

[image: Globally-Distributed Applications with Microsoft Azure]

 Globally-Distributed Applications with Microsoft Azure

 For developers and architects

 Christos Sakellarios

 This book is for sale at http://leanpub.com/globally-distributed-applications-with-microsoft-azure

 This version was published on 2019-04-04

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2018 - 2019 Christos Sakellarios

 Table of Contents

 	
 Performance Optimization

 	
 Code Overview

 	
 Primary Resource Group

 Guide

 	
 Begin Reading

Performance Optimization

In the following sections you are going to create your first Parent Resource Group in West Europe. A parent resource group contains the Azure Search, Redis Cache and Service Bus services for a specific Azure region and acts as the second level in the resource groups hierarchy.

 [image: Parent Resource Groups]
 Parent Resource Groups

Before creating and start adding resources in the parent resource group, recall the naming convention you should follow.

 [image: Parent Resource Group - Resources Names]
 Parent Resource Group - Resources Names

 Create Parent Resource Group

 In Azure Portal click the Resource groups menu item on the left panel and next click the Add button.
Fill the form as follow:

 	
Resource group name: <Primary-Name>-westeurope

 	
Subscription: <Select-Your-Subscription>

 	
Resource group location: West Europe

Since this is a parent resource group, you name it by the name you selected for primary resource group plus ‘-‘ and the region with no spaces and lowercase.

 [image: Create Parent Resource Group]
 Create Parent Resource Group

Code Overview

At this point you should have deployed the following Azure Resources:

 	Azure Storage Account (previous part)

 	CDN Profile (previous part)

 	Azure Cosmos DB Account (previous part)

 	Azure Search Service

 	Redis Cache

 	Service Bus

Before running again the Online.Store application verify that during this part, you have set the following properties in the configuration files:

 	
appsettings.json

 	
SearchService:Name: <parent-resource-group>-search

 	
RedisCache:Endpoint: <parent-resource-group>-rediscache

 	
ServiceBus:Namespace: <parent-resource-group>-servicebus

 	
ServiceBus:Queue: “orders”

 	
secrets.json

 	
SearchService:ApiKey: <search-service-primary-key>

 	
RedisCache:Key: <redis-cache-primary-key>

 	
ServiceBus:WriteAccessKeyName: “Write”

 	
ServiceBus:WriteAccessKey: <write-access-policy-key>

In the example images you have seen so far, planetscalestore has been used as the Primary Resource
Group name. Here is how the resources looks like in the parent resource group created in West Europe.

 [image: Parent Resource Group Resources]
 Parent Resource Group Resources

Now that you have set the Search Service when you run Online.Store it will automatically bind the search engine with your Cosmos DB account. More specifically the app will create an index named product-index with a data-source pointing the Items collection where the product documents exist. The library project for Search Service is the Online.Store.AzureSearch. You can access and manage an Azure Search Service using the Microsoft.Azure.Search NuGet package. The ISearchRepository interface has 3 methods:

public interface ISearchRepository
{
 Task CreateOrUpdateDocumentDbDataSourceAsync(string dataSourceName,
 string dataSourceColletion);

 Task CreateOrUpdateIndexAsync<T>(string indexName, string suggesterName,
 List<string> suggesterFields);

 Task<List<T>> SearchAsync<T>(string searchIndex, string term,
 List<string> returnFields) where T : class;
}

SearchRepository is an abstract class implementing the ISearchRepository. It also has the properties for concrete classes such as SearchStoreRepository, to initialize clients.

public SearchStoreRepository(IConfiguration configuration)
{
 _documentDbEndpoint = string.Format("https://{0}.documents.azure.com:443/",
 configuration["DocumentDB:Endpoint"]);
 _documentDbAccountKey = configuration["DocumentDB:Key"];
 _documentDbDatabase = configuration["DocumentDB:DatabaseId"];

 string _azureSearchServiceName = configuration["SearchService:Name"];
 string _azureSearchServiceKey = configuration["SearchService:ApiKey"];

 _serviceClient = new SearchServiceClient(_azureSearchServiceName,
 new SearchCredentials(_azureSearchServiceKey));
}

There are 3 parts for binding a search service to a Cosmos DB collection:

 	Create the datasource

 	Create the index

 	Create the indexer

Open SearchRepository class to see the implementations for these one by one.

public async Task CreateOrUpdateDocumentDbDataSourceAsync(
 string dataSourceName, string dataSourceColletion)
{
 string connectionString =
 string.Format("AccountEndpoint={0};AccountKey={1};Database={2}",
 _documentDbEndpoint, _documentDbAccountKey, _documentDbDatabase);
 DataSourceCredentials credentials =
 new DataSourceCredentials(connectionString);
 DataContainer container = new DataContainer(dataSourceColletion);
 DataSource docDbSource =
 new DataSource(dataSourceName, DataSourceType.DocumentDb,
 credentials, container);
 await _serviceClient.DataSources.CreateOrUpdateAsync(docDbSource);
}

CreateOrUpdateDocumentDbDataSourceAsync method needs the Cosmos DB connection string to build the data source. CreateOrUpdateIndexAsync method creates the index which will be used for querying the Search Service.

public async Task CreateOrUpdateIndexAsync<T>(
 string indexName, string suggesterName, \
 List<string> suggesterFields)
{
 List<Suggester> suggesters = new List<Suggester>();
 suggesters.Add(new Suggester(suggesterName,
 SuggesterSearchMode.AnalyzingInfixMatching, suggesterFields));
 var definition = new Index()
 {
 Name = indexName,
 Fields = FieldBuilder.BuildForType<T>(),
 Suggesters = suggesters
 };

 await _serviceClient.Indexes.CreateOrUpdateAsync(definition);
}

This method is generic and can create indexes for any type of component in Cosmos DB. Mind though that type <T> should have certain attributes from Microsoft.Azure.Search namespace that informs the SDK how to build the index. Check ProductInfo in Online.Store.Core to view some of those attributes. The following table comes directly from the official documentation for creating indexes.

 	Attribute
 	Description

 	searchable
 	Full-text searchable, subject to lexical analysis such as word-breaking during indexing. If you set a searchable field to a value like “sunny day”, internally it will be split into the individual tokens “sunny” and “day”.

 	filterable
 	Referenced in $filter queries. Filterable fields of type Edm.String or Collection(Edm.String) do not undergo word-breaking, so comparisons are for exact matches only. For example, if you set such a field f to “sunny day”, $filter=f eq 'sunny' will find no matches, but $filter=f eq 'sunny day' will.

 	sortable
 	By default the system sorts results by score, but you can configure sort based on fields in the documents. Fields of type Collection(Edm.String) cannot be sortable.

 	facetable
 	Typically used in a presentation of search results that includes a hit count by category (for example, hotels in a specific city). This option cannot be used with fields of type Edm.GeographyPoint. Fields of type Edm.String that are filterable, sortable, or facetable can be at most 32 kilobytes in length. For details, see Create Index (REST API).

 	key
 	Unique identifier for documents within the index. Exactly one field must be chosen as the key field and it must be of type Edm.String.

 	retrievable
 	Determines whether the field can be returned in a search result. This is useful when you want to use a field (such as profit margin) as a filter, sorting, or scoring mechanism, but do not want the field to be visible to the end user. This attribute must be true for key fields.

The last method is the one that creates the indexer and completes an index in Azure Service.

public async Task CreateOrUpdateIndexerAsync(string indexerName,
 string dataSource, string index)
{
 await _serviceClient.Indexers.CreateOrUpdateAsync(
 new Indexer(indexerName, dataSource, index));
}

After running the project again, go back in the portal and verify that the index has been created successfully. Click the Search Service resource in your parent resource group and select Overview. You should see the product-index having indexed 6 product documents.

 [image: Product index]
 Product index

Click on the index and you should see the configuration have been set through code in ProductInfo class.

 [image: Product index configuration]
 Product index configuration

You should be able to search for products in the app. Try searching the term sony.

 [image: Search Service results]
 Search Service results

The library project for Redis Cache is the Online.Store.RedisCahce. It uses the Caching.Redis NuGet package to connect and access the Azure Redis Cache. The IRedisCacheRepository interface declares methods to save items of type string or object, a generic method to get an item and last but not least a method to remove an item from cache. Items in Cache are saved in key-value pairs.

public interface IRedisCacheRepository
{
 Task SetStringAsync(string key, string value);
 Task SetStringAsync(string key, string value, int expirationMinutes);

 Task SetItemAsync(string key, object item);
 Task SetItemAsync(string key, object item, int expirationMinutes);

 Task<T> GetItemAsync<T>(string key);
 Task RemoveAsync(string key);
}

RedisCacheRepository is the concrete class that implements the IRedisCacheRepository interface. It uses an instance of IDistributedCache for accessing the cache. These are the methods available in IdistributedCache interface:

public interface IDistributedCache
{
 byte[] Get(string key);
 Task<byte[]> GetAsync(string key, CancellationToken token
 = default(CancellationToken));
 void Refresh(string key);
 Task RefreshAsync(string key, CancellationToken token
 = default(CancellationToken));
 void Remove(string key);
 Task RemoveAsync(string key, CancellationToken token
 = default(CancellationToken));
 void Set(string key, byte[] value,
 DistributedCacheEntryOptions options);
 Task SetAsync(string key, byte[] value,
 DistributedCacheEntryOptions options,
 CancellationToken token = default(CancellationToken));
}

SetStringAsync in RedisCacheReposistory saves a string value in cache.

public async Task SetStringAsync(string key, string value, int expirationMinutes)
{
 var options = new DistributedCacheEntryOptions
 {
 AbsoluteExpiration = DateTime.Now.AddMinutes(expirationMinutes)
 };

 await _distributedCache
 .SetAsync(key, Encoding.UTF8.GetBytes(value), options);
}

SetItemAsync method uses internally the same method to save a serializable object.

public async Task SetItemAsync(string key, object item)
{
 string json = JsonConvert.SerializeObject(item);

 await SetStringAsync(key, json);
}

GetItemAsync<T> and RemoveAsync methods retrieves and removes an item from cache respectively.

public async Task<T> GetItemAsync<T>(string key)
{
 string json = await _distributedCache.GetStringAsync(key);

 if (json == null)
 return default(T);

 return JsonConvert.DeserializeObject<T>(json);
}

public async Task RemoveAsync(string key)
{
 await _distributedCache.RemoveAsync(key);
}

The configuration for Redis Cache exist in the Online.Store Startup class.

services.AddDistributedRedisCache(option =>
{
 option.Configuration = string.Format(RedisCacheConnStringFormat,
 Configuration["RedisCache:Endpoint"] +
 ".redis.cache.windows.net:6380",
 Configuration["RedisCache:Key"]);

 option.InstanceName = "master-";
});

The instance name will prefix all keys stored in this cache. Online.Store application uses the cache to store cart items. Check the AddProductToCart method inside the StoreService class.

// code omitted
cart = await _cacheRepository.GetItemAsync<CartDTO>("cart-" + cardId);
// code omitted
await _cacheRepository.SetItemAsync("cart-" + cardId, cart);

The cartId is a Guid generated and saved in browser’s cookie to track the cart. Run the web app and add products to cart. Back in the portal open your Redis Cache instance and in the main Overview blade click >_Console. Run the following command to list all cart keys stored in the cache.

SCAN 0 COUNT 1000 MATCH *cart*

 [image: Redis Cache - List cart keys]
 Redis Cache - List cart keys

You can use the FLUSHALL command to clear all items in the cache.

The library project for Service Bus operations is the Online.Store.ServiceBus. It uses the Microsoft.Azure.ServiceBus NuGet package and has a simple IServiceBusRepository interface.

public interface IServiceBusRepository
{
 void InitQueueClient(string serviceBusAccessKeyName,
 string serviceBusAccessKey, string queue);

 Task SendAsync(object message);
}

ServiceBusRepository class is the concrete class that implements the interface. It uses a instance of IQueueClient to send messages to queues. Following is the implementation for IServiceBusRepository repository.

public void InitQueueClient(string serviceBusAccessKeyName,
 string serviceBusAccessKey, string queue)
{
 var connectionString =
 $"Endpoint=sb://{_serviceBusNamespace}" +
 $".servicebus.windows.net/;SharedAccessKeyName={serviceBusAccessKeyName};"+
 $"SharedAccessKey={serviceBusAccessKey}";

 _queueClient = new QueueClient(connectionString, queue);
}

public async Task SendAsync(object body)
{
 var serializedBody = JsonConvert.SerializeObject(body);
 var message = new Message(Encoding.UTF8.GetBytes(serializedBody));
 await _queueClient.SendAsync(message);
}

Online.Store application uses Service Bus to submit orders to the orders queue you created before. It hasn’t have to wait till the order is actually saved in database, a Web Job will be responsible to complete this task asynchronously. Check the ServiceBusService class inside Online.Store.Azure.Services project.

public async Task SubmitOrderAsync(Order order)
{
 _serviceBusRepository
 .InitQueueClient(_configuration["ServiceBus:WriteAccessKeyName"],
 _configuration["ServiceBus:WriteAccessKey"],
 _configuration["ServiceBus:Queue"]);

 await _serviceBusRepository.SendAsync(order);
}

At this point you cannot test service bus operations because you haven’t setup Authentication, the required Azure SQL Database for saving orders and of course the WebJob that listens for and processes messages from the orders queue. The part that follows covers all these and when you are done you will have a full operational website. Next you will proceed with the Global Scale part where you will actually deploy the website at least at two Azure Regions.

Primary Resource Group

The primary resource group is the base resource group for Online.Store application. It contains the resources that are common for all sub-resource groups and once it is created, it shouldn’t change often. The 4 types of resources contained in the primary resource group are:

 	Storage Account

 	CDN Profile

 	Azure Cosmos DB account

 	Traffic Manager Profile

 	Identity SQL Server and Database (optional)

The primary resource group has a unique name and this name will be the base for constructing all other resource groups and resources type names (based on region, type, version..). This will help you locate and monitor resources more easily and of course build more generic PowerShell scripts. The property used for the primary resource group name in the PowerShell scripts that follow, is PrimaryName. But why PrimaryName should be unique? Most of the resources have endpoints which must be globally unique. Take a look how service endpoints look like for the following types in the primary resource group:

 	
Storage Account: https://<primary-name>storage.blob.core.windows.net/

 	
CDN Profile: https://<primary-name>-cdn.azureedge.net

 	
Azure Cosmos DB: https://<primary-name>-cosmosdb.documents.azure.com:443/

 	
Traffic Manager Profile: http://<primary-name>.trafficmanager.net

The prefixes you have added will certainly reduce the possibility for conflicts. During the examples of this book, planetscalestore has been used as the primary name. Each time you see the word planetscalestore in the scripts that follow, make sure to replace it with your own primary name.

Init Primary Resources Script

Ideally, you would like to run a custom script to initialize the primary resource group and all of its resources. This is what the init-primary-resources.ps1 PowerShell script is for. You will find the script and all others inside the Online.Store/App_Data/devops folder. The script accepts 5 parameters of which the last 3 are optional:

 	
PrimaryName: The primary name to be used

 	
ResourceGroupLocation: Azure region for the resource group and its resources

 	
CreateIdentityDatabase: Create or not the SQL Server & database required for ASP.NET Identity (optional). If parameter is used, possible values are $true, $false

 	
SqlServerLogin: SQL Server login for the primary SQL Server created in case CreateIdentityDatabase is True (optional)

 	
SqlServerPassword: SQL Server password for the primary SQL Server created in case CreateIdentityDatabase is True (optional)

 PowerShell optional parameters

 Optional parameters can be omitted when running a PowerShell script

To list all available resource group location values run the following command in PowerShell.

Get-AzureRmLocation | select Location

 Available Locations for Resource Groups

 	eastasia
 	southeastasia
 	centralus
 	eastus

 	eastus2
 	westus
 	northcentralus
 	southcentralus

 	northeurope
 	westeurope
 	japanwest
 	japaneast

 	brazilsouth
 	australiaeast
 	australiasoutheast
 	southindia

 	centralindia
 	westindia
 	canadacentral
 	canadaeast

 	uksouth
 	ukwest
 	westcentralus
 	westus2

 	koreacentral
 	koreasouth
 	
 	

 About locations

 This book has followed a naming convention where parent and child resource groups belong to the same region. The thing is that some times not all type of resources are available to a specific region. For example, assuming that you want to provision the primary resource group and its resources to West Europe but at that time Azure Cosmos DB may not be available for that region. If you run the init-primary-resources script, it will fail when try to create the Cosmos DB account.

 You could catch some of those errors before starting the provisioning process by checking the Products available by region page. The following regions have been tested many times during the development of Online.Store app and are highly recommended

 	westcentralus

 	southcentralus

 	eastus

 	westeurope

 	southeastasia

Open the init-primary-resources.ps1 script to examine it.

 Opening PowerShell scripts

 A very useful tool for viewing and running PowerShell scripts is the Windows PowerShell ISE. Most of the times you will find it installed along with PowerShell in Windows OS. On this Integrated Scripting Environment you can have the script opened in one editor and viewing its results in the integrated command line. More over you get a powerful intellisense experience.

 [image: Windows PowerShell ISE]
 Windows PowerShell ISE

Create Primary Resource Group

Get-AzureRmResourceGroup -Name $PrimaryName -ev notPresent -ea 0

if ($notPresent)
{
 # ResourceGroup doesn't exist
 Write-Host "Trying to create Resource Group: $PrimaryName "
 New-AzureRmResourceGroup -Name $PrimaryName -Location $ResourceGroupLocation
}
else
{
 # ResourceGroup exist
 Write-Host "Resource Group: $PrimaryName already exists.."
}

Get-AzureRmResourceGroup cmdlet is used to get the resource group named PrimaryName in your account. If not exists New-AzureRmResourceGroup is used to create one at the location you provided. Notice that all your scripts should be idempotent meaning that you can run the same script multiple times but it will only make the changes once. In other words, if the resource group already exists it will not try to create it again. The same logic must be followed for every Azure Resource provisioning.

Create Storage Account

The storage account hosts the images for Online.Store application. Any containers required (such as product-images if you recall) are created at application startup.

$storageAccountName = "$PrimaryName" + "$storagePrefix";

Get-AzureRmStorageAccount -ResourceGroupName $PrimaryName `
 -Name $storageAccountName -ev storageNotPresent -ea 0

if ($storageNotPresent)
{
 Write-Host "Creating Storage Account $storageAccountName"
 $skuName = "Standard_GRS"

 # Create the storage account.
 $storageAccount = New-AzureRmStorageAccount -ResourceGroupName $PrimaryName `
 -Name $storageAccountName `
 -Location $ResourceGroupLocation `
 -SkuName $skuName

 Write-Host "Storage Account $storageAccountName successfully created.."
}
else
{
 Write-Host "Storage Account $storageAccountName already exists.."
}

Get-AzureRmStorageAccount is used to retrieve the storage account named PrimaryName in your primary resource group. If not exists New-AzureRmStorageAccount cmdlet is used to create one.

 SKU name

 Specifies the SKU name of the storage account that this cmdlet creates. The acceptable values for this parameter are:

 	
Standard_LRS: Locally-redundant storage

 	
Standard_ZRS: Zone-redundant storage

 	
Standard_GRS: Geo-redundant storage

 	
Standard_RAGRS: Read access geo-redundant storage

 	
Premium_LRS: Premium locally-redundant storage

Create CDN Profile

Following the storage account the script creates the CDN Profile bound to that storage account. Not only it provisions the CDN Profile but also configures it to cache the blobs on the storage account created before. This is how images in Online.Store application will be served by POPs of your CDN Profile.

$cdnProfileName = "$PrimaryName-$cdnPrefix";

Get-AzureRmCdnProfile -ProfileName $cdnProfileName `
 -ResourceGroupName $PrimaryName -ev cdnNotPresent -ea 0
if ($cdnNotPresent)
{
 Write-Host "Creating CDN profile $cdnProfileName.."
 # Create a new profile
 New-AzureRmCdnProfile -ProfileName $cdnProfileName `
 -ResourceGroupName $PrimaryName `
 -Sku Standard_Verizon -Location $ResourceGroupLocation

 Write-Host "CDN profile $cdnProfileName succesfully created.."

 # Create a new endpoint
 $cdnEnpointName = "$PrimaryName-$endpointPrefix";
 $endpointHost = "$storageAccountName.blob.core.windows.net"

 $availability =
 Get-AzureRmCdnEndpointNameAvailability -EndpointName $cdnEnpointName

 if($availability.NameAvailable) {
 Write-Host "Creating endpoint..."

 New-AzureRmCdnEndpoint -ProfileName $cdnProfileName `
 -ResourceGroupName $PrimaryName `
 -Location $ResourceGroupLocation -EndpointName $cdnEnpointName `
 -OriginName "$storageAccountName" `
 -OriginHostName $endpointHost `
 -OriginHostHeader $endpointHost
 }
}
else
{
 Write-Host "CDN profile $cdnProfileName already exists.."
}

Get-AzureRmCdnProfile cmd checks if the profile already exists. In not New-AzureRmCdnProfile is used to create one. Next you need to add a CDN endpoint that points to the Blob Service Endpoint of your storage account. The URI of this endpoint is <primary-name>storage.blob.core.windows.net. Before adding this endpoint using New-AzureRmCdnEndpoint, it checks endpoint’s availability using the Get-AzureRmCdnEndpointNameAvailability cmdlet.

 CDN Endpoint & Storage Account

 You need to set OriginHostHeader equal to OriginHostName in the New-AzureRmCdnEndpoint cmdlet for storage account endpoints

Create Cosmos DB account

The script continues with creating the Azure Cosmos DB account. The database account name matches the DocumentDB:DatabaseId property in the appsettings.json file.

$documentDbDatabase = "$PrimaryName-$cosmosDbPrefix";

$query = Find-AzureRmResource -ResourceNameContains $documentDbDatabase `
 -ResourceType "Microsoft.DocumentDb/databaseAccounts"

if (!$query)
{
 Write-Host "Creating DocumentDB account $documentDbDatabase.."
 # Create the account

 # Write and read locations and priorities for the database
 $locations = @(@{"locationName"= $ResourceGroupLocation;
 "failoverPriority"=0})

 # Consistency policy
 $consistencyPolicy = @{"defaultConsistencyLevel"="Session";}

 # DB properties
 # https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
 $DBProperties = @{"databaseAccountOfferType"="Standard";
 "locations"=$locations;
 "consistencyPolicy"=$consistencyPolicy}

 # Create the database
 New-AzureRmResource -ResourceType "Microsoft.DocumentDb/databaseAccounts" `
 -ApiVersion "2015-04-08" `
 -ResourceGroupName $PrimaryName `
 -Location $ResourceGroupLocation `
 -Name $documentDbDatabase `
 -PropertyObject $DBProperties

 Write-Host "DocumentDB account $documentDbDatabase successfully created.."
}
else
{
 Write-Host "DocumentDB account $documentDbDatabase already exists.."
}

The script searches for a resource of type Microsoft.DocumentDb/databaseAccounts using the Find-AzureRmResource cmdlet. You can use this cmdlet to search for many resource types in Azure. If not found, it creates the Cosmos DB database account using the New-AzureRmResource cmdlet. The $locations property determines if you wish to replicate data in other regions and their failover priorities. You will replicate the account’s data in a different region through the portal where you can also visually see the available locations at that time.

Create Traffic Manager profile

Last but not least, the script creates the Traffic Manager profile. The Traffic Manager profile will be used to control the distribution of traffic to your Azure website endpoints.

$tmpProfileName = "$PrimaryName";
$tmpDnsName = "$PrimaryName";

Get-AzureRmTrafficManagerProfile -Name $tmpProfileName `
 -ResourceGroupName $PrimaryName -ev tmpNotPresent -ea 0
if($tmpNotPresent) {
 Write-Host "Creating Traffic Manager Profile $tmpProfileName.."

 New-AzureRmTrafficManagerProfile -Name $tmpProfileName `
 -ResourceGroupName $PrimaryName -TrafficRoutingMethod Performance `
 -RelativeDnsName $tmpDnsName -Ttl 30 -MonitorProtocol HTTP `
 -MonitorPort 80 -MonitorPath "/"

 Write-Host "Traffic Manager Profile created successfully.."
}
else {
 Write-Host "Traffic Manager $tmpProfileName already exists.."
}

The script checks if the traffic manager profile exists using the Get-AzureRmTrafficManagerProfile cmdlet and if not, it creates it using New-AzureRmTrafficManagerProfile. At this point you don’t have any App Services to add. The App Service endpoints are added to the Traffic Manager profile at the time being provisioned as disabled (more on this in Child Resources section).

Create SQL Server and Database for ASP.NET Identity (optional)

If you pass the parameter CreateIdentityDatabase as $true, the script will create a logical SQL Server named <PrimaryName>-sql.

$serverName = "$PrimaryName-$sqlServerPrefix";
$resourceGroupName = $PrimaryName;

$serverInstance = Get-AzureRmSqlServer -ServerName $serverName `
 -ResourceGroupName $resourceGroupName `
 -ErrorAction SilentlyContinue
if ($serverInstance) {
 Write-Host "SQL Server $serverName already exists..."
}
else {
 Write-Host "Trying to create SQL Server $serverName.."

 New-AzureRmSqlServer -ResourceGroupName $resourceGroupName `
 -ServerName $serverName `
 -Location $ResourceGroupLocation `
 -SqlAdministratorCredentials $(New-Object `
 -TypeName System.Management.Automation.PSCredential `
 -ArgumentList $SqlServerLogin, $(ConvertTo-SecureString `
 -String $SqlServerPassword -AsPlainText -Force))

 Write-Host "SQL Server $serverName successfully created..."

 # Allow access to Azure Services
 Write-Host "Allowing access to Azure Services..."

 New-AzureSqlDatabaseServerFirewallRule -ServerName $serverName `
 -AllowAllAzureServices
}

The script checks if the SQL Server exists using the Get-AzureRmSqlServer cmdlet and if not it creates it using New-AzureRmSqlServer. At the end adds a new Firewall Rule so that Azure Services such as App Services can access the server. In case CreateIdentityDatabase is $true the script will continue by checking the identitydb database.

$Database = "identitydb";

if($CreateIdentityDatabase) {
 $azureDatabase = Get-AzureRmSqlDatabase `
 -ResourceGroupName $resourceGroupName `
 -ServerName $serverName -DatabaseName $Database `
 -ErrorAction SilentlyContinue

 if ($azureDatabase) {
 Write-Host "Azure SQL Database $Database already exists..."
 }
 else {
 Write-Host "Creating SQL Database $Database at Server $serverName.."

 New-AzureRmSqlDatabase -ResourceGroupName $resourceGroupName `
 -ServerName $serverName `
 -DatabaseName $Database `
 -RequestedServiceObjectiveName "Basic" `
 -MaxSizeBytes 524288000

 Write-Host "Azure SQL Database $Database successfully created..."

 }
}

First it checks if identitydb database exists on the previous created server using the Get-AzureRmSqlDatabase cmdlet and if not, it creates it using New-AzureRmSqlDatabase .

Running the script

While in PowerShell make sure that your working directory is the Online.Store/App_Data/devops folder where all the scripts exist.

 Create a devops script

 To make it easier for you running the scripts in the Online.Store/App_Data/devops folder, create a PowerShell script named devops.ps1 inside that folder. Don’t worry, this file will not be tracked by Git (check .gitignore). There you can write all the calls to your scripts you want to run for the Online.Store application. Check the devops-template.ps1 file for reference to understand how your devops file should like at the end. In case you run the scripts in Mac or Linux make sure to change the references to the files inside the mac-linux folder

Run the init-primary-resources.ps1 script as follow:

.\init-primary-resources.ps1 -PrimaryName "<primary-name>" `
 -ResourceGroupLocation "<region>"

Make sure to use your primary name and the region you want the resources to provision to. For primary name planetscalestore and region westeurope the call would look like this:

.\init-primary-resources.ps1 -PrimaryName "planetscalestore" `
 -ResourceGroupLocation "westeurope"

During the creation of the Cosmos DB account you will be asked to confirm the creation. Click Yes to continue.

 [image: Create Azure Cosmos DB account confirmation]
 Create Azure Cosmos DB account confirmation

 Creating Azure Cosmos DB for the first time

 The first time you create an Azure Cosmos DB in a subscription using the Azure portal, the portal registers the Microsoft.DocumentDB namespace for that subscription. If you attempt to create the first Cosmos DB account in a subscription using PowerShell, you must first register the namespace using the following command:

 Register-AzureRmResourceProvider -ProviderNamespace "Microsoft.DocumentDB"

 otherwise the script will fail to create the account. If you have followed along with the book, you have already created at least one Azure Cosmos DB account so you don’t need to worry about that

At the end of each script you will here a beep sound indicating that the script has been executed. In case you want to use ASP.NET Identity for authentication in Online.Store application run the script as follow:

.\init-primary-resources.ps1 -PrimaryName "<primary-name>" `
 -ResourceGroupLocation "<region>" `
 -CreateIdentityDatabase $true `
 -SqlServerLogin "<sql-serverl-login>" `
 -SqlServerPassword "<sql-server-password>"

Go back in the portal and confirm that all resources have been provisioned properly.

 [image: Primary Resource Group]
 Primary Resource Group

The script will create the SQL Server plus the identitydb database. Don’t forget to run the identity-migrations.sql SQL script to update the schema in the identitydb database. This database will be a stand-alone database used by all regions for authenticating users.

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/app-cache-cart.png
Velcome to secure redis console!

This console connects to your live redis server and all commands are r

WARNING: Use expensive commands with caution as they can impact your s

>SCAN @ COUNT 1000 WATCH *cart®

OEBPS/images/powershell-ise-300.jpg
B Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help

D& BE &8 XM 90|08 «= | &8

‘ devops.ps1 vinit-primary—resources.ps'l X I init-child-resources.ps1 | get-secrets.ps1 ‘

10 |Basic name to be used for resources
11 .PARAMETER ResourceGrouplLocation
12 |Azure Region for the primary resource group

~(Mandatory = Strue)] [string] S$PrimaryName
(Mandatory = Strue) string] SResourceGroupLocation
(Mandatory = $false)] [bool] $CreateIdentityDatabase
(Mandatory = S$false)] [string] $SqlServerLogin

=r (Mandatory Sfalse)] [string] $SqlServerPassword

devops>

OEBPS/images/powershell-documentdb-confirmation.png
B Confirm - o x
Are you sure you want to create the following resource: /

subscription: resourceGroups/
planetscalestore/providers/Microsoft DocumentDb/databaseAccounts/planetscalestore.

OEBPS/images/portal-parent-resource-group.jpg
NAME TveE

B planetscalestore-westeurope-rediscache Redis Cache

&) planetscalestore-westeurope-search Search service

=i, planetscalestore-westeurope-servicebus ~Service Bus

OEBPS/images/portal-search-indexes.png
Indexes

NAME DOCUMENT COUNT SToRAGE SIZE

product-index 5 59,14 KiB

OEBPS/images/azure-search-product-index.png
Fields

FIELD NAME
id

title

model

sku

price
image
description
rating

rates

created

e
EdmSting
EdmSting
EdmSting
EdmSting
EdmDouble
EdmSting
EdmSting
EdmDouble
Edmin2

Edm.DateTimeOffset

ArrBuTes
Key Fiterable, Retievable
Searchable, Fiterable, Retrevable
Searchable, Fiterable, Retrevable
Retrievable

Retrievable

Retrievable

Searchable, Retrevable

Sortabe, Retrievable

Retrievable

Retrievable

OEBPS/images/app-product-search.png
Sony - DSC-W830 20.1-Megapixel
Digital Camera - Silver

‘Sony - Cyber-shot DSC-HX80 18.2-
Megapixel Digital Camera r

OEBPS/images/schema-parent-resource-group.png
Parent v Parent

Resource Resource
group group

OEBPS/images/parent-resource-group.png
Resource Type Resource Name

4 4
<primary-name>-<region>-
4 m Azure Search P Y 6
: search
J J
4 4
Redis Cache <primary-name>-<region>-
rediscache
J J
s N N
vll Service Bus <primary-name>-<region>-
B a servicebus

- J - J

OEBPS/images/portal-create-parent-resource-group-300.jpg
Resource group

Create an empty resource group

* Resource group hame

planetscalestore-westeurope v

* Subscription

Visual Studio Enterprise v

* Resource group location

West Europe v

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
Globally-distributed

applications with /s

Microsoft Azure

T ~
f”’l S R
® ® &
— -

Build robust, highly available, planet-scale web
applications using Microsoft Azure Services.
Apply DevOps for business continuity to a data
geo-replicated complex system

chsakell’s blog

OEBPS/images/powershell-primary-resources.png
NAME

[re——

S planetscalestore-cdn
planetscalestore-endpoint

planetscalestore-cosmosdb

E)

&

onctsalsore s
&

& enias

=

planetscalestorestorage

Tvee

Traffic Managerprofile
CON profile

Endpoint

Azure Cosmos DB account
SQLzener

SQLdatabase

Storage account

LocaTion

global
West Europe
West Europe
West Europe
West Europe
West Europe

West Europe

