Go: Working with Databases

A database first development guide

Tit Petric Step by step guide for
working with databases in Go.

Go With Databases

Tit Petric

This book is for sale at http://leanpub.com/go-with-databases

This version was published on 2020-12-28

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2020 Tit Petric

http://leanpub.com/go-with-databases
http://leanpub.com/
http://leanpub.com/manifesto

Also By Tit Petric

API foundations in Go
12 Factor Applications with Docker and Go

Advent of Go Microservices

Go With Graphics

http://leanpub.com/u/titpetric
http://leanpub.com/api-foundations
http://leanpub.com/12fa-docker-golang
http://leanpub.com/go-microservices
http://leanpub.com/go-with-graphics

Contents

Introduction 1
Aboutme 1
Who is this book for? 1
How should I'study it? 2

Requirements 3
Linux and Docker 3

Introduction 5

Standard library 6

Connecting toour databases 7

Context and database drivers 9

Querying the database (standard library) 11
Exec . . . o e 11
QUETY . o . o e 11

Querying the database (jmoiron/sqlx). 13

The difference between Selectand Get 15

Introduction

About me

I'm passionate about API development, good practices, performance optimizations and educating
people to strive for quality. [have about two decades of experience writing and optimizing software,
and often solve real problems in various programming languages, Go being my favorite.

You might know some of my work from:

« Author of API Foundations in Go?,

« Author of 12 Factor Applications with Docker and Go?,
« Author of Advent of Go Microservices®,

« Blog author on scene-si.org*

Professionally I specialize in writing APIs in the social/media industry and for various content
management products. Due to the public exposure of such APIs, it’s performance characteristics
are of paramount importance. I'm a solid MySQL DBA with experience on other databases as well.

Who is this book for?

This book is for people who want to familiarize themselves with working with databases from
Go. We will cover connecting to databases, issuing queries, transactions and other common usage
patterns.

The aim of the book is to provide SQL database-specific examples, demonstrate best practices and
common patterns when connecting and querying the database. We will also look at other NoSQL
databases.

'https://leanpub.com/api-foundations
*https://leanpub.com/12fa-docker-golang
*https://leanpub.com/go-microservices
“https://scene-si.org

https://leanpub.com/api-foundations
https://leanpub.com/12fa-docker-golang
https://leanpub.com/go-microservices
https://scene-si.org/
https://leanpub.com/api-foundations
https://leanpub.com/12fa-docker-golang
https://leanpub.com/go-microservices
https://scene-si.org/

Introduction 2

In the book, I will cover these subjects:

Introduction

Standard library

Connecting to our databases

go mod init example.com/go-with-databases
go run main.go

Context and database drivers

Querying the database (standard library)
Querying the database (jmoiron/sqlx)
go get github.com/jmoiron/sqlx@master
The difference between Select and Get

. Special database column types/values

. Query placeholders

. Setting up integration tests

. Connecting to the database

. Querying the database

. Transactions

. Modelling database schema

. SQL database compatibility

. ElasticSearch

. Redis

. MongoDB

. Dgraph

W XN W

[N T T T e G T o T S e S e G G
O R e B SNIE T IN FON O SN

How should I study it?

Just go through the book from the start to finish. If possible, try to do the exercises yourself not by
copy pasting but by actually writing the code and snippets in the book, tailored to how you would
lay out your project.

The work in individual chapters builds on what was done in the previous chapter. The examples are
part of a step by step, chapter by chapter process.

Be sure to follow the Requirements section as you’re working with the book.

Requirements

This is a book which gives you hands on instruction on working with various databases. We will be
using a modern stack of software that is requires to complete all the exercises.

Linux and Docker

The book relies extensively on docker to provide us both the ability to run integration tests, as well
as to run the various databases which we will be working with.

« Go 1.14+ (latest stable)

« Docker (a recent version),

e Drone CI,

« Various shell utilities and programs (awk, bash, sed, find, s, make,...)

Please refer to the official docker installation instructions® on how to install a recent docker version,
or install it from your package manager.

Own hardware

The recommended configuration if you have your own hardware is:

« 2 CPU core, x86/amd64, 64bit,
e 2GB ram,
« 128GB disk (SSD)

The minimal configuration known to mostly work is about half that, but you might find yourself in
a tight place as soon as your usage goes up. If you’re just tying out docker, a simple virtual machine
might be good enough for you, if you’re not running Linux on your laptop already.

*https://docs.docker.com/engine/installation/linux/

https://docs.docker.com/engine/installation/linux/
https://docs.docker.com/engine/installation/linux/

Requirements

Cloud quick-start

If having your own hardware is a bit of a buzzkill, welcome to the world of the cloud. You can literally
set up your own virtual server on Digital Ocean within minutes. You can use this DigitalOcean
referral link® to get a $10 credit, while also helping me take some zeros of my hosting bills.

After signing up, creating a Linux instance with a running Docker engine is simple, and only takes a
few clicks. There’s this nice green button on the top header of the page, where it says “Create Droplet”.
Click it, and on the page it opens, navigate to “One-click apps” where you choose a “Docker” from
the list.

Choose an image

One-click apps

k- .NET Core w/ PowerShell on 16.04 D Discourse on 14.04 Django 1.8.7 on 16.04
Django on 14.04 9 Docker 112.4 on 16.04 9 Docker 112.5 on 16.04
@ Dokku 0.6.5 on 14.04 @ Dokku 0.7.2 on 16.04 Drone 0.4 on 14.04

Choose Docker from “One-click apps”

Running docker can be disk-usage intensive. Some docker images may “weigh” up to or more than
1 GB. I would definitely advise choosing an instance with at least 30GB of disk space, which is a
bargain for $10 a month, but you will have to keep an eye out for disk usage. It’s been known to fill

up.

Choose a size

Standard
$5/mo $10/mo $20/mo $40/mo $80/mo $160/mo
$0.007 mhour $0.015/hour $0.030/hour $0.060/mour $0.19/hour $0.238/mour
512 MB 1GB 2GB 4GB 8 GB 16 GB
20GB 30GB 40 GB 60 GB 80 GB 160 GB
1000 GB 2TB 3TB 4TB 5TB 6TB

Choose a reasonable disk size

Aside for some additional options on the page, like chosing a region where your droplet will be
running in, there’s only a big green “Create” button on the bottom of the page, which will set up

everything you need.

°https://m.do.co/c/021b61109d56

https://m.do.co/c/021b61109d56
https://m.do.co/c/021b61109d56
https://m.do.co/c/021b61109d56

Introduction

In this book, we’ll take a look at how to work with SQL databases. We will start with the standard
library extend this knowledge with sqlx. The book aims to give you the knowledge in a database-
agnostic way, but the main examples will be tailored towards MySQL and Postgres.

Standard library

When dealing with SQL databases from go, the database/sql” will be our starting point. The package
provides a rudimentary API for connecting to and working with SQL databases.

To actually connect to a database, we will need to import a “driver”, a package that implements the
communication protocol for a given database. There are a range of packages listed on the SQL Driver
Wiki®, but we will use the following few:

« SQLite: modernc.org/sqlite
+ Postgres: github.com/1lib/pq
+ MySQL: github.com/go-sql-driver/mysql

All the drivers I've chosen here are “Pure Go” drivers, meaning you can build your application with
CGO_ENABLED=0 in order to produce static, portable binaries.

You can use multiple drivers at the same time.

"https://godoc.org/database/sql
®https://github.com/golang/go/wiki/SQLDrivers

https://godoc.org/database/sql
https://github.com/golang/go/wiki/SQLDrivers
https://github.com/golang/go/wiki/SQLDrivers
https://godoc.org/database/sql
https://github.com/golang/go/wiki/SQLDrivers

© 00 N O O b W N =

_oR R
N =~ O

© 00 N O O b W N =

NN
=

Connecting to our databases

First, create a go.mod package for your project:
go mod init example.com/go-with-databases

This is a required step, so we can rely on go run and go build to pull any required packages we use.
In our main.go file, let’s import all the SQL drivers and the database/sql package.

package main

import (
"context"

"database/sql"

_ "github.com/go-sql-driver/mysql"”
_ "github.com/lib/pqg"

_ "modernc.org/sqlite"

"github.com/apex/log"

We are importing the drivers using _ before the package name, so the import itself just runs the
init() function from the driver, which registers it to make it available for sq1 . Open.

We will test the SQLite database first, as it doesn’t require a running database service. We can open
up the SQLite :memory: database, which will not persist between runs.

func start(ctx context.Context) error {
// create db client
db, err := sql.Open("sglite", ":memory:")
if err != nil {

return err

// open a db connection
_, err = db.Conn(ctx)
if err != nil {

return err

12
13
14
15

<~ O O B W N

Connecting to our databases 8

return nil

And finally, our main() function where we create a global context, and invoke our start function
that uses the database.

func main() {
ctx := context.Background()
if err := start(ctx); err != nil {
log.WithError(err).Fatal("failed")
}

log.Info("success")

Finally, we can run our connection test:

go run main.go
2020/12/25 13:01:23 info success

© 00 N O O b W N =

T S =N
O O B W N =~ O

Context and database drivers

When dealing with databases, or with Go in general, it’s extremely important that we use con-
text.Context; The reason isn’t only for cancellation, but also for application performance monitoring.

Application performance monitoring uses the context to create and propagate a transaction, for
example, a REST API HTTP request. Each database query we will execute will be registered as a
“span”, so you can see which queries have been issued in your web service API request, and how
long that query took, along with other diagnostics and performance metrics. The context value is
used to bring this data together.

With Elastic APM® there are a number of database drivers provided. The database drivers are
implemented by wrapping the original database driver and adding the APM instrumentation code
around each query.

The updated list of drivers to use with APM tracing:

» go.elastic.co/apm/module/apmsql/mysql
» go.elastic.co/apm/module/apmsql/pq

Elastic APM doesn’t provide the same SQLite driver, but we can wrap the driver ourselves. Create
adb/sqlite folder with sqlite.go:

package sqlite

import (

"strings"

"go.elastic.co/apm/module/apmsql”
"modernc.org/sqlite"

fune init() {
apmsqgl .Register("sqglite", &sqglite.Driver{}, apmsql.WithDSNParser (ParseDSN))

}

// ParseDSN parses the sqglite datasource name.
func ParseDSN(name string) apmsql.DSNInfo {
if pos := strings.IndexRune(name, '?'); pos >= 0 {

*https://www.elastic.co/apm

https://www.elastic.co/apm
https://www.elastic.co/apm

17
18
19
20
21
22

a b w N

a b w N

Context and database drivers 10

name = name|:pos]

}
return apmsql.DSNInfo{

Database: name,

This is the same basic implementation as the wrappers for mysql and postgres drivers. Since we
already started by implementing some of our project structures, let’s create db/mysql containing
mysql .go:

package mysql

import (

_ "github.com/go-sql-driver/mysql"”

And db/pq with pq. go:

package pq

import (
_ "github.com/1lib/pq"

We can now update the main imports to use our locally defined drivers:

"example.com/go-with-databases/db/mysql"
"example.com/go-with-databases/db/pq"
"example.com/go-with-databases/db/sqlite"

a b w N

Querying the database (standard
library)

The functions for querying the database can be split into three distinct functions:

1. ExecContext - for running queries that insert or modify data or schema,
2. QueryContext - for SELECT queries returning multiple rows,
3. QueryRowContext for SELECT queries returning 1 row at most,

You can use them from either ansql.DB or ansql.Conn (DB.Conn() returns sql . Conn). The difference
between Query and QueryRow is that the destination is either a slice of rows, or a single row struct.

Exec

Using ExecContext to create a testing table if it doesn’t exist:

// create a table
if _, err := conn.ExecContext(ctx, "create table if not exists testing (id int PRIM\
ARY KEY)"); err != nil {

return err

}

The sql.Result returned by Exec/ExecContext satisfies the following functions:

« LastInsertId() (int64, error)
« RowsAffected() (int64, error)

The result of these functions varies across databases, but it generally tells you how many rows have
been affected by the SQL query, and what the last inserted ID was. The last inserted ID is a reference
to typical database sequence or auto_increment columns, where the actual value is generated by the
database at INSERT time.

In practice it’s rare that these functions are used - the table primary keys might be an uint64 type,
or often some form of a string (UUID), and for what it’s worth, the affected rows information also
isn’t very useful in day-to-day work with SQL databases.

Query

Let’s produce a list of tables in our database. For SQLite, that query is as follows:

a b W N -

© 00 N O O b W N =

_oR R
N O

Querying the database (standard library) 12

rows, err := conn.QueryContext(ctx, "select name from sglite_master where type='tabl\

1

e' order by name")
if err != nil {

return err

The QueryContext function returns an sql .Rows which we can iterate over with the function Next,
scan individual rows with Scan, and finally check if any error was encountered from iterating over
the rows:

var dbNames []string
for rows.Next() {
var dbName string

if err := rows.Scan(&dbName); err != nil {
return err

}

dbNames = append(dbNames, dbName)

}
// check errors from iterating over rows
if err := rows.Err(); err != nil {

return err

This is also where the difficulty of using the standard library database/sql package becomes really
apparent. Even with this simple example of reading very primitive database structures, we:

« don’t have buffered reads providing result counts, rows is a database cursor,
« scanning needs to be aware of column count (typical query for SQL is select * from table
)

« we don’t have scanning to complex types like map, slice or struct to scan the whole row

It’s because of this reason, that people usually resort to jmoiron/sqlx'® that adds on general purpose
extensions over the database/sql APIL From here on out, we will use this package to access and query
our databases.

"°https://github.com/jmoiron/sqlx

https://github.com/jmoiron/sqlx
https://github.com/jmoiron/sqlx

Querying the database (jmoiron/sqix)

Using sqlx means we have a “drop-in” replacement for the database/sql import, with an extended
API that is not available in the standard library. We can choose to alias the import to sql, or,
preferrably, let’s rename sql.Open to sqlx.Open and the rest of the code will continue to function
without any required changes.

Of couse, sqlx adds new APIs that should be used as a replacement to Query/QueryRow functions:

« GetContext(ctx context.Context, dest interface{}, query string, args ...interface{}) error
« SelectContext(ctx context.Context, dest interface{}, query string, args ...interface{}) error

The original Query functions have actually been extended to QueryxContext and QueryRowxContext.
These now return sqlx.Rows/sqlx.Row, which have three utility functions: MapScan, StructScan
and SliceScan. These improve on the database/sql functionality where just a simple Scan() was
provided. They allow reading rows from the database and filling out your own provided structures,
maps or slices.

I’d suggest you forget that Query* functions exist. By default you should opt into using SelectContext,
or GetContext where you require a returned row. Particularly using the cursor-backed Query

functions should be encouraged only when a large dataset it read from the database, and processed

row by row (e.g. map/reduce jobs). This is because it isn’t practical to buffer the results in memory

for such workloads.

Like Query -> Queryx “rename”, we must also use Connx(ctx) instead of Conn() so we can use the
Get and Select functions from the sqlx.Conn object. Rename db . Conn(to db.Connx(and you’re good
to continue.

Connx() requires updating jmoiron/sqlx to a newer version than is available at the time of writing.
In your project (where go.mod lives), issue the following command to update it:

go get github.com/jmoiron/sqlx@master

Our code for listing the databases becomes:

a b W N -

0 N O O b W N =

Querying the database (jmoiron/sqlx) 14

var dbNames []string
if err := conn.SelectContext(ctx, &dbNames, "select name from sqlite_master where ty\
pe='table' order by name"); err != nil {

return err

Even this simple example is already significantly shorter than the standard library usage example.
The database results are scanned into a slice of strings, but working with structs is similarly simple.
Like encoding/ json, we can rely on field tags to specify which column will be scanned.

type table struct {
Name string “db:"name""

}

var dbNamesStruct []table

if err := conn.SelectContext(ctx, &dJdbNamesStruct, "select name from sqlite_master wh\
ere type='table' order by name"); err != nil {

return err

=~ O U s W N

The difference between Select and
Get

The Select APIs are there to fetch multiple rows, while the Get API is there to fetch a single row.
Similarly, Query is there to fetch multiple rows, and QueryRow is there to fetch a single row. The
Get() and QueryRow() APIs return a particular error, sql.ErrNoRows™" if no rows are returned.

var ErrNoRows = errors.New("sql: no rows in result set")

If you really think about it - in every case where you would use Get(), you’d need to remap this
error into one of your own, which you can document and handle in your application, especially if
you’re writing a HTTP API service which basically just returns whatever error occured. Or if you
handle empty values, you need to swallow it with a condition similar to this one:

if err := svc.db.GetContext(ctx, &group, query, groupID); err != nil && l!errors.Is(e\
rr, sql.ErrNoRows) {

Perhaps you should have been using Select in the first place if all you’re doing is just throwing away
ErrNoRows. This is one of such snippets from a piece of production code:

if err := svc.db.SelectContext(ctx, &result, query, groupID); err != nil {

return nil, err

}
if len(result) == 0 {
return nil, errors.New('"no such group")

}

return result[Q], nil

The example is readable, nil-pointer safe, and has the ability to return your own error type to ease
debugging. When fetching multiple rows, you can have one liner utility functions like this one:

"https://godoc.org/database/sql#pkg-variables

https://godoc.org/database/sql#pkg-variables
https://godoc.org/database/sql#pkg-variables

Bw N

The difference between Select and Get 16

queryMessagelDs := func(query string, args []interface{}) ([]int64, error) {
result := []int64{}
return result, svc.db.SelectContext(ctx, &result, query, args...)

With GetContext we would leak the ErrNoRows error value. If a single API call is composed using
multiple similar queries, you’ll have a hard time knowing where the error came from.

There are additional ways to approach this problem:

« you could resort to github.com/pkg/errors'® Wrap() function to add more context for such
errors,

« you could use github.com/hashicorp/go-multierror'® to append your own error value and have
the ability to use errors.Is** on both sql.LErrNoRows and your own sentinel error.

Of course, just being aware that this particular error case must be handled, maybe you’ll listen to
my advice, and just avoid the scenario where the error is expected to occur, instead of buying into it
and then masking it out. Or to put it differently - if you tolerate empty rows, don’t fix this issue by
clearing the expected error, fix this issue by creating the error on an unexpected value (zero rows).

*https://github.com/pkg/errors
Phttps://github.com/hashicorp/go-multierror
“https://golang.org/pkg/errors/#ls

https://github.com/pkg/errors
https://github.com/hashicorp/go-multierror
https://golang.org/pkg/errors/#Is
https://github.com/pkg/errors
https://github.com/hashicorp/go-multierror
https://golang.org/pkg/errors/#Is

Special database column
types/values

Depending on the go field definition, or the SQL database column type, there can be some complex
differences between one or the other.

The standard library already provides several such types, to handle a database column definition
where a field may contain a NULL value:

« NullBool
 NullFloat64
« NullInt32

o Nulllnt64

« NullString
e NullTime

If you need to differentiate between a NULL and empty value, using these types is a more practical
and less error-prone way how to approach the problem. The jmoiron/sqlx package provides a few
additional types:

« BitBool
 GzippedText
« JSONText

o NullJSONText

These custom types are examples of how a complex encoding can be used in order to provide a value
for a database column. You should resort to these whenever needed.

Both MySQL and Postgres have support for complex JSON types. Personally I think that they are
taking things a bit too far, because storing JSON as column values is usually an indicator of bad
practices, but I understand that modifying database schema is prohibitive in many cases, and a lot
of older, still functioning databases, don’t have support for JSON column types. Using the JSONText
types is a valid approach to JSON storage in a relational database.

	Table of Contents
	Introduction
	About me
	Who is this book for?
	How should I study it?

	Requirements
	Linux and Docker

	Introduction
	Standard library
	Connecting to our databases
	Context and database drivers
	Querying the database (standard library)
	Exec
	Query

	Querying the database (jmoiron/sqlx)
	The difference between Select and Get
	Special database column types/values

