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About Go Details & Tips 101


This book collects many details and provides several tips in Go programming.
The details and tips are categorized into



	syntax and semantics related

	conversions related

	comparisons related

	compiler and runtime related

	standard and user packages related




Most of the details are Go specific, but several of them are language independent.
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Syntax and Semantics Related


Zero-size types/values


The size of a struct type without non-zero-size fields is zero.
The size of an array type which length is zero or which element size is zero is also zero.
These could be proved by the following program,
which prints three zeros.


package main

import "unsafe"

type A [0][256]int

type S struct {
   x A
   y [1<<30]A
   z [1<<30]struct{}
}

type T [1<<30]S

func main() {
   var a A
   var s S
   var t T
   println(unsafe.Sizeof(a)) // 0
   println(unsafe.Sizeof(s)) // 0
   println(unsafe.Sizeof(t)) // 0
}



In Go, sizes are often denoted as int values.
That means the largest possible length of an array is MaxInt, which value is 2^63-1 on 64-bit OSes.
However, the lengths of arrays with non-zero element sizes are hard limited by the official standard Go compiler and runtime.


An example:


var x [1<<63-1]struct{}     // okay
var y [2000000000+1]byte    // compilation error
var z = make([]byte, 1<<49) // panic: runtime error: makeslice: len out of range



How zero-size values are allocated is compiler dependent


In the current official standard Go compiler implementation (version 1.21),
all local zero-size values allocated on heap share the same address.
For example, the following prints false twice, then prints true twice.


package main

var g *[0]int
var a, b [0]int

//go:noinline
func f() *[0]int {
   return new([0]int)
}

func main() {
   // x and y are allocated on stack.
   var x, y, z, w [0]int
   // Make z and w escape to heap.
   g = &z; g = &w
   println(&b == &a)  // false
   println(&x == &y)  // false
   println(&z == &w)  // true
   println(&z == f()) // true
}



Please note that, the outputs of the above program depend on specific compilers.
The outputs might be different for future official standard Go compiler versions.


Don't put a zero-size field as the final field of a struct type


In the following code, the size of the type Tz is larger than the type Ty.


package main

import "unsafe"

type Ty struct {
   _ [0]func()
   y int64
}

type Tz struct {
   z int64
   _ [0]func()
}

func main() {
   var y Ty
   var z Tz
   println(unsafe.Sizeof(y)) // 8
   println(unsafe.Sizeof(z)) // 16
}



Why the size of the type Tz is larger?


In the current standard Go runtime implementation, as long as a memory block is referenced by at least one alive pointer, that memory block will not be viewed as garbage and will not be collected.


All the fields of an addressable struct value can be taken addresses. If the size of the final field in a non-zero-size struct value is zero, then taking the address of the final field in the struct value will return an address which is beyond the allocated memory block for the struct value. The returned address may point to another allocated memory block which closely follows the one allocated for the non-zero-size struct value. As long as the returned address is stored in an alive pointer value, the other allocated memory block will not get garbage collected, which may cause memory leaking.


To avoid the kind of memory leak problems, the standard Go compiler will ensure that taking the address of the final field in a non-zero-size struct will never return an address which is beyond the allocated memory block for the struct. The standard Go compiler implements this by padding some bytes after the final zero-size field when needed.


So at least one byte is padded after the final (zero) field of the type Tz.
This is why the size of the type Tz is larger than Ty.


In fact, on 64-bit OSes, 8 bytes are padded after the final (zero) field of Tz.
To explain this, we should know two facts in the official standard compiler implementation:



	The alignment guarantee of a struct type is the largest alignment guarantee of its fields.

	A size of a type is always a multiple of the alignment guarantee of the type.




The first fact explains why the alignment guarantee of the type Tz is 8 (which is the alignment guarantee of the built-in int64 type).
The second fact explains why the size of the type Tz is 16.


Source: https://github.com/golang/go/issues/9401


Simulate for i in 0..N in some other languages


We could use a for-range loop to simulate for i in 0..N loops in some other languages,
like the following code shows.


package main

const N = 8
var n = 8

func main() {
   for i := range [N]struct{}{} {
      println(i)
   }
   for i := range [N][0]int{} {
      println(i)
   }
   for i := range make([][0]int, n) {
      println(i)
   }
}



The steps of the first two loops must be known at compile time, whereas the last one has not this requirement. But the last one allocates a little more memory (on stack, for the slice header).


Note: there is a proposal which will let Go support a simpler way to do the job, by using the following code.


for i := range N {
   ...
}



The simpler way might be supported as early as Go 1.22.


There are several ways to create a slice


For example, each slice in the following code is created in a different way.


package main

func main() {
   var s0 = make([]int, 100)
   var s1 = []int{99: 0}
   var s2 = (&[100]int{})[:]
   var s3 = new([100]int)[:]
   // 100 100 100 100
   println(len(s0), len(s1), len(s2), len(s3))
}



for i, v = range aContainer actually iterates a copy of aContainer


For example, the following program will print 123 instead of 189.


package main

func main() {
   var a = [...]int{1, 2, 3}
   for i, n := range a {
      if i == 0 {
         a[1], a[2] = 8, 9
      }
      print(n)
   }
}



If the ranged container is a large array, then the cost of making the copy will be large.


There is an exception: if the second iteration variable in a for-range is omitted or ignored,
then the ranged container will not get copied, because it is unnecessary to make the copy.
For example, in the following two loops, the array a is not copied.


func main() {
   var a = [...]int{1, 2, 3}
   for i := range a {
      print(i)
   }
   for i, _ := range a {
      print(i)
   }
}



In Go, an array owns its elements, but a slice just references its elements.
Values are copied shallowly in Go, copying a value will not copy the values referenced by it.
So copying a slice will not copy its elements.
This could be reflected in the following program.
The program prints 189.


package main

func main() {
   var s = []int{1, 2, 3}
   for i, n := range s {
      if i == 0 {
         s[1], s[2] = 8, 9
      }
      print(n)
   }
}



Array pointers could be used as arrays in several situations


For example, the following code compiles and runs okay.


package main

func main() {
   var a = [128]int{3: 789}
   var pa = &a
   // Iterate array elements without copying array.
   for i, v := range pa {
      _, _ = i, v
   }
   // Get array length and capacity.
   _, _ = len(pa), cap(pa)
   // Access array elements.
   _ = pa[3]
   pa[3] = 555
   // Derive slices from array pointers.
   var _ []int = pa[:]
}



Range over a nil array pointer will not panic if the second iteration variable is omitted or ignored.
For example, the first two loops in the following code both print 01234, but the last one causes a panic.


package main

func main() {
   var pa *[5]string

   // Prints 01234
   for i := range pa {
      print(i)
   }
   
   // Prints 01234
   for i, _ := range pa {
      print(i)
   }
   
   // Panics
   for _, v := range pa {
      _ = v
   }
}



Some function calls are evaluated at compile time


The function calls evaluated at compile time are also called as constant calls, because their evaluation results are constant values.


All calls to the unsafe.Sizeof, unsafe.Offsetof and unsafe.Alignof functions are evaluated at compile time (except that the argument types are parameter types).


If the argument of a call to the built-in len or cap function is a constant string, an array or a pointer to array, and the argument expression does not contain channel receives or non-constant function calls, then the call will be evaluated at compile time (except that the argument types are parameter types).


In evaluating constant calls to the just mentioned functions, only the types of involved arguments matter (except the arguments are constant strings), even if evaluating such an argument might cause a panic at run time.


For example, calls of the f and g functions in the following code will not panic at run time.


package main

import "unsafe"

func f() {
   var v *int64 = nil
   println(unsafe.Sizeof(*v)) // 8
}

func g() {
   var t *struct {s [][16]int} = nil
   println(len(t.s[99]))  // 16
}

func main() {
   f()
   g()
}



On the other hand, calls of the f2 and g2 functions will cause panics at run time.


func f2() {
   var v *int64 = nil
   _ = *v
}

func g2() {
   var t *struct {s [][16]int} = nil
   _ = t.s[99]
}



Please note that the built-in len function is implicitly called in a for-range loop.
Knowing this is the key to understand why the first two loops in the following code don't
cause panics, but the last one does.


package main

type T struct {
   s []*[5]int
}

func main() {
     var t *T
     for i, _ := range t.s[99] { // not panic
      print(i)
     }
     for i := range *t.s[99] { // not panic
      print(i)
     }
     for i := range t.s { // panics
      print(i)
     }
}



Yes, the implicit len(t.s[99]) and len(*t.s[99]) calls are evaluated at compile time.
Only the length (5 here) of the array value t.s[99] matters in the evaluations.
However, the implicit call len(t.s) is evaluated at run time,
so it causes a panic for t is a nil pointer.


As above mentioned, a call to the built-in len or cap function with an argument containing channel receives or non-constant function calls will not be evaluated at compile time.
For example, the following code doesn't compile.


var c chan int
var s []byte
const X = len([1]int{<-c})    // error: len(...) is not a constant
const Y = cap([1]int{len(s)}) // error: cap(...) is not a constant



In the following code, the expression imag(X) is a constant function call,
but the expression imag(y) is not (because X is a constant but y is not),
so the expression len(A{imag(y)}) will
not be evaluated at compile time, which is why the last line doesn't compile.
However, the expression len(z) doesn't contain non-constant function calls,
so it is viewed as a constant expression and evaluated at compile time.


const X = 1 + 2i
var y = 1 + 2i

type A [8]float64

var _ [len(A{imag(X)})]int    // compiles okay
var z = A{imag(y)}
var _ [len(z)]int             // compiles okay
// var _ [len(A{imag(y)})]int // not compile



The official standard Go compiler doesn't support declaring package-level arrays with sizes larger than 2GB


For example, the following program fails to compile for an error main.x: symbol too large (2000000001 bytes > 2000000000 bytes).


package main

var x [2000000000+1]byte

func main() {}



The size of a heap-allocated array may be larger than 2GB.
For example, the following program compiles okay,
because the two arrays, x and y will be both allocated on heap at run time.


package main

var y *[2000000000+1]byte

func main() {
   var x [2000000000+1]byte
   y = &x
}



Source: https://github.com/golang/go/issues/17378


Addressabilities of slice/array/map elements and struct fields


The following are some facts about the addressabilities of slice/array/map elements:



	Elements of a slice value are always addressable, whether or not the slice value is addressable.

	Elements of addressable array values are also addressable. Elements of unaddressable array values are also unaddressable.

	Elements of map values are always unaddressable.




Like arrays, fields of addressable struct values are also addressable. Fields of unaddressable struct values are also unaddressable.


For example, in the following code, the address taking operations in the function foo
are all illegal, whereas the ones in the function bar are all legal.


type T struct {
   x int
}

func foo() {
   // Literals are unaddressable.
   _ = &([10]bool{}[1]) // error
   // Map elements are unaddressable.
   var mi = map[int]int{1: 0}
   _ = &(mi[1]) // error
   var ma = map[int][10]bool{2: [10]bool{}}
   _ = &(ma[2][1]) // error
   _ = &(T{}.x)    // error
}

func bar() {
   var _ = &([]int{1: 0}[1]) // okay
   // All variables are addressable.
   var a [10]bool
   _ = &(a[1]) // okay
   var t T
   _ = &(t.x) // okay
}



It is also illegal to derive slices from unaddressable arrays.
So the following code also fails to compile.


var aSlice = [10]bool{}[:]



Composite literals are unaddressable, but they may be taken addresses


Composite literals include struct/array/slice/map value literals.
They are unaddressable. Generally speaking, unaddressable values may not be taken addresses.
However, there is an exception (a syntax sugar) made in Go: composite literals may be taken addresses.


For example, the following code compiles okay:


package main

type T struct {
   x int
}

func main() {
   // All the address taking operations are legal.
   _ = &T{}
   _ = &[8]byte{}
   _ = &[]byte{7: 0}
   _ = &map[int]bool{}
}



Please note that the precedences of the index operator [] and property selection operator .
are both higher than the address-taking operator &.
For example, both of the two lines in the following code don't compile.


	_ = &T{}.x // error
   _ = &[8]byte{}[1] // error



The reason why they fails to compile is the above code lines are equivalent to the following lines.


	_ = &(T{}.x) // error
   _ = &([8]byte{}[1]) // error



On the other hand, the following lines compile okay.


	_ = (&T{}).x // okay
   _ = (&[8]byte{})[1] // okay



One-line trick to create pointers to a non-zero bool/numeric/string values


We may take addresses of composite literals, but we may not take addresses of other literals.
For example, all the code lines shown below are illegal.


var pb = &true
var pi = &123
var pb = &"abc"



In fact, we could achieve the similar effects, in one-line but more verbose forms:


var pb = &(&[1]bool{true})[0]
var pi = &(&[1]int{9})[0]
var ps = &(&[1]string{"Go"})[0]

// The following way is less verbose 
// but a little less efficient.
var pb2 = &([]bool{true})[0]
var pi2 = &([]int{9})[0]
var ps2 = &([]string{"Go"})[0]



The trick is useful when filling a large struct value (often used as a configuration).
For example, without using this trick, the code needs to be written as:


	var x = true
   
   var cfg = mypkg.Config {
      ... // many other options
      
      // Three possible values: nil, &false, &true.
      OptionsX: &x,
      
      ...
   }



If there are many other options, the distance from the declaration of x to its use would be very far. This is not a big problem, but hurts code readability to some extend.


Instead, we could use the following code to avoid the far distance problem:


	var cfg = mypkg.Config {
      ... // many other options
      
      // Three possible values: nil, &false, &true.
      OptionsX: &(&[1]bool{true})[0],
      
      ... // more options
   }



A more verbose solution is to use an anonymous function call:


	var cfg = mypkg.Config {
      ...
      OptionsX: func() *bool {var x = true; return &x}(),
      ...
   }



Learned from this issue thread.


Unaddressable values are not modifiable, but map elements may be modified (in a whole)


The above sections have mentioned that map elements are unaddressable and can't be taken address.
Generally, unaddressable values are also unmodifiable, but map elements may be modified,
though each of the modifications must be in a whole.
That means a map element can't be modified partially.


An example:


package main

type T struct {
   x int
}

func main() {
   var mt = map[int]T{1: T{x: 2}}
   var ma = map[int][3]bool{}
   mt[1] = T{x: 3}          // okay
   ma[1] = [3]bool{0: true} // okay
   
   // The two lines are viewed as partial modifications.
   mt[1].x = 3    // error
   ma[1][0] = true// error
}



The second argument of a make call to create a map is viewed as a hint


Each non-nil map maintains a backing array to hold its entries.
The array might grow as needed along with more and more entries are put into that map.


A make call to create a map will allocate a large enough backing array for the created map
to hold the specified number of entries (without growing the backing array again).
This argument is optional, its default value is compiler dependent.


The argument could be a zero, even a non-constant negative.
For example, the following code runs okay (it doesn't panic).


	var n = -99
   var m = make(map[string]int, n)



Note that the capacity of a map is infinite in theory.


Source: https://github.com/golang/go/issues/46909


Use maps to emulate sets


Go supports built-in map types, but doesn't support set types.
We could use map types to emulate set types.
If the element type T of a set type is comparable,
then we could use the type map[T]struct{} to emulate the set type.


package main

type Set map[int]struct{}

func (s Set) Put(x int) {
   s[x] = struct{}{}
}

func (s Set) Has(x int) (r bool) {
   _, r = s[x]
   return
}

func (s Set) Remove(x int) {
   delete(s, x)
}

func main() {
   var s = make(Set)
   s.Put(2)
   s.Put(3)
   println(len(s))   // 2
   println(s.Has(3)) // true
   println(s.Has(5)) // false
   s.Remove(3)
   println(len(s))   // 1
   println(s.Has(3)) // false
}



If the element type T of a set type is incomparable,
we could use a map type map[*byte]T to emulate the set type,
though the functionalities of the set type is reduced much.


An example:


package main

type Set map[*byte]func()

func (s Set) Put(x func()) (remove func()) {
   key := new(byte)
   s[key] = x
   return func() {
      delete(s, key)
   }
}

func main() {
   var s = make(Set)
   remove1 := s.Put(func(){ println(111) })
   remove2 := s.Put(func(){ println(222) })
   for _, f := range s {
      f()
   }
   println(len(s))   // 2
   remove1()
   println(len(s))   // 1
   remove2()
   println(len(s))   // 0
}



The base type of the key (pointer) type must not be a zero-size type,
otherwise the pointers created by the new function might be not unique
(this is described in a previous section).


The set implementation is simple, but it is only useful for a few scenarios.
The trick is learned from the Tailscale project.


Map entry iteration order is randomized


Go built-in maps don't maintain entry orders. So when use a for-range loop to iterate the entries of a map, the order of the entries is randomized (at least kind-of, depends on specific compilers).


Run the following program several times, we will find the outputs might be different.


package main

func main() {
   var m = map[int]int{3:3, 1:1, 2:2}
   for k, v := range m {
      print(k, v)
   }
}



But please note that, the print functions in the fmt standard package will sort the entries (by their keys) of a map when printing the map. The same happens for the outputs of calls to thejson.Marshal function.


If a map entry is created during iterating the map, the entry may show up during the iteration or may be skipped


For example, the outputs of the following program are not fixed between different runs:


package main

var m = map[int]bool{0: true, 1: true}

func main() {
   for k, v := range m {
      m[len(m)] = true
      println(k, v)
   }
}



Some possible outputs:


$ go run main.go
0 true
1 true
2 true
3 true
$ go run main.go
0 true
1 true
$ go run main.go
0 true
1 true
2 true
$ go run main.go
1 true
2 true
3 true
4 true
5 true
6 true
7 true
0 true



Please note that, as mentioned above, the entry iteration order is randomized (kind of).


The keys in a slice or array composite literal must be constants


For examples, the following code doesn't compile:


var m, n = 1, 2
var s = []string{m: "Go"} // error
var a = [3]int{n: 999}    // error



The keys in map composite literals have no this limit.


The constant keys in a map/slice/array composite literal must not be duplicate


Go specification clearly specifies that the constant keys in a map/slice/array composite literal
must not be duplicate.


For example, all of the following code lines fail to compile for duplicate constant keys:


var m = map[string]bool{"Go": true, "Go": false} // error
var s = []string{0: "Go", 0: "C"}                // error
var a = [3]int{2: 999, 2: 555}                   // error



Please note that non-constant duplicate keys in map literals lead to unspecified behaviors.
For example, it is okay for the following code to print 1, 2 or 3.
Any of these print results doesn't violate the Go specification.


package main

var a = 1
func main() {
   m := map[int]int{1: 1, a: 2, a: 3}
   println(m[1])
}



A compile-time assertion trick by using the fact mentioned in the last section


How to assert a constant boolean expression is true (or false) at compile time?
We could make use of the fact introduced in the last section:
duplicate constant keys are not allowed in a map composite literal.


For example, the following code assures that the constant boolean expression aConstantBoolExpr must be true. If it is not true, then the code fails to compile.


var _ = map[bool]int{false: 0, aConstantBoolExpr: 1}



For example, the following code asserts the length of a constant string is 32.


const S = "abcdefghijklmnopqrstuvwxyz123456"
var _ = map[bool]int{false: 0, len(S)==32: 1}



The map element type could be an arbitrary type in this trick.


This trick works for the official standard Go compiler, but not for gccgo (as of version 10.2.1 20210110). There is a bug in gccgo which allows duplicate constant bool keys in a map composite literal. The bug is expected to fixed in gccgo 12.


Source: https://twitter.com/lukechampine/status/1026695476811390976


More compile-time assertion tricks


For the specified assertion use case shown in the last section,
there are some other ways to assert a constant integer is 32:


var _ = [1]int{len(S)-32: 0}
var _ = [1]int{}[len(S)-32]



Tricks to assert a constant N is not smaller than another constant M at compile time:


const _ uint = N-M
type _ [N-M]int



Tricks to assert a constant string is not blank:


var _ = aStringConstant[0]
const _ = 1/len(aStringConstant)



Source for the last line: https://groups.google.com/g/golang-nuts/c/w1-JQMaH7c4/m/qzBFSPImBgAJ


The return results of a function may be modified after a return statement is executed


Yes, a deferred function call could modify the named return results of its containing function.
For example, the following program prints 9 instead of 6.


package main

func triple(n int) (r int) {
   defer func() {
      r += n
   }()
   
   return n + n
}

func main() {
   println(triple(3)) // 9
}



For a deferred function call, its arguments and the called function expression are evaluated when the deferred call is registered


The evaluations are not made when the deferred call is executed later, in the function exiting phase.


For example, the following program prints 1, neither 2 nor 3.


package main

func main() {
   var f = func (x int) {
      println(x)
   }
   var n = 1
   defer f(n)
   f = func (x int) {
      println(3)
   }
   n = 2
}



The following program doesn't panic. It prints 123.


package main

func main() {
   var f = func () {
      println(123)
   }
   defer f()
   f = nil
}



The following program prints 123, then panics.


package main

func main() {
   var f func () // nil
   defer f()
   println(123)
   f = func () {
   }
}



Method receiver arguments are also evaluated at the same time as other arguments


So the receiver argument of a deferred method call is also evaluated when the deferred call is registered.
In a method call chain v.M1().M2(), the method call v.M1() is the receiver argument of the M2 method call, so the call v.M1() will be evaluated (a.k.a. executed) when the deferred call defer v.M1().M2() is registered.


For example, the following program prints 132.


package main

type T struct{}

func (t T) M(n int) T {
   print(n)
   return t
}

func main() {
   var t T
   defer t.M(1).M(2)
   t.M(3)
}



The following example is more natural.


import "sync"

type Counter struct{
   mu sync.Mutex
   n int
}

func (c *Counter) Lock() *Counter  {
   c.mu.Lock()
   return c
}

func (c *Counter) Unlock() *Counter  {
   c.mu.Unlock()
   return c
}

func (c *Counter) Add(x int) {
   defer c.Lock().Unlock()
   c.n += x
}



Similar usages include defer gl.PushMatrix().PopMatrix() and defer tag.Start(...).End().


If the left operand of a non-constant bit-shift expression is untyped, then its type is determined as the assumed type of the expression


If either operand of a bit-shift expression is not constant, then the bit-shift expression is a non-constant expression, which result will be evaluated at run time.


Currently (Go 1.21), untyped integers must be constants. So if a bit-shift expression is non-constant and its left operand is untyped, then its right operand must be a non-constant.


The following program prints 002. The reason is the first two bit-shift expressions are both non-constant, so the respective untyped integer 1s in them are deduced as values of the assume type, byte, so each 1 << n is evaluated as 0 at run time (because 256 overflows byte values).


On the other hand, the third bit-shift expression is a constant expression, so it is evaluated at compile time. In fact the whole expression (1 << N) / 128 is evaluated at compile time, as 2.


package main

func main() {
   var n = 8
   var x byte = 1 << n / 128
   print(x) // 0
   var y = byte(1 << n / 128)
   print(y) // 0
   
   const N = 8
   var z byte = 1 << N / 128
   println(z) // 2
}



Why an untyped integer in such situations is not deduced as a value of its default type int?
This could be explained by using the following example.
If the untyped 1 in the following code is deduced as an int value instead of an int64 value, then the bit-shift operation will return different results between 32-bit architectures (0) and 64-bit architectures (0x100000000), which may produce some silent bugs hard to detect in time.


var n = 32
var y = int64(1 << n)



The following bit-shift expressions all fail to compile, because the first three untyped integer 1s are both deduced as values of the assume type float64 and the last one is deduced as a value of the assume type string, whereas floating-point and string values may not be shifted.


var n = 6
var x float64 = 1 << n  // error
var y = float64(1 << n) // error
var z = 1 << n + 1.0    // error
var w = string(1 << n)  // error



The following program prints 0 1:


package main

var n = 8
// The assumed type is byte.
var x = 1 << n >> n + byte(0)
// The assumed type is int16.
var y = 1 << n >> n + int16(0)

func main() {
   println(x, y) // 0 1
}



Without an assumed type, the untyped left operand will be deduced as its default type.
So the untyped 1 in the following code is deduced as an int value.
The variable x is initialized as 0 on 32-bit architectures (overflows), but as 0x100000000 on 64-bit architectures, which should not be a surprise to a qualified Go programmer.


var n = 32
var x = 1 << n // an int value



The following code fails to compile, because the untyped 1.0 in the following code is deduced as float64 value.


var n = 6
var y = 1.0 << n // error



aConstString[i] and aConstString[i:j] are non-constants even if aConstString, i and j are all constants


For example, the following two lines both fail to compile:


const G = "Go"[0]       // error
const Go = "Golang"[:2] // error



Whereas the following two lines compile okay:


var G = "Go"[0]
var Go = "Golang"[:2]



This is a design fault in Go 1.0. It is pity that, for backwards compatibility reasons, the fact is hard to change.
Currently, the following program prints 4 0, because the expression len(s[:]) is not a constant, whereas the expression len(s) is.


package main

const s = "Go101.org" // len(s) == 9
var a byte = 1 << len(s) / 128
var b byte = 1 << len(s[:]) / 128

func main() {
   println(a, b) // 4 0
}



Source: https://github.com/golang/go/issues/28591


The result of a conversion to a parameter type is always viewed as a non-constant


For example, in the following code, the expression len(string(S)) is a constant,
but the expression len(T(S)) is a non-constant.


package main

type MyString string
const S MyString = "Go101.org" // len(S) == 9

func foo() byte {
   var _ [len(string(S))]int // compiles okay
   return 1 << len(string(S)) >> len(string(S))
}

func bar[T string]() byte {
   // var _ [len(T(S))]int // not compile
   return 1 << len(T(S)) >> len(T(S))
}

func main() {
   println(foo()) // 1
   println(bar()) // 0
}



Another type parameters related detail: if the type of the argument of a len or cap function call is a parameter type, then the call is always viewed as a non-constant.
For example, the following program prints  1 0.


package main

const S = "Go"

func ord(x [8]int) byte {
   return 1 << len(x) >> len(x)
}

func gen[T [8]int](x T) byte {
   return 1 << len(x) >> len(x)
}

func main() {
   var x [8]int
   println(ord(x), gen(x)) // 1 0
}



The same situation happens for unsafe.Alignof, unsafe.Offsetof and unsafe.Sizeof functions.
For example, the following program prints 1 0:


package main

import "unsafe"

func f(x int64) byte {
   return 1 << unsafe.Sizeof(x) >> unsafe.Sizeof(x)
}

func g[T int64](x T) byte {
   return 1 << unsafe.Sizeof(x) >> unsafe.Sizeof(x)
}

func main() {
   var n int64 = 0
   println(f(n), g(n)) // 1 0
}



The type deduction rule for a binary operation which operands are both untyped


The Go specification states:



If the untyped operands of a binary operation (other than a shift) are of different kinds, the result is of the operand's kind that appears later in this list: integer, rune, floating-point, complex.




And the default type of an integer untyped value is int, the default type of a rune untyped value is rune (a.k.a. int32), the default type of a floating-point untyped value is float64, and the default type of a complex untyped value is complex128.


By the rules, the following program prints int32 (aliased by rune), then complex128, and float64 in the end.


package main

import "fmt"

const A = 'A' // 65
const B = 66
const C = 67 + 0i
const One = B - A // 1
const Two = C - A // 2
const Three = B / 22.0

func main() {
   fmt.Printf("%T\n", One)   // int32
   fmt.Printf("%T\n", Two)   // complex128
   fmt.Printf("%T\n", Three) // float64
}



The following program prints 01 (on 64-bit architectures),
because the kind of the untyped constant R is viewed as rune (int32).


package main

import "fmt"

const A = '\x61' // a rune literal
const B = 0x62   // default type is int
const R = B - A  // default type is rune

var n = 32

func main() {
   if R == 1 {
      fmt.Print(R << n >> n) // 0
      fmt.Print(1 << n >> n) // 1
   }
}



The following program prints 2 3.


package main

import "fmt"

const X = 3 / 2 * 2.
const Y = 3 / 2. * 2
var x, y int = X, Y

func main() {
   fmt.Println(x, y) // 2 3
}



An untyped constant integer may overflow its default type


The two constant declarations in the following code are legal.


const N = 1 << 200      // default type: int
const R = 'a' + 1 << 31 // default type: rune



Typed values may not overflows their respective types.
The following two variable and two constant declarations are all illegal.


const N int = 1 << 200
const R rune = 'a' + 1 << 31
var x = 1 << 200
var y = 'a' + 1 << 31



Whereas these following lines are all legal:


const N int = 1 << 200 >> 199
const R rune = 'a' + 1 << 31 - 'b'
var x = 1 << 200 >> 199
var y = 'a' + 1 << 31 - 'b'



The placement of the default branch (if it exists) in a switch code block could be arbitrary


For example, the three switch code blocks in the following code are all legal.


func foo(n int) {
   switch n {
   case 0: println("n == 0")
   case 1: println("n == 1")
   default: println("n >= 2")
   }

   switch n {
   default: println("n >= 2")
   case 0: println("n == 0")
   case 1: println("n == 1")
   }

   switch n {
   case 0: println("n == 0")
   default: println("n >= 2")
   case 1: println("n == 1")
   }
}



The same is for the default branch in a select code block.


The constant case expressions in a switch code block may be duplicate or not, depending on compilers


Currently, the official standard Go compiler and gccgo compiler both disallow duplicate constant integer case expressions. For example, the following code fails to compile.


	switch 123 {
   case 123:
   case 123: // error: duplicate case
   }



Both compilers allow duplicate constant boolean case expressions. The following code compilers okay.


	switch false {
   case false:
   case false: // okay
   }



The official standard Go compiler disallows duplicate constant string case expressions, but gccgo allows.


The switch expression is optional and its default value is a typed value true of the built-in type bool


For example, the following program prints True.


package main

var x, y = false, true

func main() {
   switch {
   case x: println("False")
   case y: println("True")
   }
}



But the following code fails to compile, because MyBool values, x and y, may not compare with bool values.


package main

type MyBool bool
var x, y MyBool = false, true

func main() {
   switch {
   case x: // error
   case y: // error
   }
}



To make it compile, the switch code block should be modified to


	switch MyBool(true) {
   case x: // okay
   case y: // okay
   }



or


	switch {
   case x == true: // okay
   case y == true: // okay
   }



Go compilers will automatically insert some semicolons in code


Let's view a small program:


package main

func foo() bool {
   return false
}

func main() {
   switch foo()
   {
   case false: println("False")
   case true: println("True")
   }
}



What is the output of the above program? Let's think for a while.


~


~


~


False? No, it prints True.
Surprised? Doesn't the function foo always return false?


Yes, the function foo always returns false, but this is unrelated here.


Compilers will automatically insert some semicolons for the above code as:


package main

func foo() bool {
   return false;
};

func main() {
   switch foo();
   {
   case false: println("False");
   case true: println("True");
   };
};



Now, it clearly shows that the switch expression (true) is omitted.
The switch block is actually equivalent to:


	switch foo(); true
   {
   case false: println("False");
   case true: println("True");
   };



That is why the program prints True.


About detailed semicolon insertion rules, please read this article.


What are exactly byte slices (and rune slices)?


There are two interpretations of what are byte slices:



	slice types which underlying types are []byte are called byte slice types.

	slice types which element type's underlying type is byte are called byte slice types.




The second interpretation is wider than the first one.
For example, in the following code, type Tx and Ty both fit the second interpretation, but only type Tx fits the first interpretation.


type Tx []byte
type MyByte byte
type Ty []MyByte



Before version 1.18, the official standard Go compiler (gc) sometimes adopted the first interpretation, whereas the gccgo compiler has adopted the second interpretation for a long time.
In Go, a string may be converted to a byte slice, and vice versa. Whether or not the following code compiles okay depends on which interpretation is adopted.
So the bar function in the following code failed to compile by using gc version 1.17-.


type Tx []byte
type MyByte byte
type Ty []MyByte

var x Tx
var y Ty
var s = "Go"

func foo() {
   x = Tx(s)
   y = Ty(s)
   s = string(x)
}

func bar() {
   s = string(y) // error (by gc v1.17-)
}



Since version 1.18, gc also has fully adpoted the second interpretation, so the bar function compiles okay by using gc version 1.18+.


The Go specification formally adopted the second interpretation since Go 1.19


Please note that, when validating the arguments passed to calls of built-in copy and append functions,
the first interpretation should be adopted.
The g function in the following code compiles okay with gccgo (a bug), but fails to compile with gc (the current implementation).


type Tx []byte
type MyByte byte
type Ty []MyByte

var x = make(Tx, 2)
var y = make(Ty, 2)
var s = "Go"

func f() {
   copy(x, s)
   _ = append(x, s...)
}

func g() {
   copy(y, s)          // error (for gc)
   _ = append(y, s...) // error (for gc)
}



The situations are the similar for rune slices.


Iteration variables are shared between loop steps


In the following code, the two functions, loop1 and loop2, are not equivalent to each other. In loop1, the variable v is shared between the three steps, whereas in loop2, each step declares one new variable v. That is why all of the three elements of the result returned by loop1 have the same value.


package main

func loop1(s []int) []*int {
   r := make([]*int, len(s))
   for i, v := range s {
      r[i] = &v
   }
   return r
}

func loop2(s []int) []*int {
   r := make([]*int, len(s))
   for i := range s {
      v := s[i]
      r[i] = &v
   }
   return r
}

func printAll(s []*int) {
   for i := range s {
      print(*s[i])
   }
   println()
}

func main() {
   var s1 = []int{1, 2, 3}
   printAll( loop1(s1) ) // 333
   
   var s2 = []int{1, 2, 3}
   printAll( loop2(s2) ) // 123
}



For the same reason, the first loop in the following code prints 333, whereas the second one prints 321.


package main

func main() {
   var s = []int{1, 2, 3}
   
   // Prints 333
   for _, v := range s {
      defer func() {
         print(v)
      }()
   }
   
   // Prints 321
   for _, v := range s {
      v := v
      defer func() {
         print(v)
      }()
   }
}



Note: there is a proposal which will change the scopes of loop iteration variables.
So, as early as Go 1.22, iteration variables declared in for-range loops will become per-loop-step scoped.


int, false, nil, etc. are not keywords


They are predeclared identifiers, which may be shadowed by custom declared identifiers.


For example, the following weird program compiles and runs okay. It prints false and 123.


package main

var true = false
const byte = 123
type nil interface{}
func len(nil) int {
   return byte
}

func main() {
   var s = []bool{true, true, true}
   println(s[0])   // false
   println(len(s)) // 123
}



Selector colliding


Type embedding is an important feature in Go. Through type embedding, a type could obtain the fields and methods of other types without much effort.


Sometimes, not all of the fields and methods of an embedded type are obtained by the embedding type. The reason is promoted selectors (including fields and methods) might collide with each other.


For example, in the following code, the type B embeds one more type (T2) than the type A. However it obtains none fields and methods. The reason is B.T1.m and B.T2.m collide with each other so that neither gets promoted. The same situation is for B.T1.n and B.T2.n.


package main

type T1 struct { m bool; n int }
type T2 struct { n int }
func (T2) m() {}

type A struct { T1 }
type B struct { T1; T2 }

func main() {
   var a A
   _ = a.m
   _ = a.n
   var b B
   _ = b.m // error: ambiguous selector
   _ = b.n // error: ambiguous selector
}



Please note that, the import path of the containing package of a non-exported selector (either field or method) is an intrinsic property of the selector. Two unexported selectors with the same name from two different packages will not collide with each other.


For example, in the above example, if the two types T1 and T2 are declared in two different packages, then the type B will obtain 3 fields and one method.


Each method corresponds a function which first parameter is the receiver parameter of that method


For example, in the following code,



	the type T has one method M1 which corresponds a function T.M1.

	the type *T has two methods: M1 and M2, which correspond functions (*T).M1 and (*T).M2, respectively.




package main

type T struct {
   X int
}

func (t T) M1() int {
   return t.X
}

func (t *T) M2() int {
   return t.X
}

func main() {
   var t = T{X: 3}
   _ = T.M1(t)
   _ = (*T).M1(&t)
   _ = (*T).M2(&t)
}



Normalization of method selectors


Go allows simplified forms of some selectors.


For example, in the following program, t1.M1 is a simplified form of (*t1).M1,
and t2.M2 is a simplified form of (&t2).M2. At compile time, the compiler will normalize the simplified forms to their original respective full forms.


The following program prints 0 and 9, because the modification to t1.X has no effects on the evaluation result of *t1 during evaluating (*t1).M1.


package main

type T struct {
   X int
}

func (t T) M1() int {
   return t.X
}

func (t *T) M2() int {
   return t.X
}

func main() {
   var t1 = new(T)
   var f1 = t1.M1 // <=> (*t1).M1
   t1.X = 9
   println(f1()) // 0 
   
   var t2 T
   var f2 = t2.M2 // <=> (&t2).M2
   t2.X = 9
   println(f2()) // 9
}



In the following code, the function foo runs okay, but the function bar will produce a panic. The reason is s.M is a simplified form of (*s.T).M. At compile time, the compiler will normalize the simplified form to it original full form. At runtime, if s.T is nil, then the evaluation of *s.T will cause a panic. The two modifications to s.T have no effects on the evaluation result of *s.T.


package main

type T struct {
   X int
}

func (t T) M() int {
   return t.X
}

type S struct {
   *T
}

func foo() {
   var s = S{T: new(T)}
   var f = s.M // <=> (*s.T).M
   s.T = nil
   f()
}

func bar() {
   var s S
   var f = s.M // panic
   s.T = new(T)
   f()
}

func main() {
   foo()
   bar()
}



Please note that, interface method values and method values got through reflection
will be expanded to the promoted method values with a delay.
For example, in the following program, the modification to s.T.X
has effects on the return results of the method values got through reflection and interface ways.


package main

import "reflect"

type T struct {
   X int
}

func (t T) M() int {
   return t.X
}

type S struct {
   *T
}

func main() {
   var s = S{T: new(T)}
   var f = s.M // <=> (*s.T).M
   var g = reflect.ValueOf(&s).Elem().
      MethodByName("M").
      Interface().(func() int)
   var h = interface{M() int}(s).M
   s.T.X = 3
   println( f() ) // 0
   println( g() ) // 3
   println( h() ) // 3
}



Source: https://github.com/golang/go/issues/47863


Note, there was a bug in the official standard Go compiler before version 1.20.
The older compilers de-virtualize some interface
methods at compile time but the de-virtualizations are made too far
to be correct. For example, the following program should print 2 2,
but it prints 1 2 if it is complied with the official standard Go compiler v1.19.


package main

type I interface{ M() }

type T struct{
   x int
}

func (t T) M() {
   println(t.x)
}

func main() {
   var t = &T{x: 1}
   var i I = t
   
   var f = i.M
   defer f() // 2 (correct)

   // i.M is de-virtualized as (*t).M at compile time (bug).
   defer i.M() // 1 (wrong)
   
   t.x = 2
}



The bug was fixed in Go toolchain 1.20.


Source: https://github.com/golang/go/issues/52072


The famous := trap


Let's view a simple program.


package main

import "fmt"
import "strconv"

func parseInt(s string) (int, error) {
   n, err := strconv.Atoi(s)
   if err != nil {
      fmt.Println("err:", err)
      b, err := strconv.ParseBool(s)
      if err != nil {
         return 0, err
      }
      fmt.Println("err:", err)

      if b {
         n = 123
      }
   }
   return n, err
}

func main() {
   fmt.Println(parseInt("true"))
}



We know that the call strconv.Atoi(s) will return a non-nil error,
but the call strconv.ParseBool(s) will return a nil error.
Then, will the call parseInt("true") return a nil error, too?
The answer is it will return a non-nil error.
The outputs of the program is shown below:


err: strconv.Atoi: parsing "true": invalid syntax
err: <nil>
123 strconv.Atoi: parsing "true": invalid syntax



Wait, isn't the err variable is re-declared in the inner code block and its value has been modified to nil before the parseInt("true") returns? This is a confusion many new Go programmers, including me, ever encountered when they just started using Go.


The reason why the call parseInt("true") returns a non-nil error is a variable declared in an inner code block is never a re-declaration of a variable declared in an outer code block. Here, the inner declared err variable is set (initialized) as nil.
It is not a re-declaration (a.k.a. modification) of the outer declared err variable. The outer one is set (initialized) as a non-nil value, then it is never changed later.


There is the voice to remove the ... := ... re-declaration syntax form from Go.
But it looks this is a too big change for Go. Personally, I think explicitly marking the re-declared variables out is a more feasible solution.


The official Go compiler checks some potential bugs caused by the := trap but not all of them


The official Go compiler doesn't report the bug shown in the last section, but it will report some other similar ones.
For example, many people expect the following program compiles okay, but it doesn't.


package main

import "fmt"

func g() (int, error) {
   return 0, fmt.Errorf("not implemented")
}

func f() (err error) {
   if n, err := g(); err == nil { // line 10
      return                   // line 11
   } else {
      return fmt.Errorf("%w: %d", err, n)
   }
}

func main() {
   fmt.Println(f())
}



The official Go compiler outputs the following error messages:


./main.go:11:3: result parameter err not in scope at return
   ./main.go:10:8: inner declaration of var err error



In my honest opinion, Go compilers should not do vet jobs.


The meaning of a nil identifier depends on specific context


In Go, the zero values of many kinds of types are represented with the predeclared nil identifier, including interface types and some non-interface types (pointers, slices. maps, channels, functions).


A non-interface value could be boxed into an interface value if the type of the former implements the type of the latter. Nil non-interface values are not exceptions.


An interface value boxing nothing is a nil interface value. If it is boxing a nil non-interface value, then it doesn't box nothing, so it is not nil. For example, the following program prints two false lines (which is another popular confusion many new Go programmers ever encountered), then prints one true.


package main

// The return result boxes a nil pointer.
func box(p *int) interface{} {
   return p
}

func main() {
   // The left nil is interpreted as a nil pointer value.
   // The right nil is interpreted as a nil interface value.
   println(box(nil) == nil) // false
   var x interface{} = nil
   var y chan int = nil
   // y is converted to interface{} before comparing.
   println(x == y) // false
   
   // This nil is interpreted as a nil channel value.
   println(nil == y) // true
}



Some expression evaluation orders are unspecified in Go


In Go, when evaluating the operands of an expression, assignment, or return statement, all function calls (including method calls, and channel communication operations) are evaluated in lexical left-to-right order. The relative orders between non-function operands are unspecified. The relative order between a non-function operand and a function call is also unspecified.


For example, the following program prints two different lines (with Go toolchains before v1.20).
In the first multi-value assignment (re-declaration) statement, the expression a is evaluated after those function calls.
But in the second multi-value assignment statement (normal variable declaration), the expression a is evaluated before those function calls.
Neither is wrong. In fact, there is a third valid possibility: 3 3 6 (if the expression a is evaluated between those function calls).


(Note: since Go toolchain v1.20, the program prints two same line: 6 3 6.)


We should not write such unprofessional code in practice.


package main

var a int

func f() int {
   a++
   return a
}

func g() int {
   a *= 2
   return a
}

func main() {
   {
      a = 2
      x, y, z := a, f(), g()
      println(x, y, z) // 6 3 6
   }
   {
      a = 2
      var x, y, z = a, f(), g()
      println(x, y, z) // 2 3 6
   }
}



The following is another unprofessional example, in which the CreateT call might return a T value which x field might be 53 (gccgo version 12.2.0) or 50 (gc version 1.21).


package main

import (
   "errors"
   "fmt"
)

type T struct {
   x int
}

func validate(t *T) error {
   if t.x < 0 || t.x > 100 {
      return errors.New("T.x out if range")
   }
   t.x = t.x / 10 * 10
   return nil
}

func CreateT(v int) (T, error) {
   var t = T{x: v}
   return t, validate(&t)
}

func main() {
   var t, _ = CreateT(53)
   fmt.Println(t)
}



For the same reason, in the following program,
both the bar function and the foo function may either produce a panic or exit normally,
depending on how compilers determine the relative evaluation order of the f and g() sub-expressions when evaluating f(g()).
The official standard Go compiler (up to v1.21) adopts different relative orders in the foo and bar functions,
so that the foo function will exit normally and the bar function will produce a panic at run time.


package main

func foo() {
   f := func(int) {}
   g := func() int {
      f = nil
      return 1
   }
   defer f(g())
}

func bar() {
   f := func(int) {}
   g := func() int {
      f = nil
      return 1
   }
   f(g())
}

func main() {
   foo()
   bar()
}



Go supports loop types


For examples, the following type declarations are all legal.


type S []S
type M map[int]M
type F func(F) F
type Ch chan Ch
type P *P



The following is an example which uses the last declared type.
It compiles and runs both okay.


package main

func main() {
   type P *P
   var pp = new(P)
   *pp = pp
   _ = ************pp
}



The following program also compiles and runs both okay.


package main

type F func() F

func f() F {
  return f
}

func main() {
  f()()()()()()()()()
}



Note, the print functions in the standard fmt package don't work well for loop container types. For example, the following program crashes (stack overflow):


package main

import "fmt"

func main() {
   type S []S
   var s = make(S, 1)
   s[0] = s
   _ = s[0][0][0][0][0][0][0]
   fmt.Println(s) // panic
}



Almost any code element could be declared as the blank identifier _


For example, the following code is legal.


const _ = 123
var _ = false
type _ string
func _() {
_: // a label
   return
}
type T struct{
   _ []int
}
func (T) _() {}



Package name and interface method names may not be blank identifiers.


Copy slice elements without using the built-in copy function


Since Go 1.17, there is a new way to copy slice elements if the number of the copied elements is known at coding time. The following example shows this way.


package main

const N = 128
var x = []int{N-1: 789}

func main() {
   var y = make([]int, N)
   *(*[N]int)(y) = *(*[N]int)(x) // <=> copy(y, x)
   println(y[N-1]) // 789
}



But please note that there was a bug
when copying array/slices with overlapping elements in this way in some Go toolchain releases
(1.17 - 1.17.13, 1.18 - 1.18.5, and 1.19).
The bug has already been fixed since Go toolchain v1.19.1.


A detail in const specification auto-complete


What should the following program print?


package main

const X = 1

func main() {
   const (
      X = X + 1
      Y
   )
   println(X, Y)
}



No nonsense words, this program prints 2 3 when using the official standard Go compiler 1.18+ versions, but it prints 2 2 when using the official standard Go compiler 1.17- versions. In other words, the official standard Go compiler 1.17- versions interpret the auto-completion rule incorrectly (the global X is used in the complete form of the Y specification, but the local X should be used instead).


Source: https://github.com/golang/go/issues/49157





Conversions Related


If the underlying type of a named type is an unnamed type, then values of one of the named types may be implicitly converted to the underlying type, and vice versa


In the following code, the underlying types of the two declared named types (Bytes and MyBytes) are both []byte.
Values of one of the two named types may be converted to the other one, but the conversions must be explicit.
However, values of two named types may be implicitly converted to their underlying type, []byte, and vice versa. Because their underlying type is an unnamed type.


package main

type Bytes []byte
type MyBytes []byte

func f(bs []byte) {}
func g(bs Bytes) {}
func h(bs MyBytes) {}

func main() {
   var x []byte
   var y Bytes
   var z MyBytes
   
   f(y)
   f(z)
   
   g(x)
   g(z) // error: cannot use z (type MyBytes) as Bytes
   g(Bytes(z))
   
   h(x)
   h(y) // error: cannot use y (type Bytes) as MyBytes
   h(MyBytes(y))
}



Values of two different named pointer types may be indirectly converted to each other's type if the base types of the two types shares the same underlying type


Generally, the values of two pointer types may not be converted to each other if the underlying types of the two pointer types are different.
For example, the 4 conversions in the following code are all illegal.


package main

type MyInt int
type IntPtr *int     // underlying type is *int
type MyIntPtr *MyInt // underlying type is *MyInt

func main() {
   var x IntPtr
   var y MyIntPtr
   x = IntPtr(y)       // error
   y = MyIntPtr(x)     // error
   var _ = (*int)(y)   // error
   var _ = (*MyInt)(x) // error
}



Although the above 4 conversions may not achieved directly, they may be achieved indirectly. This benefits from the fact that the following conversions are legal.


package main

type MyInt int

func main() {
   var x *int
   var y *MyInt
   x = (*int)(y)   // okay
   y = (*MyInt)(x) // okay
}



The reason why the above two conversions are legal is values of two unnamed pointers types may be converted to each other's type if the base types of the two types shares the same underlying type. In the above example, the base types of the types of x and y are int and MyInt, which share the same underlying type int, so x and y may be converted to each other's type.


Benefiting from the just mentioned fact, values of IntPtr and MyIntPtr may be also converted to each other's type, though such conversions must be indirectly, as shown in the following code.


package main 

type MyInt int
type IntPtr *int
type MyIntPtr *MyInt

func main() {
   var x IntPtr
   var y MyIntPtr
   x = IntPtr((*int)((*MyInt)(y)))     // okay
   y = MyIntPtr(((*MyInt))((*int)(x))) // okay
   var _ = (*int)((*MyInt)(y))         // okay
   var _ = (*MyInt)((*int)(x))         // okay
}



Values of a named bidirectional channel type may not be converted to a named unidirectional channel type with the same element type directly, but may indirectly


An example:


package main

func main() {
   type C chan string
   type Cw chan<- string
   type Cr <-chan string

   var c C
   var w Cw
   var r Cr
   
   // The following two lines fail to compile.
   // w = Cw(c) // error
   // r = Cr(c) // error
   
   // This line compiles okay.
   _ = (chan string)(c)
   
   // The two lines also compile okay.
   w = Cw((chan string)(c)) // indirectly
   r = Cr((chan string)(c)) // indirectly
   
   _, _ = w, r
}



Such conversions are rarely used in practice, but knowing more is not a bad thing, right?


The capacity of the result of a conversion from string to byte slice is unspecified


The implementation of the addPrefixes function in the following code is unprofessional.


package main

func addPrefixes(prefixStr string, bss [][]byte) {
   var prefix = []byte(prefixStr)
   println(len(prefix), cap(prefix))
   for i, bs := range bss {
      bss[i] = append(prefix, bs...)
   }
}

func main() {
   var bss = [][]byte {
      []byte("Java"),
      []byte("C++"),
      []byte("Go"),
      []byte("C"),
   }
   addPrefixes("> ", bss)
   println(string(bss[0])) // > Co+a
   println(string(bss[1])) // > Co+
   println(string(bss[2])) // > Co
   println(string(bss[3])) // > C
}



The outputs of the above program (with the official standard Go compiler 1.21 versions):


2 8
> Co+a
> Co+
> Co
> C



The outputs are not what we expect. Why?
Because the capacity of the result of the conversion []byte("> ") is 8 (which is actually compiler dependent).
In the end, all of the elements of bss share some leading bytes with the conversion result.
Each append call overwrite some bytes in the conversion result.


To fix the problem, we should clip the conversion result, so that
the elements of bss doesn't share bytes.
The fixed addPrefixes function implementation:


func addPrefixes(prefixStr string, bss [][]byte) {
   var prefix = []byte(prefixStr)
   prefix = prefix[:len(prefix):len(prefix)] // clip it
   for i, bs := range bss {
      bss[i] = append(prefix, bs...)
   }
}



Then the outputs will become as expected:


> Java
> C++
> Go
> C






Comparisons Related


Compare two slices which lengths are equal and known at coding time


In Go, slices are incomparable. But, since Go 1.17, if the elements of two slices are comparable and the lengths of the two slices are equal and known at coding time, then we could use the following way to compare the two slices.


package main

func main() {
   var x = []int{1, 2, 3, 4, 5}
   var y = []int{1, 2, 3, 4, 5}
   var z = []int{1, 2, 3, 4, 9}

   // The following two lines fail to compile.
   // _ = x == y
   // _ = x == z

   // The two lines compile okay (since Go 1.17).
   println(*(*[5]int)(x) == *(*[5]int)(y)) // true
   println(*(*[5]int)(x) == *(*[5]int)(z)) // false
   
   // Since Go 1.20, the above two lines can even
   // be shortened as:
   println([5]int(x) == [5]int(y)) // true
   println([5]int(x) == [5]int(z)) // false
}



More ways to compare byte slices


The above introduced way works for slices with any comparable element types.
It certainly could be used to compare byte slices (which lengths are equal and known at coding time). Meanwhile, there are two other ways to compare byte slices x and y, even if the lengths of the two byte slices are not known at compile time.



	The first way: bytes.Compare(x, y) == 0.

	The second way: string(x) == string(y). Due to an optimization made by the official standard Go compiler, no underlying bytes will be duplicated in this way. In fact, the bytes.Equal function uses this way to do the comparison.




The two ways have no requirements on the lengths of the two operand byte slices.


Comparing two interface values produces a panic if the dynamic type of the two operands are identical and the identical type is an incomparable type


For example, the following program prints three false, then panics.


package main

func main() {
   var x interface{} = []int{1, 2}
   var y interface{} = map[string]int{}
   var z interface{} = func() {}
   
   // The lines all print false.
   println(x == y)
   println(x == z)
   println(x == nil)
   
   // Each of these line could produce a panic.
   println(x == x)
   println(y == y)
   println(z == z)
}



How to make a struct type incomparable


It is easy, just put an incomparable field in the struct type.
For example, the following struct types are all incomparable.


type T1 struct {
   _ func()
   x int
}

type T2 struct {
   _ []int
   y bool
}

type T3 struct {
   _ map[int]bool
   z string
}



Lest the _ fields waste memory, their types should be zero-size types.
For example, the size of the type Ty is smaller than the type Tx in the following code.


package main

import "unsafe"

type Tx struct {
   _ func()
   x int64
}

type Ty struct {
   _ [0]func()
   y int64
}

func main() {
   var x Tx
   var y Ty
   println(unsafe.Sizeof(x)) // 16
   println(unsafe.Sizeof(y)) // 8
}



Please try to avoid putting a zero-size field as the final field of a struct type.


Array values are compared element by element


When comparing two array values, their elements will be compared one by one.
Once two corresponding elements are found unequal, the whole comparison stops and a false result is resulted. The whole comparison might also stop for a panic produced when comparing two interfaces.


For example, the first comparison in the following code results in false, but the second one causes a panic.


package main

type T [2]interface{}

func main() {
   var a = T{1, func(){}}
   var b = T{2, func(){}}
   println(a == b) // false
   
   var c = T{2, func(){}}
   var d = T{2, func(){}}
   println(c == d) // panics
}



Struct values are compared field by field


Similarly, when comparing two struct values, their fields will be compared one by one.
Once two corresponding fields are found unequal, the whole comparison stops and a false result is resulted. The whole comparison might also stop for a panic produced in comparing two interfaces.


For example, the first comparison in the following code results in false, but the second one causes a panic.


package main

type T struct {
   x interface{}
   y interface{}
}

func main() {
   var a = T{x: 1, y: func(){}}
   var b = T{x: 2, y: func(){}}
   println(a == b) // false
   
   var c = T{x: 2, y: func(){}}
   var d = T{x: 2, y: func(){}}
   println(c == d) // panics
}



The _ fields are ignored in struct comparisons


For example, the following program prints true.


package main

type T struct {
   _ int
   x string
}

func main() {
   var x = T{123, "Go"}
   var y = T{789, "Go"}
   println(x == y) // true
}



But please note that, as shown in a previous section, if a struct type contains a _ field of
an incomparable type, then the struct type is also incomparable.


NaN != NaN, Inf == Inf


In floating-point computations, there are some cases in which the computation results might be infinities (Inf) or not-a-number (NaN). For example, in the following code, a +Inf and a NaN values are produced (yes, an Inf value times zero results in a NaN value).


Every two +Inf (or -Inf) values are equal to each other, but every two NaN values are not equal.


package main

var a = 0.0
var x = 1 / a // +Inf
var y = x * a // NaN

func main() {
   println(x, y)   // +Inf NaN
   println(x == x) // true
   println(y == y) // false
}



As NaN values are not equal to each other, it is always a vain to loop up an entry from a map by using a NaN key, which could be proved from the following code.


package main

var a = 0.0
var x = 1 / a // +Inf
var y = x * a // NaN

func main() {
   var m = map[float64]int{}
   m[y] = 123
   m[y] = 456
   m[y] = 789
   q, ok := m[y]
   println(q, ok, len(m)) // 0 false 3
}



In fact, comparing a NaN value with any value will result a false result:


package main

var a = 0.0
var y = 1 / a * a // NaN

func main() {
   println(y < y)  // false
   println(y == y) // false
   println(y > y)  // false
   
   println(y < a)  // false
   println(y == a) // false
   println(y > a)  // false
}



Before Go 1.21, there were no ways to delete a map entry which key is NaN. So putting an entry with a NaN key into a map is like putting the entry into black hole, though entries with NaN keys could be retrieved from a for-range loop:


package main

var a = 0.0
var y = 1 / a * a // NaN

func main() {
   var m = map[float64]int{}
   m[y] = 1
   m[y] = 2
   m[y] = 3
   delete(m, y)
   delete(m, y)
   delete(m, y)
   for k, v := range m {
      println(k, v)
   }
}



The (possible) outputs of the above program:


NaN 3
NaN 1
NaN 2



Note: Go 1.21 introduced a clear built-in function,
to clear all entries in a map, including those with keys as NaN. A demo:


package main

var a = 0.0
var y = 1 / a * a // NaN

func main() {
   var m = map[float64]int{}
   m[y] = 1
   m[y] = 2
   m[y] = 3
   
   for k := range m {
      delete(m, k)
   }
   println(len(m)) // 3
   
   clear(m)
   println(len(m)) // 0
}



How to avoid putting entries with keys containing NaN into a map


If the key type of the map is float64, then we can check whether or not
the key of an entry is NaN by calling the math.IsNaN(key) function.
If the function returns true, then we should give up putting the entry into the map.
But the way doesn't work for array and struct keys.
A universal workable way is to check the result of key != key.
If the result is true, then key must contain NaN,
so we should give up putting the entry into the map.


Some details in using the reflect.DeepEqual function


A call to the reflect.DeepEqual function always return false if the types of its two arguments are different.


When using the reflect.DeepEqual function to compare two different pointer values (of the same type), the values referenced by them are compared instead (still using the reflect.DeepEqual function to do the deeper comparison).


If both of the two arguments of a reflect.DeepEqual function call are in cyclic reference chains, then, to avoid infinite looping, the call might return true. An example:


package main

import "reflect"

type Node struct{peer *Node}

func main() {
   var x, y, z Node
   x.peer = &x // form a cyclic reference chain
   y.peer = &z // form a cyclic reference chain
   z.peer = &y
   println(reflect.DeepEqual(&x, &y)) // true
}



When using the reflect.DeepEqual function to compare two function values, the return result is true only if the two functions share the identical type and they are both nil. For example, the following program prints true then false.


package main

import "reflect"

func main() {
   var x, y func()
   println(reflect.DeepEqual(x, y)) // true
   var z = func() {}
   println(reflect.DeepEqual(z, z)) // false
}



When using the reflect.DeepEqual function to compare two slice values (of the same type and with the same length), generally, their elements will be compared one by one. However, if their corresponding first elements have the same address, then true is returned without comparing their elements, even if their elements are self-unequal values (for example, non-nil functions and NaNs).


For example, the following program also prints true then false.


package main

import "reflect"

func main() {
   var f = func() {}
   var a = [2]func(){f, f}
   var x = a[:]
   var y = a[:]
   var z = []func(){f, f}
   println(reflect.DeepEqual(x, y)) // true
   println(reflect.DeepEqual(x, z)) // false
}



Similarly, if two map values are referencing the same underlying hashtable, the result is also true if they are compared with the reflect.DeepEqual function, even if the hashtable contains self-unequal values.


package main

import (
   "math"
   "reflect"
)

func main() {
   nan := math.NaN()
   println(reflect.DeepEqual(nan, nan)) // false

   m1 := map[int]float64{1: nan}
   m2 := map[int]float64{1: nan}
   m3 := m1

   println(reflect.DeepEqual(m1, m1)) // true
   println(reflect.DeepEqual(m1, m2)) // false
   println(reflect.DeepEqual(m3, m3)) // true
}



The return results of the bytes.Equal and reflect.DeepEqual functions might be different


The reflect.DeepEqual function thinks a nil slice and a blank slice are not equal.
However, the bytes.Equal function thinks a nil byte slice and a blank byte slice are equal.
This could be proved from the following program.


package main

import (
   "bytes"
   "reflect"
)

func main() {
   var x = []byte{}
   var y []byte
   println(bytes.Equal(x, y))       // true
   println(reflect.DeepEqual(x, y)) // false
}



A type alias embedding bug


Go 1.9 introduced custom type alias declarations.
However, a bug had also been introduced since then and up to Go toolchain 1.17.
It was fixed in Go toolchain 1.18.


The bug could be exposed by the following program.
It should print false, but it printed true
(before Go toolchain 1.18).


package main

type Int = int

type A = struct{ int }
type B = struct{ Int }

func main() {
   var x, y interface{} = A{}, B{}
   println(x == y) // true (with Go toolchain 1.17-)
}



Source: https://github.com/golang/go/issues/24721





Compiler and Runtime Related


In the official standard compiler implementation, the backing array of a map never shrinks


The official standard runtime maintains a backing array for a map to hold the entries of the map. With more and more entries are put into the map, the backing array will grow and grow. But it will never shrink. That means if a map even contained millions of entries, then after these entries are all deleted from the map, the backing array is still capable of holding millions of entries without growing its backing array.


Then how to release the memory occupied by the backing array of a map? Just set the map value as nil, or create a new map and assign the new map to it.


64-bit word alignment problem


64-bit atomic operations on a 64-bit integer require the address of the 64-bit integer must be 8-byte aligned in memory. On 64-bit architectures, 64-bit integers are always 8-byte aligned, so the requirement is always satisfied on 64-bit architectures. This is not always true on 32-bit architectures.


The docs of the sync/atomic standard package states that a qualified Go compiler should make sure that the first (64-bit) word (think it as an int64 or uint64 integer) in a (declared) variable or in an allocated struct, array, or slice can be relied upon to be 64-bit aligned. What does the word allocated mean? We can think an allocated value as a declared variable, a value returned the built-in make function, or the value referenced by a pointer returned by the built-in new function.


In the following example, the first AddX method call is safe, because t.x is always 8-byte aligned, even on 32-bit architectures.
However, the second AddX method call is not safe on 32-bit architectures. It might cause a panic, because s.t.x is not guaranteed to be 8-byte aligned.


package main

import "sync/atomic"

type T struct {
   x uint64
}

func (t *T) AddX(dx uint64) {
   atomic.AddUint64(&t.x, dx)
}

type S struct {
   y int32
   t T
}

func main() {
   var t T
   t.AddX(1) // safe, even on 32-bit architectures
   
   var s S
   s.t.AddX(1) // might panic on 32-bit architectures
}



One fact we should be aware of is that the official Go compilers (gc and gccgo) guarantee that 32-bit and 64-bit words are always 4-byte aligned on any architectures. In fact, the ever implementation of the sync.WaitGroup type relied upon this fact.


The sync.WaitGroup type needs two fields. Normally, it should be defined as


type WaitGroup struct {
   state uint64
   sema  uint32
}



Here, the state field needs to participate 64-bit atomic operations.
However, on 32-bit architectures, its address is not guaranteed to be 8-byte aligned.
So instead, the sync.WaitGroup type was ever defined as


type WaitGroup struct {
   state1 [3]uint32
}



At runtime, the state1 field of a sync.WaitGroup value might 4-byte aligned or 8-byte aligned. If it is 8-byte aligned, the combination of the first two elements of the state1 field is viewed as the original state field and the third element is viewed as the original sema field; otherwise, the combination of the last two elements of the state1 field is viewed as the original state field and the first element is viewed as the original sema field.


Note, since Go 1.19, two types, sync/atomic.Int64 and sync/atomic.Uint64, have been supported.
The alignments of values of the two types are always 8-byte aligned,
on either 64-bit or 32-bit architectures.
So since Go 1.20, the declaration of the sync.WaitGroup type is declared as


type WaitGroup struct {
   state atomic.Uint64
   sema  uint32
}



, to avoid checking alignments of WaitGroup values at runtime.


How to guarantee a struct field to be always 8-byte aligned


Just use the trick shown below:


import "sync/atomic"

type T struct {
   ...
   _ [0]atomic.Int64
   X TypeOfX
   ...
}



By declaring an anonymous field of type [0]atomic.Int64 closely before
the X field declaration, the X field of any T value is guaranteed
to be 8-byte aligned. The reason is compilers must guarantee that
the anonymous field of a T value is 8-byte aligned, even if the field size is zero;
consequently, the X field of the T value is also guaranteed
to be 8-byte aligned, whatever the type of the X field is.


Let go vet detect not-recommended value copies


The official go vet command will warn on copying values of types which values should not be copied, such as the types in the sync standard package. We call such types as noCopy types here.


Currently, there is no special syntax for this purpose. The go vet command determines whether or not a type T is a noCopy type by checking whether or not the pointer type *T has a Lock() method and an Unlock() method.


For example, The go vet command will report a warning for the assignment in the following code.


package main

type T struct{}

func (*T) Lock() {}
func (*T) Unlock() {}

func main() {
   var t T
   _ = t // warning: assignment copies lock value to _
}



A struct type with a noCopy field (embedding or not) or an array type with noCopy elements is also a noCopy type.
For example:


package main

type T struct{}

func (*T) Lock() {}
func (*T) Unlock() {}

type S struct {
   t T
}

func main() {
   var s S
   _ = s // warning: assignment copies lock value to _
   
   var a [8]T
   _ = a // warning: assignment copies lock value to _
}



Values of more types in the standard packages should not be copied


Besides the types in the sync standard package, values of some other types in the standard packages should not be copied too, such as bytes.Buffer and strings.Builder.


Generally, if a value is referencing some other values, and these referenced values should not be referenced by multiple values, then the referencing value should not be copied.


Some zero values might contain non-zero bytes in memory


An example:


package main

import (
   "fmt"
   "reflect"
   u "unsafe"
)

var s = "abc"[0:0]

func main() {
   header := (*reflect.StringHeader)(u.Pointer(&s))
   if s == "" {
      fmt.Printf("%#v\n", *header)
   }
}



The reflect.StringHeader type represents the internal structure of the string type.


Run the program, the outputs are like:


reflect.StringHeader{Data:0x4957ec, Len:0}



From the outputs, we could find that the Data field of the zero string s are non-zero, which doesn't prevent the runtime from thinking the string s is a zero value. In fact, the zero length is sufficient to indicate the string s is a blank string.


The address of a value might change at run time


In the official standard Go runtime implementation, the stack of a goroutine will grow or shrink as needed at run time. The address of a value allocated on a stack will change when the stack size changes.


For example, the following program very probably prints two different addresses.


package main

//go:noinline
func f(i int) byte {
   var a [1 << 12]byte
   return a[i]
}

func main() {
   var x int
   println(&x)
   f(100) // make stack grow
   println(&x)
}



The official standard Go runtime behaves badly when system memory is exhausted


When system memory is exhausted and memory swapping is involved, the Go runtime often doesn't crash program but exhausts almost all CPU resources so that the OS UI is often totally not responsive.
An hard restart is often needed to escape such awkward situations.


For example, sometimes, during the phase of debugging a program, if we accidentally write a piece of code like the following shows, then the OS might hang when running a program which uses the piece of code.


(Warning: please save your works if you would like to run this program on you machine!)


package main

var s = "1234567890"

func condition() bool {
   return true // simplified for demo purpose
}

func main() {
   for condition() {
      s += s
      println(len(s))
   }
}



It is a good idea to limit the number of loop steps to a reasonable number in debugging.


func main() {
   for range [10]struct{}{} {
      if condition() {
         break
      }
      
      s += s
      println(len(s))
   }
}



Currently, a runtime.Goexit call may cancel the already happened panics


For example, the following program will exit normally when it runs.
If the lien of the runtime.Goexit call is removed, then the program will crash.


package main

import "runtime"

func worker(c chan int) {
   defer close(c)
   defer runtime.Goexit() // will cancel panic "bye"
   
   // ... do work load
   
   panic("bye")
}

func main() {
   c := make(chan int)
   go worker(c)
   <-c
}



Source: https://github.com/golang/go/issues/35378


There might be multiple panics coexisting in a goroutine


Two coexisting panics must stay at two different function call depths,
and a newer panic must stay at a deeper function call.
When a deeper panic spreads to a shallower function call and there is another panic staying there,
then the deeper panic will replace the shallower panic.


For example, for the following program, at a time when it is running,
there will be two active panics coexisting. At a later time, the second panic
replaces the first one and is recovered finally.


package main

func main() {
   defer func() {
      println("Panic", recover().(int), "is recovered.")
   }()
   defer println("Now, panic 2 replaces panic 1.")
   defer func() {
      defer println("Now, 2 panics coexist.")
      panic(2)
   }()
   defer println("Only one panic exists now.")
   panic(1)
}



The outputs of the above program:


Only one panic exists now.
Now, 2 panics coexist.
Now, panic 2 replaces panic 1.
Panic 2 is recovered.



The current Go specification (version 1.20) doesn't explain the panic/recover mechanism very well


By the current specification, the line marked as "no-op" in the following code should
recover the panic 1, but it doesn't actually. The reason is only the latest produced panic
in a goroutine is able to be recovered.


package main

import "fmt"

func main() {
   defer func() {
      fmt.Print(recover())
   }()
   defer func() {
      defer func() {
         fmt.Print(recover())
      }()
      defer recover() // no-op
      panic(2)
   }()
   panic(1)
}



The above program prints 21. If we change the "no-op" line to a non-deferred call,
then 2<nil> will be printed instead.


Please read the article explain panic/recover mechanism in detail
for best explanations for Go panic/recover mechanism.





Standard and User Packages Related


Use %w format verb in fmt.Errorf calls to build error chains


When using the fmt.Errorf function to wrap a deeper error,
it is recommended to use the %w verb instead of %s,
to avoid losing information of the wrapped error.


For example, in the following code, the Bar implementation
is preferred to the Foo implementation, because the caller
could judge whether or not the returned error is caused
by the specified error (here it is ErrNotImpl).


package main

import (
   "errors"
   "fmt"
)

var ErrNotImpl = errors.New("not implemented yet")

func doSomething() error {
   return ErrNotImpl
}

func Foo() error {
   if err := doSomething(); err != nil {
      return fmt.Errorf("Foo: %s", err)
   }
   return nil
}

func Bar() error {
   if err := doSomething(); err != nil {
      return fmt.Errorf("Bar: %w", err)
   }
   return nil
}

func main() {
   println(errors.Is(Foo(), ErrNotImpl)) // false
   println(errors.Is(Bar(), ErrNotImpl)) // true
}



In user code, we should try to use the errors.Is function instead of using direct comparisons to judge the cause of an error.


Small differences between fmt.Println, fmt.Print and print functions


The fmt.Println function (and println) will output a space between any two adjacent arguments.
The fmt.Print function will only do this between two adjacent arguments which are both not strings.
The print function never output spaces between arguments.


This could be proved by the following code.


package main

import "fmt"

func main() {
   // 123 789 abc xyz
   println(123, 789, "abc", "xyz")
   // 123 789 abc xyz
   fmt.Println(123, 789, "abc", "xyz")
   // 123 789abcxyz
   fmt.Print(123, 789, "abc", "xyz")
   println()
   // 123789abcxyz
   print(123, 789, "abc", "xyz")
   println()
}



The reflect.Type/Value.NumMethod methods will count unexported methods for interfaces


For non-interface types and values, the reflect.Type.NumMethod and reflect.Value.NumMethod methods don't count unexported methods. But for interface types and values, they count.


This could be proved by the following code.


package main

import "reflect"

type I interface {
   m()
   M()
}

type T struct {}
func (T) m() {}
func (T) M() {}

func main() {
   var t T
   var i I = t
   var vt = reflect.ValueOf(t)
   var vi = reflect.ValueOf(&i).Elem()
   println(vt.NumMethod()) // 1
   println(vi.NumMethod()) // 2
}



Values of two slices may not be converted to each other's type if the element types of the two slices are different, but there is a hole to this rule


For example, the two conversions in the following code are both illegal.


package main

type MyByte byte
var x []MyByte
var y []byte

func main() {
   x = []MyByte(y) // error
   y = []byte(x)   // error
}



There is a hole to this rule. If the underlying type of the element type of a slice is byte (such as the MyByte type shown in the above example), then we could use the reflect.Value.Bytes methods to convert the (byte) slice to []byte. For example:


package main

import "reflect"

type MyByte byte
Value.Bytes
func main() {
   var x = make([]MyByte, 128)
   var y []byte
   y = reflect.ValueOf(x).Bytes()
   y[127] = 123
   println(x[127]) // 123
}



Source: https://github.com/golang/go/issues/24746


Don't misuse the TrimLeft function as TrimPrefix in the strings and bytes standard packages


The second parameter of the TrimLeft function is a cutset, any leading Unicode code points in the first parameter contained in the cutset will be removed, which is quite different from the TrimPrefix function.


The following program shows the differences.


package main

import "strings"

func main() {
   var hw = "DoDoDo!"
   println(strings.TrimLeft(hw, "Do"))   // !
   println(strings.TrimPrefix(hw, "Do")) // DoDo!
}



The same situation is for the TrimRight and TrimSuffix functions.


The json.Unmarshal function accepts case-insensitive object key matches


For example, the following program prints bar, instead of foo.


package main

import (
   "encoding/json"
   "fmt"
)

type T struct {
   HTML string `json:"HTML"`
}

var s = `{"HTML": "foo", "html": "bar"}`

func main() {
   var t T
   if err := json.Unmarshal([]byte(s), &t); err != nil {
      fmt.Println(err)
      return
   }
   fmt.Println(t.HTML) // bar
}



The docs of the json.Unmarshal function states "preferring an exact match but also accepting a case-insensitive match". So personally, I think this is a bug in the json.Unmarshal function
implementation, but the Go core team don't think so.


The spaces in struct tag key-value pairs will not be trimmed


For example, the following program will print {" foo":""}.
The misspelt omitempty option for the Foo field is different from omitempty,
and the tag key of the Foo field is " foo", instead of "foo".


package main

import (
   "encoding/json"
   "fmt"
)

type T struct {
   Foo string `json:" foo, omitempty"`
   Bar string `json:"bar,omitempty"`
}

func main() {
   var t T
   var s, _ = json.Marshal(t)
   fmt.Printf("%s", s) // {" foo":""}
}



How to try to run a custom init function as early as possible?


Assume the module of the project is x.y/app,
add an x.y/app/internal/init package, and put an init function in the init package,
then import the init package in the main package.
The init package will be loaded after some core packages (such as runtime standard package),
but before other packages.


How to resolve cyclic package dependency problem?


Go doesn't support cyclic package dependencies.
If package foo imports package bar, then package bar may not import package foo.


Sometimes, we might encounter the situation that two packages do need to use the exported identifiers from each other. How should we handle such situations? There are two ways to solve this problem.


One way is to merge the two packages into one bigger package, so that the cyclic dependency problem will go.
This way will always work.


The other way is to split the two packages into more smaller ones to remove the cyclic dependency relations.
Sometimes, this is impossible to achieve.


Deferred calls will not be executed after the os.Exit function is called


For example, the deferred call cleanup() in the following code is totally useless.


func run() {
   defer cleanup()
   
   if err := doSomething(); err != nil {
      log.Println(err)
      os.Exit(1)
   }
   
   os.Exit(0)
}



Please note that the log.Fatal function calls the os.Exit function,
so deferred calls will also not get executed after the log.Fatal function is called.


How to let the main function return an exit code?


No way to do this. Go syntax doesn't support this.
However, we can use the following way to simulate
a main function which returns an exit code.


import "os"

func main() {
    os.Exit(realMain())
}

func realMain() int {
    ... // do something, return non-zero on errors

    return 0
}



Try not to use exported variables


We should try to avoid exporting variables (in particular error values) from the packages we are maintaining.
The standard packages contain many exported error variable values,
which is actually a bad practice. Personally, I recommend to use
the following way to declare error values.


package foo

type errType int

const (
   ErrA errType = iota
   ErrB
   ErrC
   errCount
)

func (e errType) Error() string {
   if e < 0 || e >= errCount {
      panic("invalid error number")
   }
   return errDescriptions[e]
}

var _ = [1]int{}[len(errDescriptions) - int(errCount)]

var errDescriptions = [...]string {
   ErrA: "error A",
   ErrB: "error B",
   ErrC: "error C",
}



By using this way, users of the foo package couldn't modify the declared error values.


Export final error variables


Values of zero-size types are actually final values,
because a zero-size type has only one possible value.
By making use of this fact, we may declare exported error variables
of zero-size error types to prevent the error variables being modified.


An example:


var (
   ErrA typeErrA
   ErrB typeErrB
   ErrC typeErrC
)

type (
   typeErrA struct {
      _ [0]*typeErrA
   }

   typeErrB struct {
      _ [0]*typeErrB
   }

   typeErrC struct {
      _ [0]*typeErrC
   }
)

func (typeErrA) Error() string {
   return "error A"
}

func (typeErrB) Error() string {
   return "error B"
}

func (typeErrC) Error() string {
   return "error C"
}
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