

Globally-Distributed Applications with
Microsoft Azure
For developers and architects

Christos Sakellarios

This book is for sale at
http://leanpub.com/globally-distributed-applications-with-microsoft-azure

This version was published on 2019-04-04

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2018 - 2019 Christos Sakellarios

http://leanpub.com/globally-distributed-applications-with-microsoft-azure
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Performance Optimization . 1

Code Overview . 4

Primary Resource Group . 15

Performance Optimization

In the following sections you are going to create your first Parent Resource Group in West

Europe. A parent resource group contains the Azure Search, Redis Cache and Service Bus

services for a specific Azure region and acts as the second level in the resource groups
hierarchy.

Parent Resource Groups

Before creating and start adding resources in the parent resource group, recall the naming
convention you should follow.

CONTENTS 2

Parent Resource Group - Resources Names

Create Parent Resource Group
In Azure Portal click the Resource groups menu item on the left panel and next
click the Add button. Fill the form as follow:

1. Resource group name: <Primary-Name>-westeurope
2. Subscription: <Select-Your-Subscription>
3. Resource group location: West Europe

Since this is a parent resource group, you name it by the name you selected for primary
resource group plus ‘-‘ and the region with no spaces and lowercase.

CONTENTS 3

Create Parent Resource Group

Code Overview
At this point you should have deployed the following Azure Resources:

• Azure Storage Account (previous part)
• CDN Profile (previous part)
• Azure Cosmos DB Account (previous part)
• Azure Search Service
• Redis Cache
• Service Bus

Before running again the Online.Store application verify that during this part, you have set
the following properties in the configuration files:

• appsettings.json
1. SearchService:Name: <parent-resource-group>-search
2. RedisCache:Endpoint: <parent-resource-group>-rediscache
3. ServiceBus:Namespace: <parent-resource-group>-servicebus
4. ServiceBus:Queue: “orders”

• secrets.json
1. SearchService:ApiKey: <search-service-primary-key>
2. RedisCache:Key: <redis-cache-primary-key>
3. ServiceBus:WriteAccessKeyName: “Write”
4. ServiceBus:WriteAccessKey: <write-access-policy-key>

In the example images you have seen so far, planetscalestore has been used as the Primary
Resource Group name. Here is how the resources looks like in the parent resource group

created in West Europe.

Code Overview 5

Parent Resource Group Resources

Now that you have set the Search Servicewhen you run Online.Store it will automatically
bind the search engine with your Cosmos DB account. More specifically the app will
create an index named product-index with a data-source pointing the Items collection
where the product documents exist. The library project for Search Service is the On-

line.Store.AzureSearch. You can access and manage an Azure Search Service using the
Microsoft.Azure.Search NuGet package. The ISearchRepository interface has 3 methods:

public interface ISearchRepository

{

Task CreateOrUpdateDocumentDbDataSourceAsync(string dataSourceName,

string dataSourceColletion);

Task CreateOrUpdateIndexAsync<T>(string indexName, string suggesterName,

List<string> suggesterFields);

Task<List<T>> SearchAsync<T>(string searchIndex, string term,

List<string> returnFields) where T : class;

}

SearchRepository is an abstract class implementing the ISearchRepository. It also has the
properties for concrete classes such as SearchStoreRepository, to initialize clients.

https://www.nuget.org/packages/Microsoft.Azure.Search

Code Overview 6

public SearchStoreRepository(IConfiguration configuration)

{

_documentDbEndpoint = string.Format("https://{0}.documents.azure.com:443/",

configuration["DocumentDB:Endpoint"]);

_documentDbAccountKey = configuration["DocumentDB:Key"];

_documentDbDatabase = configuration["DocumentDB:DatabaseId"];

string _azureSearchServiceName = configuration["SearchService:Name"];

string _azureSearchServiceKey = configuration["SearchService:ApiKey"];

_serviceClient = new SearchServiceClient(_azureSearchServiceName,

new SearchCredentials(_azureSearchServiceKey));

}

There are 3 parts for binding a search service to a Cosmos DB collection:

1. Create the datasource
2. Create the index
3. Create the indexer

Open SearchRepository class to see the implementations for these one by one.

public async Task CreateOrUpdateDocumentDbDataSourceAsync(

string dataSourceName, string dataSourceColletion)

{

string connectionString =

string.Format("AccountEndpoint={0};AccountKey={1};Database={2}",

_documentDbEndpoint, _documentDbAccountKey, _documentDbDatabase);

DataSourceCredentials credentials =

new DataSourceCredentials(connectionString);

DataContainer container = new DataContainer(dataSourceColletion);

DataSource docDbSource =

new DataSource(dataSourceName, DataSourceType.DocumentDb,

credentials, container);

await _serviceClient.DataSources.CreateOrUpdateAsync(docDbSource);

}

CreateOrUpdateDocumentDbDataSourceAsyncmethod needs the CosmosDB connection string
to build the data source. CreateOrUpdateIndexAsyncmethod creates the index which will be
used for querying the Search Service.

Code Overview 7

public async Task CreateOrUpdateIndexAsync<T>(

string indexName, string suggesterName, \

List<string> suggesterFields)

{

List<Suggester> suggesters = new List<Suggester>();

suggesters.Add(new Suggester(suggesterName,

SuggesterSearchMode.AnalyzingInfixMatching, suggesterFields));

var definition = new Index()

{

Name = indexName,

Fields = FieldBuilder.BuildForType<T>(),

Suggesters = suggesters

};

await _serviceClient.Indexes.CreateOrUpdateAsync(definition);

}

This method is generic and can create indexes for any type of component in Cosmos DB.
Mind though that type <T> should have certain attributes from Microsoft.Azure.Search

namespace that informs the SDK how to build the index. Check ProductInfo in On-

line.Store.Core to view some of those attributes. The following table comes directly from
the official documentation for creating indexes.

Attribute Description
searchable Full-text searchable, subject to lexical analysis such as

word-breaking during indexing. If you set a searchable field to
a value like “sunny day”, internally it will be split into the
individual tokens “sunny” and “day”.

filterable Referenced in $filter queries. Filterable fields of type
Edm.String or Collection(Edm.String) do not undergo
word-breaking, so comparisons are for exact matches only. For
example, if you set such a field f to “sunny day”, $filter=f eq

'sunny' will find no matches, but $filter=f eq 'sunny day'

will.
sortable By default the system sorts results by score, but you can

configure sort based on fields in the documents. Fields of type
Collection(Edm.String) cannot be sortable.

facetable Typically used in a presentation of search results that includes
a hit count by category (for example, hotels in a specific city).
This option cannot be used with fields of type
Edm.GeographyPoint. Fields of type Edm.String that are
filterable, sortable, or facetable can be at most 32 kilobytes in
length. For details, see Create Index (REST API).

https://docs.microsoft.com/en-us/azure/search/search-create-index-portal
https://docs.microsoft.com/rest/api/searchservice/create-index

Code Overview 8

Attribute Description
key Unique identifier for documents within the index. Exactly one

field must be chosen as the key field and it must be of type
Edm.String.

retrievable Determines whether the field can be returned in a search
result. This is useful when you want to use a field (such as
profit margin) as a filter, sorting, or scoring mechanism, but do
not want the field to be visible to the end user. This attribute
must be true for key fields.

The last method is the one that creates the indexer and completes an index in Azure Service.

public async Task CreateOrUpdateIndexerAsync(string indexerName,

string dataSource, string index)

{

await _serviceClient.Indexers.CreateOrUpdateAsync(

new Indexer(indexerName, dataSource, index));

}

After running the project again, go back in the portal and verify that the index has been
created successfully. Click the Search Service resource in your parent resource group and
select Overview. You should see the product-index having indexed 6 product documents.

Product index

Click on the index and you should see the configuration have been set through code in
ProductInfo class.

https://portal.azure.com/

Code Overview 9

Product index configuration

You should be able to search for products in the app. Try searching the term sony.

Search Service results

The library project for Redis Cache is the Online.Store.RedisCahce. It uses the Caching.Redis
NuGet package to connect and access the Azure Redis Cache. The IRedisCacheRepository

interface declares methods to save items of type string or object, a generic method to get an
item and last but not least a method to remove an item from cache. Items in Cache are saved
in key-value pairs.

https://www.nuget.org/packages/Microsoft.Extensions.Caching.Redis/

Code Overview 10

public interface IRedisCacheRepository

{

Task SetStringAsync(string key, string value);

Task SetStringAsync(string key, string value, int expirationMinutes);

Task SetItemAsync(string key, object item);

Task SetItemAsync(string key, object item, int expirationMinutes);

Task<T> GetItemAsync<T>(string key);

Task RemoveAsync(string key);

}

RedisCacheRepository is the concrete class that implements the IRedisCacheRepository

interface. It uses an instance of IDistributedCache for accessing the cache. These are the
methods available in IdistributedCache interface:

public interface IDistributedCache

{

byte[] Get(string key);

Task<byte[]> GetAsync(string key, CancellationToken token

= default(CancellationToken));

void Refresh(string key);

Task RefreshAsync(string key, CancellationToken token

= default(CancellationToken));

void Remove(string key);

Task RemoveAsync(string key, CancellationToken token

= default(CancellationToken));

void Set(string key, byte[] value,

DistributedCacheEntryOptions options);

Task SetAsync(string key, byte[] value,

DistributedCacheEntryOptions options,

CancellationToken token = default(CancellationToken));

}

SetStringAsync in RedisCacheReposistory saves a string value in cache.

Code Overview 11

public async Task SetStringAsync(string key, string value, int expirationMinutes)

{

var options = new DistributedCacheEntryOptions

{

AbsoluteExpiration = DateTime.Now.AddMinutes(expirationMinutes)

};

await _distributedCache

.SetAsync(key, Encoding.UTF8.GetBytes(value), options);

}

SetItemAsync method uses internally the same method to save a serializable object.

public async Task SetItemAsync(string key, object item)

{

string json = JsonConvert.SerializeObject(item);

await SetStringAsync(key, json);

}

GetItemAsync<T> and RemoveAsync methods retrieves and removes an item from cache
respectively.

public async Task<T> GetItemAsync<T>(string key)

{

string json = await _distributedCache.GetStringAsync(key);

if (json == null)

return default(T);

return JsonConvert.DeserializeObject<T>(json);

}

public async Task RemoveAsync(string key)

{

await _distributedCache.RemoveAsync(key);

}

The configuration for Redis Cache exist in the Online.Store Startup class.

Code Overview 12

services.AddDistributedRedisCache(option =>

{

option.Configuration = string.Format(RedisCacheConnStringFormat,

Configuration["RedisCache:Endpoint"] +

".redis.cache.windows.net:6380",

Configuration["RedisCache:Key"]);

option.InstanceName = "master-";

});

The instance name will prefix all keys stored in this cache. Online.Store application uses
the cache to store cart items. Check the AddProductToCartmethod inside the StoreService
class.

// code omitted

cart = await _cacheRepository.GetItemAsync<CartDTO>("cart-" + cardId);

// code omitted

await _cacheRepository.SetItemAsync("cart-" + cardId, cart);

The cartId is a Guid generated and saved in browser’s cookie to track the cart. Run the web
app and add products to cart. Back in the portal open your Redis Cache instance and in the
main Overview blade click >_Console. Run the following command to list all cart keys stored
in the cache.

SCAN 0 COUNT 1000 MATCH *cart*

Redis Cache - List cart keys

You can use the FLUSHALL command to clear all items in the cache.

The library project for Service Bus operations is the Online.Store.ServiceBus. It uses
the Microsoft.Azure.ServiceBus NuGet package and has a simple IServiceBusRepository

interface.

https://portal.azure.com/
https://www.nuget.org/packages/Microsoft.Azure.ServiceBus/

Code Overview 13

public interface IServiceBusRepository

{

void InitQueueClient(string serviceBusAccessKeyName,

string serviceBusAccessKey, string queue);

Task SendAsync(object message);

}

ServiceBusRepository class is the concrete class that implements the interface. It uses a
instance of IQueueClient to send messages to queues. Following is the implementation for
IServiceBusRepository repository.

public void InitQueueClient(string serviceBusAccessKeyName,

string serviceBusAccessKey, string queue)

{

var connectionString =

$"Endpoint=sb://{_serviceBusNamespace}" +

$".servicebus.windows.net/;SharedAccessKeyName={serviceBusAccessKeyName};"+

$"SharedAccessKey={serviceBusAccessKey}";

_queueClient = new QueueClient(connectionString, queue);

}

public async Task SendAsync(object body)

{

var serializedBody = JsonConvert.SerializeObject(body);

var message = new Message(Encoding.UTF8.GetBytes(serializedBody));

await _queueClient.SendAsync(message);

}

Online.Store application uses Service Bus to submit orders to the orders queue you created
before. It hasn’t have to wait till the order is actually saved in database, aWeb Job will be
responsible to complete this task asynchronously. Check the ServiceBusService class inside
Online.Store.Azure.Services project.

Code Overview 14

public async Task SubmitOrderAsync(Order order)

{

_serviceBusRepository

.InitQueueClient(_configuration["ServiceBus:WriteAccessKeyName"],

_configuration["ServiceBus:WriteAccessKey"],

_configuration["ServiceBus:Queue"]);

await _serviceBusRepository.SendAsync(order);

}

At this point you cannot test service bus operations because you haven’t setup Authenti-
cation, the required Azure SQL Database for saving orders and of course theWebJob that
listens for and processes messages from the orders queue. The part that follows covers all
these and when you are done you will have a full operational website. Next you will proceed
with the Global Scale part where you will actually deploy the website at least at two Azure
Regions.

Primary Resource Group
The primary resource group is the base resource group for Online.Store application. It
contains the resources that are common for all sub-resource groups and once it is created,
it shouldn’t change often. The 4 types of resources contained in the primary resource group
are:

• Storage Account
• CDN Profile
• Azure Cosmos DB account
• Traffic Manager Profile
• Identity SQL Server and Database (optional)

The primary resource group has a unique name and this name will be the base for
constructing all other resource groups and resources type names (based on region, type,
version..). This will help you locate and monitor resources more easily and of course build
more generic PowerShell scripts. The property used for the primary resource group name in
the PowerShell scripts that follow, is PrimaryName. But why PrimaryName should be unique?
Most of the resources have endpoints which must be globally unique. Take a look how
service endpoints look like for the following types in the primary resource group:

• Storage Account: https://<primary-name>storage.blob.core.windows.net/
• CDN Profile: https://<primary-name>-cdn.azureedge.net
• Azure Cosmos DB: https://<primary-name>-cosmosdb.documents.azure.com:443/
• Traffic Manager Profile: http://<primary-name>.trafficmanager.net

The prefixes you have added will certainly reduce the possibility for conflicts. During the
examples of this book, planetscalestore has been used as the primary name. Each time you
see the word planetscalestore in the scripts that follow, make sure to replace it with your
own primary name.

Primary Resource Group 16

Init Primary Resources Script

Ideally, you would like to run a custom script to initialize the primary resource group and all
of its resources. This is what the init-primary-resources.ps1 PowerShell script is for. You
will find the script and all others inside the Online.Store/App_Data/devops folder. The script
accepts 5 parameters of which the last 3 are optional:

1. PrimaryName: The primary name to be used
2. ResourceGroupLocation: Azure region for the resource group and its resources
3. CreateIdentityDatabase: Create or not the SQL Server & database required for

ASP.NET Identity (optional). If parameter is used, possible values are $true, $false
4. SqlServerLogin: SQL Server login for the primary SQL Server created in case Cre-

ateIdentityDatabase is True (optional)
5. SqlServerPassword: SQL Server password for the primary SQL Server created in case

CreateIdentityDatabase is True (optional)

PowerShell optional parameters
Optional parameters can be omitted when running a PowerShell script

To list all available resource group location values run the following command in PowerShell.

Get-AzureRmLocation | select Location

Available Locations for Resource Groups

eastasia southeastasia centralus eastus
eastus2 westus northcentralus southcentralus
northeurope westeurope japanwest japaneast
brazilsouth australiaeast australiasoutheast southindia
centralindia westindia canadacentral canadaeast
uksouth ukwest westcentralus westus2
koreacentral koreasouth

Primary Resource Group 17

About locations
This book has followed a naming convention where parent and child resource
groups belong to the same region. The thing is that some times not all type of
resources are available to a specific region. For example, assuming that you want
to provision the primary resource group and its resources to West Europe but at
that time Azure Cosmos DB may not be available for that region. If you run the
init-primary-resources script, it will fail when try to create the Cosmos DB
account.

You could catch some of those errors before starting the provisioning process by
checking the Products available by region page. The following regions have been
tested many times during the development of Online.Store app and are highly
recommended

1. westcentralus
2. southcentralus
3. eastus
4. westeurope
5. southeastasia

Open the init-primary-resources.ps1 script to examine it.

Opening PowerShell scripts
A very useful tool for viewing and running PowerShell scripts is the Windows
PowerShell ISE. Most of the times you will find it installed along with PowerShell
in Windows OS. On this Integrated Scripting Environment you can have the
script opened in one editor and viewing its results in the integrated command
line. More over you get a powerful intellisense experience.

https://azure.microsoft.com/en-us/regions/services/
https://docs.microsoft.com/en-us/powershell/scripting/core-powershell/ise/introducing-the-windows-powershell-ise?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/scripting/core-powershell/ise/introducing-the-windows-powershell-ise?view=powershell-5.1

Primary Resource Group 18

Windows PowerShell ISE

Create Primary Resource Group

Get-AzureRmResourceGroup -Name $PrimaryName -ev notPresent -ea 0

if ($notPresent)

{

ResourceGroup doesn't exist

Write-Host "Trying to create Resource Group: $PrimaryName "

New-AzureRmResourceGroup -Name $PrimaryName -Location $ResourceGroupLocation

}

else

{

ResourceGroup exist

Write-Host "Resource Group: $PrimaryName already exists.."

}

Get-AzureRmResourceGroup cmdlet is used to get the resource group named PrimaryName in
your account. If not exists New-AzureRmResourceGroup is used to create one at the location
you provided. Notice that all your scripts should be idempotent meaning that you can run

https://docs.microsoft.com/en-us/powershell/module/azurerm.resources/get-azurermresourcegroup?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.resources/new-azurermresourcegroup?view=azurermps-5.1.1

Primary Resource Group 19

the same script multiple times but it will only make the changes once. In other words, if
the resource group already exists it will not try to create it again. The same logic must be
followed for every Azure Resource provisioning.

Create Storage Account

The storage account hosts the images for Online.Store application. Any containers required
(such as product-images if you recall) are created at application startup.

$storageAccountName = "$PrimaryName" + "$storagePrefix";

Get-AzureRmStorageAccount -ResourceGroupName $PrimaryName `

-Name $storageAccountName -ev storageNotPresent -ea 0

if ($storageNotPresent)

{

Write-Host "Creating Storage Account $storageAccountName"

$skuName = "Standard_GRS"

Create the storage account.

$storageAccount = New-AzureRmStorageAccount -ResourceGroupName $PrimaryName `

-Name $storageAccountName `

-Location $ResourceGroupLocation `

-SkuName $skuName

Write-Host "Storage Account $storageAccountName successfully created.."

}

else

{

Write-Host "Storage Account $storageAccountName already exists.."

}

Get-AzureRmStorageAccount is used to retrieve the storage account named PrimaryName in
your primary resource group. If not exists New-AzureRmStorageAccount cmdlet is used to
create one.

https://docs.microsoft.com/en-us/powershell/module/azurerm.storage/get-azurermstorageaccount?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.storage/new-azurermstorageaccount?view=azurermps-5.1.1

Primary Resource Group 20

SKU name
Specifies the SKU name of the storage account that this cmdlet creates. The
acceptable values for this parameter are:

• Standard_LRS: Locally-redundant storage
• Standard_ZRS: Zone-redundant storage
• Standard_GRS: Geo-redundant storage
• Standard_RAGRS: Read access geo-redundant storage
• Premium_LRS: Premium locally-redundant storage

Create CDN Profile

Following the storage account the script creates the CDN Profile bound to that storage
account. Not only it provisions the CDN Profile but also configures it to cache the blobs
on the storage account created before. This is how images in Online.Store application will
be served by POPs of your CDN Profile.

$cdnProfileName = "$PrimaryName-$cdnPrefix";

Get-AzureRmCdnProfile -ProfileName $cdnProfileName `

-ResourceGroupName $PrimaryName -ev cdnNotPresent -ea 0

if ($cdnNotPresent)

{

Write-Host "Creating CDN profile $cdnProfileName.."

Create a new profile

New-AzureRmCdnProfile -ProfileName $cdnProfileName `

-ResourceGroupName $PrimaryName `

-Sku Standard_Verizon -Location $ResourceGroupLocation

Write-Host "CDN profile $cdnProfileName succesfully created.."

Create a new endpoint

$cdnEnpointName = "$PrimaryName-$endpointPrefix";

$endpointHost = "$storageAccountName.blob.core.windows.net"

$availability =

Get-AzureRmCdnEndpointNameAvailability -EndpointName $cdnEnpointName

Primary Resource Group 21

if($availability.NameAvailable) {

Write-Host "Creating endpoint..."

New-AzureRmCdnEndpoint -ProfileName $cdnProfileName `

-ResourceGroupName $PrimaryName `

-Location $ResourceGroupLocation -EndpointName $cdnEnpointName `

-OriginName "$storageAccountName" `

-OriginHostName $endpointHost `

-OriginHostHeader $endpointHost

}

}

else

{

Write-Host "CDN profile $cdnProfileName already exists.."

}

Get-AzureRmCdnProfile cmd checks if the profile already exists. In notNew-AzureRmCdnProfile
is used to create one. Next you need to add a CDN endpoint that points to the Blob Service

Endpoint of your storage account. TheURI of this endpoint is <primary-name>storage.blob.core.windows.net.
Before adding this endpoint using New-AzureRmCdnEndpoint, it checks endpoint’s avail-
ability using the Get-AzureRmCdnEndpointNameAvailability cmdlet.

CDN Endpoint & Storage Account
You need to set OriginHostHeader equal to OriginHostName in the
New-AzureRmCdnEndpoint cmdlet for storage account endpoints

Create Cosmos DB account

The script continues with creating the Azure Cosmos DB account. The database account
name matches the DocumentDB:DatabaseId property in the appsettings.json file.

https://docs.microsoft.com/en-us/powershell/module/azurerm.cdn/get-azurermcdnprofilessourl?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.cdn/new-azurermcdnprofile?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.cdn/new-azurermcdnendpoint?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.cdn/get-azurermcdnendpointnameavailability?view=azurermps-5.1.1

Primary Resource Group 22

$documentDbDatabase = "$PrimaryName-$cosmosDbPrefix";

$query = Find-AzureRmResource -ResourceNameContains $documentDbDatabase `

-ResourceType "Microsoft.DocumentDb/databaseAccounts"

if (!$query)

{

Write-Host "Creating DocumentDB account $documentDbDatabase.."

Create the account

Write and read locations and priorities for the database

$locations = @(@{"locationName"= $ResourceGroupLocation;

"failoverPriority"=0})

Consistency policy

$consistencyPolicy = @{"defaultConsistencyLevel"="Session";}

DB properties

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels

$DBProperties = @{"databaseAccountOfferType"="Standard";

"locations"=$locations;

"consistencyPolicy"=$consistencyPolicy}

Create the database

New-AzureRmResource -ResourceType "Microsoft.DocumentDb/databaseAccounts" `

-ApiVersion "2015-04-08" `

-ResourceGroupName $PrimaryName `

-Location $ResourceGroupLocation `

-Name $documentDbDatabase `

-PropertyObject $DBProperties

Write-Host "DocumentDB account $documentDbDatabase successfully created.."

}

else

{

Write-Host "DocumentDB account $documentDbDatabase already exists.."

}

The script searches for a resource of type Microsoft.DocumentDb/databaseAccounts using
the Find-AzureRmResource cmdlet. You can use this cmdlet to search for many resource
types in Azure. If not found, it creates the Cosmos DB database account using the New-
AzureRmResource cmdlet. The $locations property determines if you wish to replicate
data in other regions and their failover priorities. You will replicate the account’s data in

https://docs.microsoft.com/en-us/powershell/module/azurerm.resources/find-azurermresource?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.resources/new-azurermresource?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.resources/new-azurermresource?view=azurermps-5.1.1

Primary Resource Group 23

a different region through the portal where you can also visually see the available locations
at that time.

Create Traffic Manager profile

Last but not least, the script creates the Traffic Manager profile. The Traffic Manager
profile will be used to control the distribution of traffic to your Azure website endpoints.

$tmpProfileName = "$PrimaryName";

$tmpDnsName = "$PrimaryName";

Get-AzureRmTrafficManagerProfile -Name $tmpProfileName `

-ResourceGroupName $PrimaryName -ev tmpNotPresent -ea 0

if($tmpNotPresent) {

Write-Host "Creating Traffic Manager Profile $tmpProfileName.."

New-AzureRmTrafficManagerProfile -Name $tmpProfileName `

-ResourceGroupName $PrimaryName -TrafficRoutingMethod Performance `

-RelativeDnsName $tmpDnsName -Ttl 30 -MonitorProtocol HTTP `

-MonitorPort 80 -MonitorPath "/"

Write-Host "Traffic Manager Profile created successfully.."

}

else {

Write-Host "Traffic Manager $tmpProfileName already exists.."

}

The script checks if the trafficmanager profile exists using theGet-AzureRmTrafficManagerProfile
cmdlet and if not, it creates it using New-AzureRmTrafficManagerProfile. At this point you
don’t have any App Services to add. The App Service endpoints are added to the Traffic
Manager profile at the time being provisioned as disabled (more on this in Child Resources
section).

Create SQL Server and Database for ASP.NET Identity (optional)

If you pass the parameter CreateIdentityDatabase as $true, the script will create a logical
SQL Server named <PrimaryName>-sql.

https://docs.microsoft.com/en-us/powershell/module/azurerm.trafficmanager/get-azurermtrafficmanagerprofile?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.trafficmanager/new-azurermtrafficmanagerprofile?view=azurermps-5.1.1

Primary Resource Group 24

$serverName = "$PrimaryName-$sqlServerPrefix";

$resourceGroupName = $PrimaryName;

$serverInstance = Get-AzureRmSqlServer -ServerName $serverName `

-ResourceGroupName $resourceGroupName `

-ErrorAction SilentlyContinue

if ($serverInstance) {

Write-Host "SQL Server $serverName already exists..."

}

else {

Write-Host "Trying to create SQL Server $serverName.."

New-AzureRmSqlServer -ResourceGroupName $resourceGroupName `

-ServerName $serverName `

-Location $ResourceGroupLocation `

-SqlAdministratorCredentials $(New-Object `

-TypeName System.Management.Automation.PSCredential `

-ArgumentList $SqlServerLogin, $(ConvertTo-SecureString `

-String $SqlServerPassword -AsPlainText -Force))

Write-Host "SQL Server $serverName successfully created..."

Allow access to Azure Services

Write-Host "Allowing access to Azure Services..."

New-AzureSqlDatabaseServerFirewallRule -ServerName $serverName `

-AllowAllAzureServices

}

The script checks if the SQL Server exists using the Get-AzureRmSqlServer cmdlet and if
not it creates it using New-AzureRmSqlServer. At the end adds a new Firewall Rule so that
Azure Services such as App Services can access the server. In case CreateIdentityDatabase
is $true the script will continue by checking the identitydb database.

https://docs.microsoft.com/en-us/powershell/module/azurerm.sql/get-azurermsqlserver?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.sql/new-azurermsqlserver?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azure/new-azuresqldatabaseserverfirewallrule?view=azuresmps-4.0.0

Primary Resource Group 25

$Database = "identitydb";

if($CreateIdentityDatabase) {

$azureDatabase = Get-AzureRmSqlDatabase `

-ResourceGroupName $resourceGroupName `

-ServerName $serverName -DatabaseName $Database `

-ErrorAction SilentlyContinue

if ($azureDatabase) {

Write-Host "Azure SQL Database $Database already exists..."

}

else {

Write-Host "Creating SQL Database $Database at Server $serverName.."

New-AzureRmSqlDatabase -ResourceGroupName $resourceGroupName `

-ServerName $serverName `

-DatabaseName $Database `

-RequestedServiceObjectiveName "Basic" `

-MaxSizeBytes 524288000

Write-Host "Azure SQL Database $Database successfully created..."

}

}

First it checks if identitydb database exists on the previous created server using the Get-
AzureRmSqlDatabase cmdlet and if not, it creates it using New-AzureRmSqlDatabase .

Running the script

While in PowerShell make sure that your working directory is the Online.Store/App_-

Data/devops folder where all the scripts exist.

Create a devops script
To make it easier for you running the scripts in the Online.Store/App_-

Data/devops folder, create a PowerShell script named devops.ps1 inside that
folder. Don’t worry, this file will not be tracked by Git (check .gitignore). There
you can write all the calls to your scripts you want to run for the Online.Store

application. Check the devops-template.ps1 file for reference to understand how
your devops file should like at the end. In case you run the scripts in Mac or Linux
make sure to change the references to the files inside the mac-linux folder

https://docs.microsoft.com/en-us/powershell/module/azurerm.sql/get-azurermsqldatabase?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.sql/get-azurermsqldatabase?view=azurermps-5.1.1
https://docs.microsoft.com/en-us/powershell/module/azurerm.sql/new-azurermsqldatabase?view=azurermps-5.1.1

Primary Resource Group 26

Run the init-primary-resources.ps1 script as follow:

.\init-primary-resources.ps1 -PrimaryName "<primary-name>" `

-ResourceGroupLocation "<region>"

Make sure to use your primary name and the region you want the resources to provision to.
For primary name planetscalestore and region westeurope the call would look like this:

.\init-primary-resources.ps1 -PrimaryName "planetscalestore" `

-ResourceGroupLocation "westeurope"

During the creation of the Cosmos DB account you will be asked to confirm the creation.
Click Yes to continue.

Create Azure Cosmos DB account confirmation

Creating Azure Cosmos DB for the first
time
The first time you create an Azure Cosmos DB in a subscription using the Azure
portal, the portal registers the Microsoft.DocumentDB namespace for that subscrip-
tion. If you attempt to create the first Cosmos DB account in a subscription using
PowerShell, you must first register the namespace using the following command:

Register-AzureRmResourceProvider -ProviderNamespace "Microsoft.DocumentDB"

otherwise the script will fail to create the account. If you have followed along with
the book, you have already created at least one Azure Cosmos DB account so you
don’t need to worry about that

At the end of each script you will here a beep sound indicating that the script has been
executed. In case you want to use ASP.NET Identity for authentication in Online.Store

application run the script as follow:

Primary Resource Group 27

.\init-primary-resources.ps1 -PrimaryName "<primary-name>" `

-ResourceGroupLocation "<region>" `

-CreateIdentityDatabase $true `

-SqlServerLogin "<sql-serverl-login>" `

-SqlServerPassword "<sql-server-password>"

Go back in the portal and confirm that all resources have been provisioned properly.

Primary Resource Group

The script will create the SQL Server plus the identitydb database. Don’t forget to run the
identity-migrations.sql SQL script to update the schema in the identitydb database. This
database will be a stand-alone database used by all regions for authenticating users.

	Table of Contents
	Performance Optimization
	Code Overview
	Primary Resource Group

