

[image: Go With Graphics]

 Go With Graphics

 Tit Petric

 This book is for sale at http://leanpub.com/go-with-graphics

 This version was published on 2021-01-02

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2020 - 2021 Tit Petric

 Table of Contents

 	
 Introduction

 	
 About me

 	
 Who is this book for?

 	
 How should I study it?

 	
 Requirements

 	
 Linux and Docker

 	
 Standard library image packages

 	
 Loading images

 	
 Reading image colors

 	
 Image color space

 	
 Saving images

 	
 Resize and crop

 	
 Interpolation functions for resizing

 	
 Resizing images

 Guide

 	
 Begin Reading

Introduction

About me

I’m passionate about API development, good practices, performance optimizations
and educating people to strive for quality. I have about two decades of
experience writing and optimizing software, and often solve real problems
in various programming languages, Go being my favorite.

You might know some of my work from:

 	Author of API Foundations in Go,

 	Author of 12 Factor Applications with Docker and Go,

 	Author of Advent of Go Microservices,

 	Blog author on scene-si.org

Professionally I specialize in writing APIs in the social/media industry
and for various content management products. Due to the public exposure
of such APIs, it’s performance characteristics are of paramount
importance. I’m a solid MySQL DBA with experience on other databases as
well.

Who is this book for?

Besides having an use in professional applications, image manipulation,
or graphics in general, is an interesting area of work. We will focus on
image manipulations in a practical context, implementing an image resizer
service, as well as implement serveral filters and other types of color
based image manipulations.

If you ever wanted to implement your own image filter or modify images in
other fun ways, this book is for you!

In the book, I will cover these subjects:

 	Standard library image packages

 	Resize and crop

 	Color theory

 	Edge detection

 	Focal point detection

 	Color manipulations (filters)

 	Image overlays, watermarking

 	Image generating

 	Getting creative

How should I study it?

Just go through the book from the start to finish. If possible, try to do
the exercises yourself not by copy pasting but by actually writing the code
and snippets in the book, tailored to how you would lay out your project.

The work in individual chapters builds on what was done in the previous chapter.
The examples are part of a step by step, chapter by chapter process.

Be sure to follow the Requirements section as you’re working with the book.

Requirements

This is a book which gives you hands on instructions on image
manipulation tasks. We will be using a modern stack of software that is
required to complete all the exercises.

Linux and Docker

The examples of the book rely on a recent docker-engine installation on a Linux host.
Linux, while a soft requirement, is referenced many times in the book with examples
on how to download software, or how we are building our services. You could do this
on a Mac, but you might have to adjust some things as you move through the chapters.

 	Go 1.14+

 	Docker (a recent version),

 	Drone CI,

 	Various shell utilities and programs (awk, bash, sed, find, ls, make,…)

Please refer to the official docker installation instructions
on how to install a recent docker version, or install it from your package manager.

Own hardware

The recommended configuration if you have your own hardware is:

 	2 CPU core, x86/amd64, 64bit,

 	2GB ram,

 	128GB disk (SSD)

The minimal configuration known to mostly work is about half that, but you might find yourself
in a tight place as soon as your usage goes up. If you’re just tying out docker, a simple
virtual machine might be good enough for you, if you’re not running Linux on your laptop already.

Cloud quick-start

If having your own hardware is a bit of a buzzkill, welcome to the world of the cloud. You can
literally set up your own virtual server on Digital Ocean within minutes.
You can use this DigitalOcean referral link
to get a $10 credit, while also helping me take some zeros of my hosting bills.

After signing up, creating a Linux instance with a running Docker engine is simple, and only takes a few
clicks. There’s this nice green button on the top header of the page, where it says “Create Droplet”. Click it,
and on the page it opens, navigate to “One-click apps” where you choose a “Docker” from the list.

 [image: Choose Docker from "One-click apps"]
 Choose Docker from “One-click apps”

Running docker can be disk-usage intensive. Some docker images may “weigh” up to or more than 1 GB.
I would definitely advise choosing an instance with at least 30GB of disk space, which is a bargain
for $10 a month, but you will have to keep an eye out for disk usage. It’s been known to fill up.

 [image: Choose a reasonable disk size]
 Choose a reasonable disk size

Aside for some additional options on the page, like chosing a region where your droplet will be running in,
there’s only a big green “Create” button on the bottom of the page, which will set up everything you need.

Standard library image packages

The first step in working with images in Go is using the standard library
package image. To use the package,
you have to register an image decoder. The standard library provides
decoders for only the most standard image types - jpg, png, and
gif.

The standard library also provides subpackages image/color for handling
colors and image/draw to layer images one over the other.

Loading images

Let’s start by writing a CLI for imageinfo. We want to take an input
file, decode it (load the image), and then print image dimensions. Create
the cmd/imageinfo path and create the following files in that location.

We will start with this simple entrypoint (main.go):

 1 package main
 2
 3 import (
 4 _ "image/gif"
 5 _ "image/jpeg"
 6 _ "image/png"
 7 "log"
 8 "os"
 9)
10
11 func main() {
12 if len(os.Args) < 2 {
13 log.Fatalln("Usage: imageinfo [image.jpg/png/gif]")
14 }
15
16 if err := printInfo(os.Args[1]); err != nil {
17 log.Fatalln(err)
18 }
19 }

The entrypoint takes care of loading the image drivers which we will
support. By prefixing the import path with _, only the image drivers
get registered, the rest of the packages are unused in this file.

The main() functions only takes care of ensuring that a single parameter
was passed to our program. In case the parameter isn’t present, a
descriptive error will be printed. We invoke printInfo with the
filename to read.

Next, we need to create a helper function to load images. Let’s create
load.go with the following contents:

 1 package main
 2
 3 import (
 4 "image"
 5 "os"
 6)
 7
 8 func load(filename string) (image.Image, error) {
 9 f, err := os.Open(filename)
10 if err != nil {
11 return nil, err
12 }
13 defer f.Close()
14
15 m, _, err := image.Decode(f)
16 return m, err
17 }

The load() function only takes care of loading the image from a file. It
passes the file reader to image.Decode, and returns any error that might
have occured.

Now, for each image, we would like to print two parts of information. We
would like to know the image dimensions, and we would like to know what
the average color of the image is.

Create a info.go to implement our imageInfo function:

 1 package main
 2
 3 func printInfo(filename string) error {
 4 m, err := load(filename)
 5 if err != nil {
 6 return err
 7 }
 8
 9 printDimensions(m)
10 printAverageColor(m)
11 return nil
12 }

Getting the dimensions of the image is done by retrieving the image
bounds, and getting the information from the returned
image.Rectangle. Go ahead and
create a dimensions.go file:

 1 package main
 2
 3 import (
 4 "fmt"
 5 "image"
 6)
 7
 8 func printDimensions(m image.Image) {
 9 bounds := m.Bounds()
10 fmt.Printf("Width: %d\n", bounds.Dx())
11 fmt.Printf("Height: %d\n", bounds.Dy())
12 }

 We used bounds.Dx() and bounds.Dy() as the shorthand calculations for
width and height of the image. If we need image dimensions, we can use
these built-in functions on image.Rectangle.

Reading image colors

For our next task, we want to calculate the average color of the image.
This means reading all the image pixels, adding all the colors together,
and finally dividing by the number of pixels in the image.

We will use another Image interface function for this:

1 func At(x, y int) color.Color

The Color interface provides a RGBA() (r,g,b,a uint32), with 16-bit
accuracy, meaning each value ranges between [0, 0xFFFF] (16 bits). The
uint32 type has been chosen to avoid an overflow when a color is
multiplied by the blend factor up to 0xFFFF (16 bits). The full color
is encoded in a 64 bit value, with 16 bits per component.

Let’s create a printAverageColor(m image.Image) function to print the
average RGBA for the whole image. We need to read each pixel color value,
add them together, and then divide by pixel count.

While the bounds have helpers for getting the width and height of the
image, the actual image boundaries may start at values different from
X=0,Y=0. This means we need to iterate the pixels by starting with the
bounds Min.X and Min.Y values.

 1 package main
 2
 3 import (
 4 "fmt"
 5 "image"
 6)
 7
 8 func printAverageColor(m image.Image) {
 9 var r, g, b, a uint64
10
11 bounds := m.Bounds()
12 for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
13 for x := bounds.Min.X; x < bounds.Max.X; x++ {
14 cr, cg, cb, ca := m.At(x, y).RGBA()
15 r += uint64(cr)
16 g += uint64(cg)
17 b += uint64(cb)
18 a += uint64(ca)
19 }
20 }
21
22 // multiply with 256 to get 8 bits per component after division
23 count := uint64(bounds.Dx() * bounds.Dy() * 256)
24
25 fmt.Printf("R: %d\nG: %d\nB: %d\nA: %d\n", r/count, g/count, b/count, a/count)
26 }

We can invoke this function from printImageInfo, and look at the output:

1 Width: 640
2 Height: 427
3 R: 80
4 G: 75
5 B: 68
6 A: 255

As I’m loading a jpg file for testing, there is no alpha channel on it,
meaning every color is opaque. If this was a png with a defined alpha
channel, the story would be a little bit different:

A white pixel with 50% opacity results in the following:

1 Width: 1
2 Height: 1
3 R: 127
4 G: 127
5 B: 127
6 A: 127

Here you can note that the color returned is already multiplied by the
alpha channel. The color package documents this:

 RGBA returns the alpha-premultiplied red, green, blue and alpha values
for the color. […] An alpha-premultiplied color component c has been
scaled by alpha (a), so has valid values 0 <= c <= a.

This is dependant on what kind of image we have loaded.

Image color space

Depending on the image type, we may have loaded a paletted image (gif),
or an 8-bit greyscale image. Each of these image examples has a
particular color model, which we can inspect with the third and final
function implemented by the Image interface.

1 func ColorModel() color.Model

In order to ensure that we’re dealing with a particular color model, we
must create a new image of a particular type (NRGBA) and then draw the
source image onto that. Think of it like copy-pasting a grey-scale image
into a true-color empty image, and then saving it as true-color.

This brings us to the image/draw package, and it’s Draw() function.

Let’s implement converters to the NRGBA and NRGBA64 image types. By
using the concrete image type, we can get other functions that also allow
us to set/write pixels to the image, something that the Image interface
doesn’t provide us. Create convert.go:

 1 package main
 2
 3 import (
 4 "image"
 5 "image/draw"
 6)
 7
 8 func toNRGBA(in image.Image) *image.NRGBA {
 9 bounds := in.Bounds()
10 out := image.NewNRGBA(image.Rect(0, 0, bounds.Dx(), bounds.Dy()))
11 draw.Draw(out, out.Bounds(), in, bounds.Min, draw.Src)
12 return out
13 }
14
15 func toNRGBA64(in image.Image) *image.NRGBA64 {
16 bounds := in.Bounds()
17 out := image.NewNRGBA64(image.Rect(0, 0, bounds.Dx(), bounds.Dy()))
18 draw.Draw(out, out.Bounds(), in, bounds.Min, draw.Src)
19 return out
20 }

Now, using the NRGBA64 image won’t give us NRGBA64 colors when calling
the image At() function. The particular function will always return a
premultiplied color. The NRGBA64 struct provides another function,
NRGBA64At, which returns the color without premultiplication.

We need to read individual fields from the NRGBA64 color struct. If we
would invoke RGBA(), it will return the multiplied color components.
As we don’t need 16 bit precision, I’ll be using the NRGBA type here.

Let’s rewrite printAverageColor a bit, to split it into two functions.
The updated function body to get the average color looks like this:

 1 func getAverageColor(in image.Image) *color.NRGBA {
 2 var r, g, b, a uint64
 3
 4 m := toNRGBA(in)
 5
 6 bounds := m.Bounds()
 7 for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
 8 for x := bounds.Min.X; x < bounds.Max.X; x++ {
 9 color := m.NRGBAAt(x, y)
10 r += uint64(color.R)
11 g += uint64(color.G)
12 b += uint64(color.B)
13 a += uint64(color.A)
14 }
15 }
16
17 count := uint64(bounds.Dx() * bounds.Dy())
18 return &color.NRGBA{
19 R: uint8(r / count),
20 G: uint8(g / count),
21 B: uint8(b / count),
22 A: uint8(a / count),
23 }
24 }
25
26 func printAverageColor(in image.Image) {
27 color := getAverageColor(in)
28 fmt.Printf("R: %d\nG: %d\nB: %d\nA: %d\n", color.R, color.G, color.B, color.A)
29 }

We can now re-use getAverageColor when we want to get the actual color.
Re-running with the 50% white png image gives us the expected output now:

1 Width: 1
2 Height: 1
3 R: 255
4 G: 255
5 B: 255
6 A: 127

We can now read true colors, which can be used for HTML composed color
entities. As RGB(A) colors in CSS aren’t pre-multiplied, relying on NRGBA
image formats when doing color processing is a must. Whatever image
processing APIs you will write, should use a concrete image type like
NGRBA64 as soon as possible, do you don’t do unnecessary conversions.

I have chosen NRGBA as 8 bits per color component is the most standard
image format used in JPEG/PNG files and HTML color codes as well.

Saving images

Saving images is done with their respective image drivers. The interface
for saving the images isn’t generic, as each driver implements their own options.
While JPEG images have a Quality parameter (percentage as int), PNG images
only provide a CompressionRatio option.

Create a save.go with our needed imports:

 1 package main
 2
 3 import (
 4 "errors"
 5 "image"
 6 "image/jpeg"
 7 "image/png"
 8 "io"
 9 "os"
10 "path"
11)

We can abstract our image writers behind an interface:

 1 type imageWriter func(io.Writer, image.Image) error
 2
 3 func writeJpeg(w io.Writer, img image.Image) error {
 4 opt := jpeg.Options{
 5 Quality: 90,
 6 }
 7 return jpeg.Encode(w, img, &opt)
 8 }
 9
10 func writePng(w io.Writer, img image.Image) error {
11 encoder := &png.Encoder{
12 CompressionLevel: png.BestSpeed,
13 }
14 return encoder.Encode(w, img)
15 }

Based on the image filename we’re trying to save, we can decide which writer
we need to use to save the image to disk:

 1 func saveImage(filename string, img image.Image, writer imageWriter) error {
 2 f, err := os.Create(filename)
 3 if err != nil {
 4 return err
 5 }
 6 defer f.Close()
 7
 8 return writer(f, img)
 9 }
10
11 func save(filename string, img image.Image) error {
12 ext := path.Ext(filename)
13 if ext == ".jpg" {
14 return saveImage(filename, img, writeJpeg)
15 }
16 if ext == ".png" {
17 return saveImage(filename, img, writePng)
18 }
19 return errors.New("save: unsupported extension " + ext)
20 }

And that’s all there is to it. Implementing a gif writer, or any other
image format, is left as an exercise to the reader.

Resize and crop

Camera phones (or actual digital cameras) usually produce a variety of
resolutions that may be too big to use directly in web or mobile
applications. They need to be resized to a smaller resolution, and
usually cropped to a variety of formats of different ratios.

With video applications, the desired ratios are usually 16:9 to satisfy
modern TVs, while for apps like instagram, a ratio of 1:1 is preffered,
so there is part of the screen reserved for image metadata, like it’s
author, image comment and other widgets.

 	A 3840 x 2160 pixel resolution is used for 4K displays,

 	A 1920 x 1080 pixel resolution is used for HD ready (1/4th of 4K display),

 	A 1080 x 1080 pixel resolution is the default for Instagram posts.

Instagram image width is tailored towards iphone 6-8 screen sizes, which
have a width of 1080 pixels. They also have a height of 1920 pixels,
which, when in portrait mode, gives a person a HD ready display size.

Interpolation functions for resizing

For an image of an arbitrary width/height, resizing down to a 100x100
image would be done similarly to this pseudo code (assume that division
returns a floating point):

 1 w, h := 1920, 1080
 2 dw, dh := 100, 100
 3 for y := 0; y < dh; y++ {
 4 for x := 0; x < dw; x++ {
 5 // calculate source pixels position
 6 //
 7 // x / dw = width in % of the target pixel,
 8 // multiplied by w = source pixel x position
 9
10 sx = round((x / dw) * w)
11 sy = round((y / dh) * h)
12
13 dest.Set(x, y, source.NRGBAAt(sx, sy))
14 }
15 }

How the color is calculated is called an interpolation function.
Interpolation is a process where an algorythm calculates the color in
some particular way, based on a the source pixel position.

For our particular code sample, the algorythm is called the nearest
neighbour. It’s called that because all the colors chosen are found in
the source image, by calculating the most appropriate x/y values.

The pitfall of this approach is that resizing images will produce jagged
destination images, where a significant part of image information is
lost. To demonstrate, let’s see how a 5x1 pixels image would be resized:

1 source image: [255, 0, 255, 0, 255]

Resizing the image from 5 to 4 pixels wide:

1 dest[0] = src[round((0 / dw) * w)] /* index = round(0 * 5 = 0) = 0, color = 25\
2 5 */
3 dest[1] = src[round((1 / dw) * w)] /* index = round(0.25 * 5 = 1.25) = 1, color = 0 \
4 */
5 dest[2] = src[round((2 / dw) * w)] /* index = round(0.5 * 5 = 2.5) = 3, color = 0 */
6 dest[3] = src[round((3 / dw) * w)] /* index = round(0.75 * 5 = 3.75) = 4, color = 25\
7 5 */

So, the destination image would be [255, 0, 0, 255]. When upscaling the
image to a larger resolution, we would get what’s generally referred to
as a “pixelated” image. In popular media, Minecraft is the most common
example where pixelated images are used extensively.

When resizing images to a smaller size using the nearest neighbor method,
there is obvious data loss compared to the source image. In terms of
“optical” difference, interchanged white/black values would seem as grey
at a distance. A better interpolation function is able to calculate a
better approximation of the resulting colors, producing a more
optically-pleasing image.

A trivial method to implement is called bilinear interpolation. It’s
called bilinear because we need to interpolate two values, the color
along the X axis, and the color along the Y axis. For any given (X, Y)
input, the fractions (subpixels) are used to calculate the final color.

 1 // non-rounded sx/sy
 2 sx = (x / dw) * w
 3 sy = (y / dh) * h
 4
 5 // subpixel positions:
 6 subx = sx % 1.0
 7 suby = sy % 1.0
 8
 9 // source pixel positions:
10 top = floor(sy)
11 left = floor(sx)
12 right = min(left+1, w-1) // clamp to image size
13 bottom = min(top+1, h-1) // clamp to image size
14
15 // 4 colors for each hard x/y pair
16 colors := [4]*color.NRGBA{
17 source.NRGBAAt(left, top),
18 source.NRGBAAt(right, top),
19 source.NRGBAAt(left, bottom),
20 source.NRGBAAt(right, bottom),
21 }

We have calculated two subpixel fractions, subx and suby. A subx
fraction of 0.5 would mean that the source pixel color should be
calculated as the average between left/right pixel colors.

Now, the most simple way to produce the final color, is to create a 2D
multiplication matrix:

 1 // a 0.25 ratio suby is weighted to the top pixel
 2 matrix_top = 1.0 - suby
 3
 4 // a 0.25 ratio subx is weighted to left pixel
 5 matrix_left = 1.0 - subx
 6
 7 // the rest
 8 matrix_right, matrix_left = subx, suby
 9
10 matrix := [4]float{
11 matrix_top + matrix_left,
12 matrix_top + matrix_right,
13 matrix_bottom + matrix_left,
14 matrix_bottom + matrix_right,
15 }

For bilinear interpolation we need to multiply each value in colors
with corresponding indices in matrix. Adding all the values together
produces the final interpolated color. Since we are interpolating two
sets of pixels, we need a final division by two, to calculate the
accurate color value.

With the nearest neighbour method in the previous example, matrix is
generally assumed to be [1, 0, 0, 0] along each axis, picking only one
literal color (top left).

Given a pixel in position 1500.5 and 950.5, the matrix would be
[0.5, 0.5, 0.5, 0.5] and the produced color would be an average of all
four pixels in the colors[] slice.

1 // pseudo code, but imagine colors[x] to be uint8
2 color := ((colors[0] * matrix[0]) +
3 (colors[1] * matrix[1]) +
4 (colors[2] * matrix[2]) +
5 (colors[3] * matrix[3])) / 2.0

The destination image now becomes [255, 64, 127, 191]. Overall, the
image is more realistically resized. When using bilinear interpolation
for image upscaling, the produced image will seem blurred but will still
retain hard pixel edges.

Additional notable interpolation methods include:

 	Bicubic interpolation,

 	Mitchell-Netravali interpolation,

 	Lanczos interpolation,

In terms of upscaling images, the Lanczos interpolation produces the most
naturally correct image, as if a larger image was extensively blurred,
but kept highlights more color-accurate. It works well for resizing the
images down to smaller sizes too, at the cost of being more CPU
expensive.

In comparison, when using bicubic interpolation, the highlights are lost,
and often, even in comparison with bilinear interpolation, it seems like
the upscaled image is created from a pixelated source which was
extensively blurred.

While bilinear interpolation produces a color based only on 2 pixels
along each axis, other interpolation algorythms above generally use 4
pixels or more (Lanczos can use 6 pixels or even more) to produce a more
accurate color. Generally, the more pixels used, the better looking the
image is when it’s being upscaled.

Resizing images

We will resort to using an existing package to provide our resizing
functionality. The package nfnt/resize
implements the methods described above, and we will default to use the
Lanczos3 interpolation method when we’ll resize our images.

When we are dealing with resizing images, we usually resort to one of the
following modes when resizing:

 	Letterboxing the destination image,

 	A covering image

The aspect ratio is the ratio between the width and the height of the
image. So, a 1920x1080 image has an aspect ratio of 16:9, while a
1000x1000 image has a ratio of 1:1. These are common ratios:

 	21:9 - Ultra wide content (used to save vertical space),

 	16:9 - HD video, widescreen monitors/TVs,

 	4:3 - Cameras, classic monitors - landscape,

 	3:4 - Same but in portrait orientation,

 	1:1 - Instagram

While these ratios are pretty standard, the original image sources
usually come in 16:9 or 4:3/3:4, depending if the source was either video
or a camera, or hopefully, something close to those. When producing
website content, often content in various ratios is needed in different
parts of the website.

When resizing images the ratio of the source material must to be
preserved, so the image doesn’t seem like it’s stretched. To achieve
that, the following two strategies are usually used:

Letterboxing the image

The term “letterbox” comes from the television. When people started
shooting film in widescreen formats, they added black bars above and
below the video for playback on 4:3 TVs. This was done to keep the
original aspect ratio.

In our case, if we want to produce a 640 x 480 pixels image from a 1920 x
1080 pixels image, we need to calculate the resized dimensions of the
original image, that will fit into the smaller image.

1 srcWidth, srcHeight := 1920, 1080
2 dstWidth, dstHeight := 640, 480
3
4 // ratioWidth := 0.33333...
5 ratioWidth := dstWidth / srcWidth
6
7 // ratioHeight := 0.44444...
8 ratioHeight := dstHeight / srcHeight

By calculating the ratios for both width and height, we actually
calculated two sizing factors. By using the ratioWidth sizing factor, the
image would be resized according to fit the destination width:

1 // newWidth := 1920 * 0.33333 = 640
2 newWidth := srcWidth * ratioWidth
3 // newHeight := 1080 * 0.33333 = 360
4 newHeight := srcHeight * ratioWidth

By using the ratioHeight sizing factor, the image would be resized to fit the
destination height.

1 // newWidth := 1920 * 0.44444 = 853
2 newWidth := srcWidth * ratioWidth
3 // newHeight := 1080 * 0.44444 = 480
4 newHeight := srcHeight * ratioWidth

It’s now time to move beyond pseudo code, and implement our resizer.
Start by creating a cmd/resize folder, and a main.go file:

 1 package main
 2
 3 import (
 4 "flag"
 5 "log"
 6
 7 _ "image/gif"
 8 _ "image/jpeg"
 9 _ "image/png"
10)

We need to create our main() function, this time by using standard
library configuration flag package. We
will take four possible flags, the input and output filenames (-in and
-out respectively), and the width/height of the destination image.

 1 func main() {
 2 var (
 3 input string
 4 output string
 5 width uint
 6 height uint
 7)
 8 flag.StringVar(&input, "in", "", "Input filename")
 9 flag.StringVar(&output, "out", "", "Output filename")
10 flag.UintVar(&width, "width", 640, "Output width")
11 flag.UintVar(&height, "height", 480, "Output height")
12 flag.Parse()
13
14 if err := loadAndResize(output, input, width, height); err != nil {
15 log.Fatalln(err)
16 }
17 }

Let’s now create the loadAndResize function in resize.go:

 1 package main
 2
 3 import (
 4 "errors"
 5)
 6
 7 func loadAndResize(output string, input string, width uint, height uint) error {
 8 if input == "" {
 9 return errors.New("missing argument: input filename")
10 }
11 if output == "" {
12 return errors.New("missing argument: output filename")
13 }
14 if width <= 0 || height <= 0 {
15 return errors.New("invalid argument: width/height")
16 }
17
18 img, err := load(input)
19 if err != nil {
20 return err
21 }
22
23 out := resizer(img, width, height)
24
25 return save(output, out)
26 }

The function validates our inputs, loads the image, and saves the image.
And what remains is implementing our resizer() function (resizer.go):

 1 package main
 2
 3 import (
 4 "image"
 5 "math"
 6
 7 "github.com/nfnt/resize"
 8)
 9
10 func resizer(img image.Image, width uint, height uint) image.Image {
11 b := img.Bounds()
12 srcWidth, srcHeight := float64(b.Dx()), float64(b.Dy())
13
14 ratioWidth := float64(width) / srcWidth
15 ratioHeight := float64(height) / srcHeight
16
17 dim := func(width, height, ratio float64) (uint, uint) {
18 var (
19 newWidth = uint(math.Round(width * ratio))
20 newHeight = uint(math.Round(height * ratio))
21)
22 return newWidth, newHeight
23 }
24
25 var resized image.Image
26 w, h := dim(srcWidth, srcHeight, ratioWidth)
27 if h > height {
28 w, h = dim(srcWidth, srcHeight, ratioHeight)
29 }
30 resized = resize.Resize(w, h, img, resize.Lanczos3)
31
32 return resized
33 }

Particularly, the resizer function only handles resizing the image to
keep aspect ratio and fit inside the target dimensions. We need to add
some handling code that will add the letterbox around the image to fill
out the requested size.

Let’s create a letterbox.go file:

 1 package main
 2
 3 import (
 4 "image"
 5 "image/color"
 6 "image/draw"
 7)
 8
 9 func letterbox(img image.Image, uwidth uint, uheight uint) image.Image {
10 resized := resizer(img, uwidth, uheight)
11 b := resized.Bounds()
12 width, height := int(uwidth), int(uheight)
13 w, h := b.Dx(), b.Dy()
14
15 if w < width || h < height {
16 offsetX, offsetY := (width-w)/2, (height-h)/2
17 dest := image.NewRGBA(image.Rect(0, 0, width, height))
18
19 // fill image with a solid color (blue)
20 fillColor := color.NRGBA{0, 0, 255, 255}
21 draw.Draw(dest, dest.Bounds(), &image.Uniform{fillColor}, image.Point{}, draw.Sr\
22 c)
23
24 // draw resized image with offset
25 destStart := image.Pt(offsetX, offsetY)
26 destRect := image.Rectangle{destStart, destStart.Add(resized.Bounds().Size())}
27 draw.Draw(dest, destRect, resized, image.Point{}, draw.Src)
28
29 return dest
30 }
31
32 return resized
33 }

There are two things to note here:

We are filling the initial image to be letterboxed by using
image.Uniform{}. The struct
represents an infinite-sized image of an uniform color.

We are drawing the resized image with a offsetX or offsetY offset,
producing either a vertical or horizontal letterbox, depending on the
source image ratio.

Since we already implemented getting the average color in the previous
chapter, let’s use the images average color to fill out the letterbox,
instead of an aggresive blue color. Change the fillColor to take the
average color value from the image:

1 fillColor := getAverageColor(img)

In case of nearly solid color images, the output is indistinguishable
from having a larger image source. In other images, it’s reasonable to
asume that the average color will mimic the general tone of the image, so
pictures of the sky will end up with an off-white blue tone, while
pictures from nature might end up with pastel/earth tones. Depending on
the source image color vibrancy, better strategies can be used.

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_information.png

OEBPS/images/intro_do_1.png
Choose an image *

Distributions ~ One-click apps ~ Snapshots

‘R .NET Core w/ PowerShell on 16.04 D Discourse on 14.04 d) Django 187 on 16.04

dj Django on 14.04 9 Docker 112.4 on 16.04 9 Docker 1125 on 16.04

@ Dokku 0.6.5 0n 14.04 @ Dokku 072 0n16.04 € Drone 0.4 0n14.04

OEBPS/images/intro_do_2.png
Choose a size

Standard High memory

$5/mo $10/mo $20/mo $40/mo $80/mo $160/mo

$0.007mour $0.015/mour $0.030/mour $0.060/our $019/mour $0.238mour

512MB/1CPU 1GB/1CPU 26B/2CPUs 4GB/2CPUs 8GB/4CPUs 16 GB/8 CPUs
20 GB SSD disk 30 GB SSD disk 40 GB SSD disk 60 GB SSD disk 80 GB SSD disk 160 GB SSD disk
1000 GB transfer 27TB transfer 3TB transfer 4TB transfer 5TB transfer 6 TB transfer

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
Go: Working with Graphics

An image manipulation development guide

Tit Petric Step by step guide for
working with images in Go.

