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Chapter 1: Introduction


This is a book about cryptography: how to communicate securely. There are
several objectives that cryptography aims to solve: confidentiality,
integrity, and authenticity. It also helps solve some other
problems that come up in secure communications, but it’s important
to remember that it isn’t a complete solution to security problems.
In this book, we’ll look at how to build secure systems; some of the
problems that cryptography does not solve will also be pointed out. This
book will attempt to guide you in your attempt to understand how to use
cryptography to secure your services, and illustrate it using the Go
programming language.


As mentioned, the foundation of cryptographic security are the three
goals of confidentiality, integrity, and authenticity. Confidentiality
is the requirement that only the intended party can read a given
message; integrity is the requirement that a message’s contents
cannot be tampered with; and authenticity is the requirement that
the provenance (or origin) of a message can be trusted. Trust
will play a large role in our secure systems, but there is no single
solution to the problem. It will present many challenges in building
secure systems. A cryptographic algorithm applies some transformations
to data in order to achieve these goals, and various algorithms are
applied to achieve different goals.


In order to discuss cryptography, a baseline vocabulary is
needed. The following terms have specific meanings:


	The plaintext is the original message.

  	The ciphertext is traditionally a message that has been
transformed to provide confidentiality.

  	A cipher is a cryptographic transformation that is used
to encrypt or decrypt a message.

  	A message authentication code (or MAC) is a piece of
data that provides authenticity and integrity. A MAC algorithm is
used both to generate and validate this code.

  	To encrypt a message is to apply a confidentiality
transformation, but is often used to describe a transformation that
satisfies all three goals.

  	To decrypt a message to reverse the confidentiality
transformation, and often indicates that the other two properties
have been verified.

  	A hash or digest algorithm transforms some arbitrary message
into a fixed-size output, also called a digest or hash. A cryptographic
hash is such an algorithm that satisfies some specific security goals.

  	A peer or party describes an entity involved in the
communication process. It might be a person or another machine.


A secure communication system will protect against both passive and
active attacks. A passive attack is one in which a party for whom
a message is not intended is listening on the communications. An
active attack is one in which some adversarial party is tampering
with messages, and can inject, alter, or replay messages.


Cryptography should be used to solve specific problems, such as


	Eavesdropping: as is the case with in-person conversations, an attacker
could listen in on traffic going in and out, potentially stealing
secrets passed back and forth. The security goal of confidentiality will
mitigate this attack to an extent; while cryptography will obscure the
contents of the message, by itself it doesn’t hide the fact that two
parties are communicating. An attacker might also be able to determine
information based on the size of the messages.

  	Tampering: traffic going in and out of the application could be modified
en-route; the system needs to make sure that messages it receives have
not been tampered with. The integrity goal is used to ensure messages
haven’t been tampered with. 

  	Spoofing: an attacker can pretend to be a legitimate user by faking
certain details of a message. An attacker can use spoofing to steal
sensitive information, forge requests from a user, or take over a
legitimate session. Authentication helps to defend against this attack,
by validating the identity of users and messages.


In this book, we’ll look at the context of cryptography and some of
the engineering concerns when building secure systems, symmetric and
asymmetric (or public-key) cryptography, how to exchange keys, storing
secrets, trust, and common use cases.


This book has an associated example code repository on Github at
https://github.com/kisom/gocrypto/. This code has the code from the
book, as well as some supplementary material that will be mentioned. As
a general rule, the code in the book won’t have comments; the code will
be explained in the text. The example code is, however, commented.





Chapter 2: Engineering concerns and platform security


If cryptography is the proverbial vault door, it makes sense to
evaluate the rest of the building and the foundation it’s built on
before deciding on the specifics of the vault door. It’s often
repeated that a secure system is only secure as its weakest component,
which means the other parts of the system must be up to par before
cryptography is useful. In this chapter, we’ll look at the engineering
concerns around secure systems, particularly for Unix-based systems.


Basic security


Security should provide authentication, authorisation, and
auditing. Authentication means that the system verifies the identity
of parties interacting with the system; authorisation verifies that they
should be allowed to carry out this interaction; and auditing creates
a log of security events that can be verified and checked to ensure the
system is providing security. The end goal is some assurance that
the system is secure.


Authentication


Authentication asks the question, “who am I talking to?”; it attempts
to verify the identity of some party. Passwords are one means of
authentication; they aren’t a strong authentication mechanism because
anyone who knows the password (whether because they chose it, were given
it, or guessed it) will be authenticated. Multifactor authentication
attempts to provide a stronger basis for assurance of an identity,
and is based on three factors:


	Something you know (such as a password)

  	Something you have (such as an authentication token of some kind)

  	Something you are (such as biometrics)


The most common multifactor authentication configuration found in
common use is two-factor employing the first two factors. A user might
be required to enter both their password and a time-based one-time
password (such as with TOTP) from an app on their phone. The assumption
here is that the key used to generate the TOTP is only present on the
authenticator (i.e. the mail provider) and the user’s phone, and that the
user’s phone hasn’t been compromise or the key taken from it. Both sides
share the key for this one-time password (OTP), and they do not have to
communicate any additional information after setup to verify the password.


This is in contrast with two-step verification; an example is an SMS
code sent to the phone. The user and server have to communicate, albeit
over a different channel than the browser, to share this code. This still
provides a channel for intercepting the code.


Authorisation


Authorisation asks the question, “should you be doing this?”
Authorisation relies on an access control mechanism of some kind. This
might be as simple as an access control list, where the system has a list
of parties that should have access to a resource or should be allowed
to perform some operation. The Unix security model uses a set of access
control lists for reading, writing, and executing by the owner, the group
the resource belongs to, and the world. It employs “discretionary access
control”: a user can explicitly change the values of those access control
lists, giving other users and groups permission at their discretion. A
mandatory access control model (such as provided by SELinux or AppArmor)
operates on security levels or labels; each label is given a set of
capabilities. Users or processes are given a label or security level, and
they can only operate within the confines of the permitted capabilities.


As an example, a user might create a text file and opt to make it
world-readable in the DAC model: any process or user can now access
it. In the MAC model, access to that file would be restricted by
label. If a process or user doesn’t have permissions based on their
label, they cannot access it, and the original user simply cannot
share the text file in this way. The labels are assigned by an
administrator or security officer, and the user cannot change this.
Access control is no longer at the user’s discretion, but mandatory.


An alternative to access control lists is the role-based access control
security model is role-based security. On Unix systems, root has full
control over the system; in a role-based system, this control is split
among several roles, each of which has the minimum set of permissions
to carry out that role. This model is also more fine grained that an
access control list in that it can specify grant or permissions for
specific operations.


Auditing


Security efforts are for nought if no one is auditing the system to
ensure it is operating correctly. An audit log should be available, and its
access restricted to auditors, that records security events. The events
recorded and the details present will vary based on the requirements of
the system. Auditors should also be confident that the audit log will
not have been tampered with.


An attacker that successfully authenticates may not leave any indication
that the system is compromised. The only way to identify the compromise
is through positive auditing: that is, auditing the record of events that
succeeded. Whether the risk of such a compromise outweighs the need to
maintain usage privacy needs to be considered.


Policy


There should be a set of policies that clearly specify the
authentication, authorisation, and auditing in a system. For a large
organisation, this may be fairly complex. For an application given to
users, it might be as simple as password-based and printing security
failures to the system log. This isn’t an engineering concern, per se,
but it really must factor into a secure application. 


Specifications


Specifications are a critical part of building a secure system to
understand what its behaviour should be. From a security perspective,
it’s also important understand what its behaviour must not be. The
security model is part of the system’s specification, and care should
be taken to build it properly.


Testing is an important part of the specification, as well. It is the
assurance that the system behaves according to the specification. Unit
tests verify the code paths within each unit of the system, functional
tests verify that components and the system behaves as it should, and
regression tests make sure that bugs aren’t re-introduced. Integration
tests may also be useful to verify compatibility.


Building secure systems depends on writing correct code. An incorrect
system that is shipped is shipping with security flaws that will
probably subvert any cryptographic security built in. The more code
that is present in a system, the greater the attack surface: only the
minimum code to implement a system that fits the specifications should
be used. This includes any libraries used by the system: where possible,
remove any unused functionality. This lowers the cost of the system as
well: less test code has to be written, which reduces both the time and
financial costs.


Security models


One of the key steps in designing a secure system is building a security
model. A security model describes the assumptions that are made about
the system, the conditions under which security can be provided, and
identifies the threats to the system and their capabilities. A secure
system cannot be built unless its characteristics and the problems it
is intended to solve are understood. A security model should include
an analysis of the system’s attack surface (what components can come
under attack), realistic threat vectors (where attacks come from),
the parties that can attack the system and their capabilities, and what
countermeasures will be required to provide security. The security model
should not just cover the cryptographic components: the environment
and platforms that the system will run in and on must be considered as
well. It’s also important to consider which problems are technical in
nature, and which problems are social in nature. Trust is also a key
consideration in this model; that is, understanding the roles, intended
capabilities, and interactions of legitimate parties as well as the
impact of a compromised trusted party.


From experience, it is extremely difficult to bolt security onto a
system after it has been designed or built. It is important to begin
discussing the security requirements during the initial stages of the
system’s design for the same reasons it is important to consider the
other technical requirements. Failure to consider the load level of the
system, for example, may result in poor architectural decisions being
made that add a great deal of technical debt that impede a stable,
reliable system. In the same manner, failure to consider the security
requirements may result in similarly poor architectural decisions. A
secure system must be reliable and it must be correct; most security
vulnerabilities arise from exploiting parts of a system that do not
behave correctly. Proper engineering is key to secure systems; clear
specifications and both positive and negative testing (testing both that
the system behaves correctly and that it fails gracefully) will greatly
improve the system’s ability to fulfill its security objectives. It’s
useful to consider security as a performance metric. The performance of a
secure system relates to its ability to operate without being compromised,
and its ability to recover from a compromise. The non-security performance
of a secure system must also be considered: if the system is too slow
or too difficult to use, it won’t be used.  An unused secure system is
an insecure system as it is failing to provide message security.


The security components must service the other objectives of the
system; they must do something useful inside the specifications of
the system.


As part of the specifications of a secure system, the choice of
cryptographic algorithms must also be made. In this book, we will prefer
the NaCl algorithms for greenfield designs: they were designed by a
well-respected cryptographer who is known for writing well-engineered
code, they have a simple interface that is easy to use, and they were
not designed by NIST. They offer high performance and strong security
properties. In other cases, compatibility with existing systems or
standards (such as FIPS) is required; in that case, the compatible
algorithms should be chosen.


On errors


The more information an attacker has about why a cryptographic operation
failed, the better the chances that they will be able to break the
system. There are attacks, for example, that operate by distinguishing
between decryption failures and padding failures. In this book, we
either signal an error using a bool or with a generic error value such as
“encryption failed”.


We’ll also check assumptions as early as possible, and bail as soon as
we see something wrong.


Input sanitisation


A secure system also has to scrutinise its inputs and outputs carefully
to ensure that they do not degrade security or provide a foothold
for an attacker. It’s well understood in software engineering that
input from the outside world must be sanitised; sanity checks should
be conducted on the data and the system should refuse to process
invalid data. 


There are two ways to do this: blacklisting (a default allow) and
whitelisting (a default deny). Blacklisting is a reactive measure
that involves responding to known bad inputs; a blacklisting system
will always be reacting to new bad input it detects, perhaps via an
attack. Whitelisting decides on a set of correct inputs, and only permits
those. It’s more work up front to determine what correct inputs look
like, but it affords a higher assurance in the system. It can also be
useful in testing assumptions about inputs: if valid input is routinely
being hit by the whitelist, perhaps the assumptions about the incoming
data looks like are wrong.


Memory


At some point, given current technologies, sensitive data will have to
be loaded into memory. Go is a managed-memory language, which means the
user has little control over memory, presenting additional challenges
for ensuring the security of a system. Recent vulnerabilities such
as Heartbleed show that anything that is in memory can be leaked to
an attacker with access to that memory. In the case of Heartbleed,
it was an attacker with network access to a process that had secrets
in memory. Process isolation is one countermeasure: preventing
an attacker from accessing a process’s memory space will help mitigate
successful attacks against the system. However, an attacker who can access
the machine, whether via a physical console or via a remote SSH session,
now potentially has access to the memory space of any process running
on that machine. This is where other security mechanisms are crucial for
a secure system: they prevent an attacker from reaching that memory space.


It’s not just the memory space of any process that’s running on the
machine that’s vulnerable, though. Any memory swapped to disk is now
accessible via the file system. A secret swapped to disk now has two
places where it’s present. If the process is running on a laptop that
is put to sleep, that memory is often written to disk. If a peripheral
has direct memory access (DMA), and many of them do, that peripheral
has access to all the memory in the machine, including the memory space
of every process. If a program crashes and dumps core, that memory is
often written to a core file. The CPU caches can also store secrets,
which might be an additional attack surface, particularly on shared
environments (such as a VPS).


There are a few methods to mitigate this: using the stack to prevent
secrets from entering the heap, and attempting to zero sensitive data in
memory when it’s no longer needed (though this is not always effective,
e.g. [5]). In this book, we’ll do this where it makes sense, but the
caveats on this should be considered.


There is also no guarantee that secrets stored on disk can be completely
and securely erased (short of applying a healthy dose of thermite). If a
sector on disk has failed, the disk controller might mark the block as
bad and attempt to copy the data to another sector, leaving that data
still on the hardware. The disk controller might be subverted, as disk
drives contain drive controllers with poorly (if at all) audited
firmware. 


In short, given our current technologies, memory is a difficult attack
surface to secure. It’s helpful to ask these following questions for
each secret:


	Does it live on disk for long-term storage? If so, who has access
to it? What authorisation mechanisms ensure that only authenticated
parties have access?

  	When it’s loaded in memory, who owns it? How long does it live in
memory? What happens when it’s no longer used?

  	If the secrets lived on a virtual machine, how much trust can be
placed in parties that have access to the host machine? Can other
tenants (i.e. users of other virtual machines) find a way to access
secrets? What happens when the machine is decomissioned?


Randomness


Cryptographic systems rely on sources of sufficiently random data. We
want the data from these sources to be indistinguishable from ideally
random data (a uniform distribution over the range of possible
values). There has been historically a lot of confusion between the
options available on Unix platforms, but the right answer (e.g. [6])
is to use /dev/urandom. Fortunately, crypto/rand.Reader in the Go
standard library uses this on Unix systems.


Ensuring the platform has sufficient randomness is another problem,
which mainly comes down to ensuring that the kernel’s PRNG is properly
seeded before being used for cryptographic purposes. This is a problem
particularly with virtual machines, which may be duplicated elsewhere
or start from a known or common seed. In this case, it might be useful
to include additional sources of entropy in the kernel’s PRNG, such as
a hardware RNG that writes to the kernel’s PRNG. The host machine may
also have access to the PRNG via disk or memory allowing its observation
by the host, which must be considered as well.


Time


Some protocols rely on clocks being synced between peers. This has
historically been a challenging problem. For example, audit logs often
rely on the clock to identify when an event occurred. One of the major
challenges in cryptographic systems is checking whether a key has expired;
if the time is off, the system may incorrectly refuse to use a key that
hasn’t expired yet or use a key that has expired. Sometimes, the clock
is used for a unique value, which shouldn’t be relied on. Another use
case is a monotonically-increasing counter; a clock regression (e.g. via
NTP) makes it not-so-monotonic. Authentication that relies on time-based
one-time passwords also require an accurate clock.


Having a real-time clock is useful, but not every system has
one. Real-time clocks can also drift based on the physical properties
of the hardware. Network time synchronisations work most of the time,
but they are subject to network failures. Virtual machines may be subject
to the clock on the host.


Using the clock itself as a monotonic counter can also lead to issues;
a clock that has drifted forward may be set back to the correct time
(i.e. via NTP), which results in the counter stepping backwards. There is
a CPU clock that contains ticks since startup that may be used; perhaps
bootstrapped with the current timestamp, with the latest counter value
stored persistently (what happens if the latest counter value is replaced
with an earlier value or removed?).


It helps to treat clock values with suspicion. We’ll make an effort to
use counters instead of the clock where it makes sense.


Side channels


A side channel is an attack surface on a cryptographic system that is
based entirely on the physical implementation; while the algorithm may
be sound and correct, the implementation may leak information due to
physical phenomena. An attacker can observe timings between operations
or differences in power usage to deduce information about the private
key or the original message.


Some of these types of side channels include:


	timing: an observation of the time it takes some piece of the system
to carry out an operation. Attackers have used this to even successfully
attack systems over the network ([2]).

  	power consumption: this is often used against smart cards; the attacker
observes how power usage changes for various operations.

  	power glitching: the power to the system is glitched, or brought to
near the shutdown value for the CPU. Sometimes this causes systems to
fail in unexpected ways that reveals information about keys or messages.

  	EM leaks: some circuits will leak electromagnetic emissions (such as
RF waves), which can be observed.


These attacks can be surprisingly effective and devastating. Cryptographic
implementations have to be designed with these channels in mind (such
as using the constant time functions in crypto/subtle); the security
model should consider the potential for these attacks and possible
countermeasures.


Privacy and anonymity


When designing the system, it should be determined what measure of
privacy and anonymity should be afforded. In a system where anonymity
is needed, perhaps the audit log should not record when events succeed
but only when they fail. Even these failures can leak information:
if a user mistypes their password, will it compromise their identity? If
information such as IP addresses are recorded, they can be used to
de-anonymise users when combined with other data (such as activity logs
from the user’s computer). Think carefully about how the system should
behave in this regard.


Trusted computing


One problem with the underlying platform is ensuring that it hasn’t
been subverted; malware and rootkits can render other security measures
ineffective. It would be nice to have some assurance that the parties
involved are running on platforms with a secure configuration. Efforts
like the Trusted Computing Group’s Trusted Computing initiative aim
to prove some measure of platform integrity and authenticity of the
participants in the system, but the solutions are complex and fraught
with caveats.


Virtual environments


The cloud is all the rage these days, and for good reason: it provides
a cost-effective way to deploy and manage servers. However, there’s
an old adage in computer security that an attacker with physical
access to the machine can compromise any security on it, and cloud
computing makes getting “physical” access to some of these machines
much easier. The hardware is emulated in software, so an attacker who
gains access to the host (even via a remote SSH session or similar)
has equivalent access. This makes the task of securing sensitive data,
like cryptographic keys, in the cloud a dubious prospect given current
technologies. If the host isn’t trusted, how can the virtual machine be
trusted? This doesn’t just mean trust in the parties that own or operate
the host: is their management software secure? How difficult is it for
an attacker to gain access to the host? Can another tenant (or user on
another virtual machine on the host) gain access to the host or other
virtual machines they shouldn’t be able to? If the virtual machine is
decomissioned, is the drive sufficently wiped so that it never ends
up in another tenants hands? Security models for systems deployed in a
virtual environment need to consider the security of the host provider
and infrastructure in addition to the system being developed, including
the integrity of the images that are being run.


Public key infrastructure


When deploying a system that uses public key cryptography, determining how
to trust and distribute public keys becomes a challenge that adds extra
engineering complexity and costs to the system. A public key by itself
contains no information; some format that contains any other required
identity and metadata information needs to be specified.  There are
some standards for this, such as the dread X.509 certificate format
(which mates a public key with information about the holder of the
private key and holder of the public key that vouches for this public
key). Deciding on what identity information to include and how it is to
be verified should be considered, as should the lifetime of keys and
how to enforce key expirations, if needed. There are administrative
and policy considerations that need to be made; PKI is largely not a
cryptographic problem, but it does have cryptographic impact.


Key rotation is one of the challenges of PKI. It requires determining the
cryptoperiod of a key (how long it should be valid for); a given key
can generally only encrypt or sign so much data before it must be replaced
(so that it doesn’t repeat messages, for example). In the case of TLS,
many organisations are using certificates with short lifetimes. This
means that if a key is compromised and revocation isn’t effective, the
damage will be limited. Key rotation problems can also act as DoS attack:
if the rotation is botched, it can leave the system unusable until fixed.


Key revocation is part of the key rotation problem: how can a key be
marked as compromised or lost? It turns out that marking the key this
way is the easy part, but letting others know is not. There are a few
approaches to this in TLS: certificate revocation lists, which contain
a list of revoked keys; OCSP (the online certificate status protocol),
which provides a means of querying an authoritative source as to whether
a key is valid; TACK and certificate transparency, which have yet to see
large scale adoption. Both CRLs and OCSP are problematic: what if a key
compromise is combined with a DDoS against the CRL or OCSP server? Users
may not see that a key was revoked. Some choose to refuse to accept a
certificate if the OCSP server can’t be reached. What happens in the
case of a normal network outage? CRLs are published generally on set
schedules, and users have to request the CRL every so often to update
it. How often should they check? Even if they check every hour, that
leaves up to an hour window in which a compromised key might still
be trusted.


Due to these concerns and the difficulty in providing a useful public
key infrastructure, PKI tends to be a dirty word in the security and
cryptographic communities. 


What cryptography does not provide


Thought the encryption methods we’ll discuss provide strong security
guarantees, none provide any sort of message length obscurity; depending
on this system, this may make the plaintext predictable even in the
case of strong security guarantees. There’s also nothing in encryption
that hides when a message is sent if an attacker is monitoring the
communications channel. Many cryptosystems also do not hide who is
communicating; many times this is evident just from watching the
communications channel (such as tracking IP addresses). By itself,
cryptography will not provide strong anonymity, but it might serve as
part of a building block in such a system. This sort of communications
channel monitoring is known as traffic analysis, and defeating it is
challenging.


Also, despite the unforgeability guarantees that we’ll provide,
cryptography won’t do anything to prevent replay attacks. Replay attacks
are similar to spoofing attacks, in which an attacker captures previously
sent messages and replays them. An example would be recording a financial
transaction, and replaying this transaction to steal money. Message
numbers are how we will approach this problem; a system should never
repeat messages, and repeated messages should be dropped by the
system. That is something that will need to be handled by the system,
and isn’t solved by cryptography.


Data lifetimes


In this book, when we send encrypted messages, we prefer to do so
using ephemeral message keys that are erased when communication is
complete. This means that a message can’t be decrypted later using the
same key it was encrypted with; while this is good for security, it
means the burden of figuring out how to store messages (if that is a
requirement) falls on the system. Some systems, such as Pond
(https://pond.imperialviolet.org/), enforce a week lifetime for
messages. This forced erasure of messages is considered the social
norm; such factors will have to play into decisions about how to store
decrypted messages and how long to store them. 


There’s also the transition between data storage and message traffic:
message traffic is encrypted with ephemeral keys that are never stored,
while stored data needs to be encrypted with a long-term key.  The system
architecture should account for these different types of cryptography,
and ensure that stored data is protected appropriately.


Options, knobs, and dials


The more options a system has for picking the cryptography it uses,
the greater the opportunity for making a cryptographic mistake. For
this reason, we’ll avoid doing this here. Typically, we’ll prefer NaCl
cryptography, which has a simple interface without any options, and it
is efficient and secure. When designing a system, it helps to make a
well-informed opinionated choice of the cryptography used. The property
of cryptographic agility, or being able to switch the cryptography
out, may be useful in recovering from a suspected failure. However,
it may be prudent to step back and consider why the failure happened
and incorporate that into future revisions.


Compatibility


The quality of cryptographic implementations ranges wildly. The fact
that there is a good implementation of something in Go doesn’t mean
that a good implementation will exist in the language used to build
other parts of the system. This must factor into the system’s design:
how easy is it to integrate with other components, or to build a
client library in another language? Fortunately, NaCl is widely
available; this is another reason why we will prefer it. 


Conclusion


Cryptography is often seen as the fun part of building secure systems;
however, there are a lot of other work that needs to be done before
cryptography enters the picture. It’s not a one-size-fits-all security
solution; we can’t just sprinkle some magic crypto dust on an insecure
system and make it suddenly secure. We also have to make sure to
understand our problems, and ensure that the problems we are trying to
solve are actually the right problems to solve with cryptography. The
challenges of building secure systems are even more difficult in
virtual environments. It is crucial that a security model be part of
the specification, and that proper software engineering techniques are
observed to ensure the correctness of the system. Remember, one flaw,
and the whole system can come crashing down. While it may not be the
end of the world as we know it, it can cause signficant embarassment
and financial costs—not only to you, but to the users of the system.
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Chapter 3: Symmetric Security


Symmetric cryptography is the simplest form of cryptography: all
parties share the same key. It also tends to be the fastest type of
cryptography. Fundamentally, the key used by a symmetric algorithm is
a sequence of bytes that are used as the input to a transformation
algorithm that operates on bits. Key distribution with symmetric
cryptography is more difficult than with asymmetric cryptography as the
transmission of sensitive key material requires a secure channel. In
the next chapter, we’ll look at means of exchanging keys.


There are two components to symmetric encryption: the algorithm
that provides confidentiality (which is a block or stream cipher),
and the component that provides integrity and authenticity (the MAC
algorithm). Most ciphers do not provide both in the same algorithm, but
those that do are called Authenticated Encryption (AE), or Authenticated
Encryption with Additional Data (AEAD), ciphers. In this chapter, we’ll
consider four ciphersuites: NaCl, AES-GCM, AES-CTR with an HMAC,
and AES-CBC with an HMAC; a ciphersuite is a selection of algorithms
that we’ll use to provide security. The code from this chapter can be
found in the chapter3 package in the example code.


Indistinguishability


One of the properties of a secure encryption system is that
it provides indistinguishability. There are two particular
kinds of indistinguishability that are relevant here: IND-CPA, or
indistinguishability under a chosen plaintext attack, and IND-CCA,
or indistinguishability under a chosen ciphertext attack.


In IND-CPA, the attacker sends a pair of messages that are the same
length to the server to be encrypted. The server chooses one of the
messages, encrypts it, and sends back the ciphertext. The attacker should
not be able to determine which message was encrypted. This property
maintains confidentiality. It’s useful to consider the requirement
that messages be the same length: the length of an encrypted message is
related to the length of the original message in most ciphers. That is,
encrypting a message does not hide its length.


In IND-CCA, the attacker submits ciphertexts of its own choosing that
the server decrypts. After some observations, the attacker submits two
challenge ciphertexts and the server picks one at random to decrypt and
send back to the attacker. The attacker should not be able to distinguish
which ciphertext the plaintext corresponds to. This attack is often
seen in symmetric security as a padding oracle attack, in which the
encryption scheme used does not include a message authentication code
(such as AES-CBC without an HMAC), and can allow the attacker to recover
the key used for encryption. There are two variants of IND-CCA; the first
(IND-CCA1) means that an attacker cannot submit new ciphertexts after
the challenge is sent. The second (IND-CCA2, or adaptive CCA) allows the
attacker to continue submitting ciphertexts after the challenge. This
may seem like a trivial difference, but a system that is IND-CCA1 secure
but not IND-CCA2 secure enables the padding oracle attack.


Both the confidentiality component (such as AES-CBC) and the integrity and
authenticity component (such as HMAC-SHA-256) are required for security.


Another indistinguishability requirement that is desirable is that our
key material be indistinguishable from random, specifically from the
uniform distribution.


Authenticity and integrity


Why are the integrity and authenticity components required? One common
thing that crops up when people try to build a secure system is that
only the confidentiality aspect is used: the programmer will use just
AES with some non-authenticated mode (like the CBC, OFB, or CTR modes).
AES ciphertexts are malleable: they can be modified and the receiver is
often none the wiser. In the context of an encrypted instant message or
email or web page, it might seem this modification would become obvious.
However, an attacker can exploit the different responses between invalid
ciphertext (when decryption fails) and invalid message (the plaintext
is wrong) to extract the key. Perhaps the most well-known such attack
is the padding oracle attack. In other cases, the invalid plaintext
might be used to exploit bugs in the message handler. This is especially
problematic in systems that use encryption to secure messages intended
for automated systems.


Appending an HMAC or using an authenticated mode (like GCM) requires
that the attacker prove they have the key used to authenticate the
message. Rejecting a message that fails the MAC reduces the possibility of
an invalid message. It also means that an attacker that is just sending
invalid data has their message dropped before even wasting processor
time on decryption.


To effectively authenticate with an HMAC, the HMAC key should be a
different key than the AES key. In this book, we use HMACs with AES,
and we’ll append the HMAC key to the AES key for the full encryption or
decryption key. For AES-256 in CBC or CTR mode with an HMAC-SHA-256, that
means 32 bytes of AES key and 32 bytes of HMAC key for a total key size
of 64 bytes; the choice of HMAC-SHA-256 is clarified in a later section.


There are several choices for how to apply a MAC. The right answer is
to encrypt-then-MAC:


	Encrypt-and-MAC: in this case, we would apply a MAC to the
plaintext, then send the encrypted plaintext and MAC. In order to
verify the MAC, the receiver has to decrypt the message; this still
permits an attacker to submit modified ciphertexts with the same
problems described earlier. This presents a surface for IND-CCA
attacks.

  	MAC-then-encrypt: a MAC is applied and appended to the plaintext,
and both are encrypted. Note that the receiver still has to decrypt
the message, and the MAC can be modified by modifying the resulting
ciphertext, which is a surface for IND-CCA attacks as well.

  	Encrypt-then-MAC: encrypt the message and append a MAC of the
ciphertext. The receiver verifies the MAC, and does not proceed to
decrypt if the MAC is invalid. This removes the IND-CCA surface.


Moxie Marlinspike’s Cryptographic Doom Principle [Moxie11] contains a
more thorough discussion of this.


Always use either an authenticated mode (like GCM), or
encrypt-then-MAC.


NaCl


NaCl is the Networking and Cryptography library
that has a symmetric library (secretbox) and an asymmetric library (box),
and was designed by Daniel J. Bernstein. The additional Go cryptography
packages contain an implementation of NaCl. It uses a 32-byte key and
24-byte nonces. A nonce is a number used once: a nonce should never
be reused in a set of messages encrypted with the same key, or else
a compromise may occur. In some cases, a randomly generated nonce is
suitable. In other cases, it will be part of a stateful system; perhaps
it is a message counter or sequence number.


The secretbox system uses a stream cipher called “XSalsa20” to provide
confidentiality, and a MAC called “Poly1305”. The package uses the data
types *[32]byte for the key and *[24]byte for the nonce. Working with
these data types may be a bit unfamiliar; the code below demonstrates
generating a random key and a random nonce and how to interoperate with
functions that expect a []byte.



 1 const (
 2         KeySize   = 32
 3         NonceSize = 24
 4 )
 5 
 6 // GenerateKey creates a new random secret key.
 7 func GenerateKey() (*[KeySize]byte, error) {
 8 	    key := new([KeySize]byte)
 9 	    _, err := io.ReadFull(rand.Reader, key[:])
10 	    if err != nil {
11 	    	return nil, err
12 	    }
13 
14 	    return key, nil
15 }
16 
17 // GenerateNonce creates a new random nonce.
18 func GenerateNonce() (*[NonceSize]byte, error) {
19 	    nonce := new([NonceSize]byte)
20 	    _, err := io.ReadFull(rand.Reader, nonce[:])
21 	    if err != nil {
22 	    	return nil, err
23 	    }
24 
25 	    return nonce, nil
26 }







NaCl uses the term seal to mean securing a message (such that
it now is confidential, and that its integrity and authenticity may
be verified), and open to mean recovering a message (verifying
its integrity and authenticity, and decrypting the message).


In this code, randomly generated nonces will be used; in the key
exchange chapter, this choice will be clarified. Notably, the selected
key exchange methods will permit randomly chosen nonces as secure 
means of obtaining a nonce. In other use cases, this may not be the
case! The recipient will need some way of recovering the nonce, so it
will be prepended to the message. If another means of getting a nonce
is used, there might be a different way to ensure the recipient has the
same nonce used to seal the message.



 1 var (
 2         ErrEncrypt = errors.New("secret: encryption failed")
 3         ErrDecrypt = errors.New("secret: decryption failed")
 4 )
 5 
 6 // Encrypt generates a random nonce and encrypts the input using
 7 // NaCl's secretbox package. The nonce is prepended to the ciphertext.
 8 // A sealed message will the same size as the original message plus
 9 // secretbox.Overhead bytes long.
10 func Encrypt(key *[KeySize]byte, message []byte) ([]byte, error) {
11 	    nonce, err := GenerateNonce()
12 	    if err != nil {
13 	    	return nil, ErrEncrypt
14 	    }
15 
16 	    out := make([]byte, len(nonce))
17 	    copy(out, nonce[:])
18 	    out = secretbox.Seal(out, message, nonce, key)
19 	    return out, nil
20 }







Decryption expects that the message contains a prepended nonce, and we
verify this assumption by checking the length of the message. A message
that is too short to be a valid encryption message is dropped right away.



 1 // Decrypt extracts the nonce from the ciphertext, and attempts to
 2 // decrypt with NaCl's secretbox.
 3 func Decrypt(key *[KeySize]byte, message []byte) ([]byte, error) {
 4 	    if len(message) < (NonceSize + secretbox.Overhead) {
 5 	    	return nil, ErrDecrypt
 6 	    }
 7 
 8 	    var nonce [NonceSize]byte
 9 	    copy(nonce[:], message[:NonceSize])
10 	    out, ok := secretbox.Open(nil, message[NonceSize:], &nonce, key)
11 	    if !ok {
12 	    	return nil, ErrDecrypt
13 	    }
14 
15 	    return out, nil
16 }







Keep in mind that random nonces are not always the right choice. We’ll
talk more about this in a chapter on key exchanges, where we’ll talk
about how we actually get and share the keys that we’re using.


Behind the scenes, NaCl will encrypt a message, then apply a MAC algorithm
to this ciphertext to get the final message. This procedure of
“encrypt-then-MAC” is how to properly combine an encryption cipher and
a MAC.


AES-GCM


If AES is required or chosen, AES-GCM is often the best choice; it pairs
the AES block cipher with the GCM block cipher mode. It is an AEAD cipher:
authenticated encryption with additional data. It encrypts some data,
which will be authenticated along with some optional additional data
that is not encrypted. The key length is 16 bytes for AES-128, 24 bytes
for AES-192, or 32 bytes for AES-256. It also takes a nonce as input,
and the same caveats apply to the nonce selection here. Another caveat
is that GCM is difficult to implement properly, so it is important to vet
the quality of the packages that may be used in a system using AES-GCM.


Which key size should you choose? That depends on the application.
Generally, if there’s a specification, use the key size indicated.
Cryptography Engineering ([Ferg10]) recommends using 256-bit keys;
that’s what we’ll use here. Again, the security model for your system
should dictate these parameters. In the AES examples in this chapter,
changing the key size to 16 will suffice to switch to AES-128 (and 24
for AES-192). The nonce size does not change across the three versions.


Unlike most block cipher modes, GCM provides authentication. It also
allows the for the authentication of some additional, unencrypted data
along with the ciphertext. Given that it is an AEAD mode (which provides
integrity and authenticity), an HMAC does not need to be appended for
this mode.


The AEAD type in the crypto/cipher package uses the same “open” and
“seal” terms as NaCl. The AES-GCM analogue of the NaCl encryption above
would be:



 1 // Encrypt secures a message using AES-GCM.
 2 func Encrypt(key, message []byte) ([]byte, error) {
 3         c, err := aes.NewCipher(key)
 4         if err != nil {
 5                 return nil, ErrEncrypt
 6         }
 7 
 8         gcm, err := cipher.NewGCM(c)
 9         if err != nil {
10                 return nil, ErrEncrypt
11         }
12 
13         nonce, err := GenerateNonce()
14         if err != nil {
15                 return nil, ErrEncrypt
16         }
17 
18         // Seal will append the output to the first argument; the usage
19         // here appends the ciphertext to the nonce. The final parameter
20         // is any additional data to be authenticated.
21         out := gcm.Seal(nonce, nonce, message, nil)
22         return out, nil
23 }







This version does not provide any additional (unencrypted but
authenticated) data in the ciphertext.


Perhaps there is a system in which the message is prefixed with a 32-bit
sender ID, which allows the receiver to select the appropriate decryption
key. The following example will authenticate this sender ID:



 1 // EncryptWithID secures a message and prepends a 4-byte sender ID
 2 // to the message.
 3 func EncryptWithID(key, message []byte, sender uint32) ([]byte, error) {
 4         buf := make([]byte, 4)
 5         binary.BigEndian.PutUint32(buf, sender)
 6         
 7         c, err := aes.NewCipher(key)
 8         if err != nil {
 9                 return nil, ErrEncrypt
10         }
11         
12         gcm, err := cipher.NewGCM(c)
13         if err != nil {
14                 return nil, ErrEncrypt
15         }
16         
17         nonce, err := GenerateNonce()
18         if err != nil {
19                 return nil, ErrEncrypt
20         }
21 
22         buf = append(buf, nonce)
23         buf := gcm.Seal(buf, nonce, message, message[:4])
24         return buf, nil
25 }







In order to decrypt the message, the receiver will need to provide the
appropriate sender ID as well. As before, we check some basic assumptions
about the length of the message first, accounting for the prepended
message ID and nonce.



 1 func DecryptWithID(message []byte) ([]byte, error) {
 2         if len(message) <= NonceSize+4 {
 3                 return nil, ErrDecrypt
 4         }
 5 
 6     // SelectKeyForID is a mock call to a database or key cache.
 7         id := binary.BigEndian.Uint32(message[:4])
 8         key, ok := SelectKeyForID(id)
 9         if !ok {
10                 return nil, ErrDecrypt
11         }
12 
13         c, err := aes.NewCipher(key)
14         if err != nil {
15                 return nil, ErrDecrypt
16         }
17 
18         gcm, err := cipher.NewGCM(c)
19         if err != nil {
20                 return nil, ErrDecrypt
21         }
22 
23         nonce := make([]byte, NonceSize)
24         copy(nonce, message[4:])
25 
26         // Decrypt the message, using the sender ID as the additional
27         // data requiring authentication.
28         out, err := gcm.Open(nil, nonce, message[4+NonceSize:], message[:4])
29         if err != nil {
30                 return nil, ErrDecrypt
31         }
32         return out, nil
33 }







If the message header is altered at all, even if the new sender ID
returns the same key, the message will fail to decrypt: any alteration
to the additional data results in a decryption failure.


AES-CTR with HMAC


The last options you should consider, if you have a choice, are AES-CTR
and AES-CBC with an HMAC. In these ciphersuites, data is first encrypted
with AES in the appropriate mode, then an HMAC is appended. In this book,
we assume the use of these ciphersuites only when required as part of
a specification or for compatibility.


CTR also uses a nonce; again, the nonce must be only ever used once
with the same key. Reusing a nonce can be catastrophic, and will
leak information about the message; the system will now fail the
indistinguishability requirements and therefore becomes insecure. If
there is any question as to whether a nonce is unique, a random nonce
should be generated. If this is being used for compatibility with an
existing system, you’ll need to consider how that system handles nonces.


If you’re using AES-CTR, you’re probably following along with some
sort of specification that should specify which HMAC construction to
use. The general rule of thumb from the FIPS guidelines is HMAC-SHA-256
for AES-128 and HMAC-SHA-384 for AES-256; Cryptography Engineering
([Ferg10]) and [Perc09] recommend HMAC-SHA-256. We’ll use HMAC-SHA-256
with AES-256.


Here, we’ll encrypt by selecting a random nonce, encrypting the data,
and computing the MAC for the ciphertext. The nonce will be prepended
to the message and the MAC appended. The message will be encrypted
in-place. The key is expected to be the HMAC key appended to the AES key.



 1 const (
 2         NonceSize = aes.BlockSize
 3         MACSize = 32 // Output size of HMAC-SHA-256
 4         CKeySize = 32 // Cipher key size - AES-256
 5         MKeySize = 32 // HMAC key size - HMAC-SHA-256
 6 )
 7 
 8 var KeySize = CKeySize + MKeySize
 9 
10 func Encrypt(key, message []byte) ([]byte, error) {
11         if len(key) != KeySize {
12                 return nil, ErrEncrypt
13         }
14 
15         nonce, err := util.RandBytes(NonceSize)
16         if err != nil {
17                 return nil, ErrEncrypt
18         }
19 
20         ct := make([]byte, len(message))
21 
22         // NewCipher only returns an error with an invalid key size,
23         // but the key size was checked at the beginning of the function.
24         c, _ := aes.NewCipher(key[:CKeySize])
25         ctr := cipher.NewCTR(c, nonce)
26         ctr.XORKeyStream(ct, message)
27 
28         h := hmac.New(sha256.New, key[CKeySize:])
29         ct = append(nonce, ct...)
30         h.Write(ct)
31         ct = h.Sum(ct)
32         return ct, nil
33 }







In order to decrypt, the message length is checked to make sure it has
a nonce, MAC, and a non-zero message size. Then, the MAC is checked. If
it’s valid, the message is decrypted.



 1 func Decrypt(key, message []byte) ([]byte, error) {
 2         if len(key) != KeySize {
 3                 return nil, ErrDecrypt
 4         }
 5 
 6         if len(message) <= (NonceSize + MACSize) {
 7                 return nil, ErrDecrypt
 8         }
 9 
10         macStart := len(message) - MACSize
11         tag := message[macStart:]
12         out := make([]byte, macStart-NonceSize)
13         message = message[:macStart]
14 
15         h := hmac.New(sha256.New, key[CKeySize:])
16         h.Write(message)
17         mac := h.Sum(nil)
18         if !hmac.Equal(mac, tag) {
19                 return nil, ErrDecrypt
20         }
21 
22         c, _ := aes.NewCipher(key[:CKeySize])
23         ctr := cipher.NewCTR(c, message[:NonceSize])
24         ctr.XORKeyStream(out, message[NonceSize:])
25         return out, nil
26 }







AES-CBC


The previous modes mask the underlying nature of the block cipher:
AES operates on blocks of data, and a full block is needed to encrypt
or decrypt. The previous modes act as stream ciphers, where messages
lengths do not need to be a multiple of the block size. CBC, however,
does not act in this way, and requires messages be padded to the
appropriate length. CBC also does not use nonces in the same way.


In CBC mode, each block of ciphertext is XOR’d with the previous
block. This leads to the question of what the first block is XOR’d
with. In CBC, we use a sort of dummy block called an initialisation
vector. It may be randomly generated, which is often the right choice. We
also noted that with the other encryption schemes, it was possible to
use a message or sequence number as the IV: such numbers should not
be directly used with CBC. They should be encrypted (using AES-ECB)
with a separate IV encryption key.  An IV should never be reused
with the same message and key.


The standard padding scheme used is the PKCS #7 padding scheme. We pad
the remaining bytes with a byte containing the number of bytes of padding:
if we have to add three bytes of padding, we’ll append 0x03 0x03 0x03
to the end of our plaintext.



1 func pad(in []byte) []byte {
2         padding := 16 - (len(in) % 16)
3         for i := 0; i < padding; i++ {
4                 in = append(in, byte(padding))
5         }
6         return in
7 }







When we unpad, we’ll take the last byte, check to see if it makes sense
(does it indicate padding longer than the message? Is the padding more
than a block length?), and then make sure that all the padding bytes
are present. Always check your assumptions about the message before
accepting the message. Once that’s done, we strip the padding
characters and return the plain text.



 1 func unpad(in []byte) []byte {
 2         if len(in) == 0 {
 3                 return nil
 4         }
 5 
 6         padding := in[len(in)-1]
 7         if int(padding) > len(in) || padding > aes.BlockSize {
 8                 return nil
 9         } else if padding == 0 {
10                 return nil
11         }
12 
13         for i := len(in) - 1; i > len(in)-int(padding)-1; i-- {
14                 if in[i] != padding {
15                         return nil
16                 }
17         }
18         return in[:len(in)-int(padding)]
19 }







The padding takes place outside of encryption: we pad before encrypting data
and unpad after decrypting.


Encryption is done by padding the message and generating a random IV.



 1 func Encrypt(key, message []byte) ([]byte, error) {
 2         if len(key) != KeySize {
 3                 return nil, ErrEncrypt
 4         }
 5 
 6         iv, err := util.RandBytes(NonceSize)
 7         if err != nil {
 8                 return nil, ErrEncrypt
 9         }
10 
11         pmessage := pad(message)
12         ct := make([]byte, len(pmessage))
13 
14         // NewCipher only returns an error with an invalid key size,
15         // but the key size was checked at the beginning of the function.
16         c, _ := aes.NewCipher(key[:CKeySize])
17         ctr := cipher.NewCBCEncrypter(c, iv)
18         ctr.CryptBlocks(ct, pmessage)
19 
20         h := hmac.New(sha256.New, key[CKeySize:])
21         ct = append(iv, ct...)
22         h.Write(ct)
23         ct = h.Sum(ct)
24         return ct, nil
25 }







Encryption proceeds much as with CTR mode, with the addition of message
padding.


In decryption, we validate two of our assumptions:


	The message length should be a multiple of the AES block size (which
is 16). HMAC-SHA-256 produces a 32-byte MAC, which is also a multiple
of the block size; we can check the length of the entire message and
not try to check only the ciphertext. A message that isn’t a multiple
of the block size wasn’t padded prior to encryption, and therefore
is an invalid message.

  	The message must be at least four blocks long: one block for the IV,
one block for the message, and two blocks for the HMAC. If an HMAC
function is used with a larger output size, this assumption will need
to be revisited.


The decryption also checks the HMAC before actually decrypting the
message, and verifies that the plaintext was properly padded.



 1 func Decrypt(key, message []byte) ([]byte, error) {
 2         if len(key) != KeySize {
 3                 return nil, ErrEncrypt
 4         }
 5 
 6         // HMAC-SHA-256 returns a MAC that is also a multiple of the
 7         // block size.
 8         if (len(message) % aes.BlockSize) != 0 {
 9                 return nil, ErrDecrypt
10         }
11 
12         // A message must have at least an IV block, a message block,
13         // and two blocks of HMAC.
14         if len(message) < (4 * aes.BlockSize) {
15                 return nil, ErrDecrypt
16         }
17 
18         macStart := len(message) - MACSize
19         tag := message[macStart:]
20         out := make([]byte, macStart-NonceSize)
21         message = message[:macStart]
22 
23         h := hmac.New(sha256.New, key[CKeySize:])
24         h.Write(message)
25         mac := h.Sum(nil)
26         if !hmac.Equal(mac, tag) {
27                 return nil, ErrDecrypt
28         }
29 
30         // NewCipher only returns an error with an invalid key size,
31         // but the key size was checked at the beginning of the function.
32         c, _ := aes.NewCipher(key[:CKeySize])
33         ctr := cipher.NewCBCDecrypter(c, message[:NonceSize])
34         ctr.CryptBlocks(out, message[NonceSize:])
35 
36         pt := unpad(out)
37         if pt == nil {
38                 return nil, ErrDecrypt
39         }
40 
41         return pt, nil
42 }







Messages v. streams


In this book, we operate on messages: discrete-sized chunks of
data. Processing streams of data is more difficult due to the authenticity
requirement. How do you supply authentication information? Let’s think
about encrypting a stream, trying to provide the same security properties
we’ve employed in this chapter.


We can’t encrypt-then-MAC: by it’s nature, we usually don’t know the size
of a stream. We can’t send the MAC after the stream is complete, as that
usually is indicated by the stream being closed. We can’t decrypt a stream
on the fly, because we have to see the entire ciphertext in order to check
the MAC. Attempting to secure a stream adds enormous complexity to the
problem, with no good answers. The solution is to break the stream into
discrete chunks, and treat them as messages. Unfortunately, this means we
can’t encrypt or decrypt io.Readers and io.Writers easily, and must
operate on []byte messages. Dropping the MAC is simply not an option.


Conclusions


In this chapter, we’ve elided discussion about how we actually get the
keys (usually, generating a random key isn’t useful). This is a large
enough topic to warrant discussion in a chapter of its own.


Some key points:


	Prefer NaCl where you can. Use AES-GCM if AES is required and you
have a choice. Use AES-CBC and AES-CTR for compatibility.

  	Always encrypt-then-MAC. Don’t ever just encrypt.

  	Always check assumptions about the message, including its authenticity,
before decrypting the message.

  	Think about how you’re getting nonces and IVs, and whether it’s the
appropriate method.
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