

[image: Go With Databases]

 Go With Databases

 Tit Petric

 This book is for sale at http://leanpub.com/go-with-databases

 This version was published on 2020-12-28

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2020 Tit Petric

 Table of Contents

 	
 Introduction

 	
 About me

 	
 Who is this book for?

 	
 How should I study it?

 	
 Requirements

 	
 Linux and Docker

 	
 Introduction

 	
 Standard library

 	
 Connecting to our databases

 	
 Context and database drivers

 	
 Querying the database (standard library)

 	
 Exec

 	
 Query

 	
 Querying the database (jmoiron/sqlx)

 	
 The difference between Select and Get

 	
 Special database column types/values

 Guide

 	
 Begin Reading

Introduction

About me

I’m passionate about API development, good practices, performance optimizations
and educating people to strive for quality. I have about two decades of
experience writing and optimizing software, and often solve real problems
in various programming languages, Go being my favorite.

You might know some of my work from:

 	Author of API Foundations in Go,

 	Author of 12 Factor Applications with Docker and Go,

 	Author of Advent of Go Microservices,

 	Blog author on scene-si.org

Professionally I specialize in writing APIs in the social/media industry
and for various content management products. Due to the public exposure
of such APIs, it’s performance characteristics are of paramount
importance. I’m a solid MySQL DBA with experience on other databases as
well.

Who is this book for?

This book is for people who want to familiarize themselves with working
with databases from Go. We will cover connecting to databases, issuing
queries, transactions and other common usage patterns.

The aim of the book is to provide SQL database-specific examples,
demonstrate best practices and common patterns when connecting and
querying the database. We will also look at other NoSQL databases.

In the book, I will cover these subjects:

 	Introduction

 	Standard library

 	Connecting to our databases

 	go mod init example.com/go-with-databases

 	go run main.go

 	Context and database drivers

 	Querying the database (standard library)

 	Querying the database (jmoiron/sqlx)

 	go get github.com/jmoiron/sqlx@master

 	The difference between Select and Get

 	Special database column types/values

 	Query placeholders

 	Setting up integration tests

 	Connecting to the database

 	Querying the database

 	Transactions

 	Modelling database schema

 	SQL database compatibility

 	ElasticSearch

 	Redis

 	MongoDB

 	Dgraph

How should I study it?

Just go through the book from the start to finish. If possible, try to do
the exercises yourself not by copy pasting but by actually writing the code
and snippets in the book, tailored to how you would lay out your project.

The work in individual chapters builds on what was done in the previous chapter.
The examples are part of a step by step, chapter by chapter process.

Be sure to follow the Requirements section as you’re working with the book.

Requirements

This is a book which gives you hands on instruction on working with
various databases. We will be using a modern stack of software that is
requires to complete all the exercises.

Linux and Docker

The book relies extensively on docker to provide us both the ability to
run integration tests, as well as to run the various databases which we
will be working with.

 	Go 1.14+ (latest stable)

 	Docker (a recent version),

 	Drone CI,

 	Various shell utilities and programs (awk, bash, sed, find, ls, make,…)

Please refer to the official docker installation instructions
on how to install a recent docker version, or install it from your package manager.

Own hardware

The recommended configuration if you have your own hardware is:

 	2 CPU core, x86/amd64, 64bit,

 	2GB ram,

 	128GB disk (SSD)

The minimal configuration known to mostly work is about half that, but you might find yourself
in a tight place as soon as your usage goes up. If you’re just tying out docker, a simple
virtual machine might be good enough for you, if you’re not running Linux on your laptop already.

Cloud quick-start

If having your own hardware is a bit of a buzzkill, welcome to the world of the cloud. You can
literally set up your own virtual server on Digital Ocean within minutes.
You can use this DigitalOcean referral link
to get a $10 credit, while also helping me take some zeros of my hosting bills.

After signing up, creating a Linux instance with a running Docker engine is simple, and only takes a few
clicks. There’s this nice green button on the top header of the page, where it says “Create Droplet”. Click it,
and on the page it opens, navigate to “One-click apps” where you choose a “Docker” from the list.

 [image: Choose Docker from "One-click apps"]
 Choose Docker from “One-click apps”

Running docker can be disk-usage intensive. Some docker images may “weigh” up to or more than 1 GB.
I would definitely advise choosing an instance with at least 30GB of disk space, which is a bargain
for $10 a month, but you will have to keep an eye out for disk usage. It’s been known to fill up.

 [image: Choose a reasonable disk size]
 Choose a reasonable disk size

Aside for some additional options on the page, like chosing a region where your droplet will be running in,
there’s only a big green “Create” button on the bottom of the page, which will set up everything you need.

Introduction

In this book, we’ll take a look at how to work with SQL databases. We
will start with the standard library extend this knowledge with sqlx. The
book aims to give you the knowledge in a database-agnostic way, but the
main examples will be tailored towards MySQL and Postgres.

Standard library

When dealing with SQL databases from go, the
database/sql will be our starting
point. The package provides a rudimentary API for connecting to and
working with SQL databases.

To actually connect to a database, we will need to import a “driver”, a
package that implements the communication protocol for a given database.
There are a range of packages listed on the SQL Driver Wiki,
but we will use the following few:

 	SQLite: modernc.org/sqlite

 	Postgres: github.com/lib/pq

 	MySQL: github.com/go-sql-driver/mysql

All the drivers I’ve chosen here are “Pure Go” drivers, meaning you can
build your application with CGO_ENABLED=0 in order to produce static,
portable binaries.

You can use multiple drivers at the same time.

Connecting to our databases

First, create a go.mod package for your project:

1 # go mod init example.com/go-with-databases

This is a required step, so we can rely on go run and go build to
pull any required packages we use. In our main.go file, let’s import
all the SQL drivers and the database/sql package.

 1 package main
 2
 3 import (
 4 "context"
 5 "database/sql"
 6
 7 _ "github.com/go-sql-driver/mysql"
 8 _ "github.com/lib/pq"
 9 _ "modernc.org/sqlite"
10
11 "github.com/apex/log"
12)

We are importing the drivers using _ before the package name, so the
import itself just runs the init() function from the driver, which
registers it to make it available for sql.Open.

We will test the SQLite database first, as it doesn’t require a running
database service. We can open up the SQLite :memory: database, which
will not persist between runs.

 1 func start(ctx context.Context) error {
 2 // create db client
 3 db, err := sql.Open("sqlite", ":memory:")
 4 if err != nil {
 5 return err
 6 }
 7
 8 // open a db connection
 9 _, err = db.Conn(ctx)
10 if err != nil {
11 return err
12 }
13
14 return nil
15 }

And finally, our main() function where we create a global context, and
invoke our start function that uses the database.

1 func main() {
2 ctx := context.Background()
3 if err := start(ctx); err != nil {
4 log.WithError(err).Fatal("failed")
5 }
6 log.Info("success")
7 }

Finally, we can run our connection test:

1 # go run main.go
2 2020/12/25 13:01:23 info success

Context and database drivers

When dealing with databases, or with Go in general, it’s extremely
important that we use context.Context; The reason isn’t only for
cancellation, but also for application performance monitoring.

Application performance monitoring uses the context to create and
propagate a transaction, for example, a REST API HTTP request. Each
database query we will execute will be registered as a “span”, so you can
see which queries have been issued in your web service API request, and
how long that query took, along with other diagnostics and performance
metrics. The context value is used to bring this data together.

With Elastic APM there are a number of
database drivers provided. The database drivers are implemented by
wrapping the original database driver and adding the APM instrumentation
code around each query.

The updated list of drivers to use with APM tracing:

 	go.elastic.co/apm/module/apmsql/mysql

 	go.elastic.co/apm/module/apmsql/pq

Elastic APM doesn’t provide the same SQLite driver, but we can wrap
the driver ourselves. Create a db/sqlite folder with sqlite.go:

 1 package sqlite
 2
 3 import (
 4 "strings"
 5
 6 "go.elastic.co/apm/module/apmsql"
 7 "modernc.org/sqlite"
 8)
 9
10 func init() {
11 apmsql.Register("sqlite", &sqlite.Driver{}, apmsql.WithDSNParser(ParseDSN))
12 }
13
14 // ParseDSN parses the sqlite datasource name.
15 func ParseDSN(name string) apmsql.DSNInfo {
16 if pos := strings.IndexRune(name, '?'); pos >= 0 {
17 name = name[:pos]
18 }
19 return apmsql.DSNInfo{
20 Database: name,
21 }
22 }

This is the same basic implementation as the wrappers for mysql and
postgres drivers. Since we already started by implementing some of our
project structures, let’s create db/mysql containing mysql.go:

1 package mysql
2
3 import (
4 _ "github.com/go-sql-driver/mysql"
5)

And db/pq with pq.go:

1 package pq
2
3 import (
4 _ "github.com/lib/pq"
5)

We can now update the main imports to use our locally defined drivers:

1 _ "example.com/go-with-databases/db/mysql"
2 _ "example.com/go-with-databases/db/pq"
3 _ "example.com/go-with-databases/db/sqlite"

Querying the database (standard library)

The functions for querying the database can be split into three distinct functions:

 	
ExecContext - for running queries that insert or modify data or schema,

 	
QueryContext - for SELECT queries returning multiple rows,

 	
QueryRowContext for SELECT queries returning 1 row at most,

You can use them from either an sql.DB or an sql.Conn (DB.Conn()
returns sql.Conn). The difference between Query and QueryRow is that
the destination is either a slice of rows, or a single row struct.

Exec

Using ExecContext to create a testing table if it doesn’t exist:

1 // create a table
2 if _, err := conn.ExecContext(ctx, "create table if not exists testing (id int PRIM\
3 ARY KEY)"); err != nil {
4 return err
5 }

The sql.Result returned by Exec/ExecContext satisfies the following functions:

 	LastInsertId() (int64, error)

 	RowsAffected() (int64, error)

The result of these functions varies across databases, but it generally
tells you how many rows have been affected by the SQL query, and what the
last inserted ID was. The last inserted ID is a reference to typical
database sequence or auto_increment columns, where the actual value is
generated by the database at INSERT time.

In practice it’s rare that these functions are used - the table primary
keys might be an uint64 type, or often some form of a string (UUID),
and for what it’s worth, the affected rows information also isn’t very
useful in day-to-day work with SQL databases.

Query

Let’s produce a list of tables in our database. For SQLite, that query is
as follows:

1 rows, err := conn.QueryContext(ctx, "select name from sqlite_master where type='tabl\
2 e' order by name")
3 if err != nil {
4 return err
5 }

The QueryContext function returns an sql.Rows which we can iterate over
with the function Next, scan individual rows with Scan, and finally
check if any error was encountered from iterating over the rows:

 1 var dbNames []string
 2 for rows.Next() {
 3 var dbName string
 4 if err := rows.Scan(&dbName); err != nil {
 5 return err
 6 }
 7 dbNames = append(dbNames, dbName)
 8 }
 9 // check errors from iterating over rows
10 if err := rows.Err(); err != nil {
11 return err
12 }

This is also where the difficulty of using the standard library
database/sql package becomes really apparent. Even with this simple
example of reading very primitive database structures, we:

 	don’t have buffered reads providing result counts, rows is a database cursor,

 	scanning needs to be aware of column count (typical query for SQL is select * from table ...),

 	we don’t have scanning to complex types like map, slice or struct to scan the whole row

It’s because of this reason, that people usually resort to
jmoiron/sqlx that adds on general
purpose extensions over the database/sql API. From here on out, we
will use this package to access and query our databases.

Querying the database (jmoiron/sqlx)

Using sqlx means we have a “drop-in” replacement for the database/sql
import, with an extended API that is not available in the standard
library. We can choose to alias the import to sql, or, preferrably,
let’s rename sql.Open to sqlx.Open and the rest of the code will
continue to function without any required changes.

Of couse, sqlx adds new APIs that should be used as a replacement to
Query/QueryRow functions:

 	GetContext(ctx context.Context, dest interface{}, query string, args …interface{}) error

 	SelectContext(ctx context.Context, dest interface{}, query string, args …interface{}) error

The original Query functions have actually been extended to
QueryxContext and QueryRowxContext. These now return
sqlx.Rows/sqlx.Row, which have three utility functions: MapScan,
StructScan and SliceScan. These improve on the database/sql
functionality where just a simple Scan() was provided. They allow
reading rows from the database and filling out your own provided
structures, maps or slices.

I’d suggest you forget that Query* functions exist. By default you
should opt into using SelectContext, or GetContext where you require
a returned row. Particularly using the cursor-backed Query functions
should be encouraged only when a large dataset it read from the database,
and processed row by row (e.g. map/reduce jobs). This is because it isn’t
practical to buffer the results in memory for such workloads.

Like Query -> Queryx “rename”, we must also use Connx(ctx) instead of
Conn() so we can use the Get and Select functions from the sqlx.Conn
object. Rename db.Conn(to db.Connx(and you’re good to continue.

Connx() requires updating jmoiron/sqlx to a newer version than is
available at the time of writing. In your project (where go.mod lives),
issue the following command to update it:

1 # go get github.com/jmoiron/sqlx@master

Our code for listing the databases becomes:

1 var dbNames []string
2 if err := conn.SelectContext(ctx, &dbNames, "select name from sqlite_master where ty\
3 pe='table' order by name"); err != nil {
4 return err
5 }

Even this simple example is already significantly shorter than the
standard library usage example. The database results are scanned into a
slice of strings, but working with structs is similarly simple. Like
encoding/json, we can rely on field tags to specify which column will
be scanned.

1 type table struct {
2 Name string `db:"name"`
3 }
4 var dbNamesStruct []table
5 if err := conn.SelectContext(ctx, &dbNamesStruct, "select name from sqlite_master wh\
6 ere type='table' order by name"); err != nil {
7 return err
8 }

The difference between Select and Get

The Select APIs are there to fetch multiple rows, while the Get API is
there to fetch a single row. Similarly, Query is there to fetch multiple
rows, and QueryRow is there to fetch a single row. The Get() and
QueryRow() APIs return a particular error,
sql.ErrNoRows if no rows
are returned.

1 var ErrNoRows = errors.New("sql: no rows in result set")

If you really think about it - in every case where you would use Get(),
you’d need to remap this error into one of your own, which you can
document and handle in your application, especially if you’re writing a
HTTP API service which basically just returns whatever error occured. Or
if you handle empty values, you need to swallow it with a condition
similar to this one:

1 if err := svc.db.GetContext(ctx, &group, query, groupID); err != nil && !errors.Is(e\
2 rr, sql.ErrNoRows) {

Perhaps you should have been using Select in the first place if all
you’re doing is just throwing away ErrNoRows. This is one of such
snippets from a piece of production code:

1 if err := svc.db.SelectContext(ctx, &result, query, groupID); err != nil {
2 return nil, err
3 }
4 if len(result) == 0 {
5 return nil, errors.New("no such group")
6 }
7 return result[0], nil

The example is readable, nil-pointer safe, and has the ability to return
your own error type to ease debugging. When fetching multiple rows, you
can have one liner utility functions like this one:

1 queryMessageIDs := func(query string, args []interface{}) ([]int64, error) {
2 result := []int64{}
3 return result, svc.db.SelectContext(ctx, &result, query, args...)
4 }

With GetContext we would leak the ErrNoRows error value. If a single API
call is composed using multiple similar queries, you’ll have a hard time
knowing where the error came from.

There are additional ways to approach this problem:

 	you could resort to github.com/pkg/errors Wrap() function to
add more context for such errors,

 	you could use github.com/hashicorp/go-multierror to
append your own error value and have the ability to use errors.Is
on both sql.ErrNoRows and your own sentinel error.

Of course, just being aware that this particular error case must be
handled, maybe you’ll listen to my advice, and just avoid the scenario
where the error is expected to occur, instead of buying into it and then
masking it out. Or to put it differently - if you tolerate empty rows,
don’t fix this issue by clearing the expected error, fix this issue by
creating the error on an unexpected value (zero rows).

Special database column types/values

Depending on the go field definition, or the SQL database column type,
there can be some complex differences between one or the other.

The standard library already provides several such types, to handle a
database column definition where a field may contain a NULL value:

 	NullBool

 	NullFloat64

 	NullInt32

 	NullInt64

 	NullString

 	NullTime

If you need to differentiate between a NULL and empty value, using these
types is a more practical and less error-prone way how to approach the
problem. The jmoiron/sqlx package provides a few additional types:

 	BitBool

 	GzippedText

 	JSONText

 	NullJSONText

These custom types are examples of how a complex encoding can be used in
order to provide a value for a database column. You should resort to
these whenever needed.

Both MySQL and Postgres have support for complex JSON types. Personally I
think that they are taking things a bit too far, because storing JSON as
column values is usually an indicator of bad practices, but I understand
that modifying database schema is prohibitive in many cases, and a lot of
older, still functioning databases, don’t have support for JSON column
types. Using the JSONText types is a valid approach to JSON storage in a
relational database.

OEBPS/images/leanpub_tip.png

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub_exercise.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_information.png

OEBPS/images/intro_do_1.png
Choose an image *

Distributions ~ One-click apps ~ Snapshots

‘R .NET Core w/ PowerShell on 16.04 D Discourse on 14.04 d) Django 187 on 16.04

dj Django on 14.04 9 Docker 112.4 on 16.04 9 Docker 1125 on 16.04

@ Dokku 0.6.5 0n 14.04 @ Dokku 072 0n16.04 € Drone 0.4 0n14.04

OEBPS/images/intro_do_2.png
Choose a size

Standard High memory

$5/mo $10/mo $20/mo $40/mo $80/mo $160/mo

$0.007mour $0.015/mour $0.030/mour $0.060/our $019/mour $0.238mour

512MB/1CPU 1GB/1CPU 26B/2CPUs 4GB/2CPUs 8GB/4CPUs 16 GB/8 CPUs
20 GB SSD disk 30 GB SSD disk 40 GB SSD disk 60 GB SSD disk 80 GB SSD disk 160 GB SSD disk
1000 GB transfer 27TB transfer 3TB transfer 4TB transfer 5TB transfer 6 TB transfer

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
Go: Working with Databases

A database first development guide

Tit Petric Step by step guide for
working with databases in Go.

