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Chapter 1: Introduction

This is a book about cryptography: how to communicate securely. There are several objectives that
cryptography aims to solve: confidentiality, integrity, and authenticity. It also helps solve some other
problems that come up in secure communications, but it’s important to remember that it isn’t a complete
solution to security problems. In this book, we’ll look at how to build secure systems; some of the problems
that cryptography does not solve will also be pointed out. This book will attempt to guide you in your attempt
to understand how to use cryptography to secure your services, and illustrate it using the Go programming
language.

As mentioned, the foundation of cryptographic security are the three goals of confidentiality, integrity, and
authenticity. Confidentiality is the requirement that only the intended party can read a given message;
integrity is the requirement that a message’s contents cannot be tampered with; and authenticity is the
requirement that the provenance (or origin) of a message can be trusted. Trust will play a large role in
our secure systems, but there is no single solution to the problem. It will present many challenges in building
secure systems. A cryptographic algorithm applies some transformations to data in order to achieve these
goals, and various algorithms are applied to achieve different goals.

In order to discuss cryptography, a baseline vocabulary is needed. The following terms have specific meanings:

+ The plaintext is the original message.

+ The ciphertext is traditionally a message that has been transformed to provide confidentiality.

+ A cipher is a cryptographic transformation that is used to encrypt or decrypt a message.

« A message authentication code (or MAC) is a piece of data that provides authenticity and integrity.
A MAC algorithm is used both to generate and validate this code.

+ To encrypt a message is to apply a confidentiality transformation, but is often used to describe a
transformation that satisfies all three goals.

+ To decrypt a message to reverse the confidentiality transformation, and often indicates that the other
two properties have been verified.

« A hash or digest algorithm transforms some arbitrary message into a fixed-size output, also called a
digest or hash. A cryptographic hash is such an algorithm that satisfies some specific security goals.

« A peer or party describes an entity involved in the communication process. It might be a person or
another machine.

A secure communication system will protect against both passive and active attacks. A passive attack is one
in which a party for whom a message is not intended is listening on the communications. An active attack is
one in which some adversarial party is tampering with messages, and can inject, alter, or replay messages.

Cryptography should be used to solve specific problems, such as

«+ Eavesdropping: as is the case with in-person conversations, an attacker could listen in on traffic going
in and out, potentially stealing secrets passed back and forth. The security goal of confidentiality will
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mitigate this attack to an extent; while cryptography will obscure the contents of the message, by itself
it doesn’t hide the fact that two parties are communicating. An attacker might also be able to determine
information based on the size of the messages.

« Tampering: traffic going in and out of the application could be modified en-route; the system needs to
make sure that messages it receives have not been tampered with. The integrity goal is used to ensure
messages haven’t been tampered with.

« Spoofing: an attacker can pretend to be a legitimate user by faking certain details of a message. An
attacker can use spoofing to steal sensitive information, forge requests from a user, or take over a
legitimate session. Authentication helps to defend against this attack, by validating the identity of users
and messages.

In this book, we’ll look at the context of cryptography and some of the engineering concerns when building
secure systems, symmetric and asymmetric (or public-key) cryptography, how to exchange keys, storing
secrets, trust, and common use cases.

This book has an associated example code repository on Github at https://github.com/kisom/gocrypto/. This
code has the code from the book, as well as some supplementary material that will be mentioned. As a general
rule, the code in the book won’t have comments; the code will be explained in the text. The example code is,
however, commented.



Chapter 2: Engineering concerns and
platform security

If cryptography is the proverbial vault door, it makes sense to evaluate the rest of the building and the
foundation it’s built on before deciding on the specifics of the vault door. It’s often repeated that a secure
system is only secure as its weakest component, which means the other parts of the system must be up to par
before cryptography is useful. In this chapter, we’ll look at the engineering concerns around secure systems,
particularly for Unix-based systems.

Basic security

Security should provide authentication, authorisation, and auditing. Authentication means that the system
verifies the identity of parties interacting with the system; authorisation verifies that they should be allowed
to carry out this interaction; and auditing creates a log of security events that can be verified and checked to
ensure the system is providing security. The end goal is some assurance that the system is secure.

Authentication

Authentication asks the question, “who am I talking to?”; it attempts to verify the identity of some party.
Passwords are one means of authentication; they aren’t a strong authentication mechanism because anyone
who knows the password (whether because they chose it, were given it, or guessed it) will be authenticated.
Multifactor authentication attempts to provide a stronger basis for assurance of an identity, and is based on
three factors:

1. Something you know (such as a password)
2. Something you have (such as an authentication token of some kind)
3. Something you are (such as biometrics)

The most common multifactor authentication configuration found in common use is two-factor employing the
first two factors. A user might be required to enter both their password and a time-based one-time password
(such as with TOTP) from an app on their phone. The assumption here is that the key used to generate the
TOTP is only present on the authenticator (i.e. the mail provider) and the user’s phone, and that the user’s
phone hasn’t been compromise or the key taken from it. Both sides share the key for this one-time password
(OTP), and they do not have to communicate any additional information after setup to verify the password.

This is in contrast with two-step verification; an example is an SMS code sent to the phone. The user and
server have to communicate, albeit over a different channel than the browser, to share this code. This still
provides a channel for intercepting the code.
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Authorisation

Authorisation asks the question, “should you be doing this?” Authorisation relies on an access control
mechanism of some kind. This might be as simple as an access control list, where the system has a list of
parties that should have access to a resource or should be allowed to perform some operation. The Unix
security model uses a set of access control lists for reading, writing, and executing by the owner, the group the
resource belongs to, and the world. It employs “discretionary access control”: a user can explicitly change the
values of those access control lists, giving other users and groups permission at their discretion. A mandatory
access control model (such as provided by SELinux or AppArmor) operates on security levels or labels; each
label is given a set of capabilities. Users or processes are given a label or security level, and they can only
operate within the confines of the permitted capabilities.

As an example, a user might create a text file and opt to make it world-readable in the DAC model: any process
or user can now access it. In the MAC model, access to that file would be restricted by label. If a process or
user doesn’t have permissions based on their label, they cannot access it, and the original user simply cannot
share the text file in this way. The labels are assigned by an administrator or security officer, and the user
cannot change this. Access control is no longer at the user’s discretion, but mandatory.

An alternative to access control lists is the role-based access control security model is role-based security. On
Unix systems, root has full control over the system; in a role-based system, this control is split among several
roles, each of which has the minimum set of permissions to carry out that role. This model is also more fine
grained that an access control list in that it can specify grant or permissions for specific operations.

Auditing

Security efforts are for nought if no one is auditing the system to ensure it is operating correctly. An audit
log should be available, and its access restricted to auditors, that records security events. The events recorded
and the details present will vary based on the requirements of the system. Auditors should also be confident
that the audit log will not have been tampered with.

An attacker that successfully authenticates may not leave any indication that the system is compromised. The
only way to identify the compromise is through positive auditing: that is, auditing the record of events that
succeeded. Whether the risk of such a compromise outweighs the need to maintain usage privacy needs to be
considered.

Policy

There should be a set of policies that clearly specify the authentication, authorisation, and auditing in a system.
For a large organisation, this may be fairly complex. For an application given to users, it might be as simple
as password-based and printing security failures to the system log. This isn’t an engineering concern, per se,
but it really must factor into a secure application.

Specifications

Specifications are a critical part of building a secure system to understand what its behaviour should be. From
a security perspective, it’s also important understand what its behaviour must not be. The security model is
part of the system’s specification, and care should be taken to build it properly.
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Testing is an important part of the specification, as well. It is the assurance that the system behaves according
to the specification. Unit tests verify the code paths within each unit of the system, functional tests verify that
components and the system behaves as it should, and regression tests make sure that bugs aren’t re-introduced.
Integration tests may also be useful to verify compatibility.

Building secure systems depends on writing correct code. An incorrect system that is shipped is shipping
with security flaws that will probably subvert any cryptographic security built in. The more code that is
present in a system, the greater the attack surface: only the minimum code to implement a system that fits
the specifications should be used. This includes any libraries used by the system: where possible, remove any
unused functionality. This lowers the cost of the system as well: less test code has to be written, which reduces
both the time and financial costs.

Security models

One of the key steps in designing a secure system is building a security model. A security model describes
the assumptions that are made about the system, the conditions under which security can be provided,
and identifies the threats to the system and their capabilities. A secure system cannot be built unless its
characteristics and the problems it is intended to solve are understood. A security model should include
an analysis of the system’s attack surface (what components can come under attack), realistic threat
vectors (where attacks come from), the parties that can attack the system and their capabilities, and
what countermeasures will be required to provide security. The security model should not just cover the
cryptographic components: the environment and platforms that the system will run in and on must be
considered as well. It’s also important to consider which problems are technical in nature, and which problems
are social in nature. Trust is also a key consideration in this model; that is, understanding the roles, intended
capabilities, and interactions of legitimate parties as well as the impact of a compromised trusted party.

From experience, it is extremely difficult to bolt security onto a system after it has been designed or built.
It is important to begin discussing the security requirements during the initial stages of the system’s design
for the same reasons it is important to consider the other technical requirements. Failure to consider the load
level of the system, for example, may result in poor architectural decisions being made that add a great deal
of technical debt that impede a stable, reliable system. In the same manner, failure to consider the security
requirements may result in similarly poor architectural decisions. A secure system must be reliable and it must
be correct; most security vulnerabilities arise from exploiting parts of a system that do not behave correctly.
Proper engineering is key to secure systems; clear specifications and both positive and negative testing (testing
both that the system behaves correctly and that it fails gracefully) will greatly improve the system’s ability
to fulfill its security objectives. It’s useful to consider security as a performance metric. The performance of
a secure system relates to its ability to operate without being compromised, and its ability to recover from a
compromise. The non-security performance of a secure system must also be considered: if the system is too
slow or too difficult to use, it won’t be used. An unused secure system is an insecure system as it is failing to
provide message security.

The security components must service the other objectives of the system; they must do something useful
inside the specifications of the system.

As part of the specifications of a secure system, the choice of cryptographic algorithms must also be made. In
this book, we will prefer the NaCl algorithms for greenfield designs: they were designed by a well-respected
cryptographer who is known for writing well-engineered code, they have a simple interface that is easy to
use, and they were not designed by NIST. They offer high performance and strong security properties. In other
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cases, compatibility with existing systems or standards (such as FIPS) is required; in that case, the compatible
algorithms should be chosen.

On errors

The more information an attacker has about why a cryptographic operation failed, the better the chances that
they will be able to break the system. There are attacks, for example, that operate by distinguishing between
decryption failures and padding failures. In this book, we either signal an error using a bool or with a generic
error value such as “encryption failed”.

We'll also check assumptions as early as possible, and bail as soon as we see something wrong.

Input sanitisation

A secure system also has to scrutinise its inputs and outputs carefully to ensure that they do not degrade
security or provide a foothold for an attacker. It’s well understood in software engineering that input from
the outside world must be sanitised; sanity checks should be conducted on the data and the system should
refuse to process invalid data.

There are two ways to do this: blacklisting (a default allow) and whitelisting (a default deny). Blacklisting
is a reactive measure that involves responding to known bad inputs; a blacklisting system will always be
reacting to new bad input it detects, perhaps via an attack. Whitelisting decides on a set of correct inputs, and
only permits those. It’s more work up front to determine what correct inputs look like, but it affords a higher
assurance in the system. It can also be useful in testing assumptions about inputs: if valid input is routinely
being hit by the whitelist, perhaps the assumptions about the incoming data looks like are wrong.

Memory

At some point, given current technologies, sensitive data will have to be loaded into memory. Go is a managed-
memory language, which means the user has little control over memory, presenting additional challenges for
ensuring the security of a system. Recent vulnerabilities such as Heartbleed show that anything that is in
memory can be leaked to an attacker with access to that memory. In the case of Heartbleed, it was an attacker
with network access to a process that had secrets in memory. Process isolation is one countermeasure:
preventing an attacker from accessing a process’s memory space will help mitigate successful attacks against
the system. However, an attacker who can access the machine, whether via a physical console or via a remote
SSH session, now potentially has access to the memory space of any process running on that machine. This
is where other security mechanisms are crucial for a secure system: they prevent an attacker from reaching
that memory space.

It’s not just the memory space of any process that’s running on the machine that’s vulnerable, though. Any
memory swapped to disk is now accessible via the file system. A secret swapped to disk now has two places
where it’s present. If the process is running on a laptop that is put to sleep, that memory is often written to
disk. If a peripheral has direct memory access (DMA), and many of them do, that peripheral has access to all
the memory in the machine, including the memory space of every process. If a program crashes and dumps
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core, that memory is often written to a core file. The CPU caches can also store secrets, which might be an
additional attack surface, particularly on shared environments (such as a VPS).

There are a few methods to mitigate this: using the stack to prevent secrets from entering the heap, and
attempting to zero sensitive data in memory when it’s no longer needed (though this is not always effective,
e.g. [5]). In this book, we’ll do this where it makes sense, but the caveats on this should be considered.

There is also no guarantee that secrets stored on disk can be completely and securely erased (short of applying
a healthy dose of thermite). If a sector on disk has failed, the disk controller might mark the block as bad and
attempt to copy the data to another sector, leaving that data still on the hardware. The disk controller might
be subverted, as disk drives contain drive controllers with poorly (if at all) audited firmware.

In short, given our current technologies, memory is a difficult attack surface to secure. It’s helpful to ask these
following questions for each secret:

1. Does it live on disk for long-term storage? If so, who has access to it? What authorisation mechanisms
ensure that only authenticated parties have access?

2. When it’s loaded in memory, who owns it? How long does it live in memory? What happens when it’s
no longer used?

3. If the secrets lived on a virtual machine, how much trust can be placed in parties that have access to
the host machine? Can other tenants (i.e. users of other virtual machines) find a way to access secrets?
What happens when the machine is decomissioned?

Randomness

Cryptographic systems rely on sources of sufficiently random data. We want the data from these sources to be
indistinguishable from ideally random data (a uniform distribution over the range of possible values). There
has been historically a lot of confusion between the options available on Unix platforms, but the right answer
(e.g. [6]) is to use /dev/urandom. Fortunately, crypto/rand.Reader in the Go standard library uses this on
Unix systems.

Ensuring the platform has sufficient randomness is another problem, which mainly comes down to ensuring
that the kernel’s PRNG is properly seeded before being used for cryptographic purposes. This is a problem
particularly with virtual machines, which may be duplicated elsewhere or start from a known or common
seed. In this case, it might be useful to include additional sources of entropy in the kernel’s PRNG, such as
a hardware RNG that writes to the kernel’s PRNG. The host machine may also have access to the PRNG via
disk or memory allowing its observation by the host, which must be considered as well.

Time

Some protocols rely on clocks being synced between peers. This has historically been a challenging problem.
For example, audit logs often rely on the clock to identify when an event occurred. One of the major challenges
in cryptographic systems is checking whether a key has expired; if the time is off, the system may incorrectly
refuse to use a key that hasn’t expired yet or use a key that has expired. Sometimes, the clock is used for
a unique value, which shouldn’t be relied on. Another use case is a monotonically-increasing counter; a
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clock regression (e.g. via NTP) makes it not-so-monotonic. Authentication that relies on time-based one-time
passwords also require an accurate clock.

Having a real-time clock is useful, but not every system has one. Real-time clocks can also drift based on
the physical properties of the hardware. Network time synchronisations work most of the time, but they are
subject to network failures. Virtual machines may be subject to the clock on the host.

Using the clock itself as a monotonic counter can also lead to issues; a clock that has drifted forward may be
set back to the correct time (i.e. via NTP), which results in the counter stepping backwards. There is a CPU
clock that contains ticks since startup that may be used; perhaps bootstrapped with the current timestamp,
with the latest counter value stored persistently (what happens if the latest counter value is replaced with an
earlier value or removed?).

It helps to treat clock values with suspicion. We’ll make an effort to use counters instead of the clock where
it makes sense.

Side channels

A side channel is an attack surface on a cryptographic system that is based entirely on the physical
implementation; while the algorithm may be sound and correct, the implementation may leak information
due to physical phenomena. An attacker can observe timings between operations or differences in power
usage to deduce information about the private key or the original message.

Some of these types of side channels include:

« timing: an observation of the time it takes some piece of the system to carry out an operation. Attackers
have used this to even successfully attack systems over the network ([2]).

« power consumption: this is often used against smart cards; the attacker observes how power usage
changes for various operations.

« power glitching: the power to the system is glitched, or brought to near the shutdown value for the
CPU. Sometimes this causes systems to fail in unexpected ways that reveals information about keys or
messages.

« EM leaks: some circuits will leak electromagnetic emissions (such as RF waves), which can be observed.

These attacks can be surprisingly effective and devastating. Cryptographic implementations have to be
designed with these channels in mind (such as using the constant time functions in crypto/subtle); the
security model should consider the potential for these attacks and possible countermeasures.

Privacy and anonymity

When designing the system, it should be determined what measure of privacy and anonymity should be
afforded. In a system where anonymity is needed, perhaps the audit log should not record when events succeed
but only when they fail. Even these failures can leak information: if a user mistypes their password, will it
compromise their identity? If information such as IP addresses are recorded, they can be used to de-anonymise
users when combined with other data (such as activity logs from the user’s computer). Think carefully about
how the system should behave in this regard.
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Trusted computing

One problem with the underlying platform is ensuring that it hasn’t been subverted; malware and rootkits can
render other security measures ineffective. It would be nice to have some assurance that the parties involved
are running on platforms with a secure configuration. Efforts like the Trusted Computing Group’s Trusted
Computing initiative aim to prove some measure of platform integrity and authenticity of the participants in
the system, but the solutions are complex and fraught with caveats.

Virtual environments

The cloud is all the rage these days, and for good reason: it provides a cost-effective way to deploy and
manage servers. However, there’s an old adage in computer security that an attacker with physical access
to the machine can compromise any security on it, and cloud computing makes getting “physical” access to
some of these machines much easier. The hardware is emulated in software, so an attacker who gains access
to the host (even via a remote SSH session or similar) has equivalent access. This makes the task of securing
sensitive data, like cryptographic keys, in the cloud a dubious prospect given current technologies. If the host
isn’t trusted, how can the virtual machine be trusted? This doesn’t just mean trust in the parties that own or
operate the host: is their management software secure? How difficult is it for an attacker to gain access to the
host? Can another tenant (or user on another virtual machine on the host) gain access to the host or other
virtual machines they shouldn’t be able to? If the virtual machine is decomissioned, is the drive sufficently
wiped so that it never ends up in another tenants hands? Security models for systems deployed in a virtual
environment need to consider the security of the host provider and infrastructure in addition to the system
being developed, including the integrity of the images that are being run.

Public key infrastructure

When deploying a system that uses public key cryptography, determining how to trust and distribute public
keys becomes a challenge that adds extra engineering complexity and costs to the system. A public key by itself
contains no information; some format that contains any other required identity and metadata information
needs to be specified. There are some standards for this, such as the dread X.509 certificate format (which
mates a public key with information about the holder of the private key and holder of the public key that
vouches for this public key). Deciding on what identity information to include and how it is to be verified
should be considered, as should the lifetime of keys and how to enforce key expirations, if needed. There are
administrative and policy considerations that need to be made; PKI is largely not a cryptographic problem,
but it does have cryptographic impact.

Key rotation is one of the challenges of PKI. It requires determining the cryptoperiod of a key (how long it
should be valid for); a given key can generally only encrypt or sign so much data before it must be replaced
(so that it doesn’t repeat messages, for example). In the case of TLS, many organisations are using certificates
with short lifetimes. This means that if a key is compromised and revocation isn’t effective, the damage will
be limited. Key rotation problems can also act as DoS attack: if the rotation is botched, it can leave the system
unusable until fixed.

Key revocation is part of the key rotation problem: how can a key be marked as compromised or lost? It turns
out that marking the key this way is the easy part, but letting others know is not. There are a few approaches to
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this in TLS: certificate revocation lists, which contain a list of revoked keys; OCSP (the online certificate status
protocol), which provides a means of querying an authoritative source as to whether a key is valid; TACK and
certificate transparency, which have yet to see large scale adoption. Both CRLs and OCSP are problematic:
what if a key compromise is combined with a DDoS against the CRL or OCSP server? Users may not see that
a key was revoked. Some choose to refuse to accept a certificate if the OCSP server can’t be reached. What
happens in the case of a normal network outage? CRLs are published generally on set schedules, and users
have to request the CRL every so often to update it. How often should they check? Even if they check every
hour, that leaves up to an hour window in which a compromised key might still be trusted.

Due to these concerns and the difficulty in providing a useful public key infrastructure, PKI tends to be a dirty
word in the security and cryptographic communities.

What cryptography does not provide

Thought the encryption methods we’ll discuss provide strong security guarantees, none provide any sort of
message length obscurity; depending on this system, this may make the plaintext predictable even in the case of
strong security guarantees. There’s also nothing in encryption that hides when a message is sent if an attacker
is monitoring the communications channel. Many cryptosystems also do not hide who is communicating;
many times this is evident just from watching the communications channel (such as tracking IP addresses).
By itself, cryptography will not provide strong anonymity, but it might serve as part of a building block in
such a system. This sort of communications channel monitoring is known as traffic analysis, and defeating it
is challenging.

Also, despite the unforgeability guarantees that we’ll provide, cryptography won’t do anything to prevent
replay attacks. Replay attacks are similar to spoofing attacks, in which an attacker captures previously sent
messages and replays them. An example would be recording a financial transaction, and replaying this
transaction to steal money. Message numbers are how we will approach this problem; a system should never
repeat messages, and repeated messages should be dropped by the system. That is something that will need
to be handled by the system, and isn’t solved by cryptography.

Data lifetimes

In this book, when we send encrypted messages, we prefer to do so using ephemeral message keys that
are erased when communication is complete. This means that a message can’t be decrypted later using
the same key it was encrypted with; while this is good for security, it means the burden of figuring
out how to store messages (if that is a requirement) falls on the system. Some systems, such as Pond
(https://pond.imperialviolet.org/), enforce a week lifetime for messages. This forced erasure of messages is
considered the social norm; such factors will have to play into decisions about how to store decrypted messages
and how long to store them.

There’s also the transition between data storage and message traffic: message traffic is encrypted with
ephemeral keys that are never stored, while stored data needs to be encrypted with a long-term key. The
system architecture should account for these different types of cryptography, and ensure that stored data is
protected appropriately.
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Options, knobs, and dials

The more options a system has for picking the cryptography it uses, the greater the opportunity for making a
cryptographic mistake. For this reason, we’ll avoid doing this here. Typically, we’ll prefer NaCl cryptography,
which has a simple interface without any options, and it is efficient and secure. When designing a system, it
helps to make a well-informed opinionated choice of the cryptography used. The property of cryptographic
agility, or being able to switch the cryptography out, may be useful in recovering from a suspected failure.
However, it may be prudent to step back and consider why the failure happened and incorporate that into
future revisions.

Compatibility

The quality of cryptographic implementations ranges wildly. The fact that there is a good implementation of
something in Go doesn’t mean that a good implementation will exist in the language used to build other parts
of the system. This must factor into the system’s design: how easy is it to integrate with other components,
or to build a client library in another language? Fortunately, NaCl is widely available; this is another reason
why we will prefer it.

Conclusion

Cryptography is often seen as the fun part of building secure systems; however, there are a lot of other work
that needs to be done before cryptography enters the picture. It’s not a one-size-fits-all security solution; we
can’t just sprinkle some magic crypto dust on an insecure system and make it suddenly secure. We also have
to make sure to understand our problems, and ensure that the problems we are trying to solve are actually the
right problems to solve with cryptography. The challenges of building secure systems are even more difficult
in virtual environments. It is crucial that a security model be part of the specification, and that proper software
engineering techniques are observed to ensure the correctness of the system. Remember, one flaw, and the
whole system can come crashing down. While it may not be the end of the world as we know it, it can cause
signficant embarassment and financial costs—not only to you, but to the users of the system.
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5. [Perc14] C. Percival. “How to zero a buffer” http://www.daemonology.net/blog/2014-09-04-how-to-
zero-a-buffer.html 2014-09-04.

6. [Ptac14] T. Ptacek. “How to safely generate a random number.” http://sockpuppet.org/blog/2014/02/25/safely-
generate-random-numbers/ 2014-02-25.

7. [Viega03] J. Viega and M. Messier. Secure Programming Cookbook for C and C++. OReilly Media, July
2003.



Chapter 3: Symmetric Security

Symmetric cryptography is the simplest form of cryptography: all parties share the same key. It also tends
to be the fastest type of cryptography. Fundamentally, the key used by a symmetric algorithm is a sequence
of bytes that are used as the input to a transformation algorithm that operates on bits. Key distribution with
symmetric cryptography is more difficult than with asymmetric cryptography as the transmission of sensitive
key material requires a secure channel. In the next chapter, we’ll look at means of exchanging keys.

There are two components to symmetric encryption: the algorithm that provides confidentiality (which is
a block or stream cipher), and the component that provides integrity and authenticity (the MAC algorithm).
Most ciphers do not provide both in the same algorithm, but those that do are called Authenticated Encryption
(AE), or Authenticated Encryption with Additional Data (AEAD), ciphers. In this chapter, we’ll consider four
ciphersuites: NaCl, AES-GCM, AES-CTR with an HMAC, and AES-CBC with an HMAGC; a ciphersuite is
a selection of algorithms that we’ll use to provide security. The code from this chapter can be found in the
chapter3 package in the example code.

Indistinguishability

One of the properties of a secure encryption system is that it provides indistinguishability. There are two
particular kinds of indistinguishability that are relevant here: IND-CPA, or indistinguishability under a chosen
plaintext attack, and IND-CCA, or indistinguishability under a chosen ciphertext attack.

In IND-CPA, the attacker sends a pair of messages that are the same length to the server to be encrypted. The
server chooses one of the messages, encrypts it, and sends back the ciphertext. The attacker should not be able
to determine which message was encrypted. This property maintains confidentiality. It’s useful to consider
the requirement that messages be the same length: the length of an encrypted message is related to the length
of the original message in most ciphers. That is, encrypting a message does not hide its length.

In IND-CCA, the attacker submits ciphertexts of its own choosing that the server decrypts. After some
observations, the attacker submits two challenge ciphertexts and the server picks one at random to decrypt
and send back to the attacker. The attacker should not be able to distinguish which ciphertext the plaintext
corresponds to. This attack is often seen in symmetric security as a padding oracle attack, in which the
encryption scheme used does not include a message authentication code (such as AES-CBC without an
HMAC), and can allow the attacker to recover the key used for encryption. There are two variants of IND-
CCA,; the first IND-CCA1) means that an attacker cannot submit new ciphertexts after the challenge is sent.
The second (IND-CCA2, or adaptive CCA) allows the attacker to continue submitting ciphertexts after the
challenge. This may seem like a trivial difference, but a system that is IND-CCA1 secure but not IND-CCA2
secure enables the padding oracle attack.

Both the confidentiality component (such as AES-CBC) and the integrity and authenticity component (such
as HMAC-SHA-256) are required for security.

Another indistinguishability requirement that is desirable is that our key material be indistinguishable from
random, specifically from the uniform distribution.
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Authenticity and integrity

Why are the integrity and authenticity components required? One common thing that crops up when people
try to build a secure system is that only the confidentiality aspect is used: the programmer will use just AES
with some non-authenticated mode (like the CBC, OFB, or CTR modes). AES ciphertexts are malleable: they
can be modified and the receiver is often none the wiser. In the context of an encrypted instant message or
email or web page, it might seem this modification would become obvious. However, an attacker can exploit
the different responses between invalid ciphertext (when decryption fails) and invalid message (the plaintext
is wrong) to extract the key. Perhaps the most well-known such attack is the padding oracle attack. In other
cases, the invalid plaintext might be used to exploit bugs in the message handler. This is especially problematic
in systems that use encryption to secure messages intended for automated systems.

Appending an HMAC or using an authenticated mode (like GCM) requires that the attacker prove they have
the key used to authenticate the message. Rejecting a message that fails the MAC reduces the possibility of
an invalid message. It also means that an attacker that is just sending invalid data has their message dropped
before even wasting processor time on decryption.

To effectively authenticate with an HMAC, the HMAC key should be a different key than the AES key. In this
book, we use HMACs with AES, and we’ll append the HMAC key to the AES key for the full encryption or
decryption key. For AES-256 in CBC or CTR mode with an HMAC-SHA-256, that means 32 bytes of AES key
and 32 bytes of HMAC key for a total key size of 64 bytes; the choice of HMAC-SHA-256 is clarified in a later
section.

There are several choices for how to apply a MAC. The right answer is to encrypt-then-MAC:

1. Encrypt-and-MAC: in this case, we would apply a MAC to the plaintext, then send the encrypted
plaintext and MAC. In order to verify the MAC, the receiver has to decrypt the message; this still permits
an attacker to submit modified ciphertexts with the same problems described earlier. This presents a
surface for IND-CCA attacks.

2. MAC-then-encrypt: a MAC is applied and appended to the plaintext, and both are encrypted. Note that
the receiver still has to decrypt the message, and the MAC can be modified by modifying the resulting
ciphertext, which is a surface for IND-CCA attacks as well.

3. Encrypt-then-MAC: encrypt the message and append a MAC of the ciphertext. The receiver verifies
the MAC, and does not proceed to decrypt if the MAC is invalid. This removes the IND-CCA surface.

Moxie Marlinspike’s Cryptographic Doom Principle [Moxie11] contains a more thorough discussion of this.

Always use either an authenticated mode (like GCM), or encrypt-then-MAC.

NacCl

NaCl' is the Networking and Cryptography library that has a symmetric library (secretbox) and an
asymmetric library (box), and was designed by Daniel J. Bernstein. The additional Go cryptography packages
contain an implementation of NaCl. It uses a 32-byte key and 24-byte nonces. A nonce is a number used once:

'https://nacl.cr.yp.to/
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a nonce should never be reused in a set of messages encrypted with the same key, or else a compromise may
occur. In some cases, a randomly generated nonce is suitable. In other cases, it will be part of a stateful system;
perhaps it is a message counter or sequence number.

The secretbox system uses a stream cipher called “XSalsa20” to provide confidentiality, and a MAC called
“Poly1305”. The package uses the data types *[32]byte for the key and *[24]byte for the nonce. Working
with these data types may be a bit unfamiliar; the code below demonstrates generating a random key and a
random nonce and how to interoperate with functions that expect a []byte.

const (
KeySize = 32
24

NonceSize

// GenerateKey creates a new random secret key.

func GenerateKey() (*[KeySize]byte, error) ({
key := new([KeySize]byte)
_, err := io.ReadFull(rand.Reader, key[:])
if err != nil {

return nil, err

return key, nil

// GenerateNonce creates a new random nonce.
func GenerateNonce() (*[NonceSize]byte, error) {

nonce := new([NonceSize]byte)
_, err := io.ReadFull(rand.Reader, nonce[:])
if err != nil {

return nil, err

return nonce, nil

NaCl uses the term seal to mean securing a message (such that it now is confidential, and that its integrity and
authenticity may be verified), and open to mean recovering a message (verifying its integrity and authenticity,
and decrypting the message).

In this code, randomly generated nonces will be used; in the key exchange chapter, this choice will be clarified.
Notably, the selected key exchange methods will permit randomly chosen nonces as secure means of obtaining
anonce. In other use cases, this may not be the case! The recipient will need some way of recovering the nonce,
so it will be prepended to the message. If another means of getting a nonce is used, there might be a different
way to ensure the recipient has the same nonce used to seal the message.
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var (
ErrEncrypt = errors.New("secret: encryption failed")

ErrDecrypt = errors.New("secret: decryption failed")

// Encrypt generates a random nonce and encrypts the input using
// NaCl's secretbox package. The nonce is prepended to the ciphertext.
// A sealed message will the same size as the original message plus
// secretbox.Overhead bytes long.
func Encrypt(key *[KeySize]byte, message []byte) ([]byte, error) {

nonce, err := GenerateNonce()

if err != nil {

return nil, ErrEncrypt

out := make([]byte, len(nonce))
copy(out, nonce[:])
out = secretbox.Seal(out, message, nonce, key)

return out, nil

Decryption expects that the message contains a prepended nonce, and we verify this assumption by checking
the length of the message. A message that is too short to be a valid encryption message is dropped right away.

// Decrypt extracts the nonce from the ciphertext, and attempts to
// decrypt with NaCl's secretbox.
func Decrypt(key *[KeySize]byte, message []byte) ([]byte, error) {
if len(message) < (NonceSize + secretbox.Overhead) {
return nil, ErrDecrypt

}

var nonce [NonceSize]byte

copy(nonce[:], message[:NonceSize])

out, ok := secretbox.Open(nil, message[NonceSize:], &nonce, key)
if lok {

return nil, ErrDecrypt

return out, nil

Keep in mind that random nonces are not always the right choice. We’ll talk more about this in a chapter on
key exchanges, where we’ll talk about how we actually get and share the keys that we’re using.

Behind the scenes, NaCl will encrypt a message, then apply a MAC algorithm to this ciphertext to get the
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final message. This procedure of “encrypt-then-MAC” is how to properly combine an encryption cipher and
a MAC.

AES-GCM

If AES is required or chosen, AES-GCM is often the best choice; it pairs the AES block cipher with the GCM
block cipher mode. It is an AEAD cipher: authenticated encryption with additional data. It encrypts some
data, which will be authenticated along with some optional additional data that is not encrypted. The key
length is 16 bytes for AES-128, 24 bytes for AES-192, or 32 bytes for AES-256. It also takes a nonce as input,
and the same caveats apply to the nonce selection here. Another caveat is that GCM is difficult to implement
properly, so it is important to vet the quality of the packages that may be used in a system using AES-GCM.

Which key size should you choose? That depends on the application. Generally, if there’s a specification, use
the key size indicated. Cryptography Engineering ([Ferg10]) recommends using 256-bit keys; that’s what we’ll
use here. Again, the security model for your system should dictate these parameters. In the AES examples in
this chapter, changing the key size to 16 will suffice to switch to AES-128 (and 24 for AES-192). The nonce
size does not change across the three versions.

Unlike most block cipher modes, GCM provides authentication. It also allows the for the authentication of
some additional, unencrypted data along with the ciphertext. Given that it is an AEAD mode (which provides
integrity and authenticity), an HMAC does not need to be appended for this mode.

The AEAD type in the crypto/cipher package uses the same “open” and “seal” terms as NaCl. The AES-GCM
analogue of the NaCl encryption above would be:

// Encrypt secures a message using AES-GCM.
func Encrypt(key, message []byte) ([]byte, error) {

c, err := aes.NewCipher(key)
if err != nil {

return nil, ErrEncrypt
}
gem, err := cipher.NewGCM(c)
if err !'= nil {

return nil, ErrEncrypt
}
nonce, err := GenerateNonce()
if err !'= nil {

return nil, ErrEncrypt
}

// Seal will append the output to the first argument, the usage
// here appends the ciphertext to the nonce. The final parameter
// 1s any additional data to be authenticated.

out := gcm.Seal(nonce, nonce, message, nil)



22
23

© 00 9 O O +» W N =

NN NN NN R R R L Ly 1y
O b 0N -~ O © 00 O O b W N~ O

Chapter 3: Symmetric Security 17

return out, nil

This version does not provide any additional (unencrypted but authenticated) data in the ciphertext.

Perhaps there is a system in which the message is prefixed with a 32-bit sender ID, which allows the receiver
to select the appropriate decryption key. The following example will authenticate this sender ID:

// EncryptWithID secures a message and prepends a 4-byte sender ID

// to the message.

func EncryptWithID(key, message []byte, sender uint32) ([]byte, error) {
buf := make([]byte, 4)
binary.BigEndian.PutUint32(buf, sender)

c, err := aes.NewCipher(key)
if err !'= nil {
return nil, ErrEncrypt

}
gem, err = cipher.NewGCM(c)
if err = nil {

return nil, ErrEncrypt
}
nonce, err := GenerateNonce()
if err !'= nil {

return nil, ErrEncrypt
}

buf = append(buf, nonce)
buf := gcm.Seal(buf, nonce, message, message[:4])
return buf, nil

In order to decrypt the message, the receiver will need to provide the appropriate sender ID as well. As before,
we check some basic assumptions about the length of the message first, accounting for the prepended message
ID and nonce.
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func DecryptWithID(message []byte) ([]byte, error) {
if len(message) <= NonceSize+4 {

return nil, ErrDecrypt

// SelectKeyForID is a mock call to a database or key cache.
id := binary.BigEndian.Uint32(message[:4])
key, ok := SelectKeyForID(id)
if lok {
return nil, ErrDecrypt

}
c, err := aes.NewCipher(key)
if err '= nil {
return nil, ErrDecrypt
}
gem, err = cipher.NewGCM(c)
if err = nil {
return nil, ErrDecrypt
}
nonce := make([]byte, NonceSize)

copy(nonce, message[4:])

// Decrypt the message, using the sender ID as the additional
// data requiring authentication.
out, err := gem.Open(nil, nonce, message[4+NonceSize:], message[:4])
if err !'= nil {
return nil, ErrDecrypt

}

return out, nil

If the message header is altered at all, even if the new sender ID returns the same key, the message will fail
to decrypt: any alteration to the additional data results in a decryption failure.

AES-CTR with HMAC

The last options you should consider, if you have a choice, are AES-CTR and AES-CBC with an HMAC. In
these ciphersuites, data is first encrypted with AES in the appropriate mode, then an HMAC is appended.
In this book, we assume the use of these ciphersuites only when required as part of a specification or for
compatibility.

CTR also uses a nonce; again, the nonce must be only ever used once with the same key. Reusing a nonce can be
catastrophic, and will leak information about the message; the system will now fail the indistinguishability
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requirements and therefore becomes insecure. If there is any question as to whether a nonce is unique, a
random nonce should be generated. If this is being used for compatibility with an existing system, you’ll need
to consider how that system handles nonces.

If you’re using AES-CTR, you’re probably following along with some sort of specification that should specify
which HMAC construction to use. The general rule of thumb from the FIPS guidelines is HMAC-SHA-256 for
AFS-128 and HMAC-SHA-384 for AES-256; Cryptography Engineering ([Ferg10]) and [Perc09] recommend
HMAC-SHA-256. We'll use HMAC-SHA-256 with AES-256.

Here, we’ll encrypt by selecting a random nonce, encrypting the data, and computing the MAC for the
ciphertext. The nonce will be prepended to the message and the MAC appended. The message will be
encrypted in-place. The key is expected to be the HMAC key appended to the AES key.

const (
NonceSize = aes.BlockSize
MACSize = 32 // Output size of HMAC-SHA-256
CKeySize = 32 // Cipher key size - AES-256
MKeySize = 32 // HMAC key size - HMAC-SHA-256

var KeySize = CKeySize + MKeySize

func Encrypt(key, message [/byte) (//byte, error) {
if len(key) != KeySize {
return nil, ErrEncrypt

}
nonce, err := util.RandBytes(NonceSize)
if err !'= nil {
return nil, ErrEncrypt
}

ct := make(//byte, len(message))

// NewCipher only returns an error with an invalid key size,

// but the key size was checked at the beginning of the function.
¢, _ := aes.NewCipher(key/:CKeySize])

ctr := cipher.NewCTR(c, nonce)

ctr.XORKeyStream(ct, message)

h := hmac.New(sha256.New, key/CKeySize:])
ct = append(nonce, ct...)

h.Write(ct)

ct = h.Sum(ct)

return ct, nil
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In order to decrypt, the message length is checked to make sure it has a nonce, MAC, and a non-zero message
size. Then, the MAC is checked. If it’s valid, the message is decrypted.

func Decrypt(key, message []byte) ([]byte, error) {
if len(key) != KeySize {
return nil, ErrDecrypt

if len(message) <= (NonceSize + MACSize) {
return nil, ErrDecrypt

}

macStart := len(message) - MACSize

tag := message[macStart:]

out := make([]byte, macStart-NonceSize)

message = message[:macStart]

h := hmac.New(sha256.New, key[CKeySize:])
h.Write(message)

mac := h.Sum(nil)

if !'hmac.Equal(mac, tag) {

return nil, ErrDecrypt

}
¢, _ := aes.NewCipher(key[:CKeySize])
ctr := cipher.NewCTR(c, message|:NonceSize])

ctr.XORKeyStream(out, message[NonceSize:])

return out, nil

AES-CBC

The previous modes mask the underlying nature of the block cipher: AES operates on blocks of data, and a
full block is needed to encrypt or decrypt. The previous modes act as stream ciphers, where messages lengths
do not need to be a multiple of the block size. CBC, however, does not act in this way, and requires messages
be padded to the appropriate length. CBC also does not use nonces in the same way.

In CBC mode, each block of ciphertext is XOR’d with the previous block. This leads to the question of what
the first block is XOR’d with. In CBC, we use a sort of dummy block called an initialisation vector. It may be
randomly generated, which is often the right choice. We also noted that with the other encryption schemes, it
was possible to use a message or sequence number as the IV: such numbers should not be directly used with
CBC. They should be encrypted (using AES-ECB) with a separate IV encryption key. An IV should never be
reused with the same message and key.

The standard padding scheme used is the PKCS #7 padding scheme. We pad the remaining bytes with a byte
containing the number of bytes of padding: if we have to add three bytes of padding, we’ll append 0x03 0x03
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0x03 to the end of our plaintext.

func pad(in []byte) []byte {
padding := 16 - (len(in) % 16)
for i := 0; i < padding; i++ {
in = append(in, byte(padding))
}

return in

When we unpad, we’ll take the last byte, check to see if it makes sense (does it indicate padding longer than
the message? Is the padding more than a block length?), and then make sure that all the padding bytes are
present. Always check your assumptions about the message before accepting the message. Once that’s done,
we strip the padding characters and return the plain text.

func unpad(in []byte) []byte {
if len(in) == 0 {

return nil

padding := in[len(in)-1]

if int(padding) > len(in) || padding > aes.BlockSize {
return nil

} else if padding == 0 {
return nil

for i := len(in) - 1; i > len(in)-int(padding)-1; i-- {
if in[i] != padding {
return nil

}
return in[:len(in)-int(padding)]

The padding takes place outside of encryption: we pad before encrypting data and unpad after decrypting.

Encryption is done by padding the message and generating a random IV.
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func Encrypt(key, message []/byte) (//byte, error) {
if len(key) != KeySize {

return nil, ErrEncrypt

}
iv, err := util.RandBytes(NonceSize)
if err !'= nil {
return nil, ErrEncrypt
}
pmessage := pad(message)

ct := make(//byte, len(pmessage))

// NewCipher only returns an error with an invalid key size,

// but the key size was checked at the beginning of the function.
c, _ := aes.NewCipher(key/:CKeySize])

ctr := cipher.NewCBCEncrypter(c, iv)

ctr.CryptBlocks(ct, pmessage)

h := hmac.New(sha256.New, key/CKeySize:])
ct = append(iv, ct...)

h.Write(ct)

ct = h.Sum(ct)

return ct, nil

Encryption proceeds much as with CTR mode, with the addition of message padding.

In decryption, we validate two of our assumptions:

1. The message length should be a multiple of the AES block size (which is 16). HMAC-SHA-256 produces
a 32-byte MAC, which is also a multiple of the block size; we can check the length of the entire message
and not try to check only the ciphertext. A message that isn’t a multiple of the block size wasn’t padded
prior to encryption, and therefore is an invalid message.

2. The message must be at least four blocks long: one block for the IV, one block for the message, and two
blocks for the HMAC. If an HMAC function is used with a larger output size, this assumption will need
to be revisited.

The decryption also checks the HMAC before actually decrypting the message, and verifies that the plaintext
was properly padded.
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func Decrypt(key, message [/byte) (//byte, error) {

if len(key) != KeySize {
return nil, ErrEncrypt

// HMAC-SHA-256 returns a MAC that is also a multiple of the
// block size.
if (len(message) 7% aes.BlockSize) != 0 {

return nil, ErrDecrypt

// A message must have at least an IV block, a message block,
// and two blocks of HMAC.
if len(message) < (4 * aes.BlockSize) {

return nil, ErrDecrypt

}
macStart := len(message) - MACSize
tag := message/macStart:]

out := make(/]/byte, macStart-NonceSize)
message = message/:macStart]

h := hmac.New(sha256.New, key/CKeySize:])
h.Write(message)
mac := h.Sum(nil)
if !'hmac.Equal(mac, tag) {
return nil, ErrDecrypt

// NewCipher only returns an error with an invalid key size,

// but the key size was checked at the beginning of the function.

¢, _ := aes.NewCipher(key/:CKeySize])
ctr := cipher.NewCBCDecrypter(c, message/:NonceSize])
ctr.CryptBlocks(out, message/NonceSize: )

pt := unpad(out)

if pt == nil {
return nil, ErrDecrypt

return pt, nil

23
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Messages v. streams

In this book, we operate on messages: discrete-sized chunks of data. Processing streams of data is more
difficult due to the authenticity requirement. How do you supply authentication information? Let’s think
about encrypting a stream, trying to provide the same security properties we’ve employed in this chapter.

We can’t encrypt-then-MAC: by it’s nature, we usually don’t know the size of a stream. We can’t send the
MAC after the stream is complete, as that usually is indicated by the stream being closed. We can’t decrypt
a stream on the fly, because we have to see the entire ciphertext in order to check the MAC. Attempting to
secure a stream adds enormous complexity to the problem, with no good answers. The solution is to break
the stream into discrete chunks, and treat them as messages. Unfortunately, this means we can’t encrypt
or decrypt io.Readers and io.Writers easily, and must operate on []byte messages. Dropping the MAC is
simply not an option.

Conclusions

In this chapter, we’ve elided discussion about how we actually get the keys (usually, generating a random key
isn’t useful). This is a large enough topic to warrant discussion in a chapter of its own.

Some key points:

1. Prefer NaCl where you can. Use AES-GCM if AES is required and you have a choice. Use AES-CBC
and AES-CTR for compatibility.

2. Always encrypt-then-MAC. Don’t ever just encrypt.

3. Always check assumptions about the message, including its authenticity, before decrypting the message.

4. Think about how you’re getting nonces and IVs, and whether it’s the appropriate method.
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