2026 Tony Gies. All rights reserved.

4.6 2.5 Verification

Tracks: A, B, C

Before you leave the air-gapped environment, verify that your key was generated correctly. This is the
last checkpoint before backup -- mistakes caught here are free; mistakes caught later are expensive.

Reading gpg -K Output

Run the secret key listing:

Here is an annotated example of correct output:

Key prefixes

$ gpg -K

sec ed25519/0x1234567890ABCDEF 2026-02-09 [C]

 Key fingerprint = ABCD 1234 5678 90AB CDEF 1234 5678 90AB CDEF 1234

uid [ultimate] Alice Example <alice@example.com>

uid [ultimate] Alice Example <alice@work.example.com>

ssb ed25519/0x2345678901BCDEF0 2026-02-09 [S] [expires: 2028-02-09]

ssb cv25519/0x3456789012CDEF01 2026-02-09 [E] [expires: 2028-02-09]

ssb ed25519/0x456789012ADEF012 2026-02-09 [A] [expires: 2028-02-09]

PREFIX MEANING

sec Secret (private) master key is present locally

sec# Master key is NOT present locally (stub only -- seen on daily machine after backup)

ssb Secret subkey is present locally

ssb> Subkey is on a smartcard (seen after keytocard)

4.6 2.5 Verification

43 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Capability flags

Trust levels

Verification Checklist

Go through each item:

FLAG CAPABILITY

[C] Certify -- can sign other keys and UIDs

[S] Sign -- can sign data (commits, emails, files)

[E] Encrypt -- can decrypt data encrypted to this key

[A] Authenticate -- can be used for SSH

TRUST MEANING

[ultimate] You own this key (set it yourself)

[full] You fully trust this key's owner to verify identities

[marginal] You somewhat trust this key's owner

[unknown] No trust assigned

Master key algorithm: ed25519 (not RSA, not NIST P-256)

Master key capability: [C] only (not [SC] or [SCE])

Master key expiration: None (no [expires:] shown)

Signing subkey: ed25519 , [S] , 2-year expiry

Encryption subkey: cv25519 , [E] , 2-year expiry

Authentication subkey: ed25519 , [A] , 2-year expiry

UID(s): Correct name and email address(es)

Trust: [ultimate] for all UIDs

Key count: Exactly 1 master + 3 subkeys (4 total)

Verification Checklist

44 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Master key has [SC] : You generated a combined certify+sign master. This works but means your master key
participates in daily signing operations, reducing the benefit of offline storage. Regenerate with cert only if
you are following Track B/C.

Wrong algorithm: If you see rsa4096 or nistp256 , you did not specify ed25519 during generation. Start
over.

Missing subkey: If you only see 2 subkeys, you may have forgotten the authentication subkey. Add it now with
gpg --quick-add-key $KEYFP ed25519 auth 2y .

Detailed Key Inspection

For more detail, use the --with-keygrip flag:

This shows the keygrip -- a hash of the key's public parameters that gpg-agent uses internally.
Keygrips become relevant when configuring SSH authentication (see Part VI).

Example additional output:

Record Your Fingerprint

Write down or print your full key fingerprint:

You will need this fingerprint for:

Distributing to others for verification

Configuring Git signing (user.signingkey)

Hardware token provisioning

Key server uploads

Common mistakes

•

•

•

$ gpg -K --with-keygrip

 Keygrip = A1B2C3D4E5F6A1B2C3D4E5F6A1B2C3D4E5F6A1B2

$ gpg --fingerprint $KEYFP

•

•

•

•

Detailed Key Inspection

45 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Next Steps

Your key is generated and verified. Do not shut down the air-gapped machine yet. You must first
complete:

Part III: Backup & Disaster Recovery -- Export and back up everything

Part IV: Hardware Provisioning -- Load subkeys onto YubiKey (Track B/C)

Only after backups are verified and hardware is provisioned should you shut down the air-gapped
system.

1.

2.

Next Steps

46 / 72 Copyright © 2026 Tony Gies. All rights reserved.

5. III: Backup & Recovery

5.1 Part III: Backup & Disaster Recovery

Tracks: A, B, C

You have just generated the most sensitive cryptographic material you own. Before you do anything else
-- before loading keys onto a YubiKey, before leaving the air-gapped machine -- you must create verified
backups.

The goal is defense in depth: multiple backup formats, stored in multiple physical locations, each
independently sufficient to restore your identity.

Export Everything -- Public key, secret key, subkeys-only, ownertrust.

Paperkey -- Printable, minimal secret-key backup on paper.

QR Code Backup -- Machine-readable paper backup via QR codes.

Encrypted USB Backup -- Full GNUPGHOME on LUKS-encrypted USB drives.

Revocation Certificates -- The nuclear option for emergency identity invalidation.

If you are following Track B/C (YubiKey), you will use keytocard in Part IV to load subkeys onto hardware.
keytocard is destructive -- it replaces the on-disk private key with a stub. If you have not backed up before that

step, your private key material exists only on the YubiKey and cannot be extracted.

Complete ALL of Part III before proceeding to Part IV.

1.

2.

3.

4.

5.

Backup BEFORE keytocard

5. III: Backup & Recovery

47 / 72 Copyright © 2026 Tony Gies. All rights reserved.

5.2 3.1 Export Everything

Tracks: A, B, C

GnuPG stores key material in an internal database. To create portable backups, you must export it to
standard files. Four exports are needed, each serving a different recovery scenario.

The Four Exports

1. Public Key

Contains: All public key material, UIDs, self-signatures, and subkey public portions. This is what you
distribute to others and upload to keyservers.

When you need it: Always. Required by paperkey for restoration, required for import on daily
machines, required for keyserver uploads.

2. Full Secret Key

Contains: Everything in the public key, plus the private key material for the master key AND all subkeys.
Encrypted with your passphrase.

When you need it: Complete disaster recovery. This single file, plus your passphrase, can reconstruct
everything.

3. Subkeys Only

Contains: Public key material plus private key material for subkeys only. The master key's private portion
is stripped -- replaced with a dummy packet.

$ gpg --export --armor $KEYFP > $GNUPGHOME/public.asc

$ gpg --export-secret-keys --armor $KEYFP > $GNUPGHOME/secret.asc

$ gpg --export-secret-subkeys --armor $KEYFP > $GNUPGHOME/subkeys.asc

5.2 3.1 Export Everything

48 / 72 Copyright © 2026 Tony Gies. All rights reserved.

When you need it: Importing onto your daily machine (Track A with software keys). This gives your daily
machine signing, encryption, and authentication capabilities without exposing the master key.

4. Ownertrust

Contains: Your trust database -- which keys you trust and at what level.

When you need it: Restoring your trust decisions after importing keys on a new machine. Without this,
all keys default to "unknown" trust.

Summary Table

Verify the Exports

Before proceeding, verify that each file was created and is non-empty:

You can also verify the public key parses correctly:

This displays the key without importing it -- useful for verifying the export contains what you expect.

$ gpg --export-ownertrust > $GNUPGHOME/ownertrust.txt

FILE CONTAINS SENSITIVE? RECOVERY SCENARIO

public.asc Public key + UIDs No Paperkey restoration, daily machine
import

secret.asc Full private key Yes Complete disaster recovery

subkeys.asc Subkeys private
only

Yes Daily machine import (software keys)

ownertrust.txt Trust database Low Restoring trust decisions

$ ls -la $GNUPGHOME/*.asc $GNUPGHOME/ownertrust.txt

$ gpg --import-options show-only --import $GNUPGHOME/public.asc

Summary Table

49 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Keeping all exports in the temporary GNUPGHOME directory ensures they are in one place for copying to backup
media (USB drives, paper). On a live system, this directory is in RAM and will be wiped on shutdown.

secret.asc and subkeys.asc contain your private key material (encrypted with your passphrase). Handle
them with the same care as the keyring itself: never store them on unencrypted media, never transmit them over a
network, and securely delete any intermediate copies after transferring to backup media.

Optional: SSH Public Key

If you use GPG for SSH authentication (see Part VI), also export the SSH public key for convenient setup
on remote hosts:

This file is safe to distribute -- it is equivalent to an id_ed25519.pub and can be added to ~/.ssh/
authorized_keys on any server.

Next Steps

With raw exports in hand, proceed to create multiple backup formats:

3.2 Paperkey -- printable paper backup

3.3 QR Code Backup -- machine-scannable paper backup

3.4 Encrypted USB Backup -- digital backup on encrypted drives

Why export to $GNUPGHOME?

Treat secret exports like the keys themselves

$ gpg --export-ssh-key $KEYFP > $GNUPGHOME/gpg-ssh.pub

•

•

•

Optional: SSH Public Key

50 / 72 Copyright © 2026 Tony Gies. All rights reserved.

5.3 3.2 Paperkey -- The Gold Standard

Tracks: B, C (Track A: optional but recommended)

Paperkey extracts only the secret portion of your key, producing a compact output that fits on a single
printed page for Ed25519 keys. Paper survives USB drive failures, filesystem corruption, and format
obsolescence.

How Paperkey Works

An OpenPGP secret key file contains two things:

The public key (large: certificates, UIDs, signatures)

The secret key material (small: just the private numbers)

Paperkey strips away the public portion, leaving only the secret bytes plus metadata needed for
reconstruction. For Ed25519, the private key is 32 bytes -- the paperkey output is trivially small.

Creating the Paperkey Backup

View the output:

1.

2.

ALGORITHM FULL SECRET EXPORT PAPERKEY OUTPUT REDUCTION

Ed25519 ~3 KB ~300 bytes ~90%

RSA-4096 ~6 KB ~3 KB ~50%

DSA ~2 KB ~1.8 KB ~10%

$ gpg --export-secret-keys $KEYFP | paperkey --output $GNUPGHOME/paperkey.txt

$ cat $GNUPGHOME/paperkey.txt

5.3 3.2 Paperkey -- The Gold Standard

51 / 72 Copyright © 2026 Tony Gies. All rights reserved.

https://www.jabberwocky.com/software/paperkey/

You will see output like:

This is the most common misunderstanding about paperkey. The output contains only the secret bytes. To restore
a working key, you need both:

The paperkey output (the secret bytes)

Your public key (the structure, UIDs, signatures)

Always back up public.asc alongside your paperkey printout. While you may be able to retrieve it from a
keyserver, keyservers can purge keys (GDPR requests) or go offline. Do not rely solely on keyserver retrieval for
disaster recovery. Paperkey alone = unrecoverable key.

Printing

Print the paperkey output on a laser printer (laser toner is more durable than inkjet):

Or copy the file to a USB drive and print from a separate machine. Store the printed copy in a physically
secure location -- a safe, a bank deposit box, or with a trusted family member.

Even if you upload your public key to a keyserver, print public.asc on a separate sheet so your paper backup is
self-contained. Keyservers can purge keys (e.g., GDPR requests on keys.openpgp.org), and digital-only backups of
the public key can degrade. For a machine-scannable alternative, include the public key in your QR Code Backup. A
paper backup that depends on an external service for restoration is not a complete backup.

Secret portions of key 0x1234567890ABCDEF

Base16 data extracted Sat Feb 9 12:00:00 2026

Created with paperkey 1.6 by David Shaw

#

Symmetric cipher: AES256

S2K mode: iterated and salted

...

1: 01 FE 2A B3 ... (hex bytes)

Paperkey is USELESS without your public key

1.

2.

$ lpr $GNUPGHOME/paperkey.txt

Print the public key alongside paperkey

Printing

52 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Restoration

To restore your key from a paperkey backup, you need both files:

If your public key is on a keyserver:

The Restoration Drill

Do this now, before leaving the air-gapped machine. Create a second temporary GNUPGHOME and attempt a
full restoration:

You should see the same key structure as your original. If the restoration fails, your paperkey backup is defective --
regenerate it before proceeding.

Next Steps

3.3 QR Code Backup -- Machine-scannable version of the paperkey output

3.4 Encrypted USB Backup -- Full digital backup on encrypted drives

$ paperkey --pubring public.asc --secrets paperkey.txt | gpg --import

$ gpg --recv-keys $KEYFP

$ paperkey --pubring <(gpg --export $KEYFP) --secrets paperkey.txt | gpg --import

Test your backup before trusting it

$ export TEST_HOME=$(mktemp -d -t gnupg_test_XXXXXXXXXX)

$ GNUPGHOME=$TEST_HOME gpg --import $GNUPGHOME/public.asc

$ paperkey --pubring $GNUPGHOME/public.asc \

--secrets $GNUPGHOME/paperkey.txt | \

GNUPGHOME=$TEST_HOME gpg --import

$ GNUPGHOME=$TEST_HOME gpg -K

$ rm -rf $TEST_HOME

•

•

Restoration

53 / 72 Copyright © 2026 Tony Gies. All rights reserved.

5.4 3.3 QR Code Backup

Tracks: B, C (Track A: optional)

QR codes provide a machine-readable paper backup that avoids the error-prone process of manual OCR
or retyping hex digits. For Ed25519 keys, the paperkey output is small enough to fit in a single QR code.
For larger keys, we split across multiple codes.

Prerequisites

Install the QR code tools on your air-gapped system (pre-download if needed):

Generating QR Codes

Single QR (Ed25519 keys)

If your paperkey output is small (under ~1 KB, typical for Ed25519):

The -l H flag sets high error correction (30% of the code can be damaged and still scan
successfully).

Linux (Debian/Ubuntu) Linux (Alpine)

$ sudo apt install qrencode zbar-tools imagemagick

$ apk add qrencode zbar imagemagick

$ cat $GNUPGHOME/paperkey.txt | qrencode -l H -o $GNUPGHOME/qr-backup.png

5.4 3.3 QR Code Backup

54 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Split QR (RSA or large keys)

For larger keys, split the paperkey output into chunks:

Creating a Printable Sheet

Combine QR codes into a single printable page using ImageMagick:

Print the sheet:

Verification: The Round-Trip Test

Scan the QR code(s) back and compare with the original paperkey output. A QR code that does not scan is worse
than no backup -- it gives false confidence.

The -q flag suppresses extraneous output that would otherwise corrupt the decoded data. If diff
shows no output, the round-trip is perfect. If there are differences, regenerate the QR code.

$ split -b 1500 $GNUPGHOME/paperkey.txt $GNUPGHOME/qr-chunk-

$ for chunk in $GNUPGHOME/qr-chunk-*; do

qrencode -l H -o "${chunk}.png" < "$chunk"

done

$ montage $GNUPGHOME/qr-*.png \

-geometry +10+10 \

-tile 2x \

-title "GPG Key Backup - $(date +%Y-%m-%d)" \

$GNUPGHOME/qr-sheet.png

$ lpr $GNUPGHOME/qr-sheet.png

Always verify before trusting

$ zbarimg -q --raw $GNUPGHOME/qr-backup.png > $GNUPGHOME/qr-decoded.txt

$ diff $GNUPGHOME/paperkey.txt $GNUPGHOME/qr-decoded.txt

Verification: The Round-Trip Test

55 / 72 Copyright © 2026 Tony Gies. All rights reserved.

For split QR codes, decode each and concatenate:

Including the Public Key

Paperkey output is useless without the public key (see 3.2 Paperkey). To make your paper backup self-
contained, also encode your public key as a QR code:

For Ed25519 keys with a single UID and three subkeys, the ASCII-armored public key is typically ~800
bytes -- within a single QR code's capacity at -l H (~1,273 bytes). For keys with many UIDs, use -l M
for more capacity or the split approach above. For larger keys (RSA-4096), always use the split
approach.

Add the public key QR to your printable sheet:

Run the same round-trip test on qr-public.png :

Storage Recommendations

Print on laser printer (toner resists moisture better than inkjet)

$ for png in $GNUPGHOME/qr-chunk-*.png; do

zbarimg -q --raw "$png"

done > $GNUPGHOME/qr-decoded.txt

$ diff $GNUPGHOME/paperkey.txt $GNUPGHOME/qr-decoded.txt

$ gpg --export --armor $KEYFP > $GNUPGHOME/public.asc

$ cat $GNUPGHOME/public.asc | qrencode -l H -o $GNUPGHOME/qr-public.png

$ montage $GNUPGHOME/qr-backup.png $GNUPGHOME/qr-public.png \

-geometry +10+10 \

-tile 2x \

-title "GPG Key Backup - $(date +%Y-%m-%d)" \

$GNUPGHOME/qr-sheet.png

Verify the public key QR too

$ zbarimg -q --raw $GNUPGHOME/qr-public.png > $GNUPGHOME/qr-public-decoded.asc

$ diff $GNUPGHOME/public.asc $GNUPGHOME/qr-public-decoded.asc

•

Including the Public Key

56 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Store in a waterproof bag (ziplock or lamination)

Keep separate from your encrypted USB backups (different threat model: paper survives filesystem
corruption; USB survives physical damage)

Label clearly: "GPG Key Backup -- requires public key for restoration"

Next Steps

3.4 Encrypted USB Backup -- Full digital backup

3.5 Revocation Certificates -- Emergency identity invalidation

•

•

•

•

•

Next Steps

57 / 72 Copyright © 2026 Tony Gies. All rights reserved.

5.5 3.4 Encrypted USB Backup

Tracks: A, B, C

Paper backups protect against digital failure. Encrypted USB drives protect against paper loss. Together,
they form a robust disaster recovery strategy.

Why LUKS?

LUKS (Linux Unified Key Setup) is the standard full-disk encryption for Linux. It provides:

AES-256 encryption of the entire partition

A passphrase-protected key slot (your same Diceware passphrase works here)

Standard tooling available on every Linux distribution

Creating an Encrypted USB Drive

Double-check the device name. lsblk will help you identify the correct drive.

Step 1: Identify the USB drive

Look for your USB drive (e.g., /dev/sdb). It will not have your system partitions on it.

Step 2: Create the LUKS volume

You will be prompted for a passphrase. Use the same Diceware passphrase as your key, or a different one
if you prefer (but then you have two passphrases to remember/store).

•

•

•

This will erase all data on the target USB drive

$ lsblk

$ sudo cryptsetup luksFormat /dev/sdX

5.5 3.4 Encrypted USB Backup

58 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Step 3: Open and format

Step 4: Mount and copy

Step 5: Verify the copy

Step 6: Unmount and close

How Many Drives?

USB drives fail. Locations flood, burn, or get burgled. Create at least two encrypted USB backups and store them in
different physical locations:

One at home (safe, locked drawer)

One offsite (bank deposit box, trusted family member's home, secure office)

The cost of a USB drive is trivial compared to the cost of losing your cryptographic identity.

$ sudo cryptsetup luksOpen /dev/sdX gpg-backup

$ sudo mkfs.ext4 /dev/mapper/gpg-backup

$ sudo mkdir -p /mnt/gpg-backup

$ sudo mount /dev/mapper/gpg-backup /mnt/gpg-backup

$ sudo cp -r $GNUPGHOME/* /mnt/gpg-backup/

$ ls -la /mnt/gpg-backup/

$ diff $GNUPGHOME/public.asc /mnt/gpg-backup/public.asc

$ diff $GNUPGHOME/secret.asc /mnt/gpg-backup/secret.asc

$ sudo umount /mnt/gpg-backup

$ sudo cryptsetup luksClose gpg-backup

At least two, in different locations

•

•

How Many Drives?

59 / 72 Copyright © 2026 Tony Gies. All rights reserved.

What to Copy

The USB backup should contain your entire $GNUPGHOME , which at this point includes:

Restoration from USB

On any Linux machine:

FILE PURPOSE

public.asc Public key export

secret.asc Full secret key export

subkeys.asc Subkeys-only export

ownertrust.txt Trust database

paperkey.txt Paperkey output

gpg.conf Hardened configuration

openpgp-revocs.d/ Auto-generated revocation certificate

private-keys-v1.d/ GnuPG internal private key storage

pubring.kbx GnuPG public keyring

trustdb.gpg Trust database (binary)

$ sudo cryptsetup luksOpen /dev/sdX gpg-backup

$ sudo mount /dev/mapper/gpg-backup /mnt/gpg-backup

$ export GNUPGHOME=$(mktemp -d -t gnupg_restore_XXXXXXXXXX)

$ cp -r /mnt/gpg-backup/* $GNUPGHOME/

$ gpg -K # Verify the key is accessible

What to Copy

60 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Media Health and Refresh

USB flash drives degrade over time -- stored data can suffer bit rot after several years, especially on
cheap NAND flash. Mitigate this:

Verify every 6 months. Mount the drive, diff key files against a known good copy. This is part of the
maintenance calendar.

Refresh every 2-3 years. Copy to a new drive and retire the old one. Flash cells wear out even without
writes (charge leakage).

Use quality drives. Enterprise-grade or industrial USB drives have better NAND and error correction
than promotional giveaways.

Next Steps

3.5 Revocation Certificates -- Generate and store the emergency invalidation certificate

•

•

•

macOS cannot natively open LUKS volumes. Use an encrypted APFS disk image instead:

macOS (non-LUKS alternative)

Create the encrypted image (you will be prompted for a passphrase)

$ hdiutil create -size 64m -encryption AES-256 -fs APFS \

-volname "gpg-backup" gpg-backup.dmg

Mount, copy, and eject

$ hdiutil attach gpg-backup.dmg

$ cp -r $GNUPGHOME/* /Volumes/gpg-backup/

$ hdiutil detach /Volumes/gpg-backup

•

Media Health and Refresh

61 / 72 Copyright © 2026 Tony Gies. All rights reserved.

5.6 3.5 Revocation Certificates

Tracks: A, B, C

A revocation certificate is a pre-signed statement that permanently invalidates your key. Once published
to keyservers, it tells the world: "This key should no longer be trusted." It cannot be undone.

Why You Need One Before You Need It

If your master key is compromised, you need to revoke it immediately. But if the attacker also has your
backups, you might not have access to the master key to generate a revocation certificate at that point.
By creating one now -- before any disaster -- you have an emergency exit.

Anyone who obtains your revocation certificate and uploads it to a keyserver can permanently destroy your public
key. Store it separately from your key material and with extreme care.

Auto-Generated Revocation Certificate

GnuPG automatically creates a revocation certificate when you generate a key. It is stored in:

The filename is your full fingerprint with a .rev extension. This certificate uses reason code 0 (no
reason specified) and has no comment.

Generating Custom Revocation Certificates

For more control, generate certificates with specific reason codes:

A revocation certificate is a weapon

$ ls $GNUPGHOME/openpgp-revocs.d/

$ gpg --gen-revoke $KEYFP > $GNUPGHOME/revoke-compromised.asc

5.6 3.5 Revocation Certificates

62 / 72 Copyright © 2026 Tony Gies. All rights reserved.

GnuPG will prompt you for:

Reason for revocation:

0 -- No reason specified

1 -- Key has been compromised

2 -- Key is superseded (you have generated a replacement)

3 -- Key is no longer used

Optional description -- A short text explaining the revocation.

Confirmation -- Type y to confirm.

Consider generating two revocation certificates:

One with reason 1 (compromised) -- for emergencies

One with reason 2 (superseded) -- for planned key rotation

Label them clearly so you use the correct one under stress.

Storage

Revocation certificates must be stored separately from your key backups:

The logic: if someone breaks into your safe and steals your key backups, they should NOT also find the
tool to revoke your key (which would add insult to injury but also alert you via keyserver). Conversely, if
you lose access to your key material, you should still be able to reach a revocation certificate from a
different location.

1.

•

•

•

•

2.

3.

Create one for each scenario

•

•

STORAGE KEY BACKUPS REVOCATION CERTIFICATES

Home safe Yes No

Bank deposit box Yes Yes (different location from key backup)

Paper in sealed envelope No Yes (with trusted person)

Storage

63 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Using a Revocation Certificate

In an emergency, import the revocation certificate into your keyring and upload to keyservers:

After this:

Your key appears as revoked on keyservers

Anyone who refreshes your key will see the revocation

Encrypted messages to your key will warn the sender

Signatures from your key will show as "revoked signer"

There is no "un-revoke" operation. Once a revocation certificate is published and propagated to keyservers, your
key is permanently invalid. You will need to generate an entirely new key and rebuild your identity from scratch.

Only use this when you are certain the key must be invalidated.

The Backup Summary

At this point, you should have:

$ gpg --import revoke-compromised.asc

$ gpg --keyserver hkps://keyserver.ubuntu.com --send-keys $KEYFP

$ gpg --keyserver hkps://keys.openpgp.org --send-keys $KEYFP

•

•

•

•

Revocation is permanent

BACKUP TYPE CONTENTS LOCATION

Paper (paperkey) Secret bytes only Safe or deposit box

Paper (QR code) Machine-readable secret bytes With paperkey

Paper (public key) Public key (if not on keyserver) With paperkey

USB drive #1 Full GNUPGHOME (LUKS encrypted) Home safe

USB drive #2 Full GNUPGHOME (LUKS encrypted) Offsite (deposit box, trusted person)

Paper (revocation cert) Pre-signed revocation Different location from keys

Paper (passphrase) Diceware passphrase Different location from keys

Using a Revocation Certificate

64 / 72 Copyright © 2026 Tony Gies. All rights reserved.

With these backups verified, you are ready to proceed to Part IV: Hardware Provisioning to load your
subkeys onto a YubiKey, or to Part V: Daily Machine Setup if you are using software keys (Track A).

The Backup Summary

65 / 72 Copyright © 2026 Tony Gies. All rights reserved.

5.7 3.6 Deterministic Keys (gpg-hd)

For the curious. This is NOT a recommended backup strategy.

Standard GPG key generation uses random entropy from /dev/urandom . If you lose the key material, it
is gone -- there is no way to regenerate it. Every backup method in this guide (paperkey, QR codes,
encrypted USB drives) exists to protect against that loss.

Deterministic key generation takes a different approach: derive the key material from a seed phrase
(like BIP-39 mnemonics used in cryptocurrency wallets). Given the same seed, you get the same key
every time -- no backup media required.

How gpg-hd Works

gpg-hd is a Python tool that takes a BIP-39 seed phrase and deterministically generates a complete
GPG keychain: one master key and three subkeys (signing, encryption, authentication). It can optionally
write the subkeys directly to a YubiKey with --card .

The tool uses the seed to derive key material through a reproducible process. By default it sets the key
creation timestamp to the Unix epoch (1970-01-01) as a signal that the key is deterministic, and sets a
two-year expiration.

$./gpg-hd --name="Alice Example" --email="alice@example.com" \

"fetch december jazz hood pact owner cloth apart impact then person actual"

5.7 3.6 Deterministic Keys (gpg-hd)

66 / 72 Copyright © 2026 Tony Gies. All rights reserved.

https://github.com/Logicwax/gpg-hd

Why This Is Experimental

Deterministic key generation carries serious risks that standard backup methods do not:

No independent audit. gpg-hd has not undergone a formal security review. If its derivation algorithm has a
subtle bug, your "backup" is actually a different key -- and you will only discover this when you need it most.

Seed phrase security. Your entire cryptographic identity reduces to a memorized phrase. If someone learns
the phrase, they have your key. If you forget or mis-remember a single word, the key is unrecoverable.

Algorithm lock-in. If the tool's derivation logic changes between versions (or the project is abandoned), you
must keep the exact version that generated your key. A dependency update could silently alter output.

Non-standard. No OpenPGP specification covers deterministic key generation. Other tools cannot reproduce
gpg-hd's output.

Comparison with Standard Backup Methods

The Bottom Line

If the idea of a memorizable key backup appeals to you, gpg-hd is worth understanding -- but it is not a
substitute for the proven methods in this chapter. The safe approach is to generate keys normally and
back them up with paperkey, QR codes, and encrypted USB drives.

If you do experiment with gpg-hd, treat it as an additional recovery path, not your only one. And always
verify that re-running the tool with your seed phrase produces the same key fingerprint before relying on
it.

Not mainstream -- use at your own risk

•

•

•

•

FACTOR DETERMINISTIC (GPG-HD) PAPERKEY / USB BACKUP

Recovery needs Seed phrase + exact tool version Backup media + public key

Audit status Unaudited Paperkey is widely reviewed

Single point of failure Seed phrase Backup copies (redundancy)

Portability Memorizable (in theory) Physical media

Community adoption Niche / experimental Standard practice

Why This Is Experimental

67 / 72 Copyright © 2026 Tony Gies. All rights reserved.

6. Appendices

6.1 Appendix C: Cheat Sheet

The commands you actually use day-to-day, in quick-reference format. Both GnuPG (gpg) and Sequoia
(sq) are shown where applicable.

Key Management

Encryption & Decryption

OPERATION GNUPG SEQUOIA

List public keys gpg --list-keys sq cert list

List secret keys gpg --list-secret-keys sq key list

Show fingerprint gpg --fingerprint <FPR> sq inspect --cert <FPR>

Import a key gpg --import key.asc sq cert import key.pgp

Export public key gpg --armor --export <FPR> sq cert export --cert <FPR>

Delete public key gpg --delete-keys <FPR> --

Delete secret key gpg --delete-secret-keys <FPR> --

Edit key gpg --edit-key <FPR> --

OPERATION GNUPG SEQUOIA

Encrypt (signed) gpg -se -r <FPR>

file

sq encrypt --for <FPR> --signer-self file

Encrypt
(unsigned)

gpg -e -r <FPR> file sq encrypt --for <FPR> --without-signature

file

Decrypt gpg -d file.gpg sq decrypt file.pgp

Symmetric
encrypt

gpg -c file --

6. Appendices

68 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Signing & Verification

Keyservers

Smartcard / YubiKey

OPERATION GNUPG SEQUOIA

Detached sign gpg --detach-sign

file

sq sign --signer-self --signature-file

file.sig file

Clearsign gpg --clearsign file sq sign --signer-self --cleartext file

Verify
detached

gpg --verify file.sig

file

sq verify --signer-file cert.pgp --signature-

file file.sig file

OPERATION GNUPG SEQUOIA

Upload key gpg --keyserver hkps://keys.openpgp.org

--send-keys <FPR>

gpg --keyserver hkps://

keyserver.ubuntu.com --send-keys <FPR>

sq network keyserver publish

--cert <FPR>

Download key gpg --recv-keys <FPR> sq network search <FPR>

Search by
email

gpg --locate-keys user@example.org sq network search

user@example.org

Refresh all
keys

gpg --refresh-keys (use parcimonie
instead!)

--

OPERATION COMMAND

Show card status gpg --card-status

Switch YubiKey gpg-connect-agent "scd serialno" "learn --force" /bye

Edit card gpg --card-edit

Move key to card gpg --edit-key <FPR> then keytocard

Kill agent gpgconf --kill gpg-agent

Kill scdaemon gpgconf --kill scdaemon

Signing & Verification

69 / 72 Copyright © 2026 Tony Gies. All rights reserved.

SSH with GPG

Trust & Certification

SOP (for scripting)

For automation and CI/CD, prefer SOP over parsing gpg output.

OPERATION COMMAND

List SSH keys ssh-add -L

Export SSH public key gpg --export-ssh-key <FPR>

Set GPG_TTY export GPG_TTY="$(tty)"

Update terminal gpg-connect-agent updatestartuptty /bye

OPERATION GNUPG SEQUOIA

Sign a key gpg --sign-key <FPR> sq pki vouch add --certifier <YOUR_FPR> --cert

<FPR> --email user@example.org

Local sign gpg --lsign-key

<FPR>

--

Set trust gpg --edit-key <FPR>

then trust
--

OPERATION SQOP

Generate key sqop generate-key "Name <email>" > key.pgp

Extract cert sqop extract-cert < key.pgp > cert.pgp

Sign sqop sign key.pgp < data > sig

Verify sqop verify sig cert.pgp < data

Encrypt sqop encrypt cert.pgp < data > encrypted

Decrypt sqop decrypt key.pgp < encrypted > data

SSH with GPG

70 / 72 Copyright © 2026 Tony Gies. All rights reserved.

Quick Recipes

Encrypt a file for someone

Sign and encrypt an email attachment

Verify a downloaded release

Back up your secret keys

Extend subkey expiration

$ gpg --armor --encrypt --recipient alice@example.org secret.txt

$ gpg --armor --sign --encrypt --recipient alice@example.org message.txt

$ gpg --recv-keys <PROJECT_FPR>

$ gpg --verify release.tar.gz.asc release.tar.gz

$ gpg --armor --export-secret-keys <YOUR_FPR> > master-backup.asc

$ gpg --armor --export <YOUR_FPR> > public-key.asc

$ gpg --export-ownertrust > trustdb.txt

$ gpg --edit-key <YOUR_FPR>

gpg> key 1 # select subkey

gpg> expire

gpg> key 1 # deselect

gpg> key 2 # select next

gpg> expire

gpg> save

$ gpg --keyserver hkps://keys.openpgp.org --send-keys <YOUR_FPR>

$ gpg --keyserver hkps://keyserver.ubuntu.com --send-keys <YOUR_FPR>

Quick Recipes

71 / 72 Copyright © 2026 Tony Gies. All rights reserved.

7. End of Free Sample

You've reached the end of this free sample. Thanks for reading!

If you found Parts I–III useful, the full guide picks up exactly where this sample leaves off — starting
with loading your keys onto a YubiKey and configuring your daily machine.

7.1 What's in the Full Guide

Plus 5 more appendices: Configuration Reference · Troubleshooting · Glossary · Migration Guides ·
Legal & Compliance

Get the full guide at: https://leanpub.com/gpg-guide

PART TOPIC WHAT YOU'LL LEARN

IV Hardware Provisioning YubiKey setup, touch policies, backup tokens, Nitrokey

V Daily Machine Setup GnuPG configuration, cross-platform notes, WSL2

VI SSH Authentication GPG-agent, FIDO2 resident keys, PIV — three paths
compared

VII Git Signing GPG signing, SSH signing, GitHub/GitLab/Codeberg, CI/CD

VIII Email Encryption Thunderbird, Mutt/NeoMutt, Autocrypt, ProtonMail

IX Password Management pass, gopass, passage

X File Encryption GPG file encryption, age, encrypted backups

XI Secrets Management SOPS, git-crypt, comparison matrix

XII Key Distribution Keyservers, WKD, Keyoxide, privacy-preserving refresh

XIII Web of Trust caff, keysigning parties, the Debian Developer path

XIV Package Signing Debian/Ubuntu, RPM, software releases, container images

XV Maintenance &
Rotation

Expiry renewal, YubiKey switching, emergency procedures

XVI Complementary Tools Sequoia, age, SOP, when NOT to use PGP

7. End of Free Sample

72 / 72 Copyright © 2026 Tony Gies. All rights reserved.

https://leanpub.com/gpg-guide

	The GPG Guide
	1. The GPG Guide
	1.1 What's Inside

	2. Free Sample
	3. I: Philosophy & Foundations
	3.1 Part I: Philosophy & Foundations
	3.2 1.1 The State of OpenPGP in 2026
	The Split: LibrePGP vs. RFC 9580
	The Ecosystem Map
	GnuPG Versions in 2026
	Sequoia PGP
	The Bottom Line

	3.3 1.2 Cryptographic Choices
	The Golden Path: v4 + Ed25519 / Cv25519
	EUCLEAK: Why Ed25519 Is the Safe Choice
	What EUCLEAK affects
	What EUCLEAK does NOT affect
	The bottom line on EUCLEAK

	When RSA-4096 Still Makes Sense
	The v6 Key Format: Not Yet
	Post-Quantum: A Preview

	3.4 1.3 Key Architecture & Threat Model
	The Master + Subkeys Model
	Why This Separation Matters
	Subkey Expiration
	Cross-Certification
	Threat Scenarios
	Stolen laptop (subkeys on YubiKey)
	Compromised daily machine (malware)
	Lost YubiKey (no known compromise)
	Forgotten passphrase

	The Three Tracks
	Track A: Minimal
	Track B: Standard
	Track C: Advanced

	3.5 1.4 Toolchain Choice: Two Paths
	Path 1: GnuPG-Only (The Universal Path)
	Path 2: Hybrid (Sequoia + GnuPG)
	The Bridge: How Hybrid Works
	Decision Matrix
	Recommendation
	What You Will Need Installed

	4. II: Key Generation
	4.1 Part II: The Air-Gapped Forge (Key Generation)
	4.2 2.1 Environment Preparation
	Option A: Tails OS (Recommended)
	Steps

	Option B: Alpine Linux on Raspberry Pi
	Steps

	Option C: drduh's NixOS LiveCD
	Steps

	Common Setup: Temporary GNUPGHOME

	4.3 2.2 Key Generation -- GnuPG Path
	Prerequisites
	Choosing a Passphrase
	Step 1: Set Your Identity
	Step 2: Generate the Master Key
	Step 3: Add Subkeys
	Step 4: Verify the Key Structure
	The gpg.conf Explained
	Next Steps

	4.4 2.3 Key Generation -- Sequoia Path
	Prerequisites
	Step 1: Generate the Key
	Step 2: Add an Authentication Subkey
	Step 3: Inspect the Key
	Step 4: Bridge to GnuPG
	Step 5: Secure the Original File
	Differences from the GnuPG Path
	Next Steps

	4.5 2.4 Identity & UIDs
	Adding UIDs
	Setting the Primary UID

	What NOT to Put in UIDs
	Comment fields
	Photos

	Separate Keys for Separate Identities
	Revoking a UID
	Next Steps

	4.6 2.5 Verification
	Reading gpg -K Output
	Key prefixes
	Capability flags
	Trust levels

	Verification Checklist
	Detailed Key Inspection
	Record Your Fingerprint
	Next Steps

	5. III: Backup & Recovery
	5.1 Part III: Backup & Disaster Recovery
	5.2 3.1 Export Everything
	The Four Exports
	1. Public Key
	2. Full Secret Key
	3. Subkeys Only
	4. Ownertrust

	Summary Table
	Verify the Exports
	Optional: SSH Public Key
	Next Steps

	5.3 3.2 Paperkey -- The Gold Standard
	How Paperkey Works
	Creating the Paperkey Backup
	Printing
	Restoration
	The Restoration Drill
	Next Steps

	5.4 3.3 QR Code Backup
	Prerequisites
	Generating QR Codes
	Single QR (Ed25519 keys)
	Split QR (RSA or large keys)
	Creating a Printable Sheet

	Verification: The Round-Trip Test
	Including the Public Key
	Storage Recommendations
	Next Steps

	5.5 3.4 Encrypted USB Backup
	Why LUKS?
	Creating an Encrypted USB Drive
	Step 1: Identify the USB drive
	Step 2: Create the LUKS volume
	Step 3: Open and format
	Step 4: Mount and copy
	Step 5: Verify the copy
	Step 6: Unmount and close

	How Many Drives?
	What to Copy
	Restoration from USB
	Media Health and Refresh
	Next Steps

	5.6 3.5 Revocation Certificates
	Why You Need One Before You Need It
	Auto-Generated Revocation Certificate
	Generating Custom Revocation Certificates
	Storage
	Using a Revocation Certificate
	The Backup Summary

	5.7 3.6 Deterministic Keys (gpg-hd)
	How gpg-hd Works
	Why This Is Experimental
	Comparison with Standard Backup Methods
	The Bottom Line

	6. Appendices
	6.1 Appendix C: Cheat Sheet
	Key Management
	Encryption & Decryption
	Signing & Verification
	Keyservers
	Smartcard / YubiKey
	SSH with GPG
	Trust & Certification
	SOP (for scripting)
	Quick Recipes
	Encrypt a file for someone
	Sign and encrypt an email attachment
	Verify a downloaded release
	Back up your secret keys
	Extend subkey expiration

	7. End of Free Sample
	7.1 What's in the Full Guide

