
Git Workflow Discipline
Version 1

By Gavin Davies (gavd.co.uk)

“Seest thou a man diligent in his business? He shall
stand before kings”

- King Solomon



About this book
This short ebook is a highly opinionated, non exhaustive
guide to working with Git in a disciplined manner. Highly
opinionated, in that I am not attempting to be balanced - I am
presenting to you the way that I work and the benefits I have
had over many years of using Git. Non exhaustive, in that I
am not trying to explore every feature of Git - I’m restricting
the scope of this book to a guide to working in a disciplined
manner.

The only prerequisite is to have a basic familiarity with Git. If
you don’t know Git, you can get Scott Chacon’s excellent Pro
Git book for free from https://git-scm.com/book/en/v2 . Ideally,
you’d also be familiar with pull requests (known as merge
requests in some Git tools) but that is not essential.

This book is about Git, but the principles are applicable to
other source control systems, such as Mercurial.

Each chapter of this book is intended to build upon the last,
like a staircase:

https://git-scm.com/book/en/v2


How each chapter of this book builds on the last

Using graphics from https://pixabay.com/vectors/the-door-open-doors-1389755/ and
https://pixabay.com/vectors/stick-man-runner-silhouette-figure-295293/

https://pixabay.com/vectors/the-door-open-doors-1389755/
https://pixabay.com/vectors/stick-man-runner-silhouette-figure-295293/


A short word on discipline
Many people have a negative reaction to the word “discipline”
- they see discipline as the imposition of something they don’t
want to do.

There’s another way of understanding discipline - as
incredibly liberating. Through discipline, good habits become
almost automatic. Through discipline, whole classes of
problems simply evaporate, leaving you to focus on other
matters.

“Freedom is what everyone wants — to be able to act and live
with freedom. But the only way to get to a place of freedom is
through discipline. If you want financial freedom, you have to
have financial discipline. If you want more free time, you have
to follow a more disciplined time management system. You
also have to have the discipline to say “No” to things that eat
up your time with no payback” - Jocko Willink

Interestingly, discipline is often “upstream” of where you may
think it is. It is generally developed through planning, habit,
thought and iteration, rather than in the spur of the moment.
To give a trite example, I know that my wife is naturally
disciplined about eating chocolate. She can have a little bit,
then leave it alone. I, on the other hand, will not stop until all
that remains is a pile of empty wrappers and a stomach ache!
So, as an act of discipline, I bought my wife a safe to store her
chocolate in. I’ve lost 22lbs!

Likewise in my work, I strive for quality and clarity of
expression. I’m not some superhuman 10X engineer (if such a



thing exists), but I have learned through bitter experience to
set safeguards in place against my own potential for
incompetence! The techniques in this book have vastly
improved the quality and clarity of my work.



The value of Git discipline
So let’s get specific about Git. Why is it important to be
disciplined with our use of our source control tool?

Git is part of how we communicate with our
colleagues
Our source control system is a key point of integration
between a team. This might look something like the following:

We all touch this repository (or repositories) daily (directly or
indirectly), so we should consider this interaction to be of
equal importance to meetings, tickets, documentation and
face-to-face conversations.

Git is not just “somewhere to save code”. It is also the history
of our product and our central point of collaboration. Each
commit carries with it a small piece of documentation in the
commit message, hence as we share this codebase we
communicate with one another via commits and pull requests.



Without wishing to be too graphic, leaving the shared
repository in a mess is like leaving a mess in the bathroom - it
makes it harder for others to do what they need to do in there!
Inconsiderate AND impractical!

Conversely, having the discipline to use Git with clarity and
expressiveness is like oiling the moving parts on a bicycle - it
helps to keep everything running smoothly. When we are
intentional about clarity, rigorous in documentation, and
explicit in our explanations, our team cohesion benefits
greatly. This should give the benefit of lower attrition. As we all
know from experience, replacing a team member is expensive
and time-consuming, and often rather sad. In later chapters,
we will explore ways to communicate efficiently with our
usage of Git.

Disciplined Git usage contextualises our work
Everything that we understand to any meaningful degree, we
understand within the context of its history and its future:

Git holds both the state and the history of our product - all of
our work exists within the context of what has gone before it.
If we do not have a clear history, a whole vector of information
is just being thrown away!



If I can’t look at `git log` for a file and get a coherent picture of
how it has changed over time, I have only the current state of
the code with which to construct a mental model of the
problem I am working on. Likewise, when I come to
debugging a problem, one vector I have for doing so is Git
history (via a tool like `git bisect`). If commits leave the system
in a broken state, I will get false negatives, devaluing the
bisect tool.

Conversely, solid Git discipline gives us the history of WHAT
changed and WHY it was changed, thus providing a treasure
trove of information for understanding, maintaining and
enhancing a product.

> For more thoughts on context, see
https://gavd.co.uk/2019/07/importance-of-context/

So, Git discipline is about clear communication and
contextualisation of what we are doing. It’s the opposite of
“chucking code over the wall”. It’s about stepping up, taking
ownership of the codebase and being professional in our
dealings with our colleagues - and our future selves!

In later chapters, we will explore what this discipline looks like
in practise and the techniques we can use to be more
disciplined.

https://gavd.co.uk/2019/07/importance-of-context/


Atomic commits
Throwing about the term “atomic commits” is off-putting to
some people (in the same way as dismissively saying “oh,
well, Git is easy once you realise it’s just a Directed Acyclic
Graph, also I have 9 PhDs and my Dad drives a tank” can
come off as obnoxious). Us mere mortals can define an
atomic commit as:

● Does one thing and one thing only
● Can be applied by itself without breaking the system

(e.g. git cherry-pick)
● Can be backed out without breaking the system (e.g.

git revert)
● Is a complete operation that does not leave the

system in a broken state

Benefits of atomic commits
Consider it this way; you don’t want a commit that solves
BOTH problem A and problem B, although that may appear
tempting. It’s better to have separate commits for A and B,
each of which does one thing and one thing only. That has
several advantages.

Atomic commits benefit 1: single purpose
Firstly, an atomic commit is clean and clear - each commit can
be understood in isolation and its commit message
(documentation/release notes) are specific to it. It’s a nice,
clean unit.



Atomic commits benefit 2: can be applied or
reverted cleanly in one operation
Secondly, each commit can be applied OR backed out
without breaking the system. With atomic commits, you can
use `git revert` to neatly back out a single atomic commit if
one of your two fixes wasn’t quite as clever as you originally
thought (which happens to me on a near-daily basis). You
don’t have to pull out a load of perfectly fine code for A if it’s
only B that you want to back out, and you have clean
traceability through Git of what has been done.

Let’s go through an example. Let’s say that we had a project
with two features, A and B and two bugs with issue tracker
references BUG-1 and BUG-2 were raised against A and B
respectively. You fix BUG1 and BUG2 in a single commit:

> Sidebar: commits in Git “point” to their parent commit. So, in
this diagram, the arrows are pointing “back in time”. Also, the
funny strings of letters and numbers are SHA-1 hashes of the
commit, which uniquely identify Git commits.

This sounds good, until you realise that the fix for B in commit
with the SHA-1 D5163F has created more problems in
production than it has solved. You urgently need to back it out,
but you can’t just revert a single commit, so you end up with:



The commit in red is dangerous because:
- It partially unpicks a previous commit (it’s not a clean

revert)
- You have had to do it manually and may easily miss

things
- It may affect the fix for BUG1 in unexpected ways

If you had done this atomically, you could simply revert the
specific fix:

This is preferable because:
- You have traceability over what has happened and

why
- You are able to revert the commit as a single atomic

unit
- BUG1 fix will not be affected

Atomic commits benefit 3: never leaves the system
in a broken state
An atomic commit should never leave the system in a broken
state - it should be complete enough that it doesn’t require



another commit to make it “whole”. This is NOT to encourage
“big bang” commits - it’s similar to the idea of a minimum
viable product and iteration common to Agile methodologies -
you are looking to deliver a commit that makes one self
contained change. Subsequent commits can iterate upon that
change, add and remove features and fix bugs, but each is a
fairly small step.

This book does not prescribe a particular Git workflow, and
atomic commits are useful for all workflows. For example, with
atomic commits, you should easily be able to cherry pick
commits into release branches if you use them.

Hopefully now you have an idea of what an atomic commit is,
but just in case, let’s describe a counterexample in the next
subsection.

The dreaded non-atomic commit
A non-atomic commit may leave the system in a broken state
(as in, it needs additional commits for tests to run or to be
able to bootstrap). It may be applicable forwards to a branch,
but if backed out, it creates havoc. It jumbles together partial
fixes for 5 separate bugs. It’s probably got an overly terse
commit message reading “stuff” or “WIP” or “FIX”.

This is exactly the kind of commit this book is intended to help
you to avoid creating!

Consider these this photo:



​​
On the left, building blocks represent atomic commits. On the
right, some breakfast cereal represents non-atomic commits.

The atomic commits can easily be sequenced, where
non-atomic commits remain as chaos - good luck building a
coherent picture with them!



Crafting an atomic commit
Sometimes, my working copy will have a few unrelated
changes in it. Thankfully, Git allows us to selectively stage
parts of our working copy (git add -p) so we don’t have to
commit everything we are working on. When crafting a
commit I find it easiest to think:

● Does this commit solve one and only one problem? If
not, it’s not atomic!

● Can this commit be applied in one go? If not, it’s not
atomic!

● Can this commit be rolled back cleanly? If not, it’s not
atomic!

● Is the system in a broken state after committing this?
C’mon, sing the chorus: if not, it’s not atomic!!

Don’t get too hung up!
If you feel like you’ve made a mistake with a commit, Git
supplies you with plenty of ways of fixing it. Even with that in
mind, though, don’t overthink it; sometimes it’s not obvious
what belongs as its own commit.

Furthermore, there are plenty of strongly opinionated people,
me included, who will tell you what to do - take us with a pinch
of salt! Listen, by all means, and think about it, but ultimately
make up your own mind.

“Test everything; hold fast what is good.” - Paul of Tarsus.



Further reading on atomic commits
https://www.codewithjason.com/atomic-commits-testing/

https://www.codewithjason.com/atomic-commits-testing/


A disciplined commit message
Each Git commit has a delta (the patch that the commit
applies) and a message. It may be helpful to consider this
physically - imagine the delta (changes to apply) was on a
USB drive. With this USB drive, you could include a sheet of
paper describing what the change would do, if applied. Then,
your team can read the piece of paper to help decide whether
they want to apply the delta.

The message can be thought of as the “release notes” of this
piece of work. You are saying what’s changed, and why, and
putting it in context of the system as a whole. Again, this
speaks to the discipline of what we do as professionals.

Anatomy of a good commit message
The “shape” of a disciplined commit is something like this:



Issue ref
Most work in the software industry is done in response to a
ticket (or ticket, story, or whatever you want to call it). This
ticket will have a unique identifier, and that’s what you can put
in here. If the work you’re doing does not have a ticket
associated with it, consider whether it’s worth actually creating
one, for future traceability. The ticket is a key point of
intersection with the business people on your team. This is
their visibility. Most issue trackers can be configured to
automatically detect the issue ref in the commit message.
This then gives you a two way lookup between the code
documentation (Git history) and the business requirements
(issue tracking).

Short summary
This is like an article headline, so it should ideally be less than
70 characters so that you can understand it clearly in



something like git log --pretty=oneline
--abbrev-commit.

The tense in which I word Git commit messages is a bit
unusual. I would write “Fixes overflow bug in Foo module”,
rather than “Fix overflow bug in Foo module”. I do this
because the message, in my mind, is a description of the
patch. I think of it like a Post-It note attached to a floppy disk!
(yes, I am that old)

You don’t have to use this tense; most people write in what I
think is called the imperative tense (I have a British A-level in
English Language + Literature but bizarrely I can’t recall ever
having been taught the technicalities of grammar!), such as
“Fix overflow bug in Foo”. It doesn’t matter all that much, write
in a way that helps you to feel comfortable documenting your
changes.

Blank line
This serves to visually separate the “headline” from the
“article”.

Full description
A commit is effectively a patch (you can see this when you
use the `git diff` command). The commit message is the
documentation of the patch and should tell you exactly what
the patch does and, most critically, why. The “what” can be
inferred from the delta, but the delta cannot tell you the
intention of the programmer in making this change.

Examples may be read something like:



“I changed this setting because the PHP 15 API will no longer
support this function, and some of our clients are due to
upgrade in January”.

“I removed this code because the branch could never logically
execute, if you look at the if statement you’ll see it’s ALWAYS
falsy”

“I read these 3 articles (links provided below) that all
described why what we did here was insecure. I have
replaced it with a known-secure algorithm and if you run the
tool at tools/updatesec.sh it will fix all the hashes in the
database.

Supporting materials (optional)
In my University days, the one thing that was drilled into us
was to thoroughly reference our sources. I see no reason to
discontinue this practise in my professional life - I do not wish
to present myself as an authority in my own right with my pull
requests!

So, sometimes I solve a problem based on articles or books I
have read. If that’s the case, I will link to these materials in
this section. I might say something like “this solution was
offered on StackOverflow [link] for someone with a very
similar problem. I researched it in the language
documentation [link] and it seems legitimate. It solves our
problem as per my test script”.



What NOT to include?
Obviously no-one wants to read War and Peace for every
commit!

Here are a few guidelines on what to leave out:

Don’t duplicate information that’s already elsewhere,
provided it’s easy to find!

For example, your issue tracker linkage should already be in
the headline (e.g. #123), and perhaps also mentioned in the
supporting materials section.

Git is a historical axis of information.

Does the information you’re writing in the commit belong in
the project’s documentation? Git is historical information;
documentation is about the present.

If you’re documenting functionality in your commit message,
take a moment to consider if you should be updating the
project’s documentation instead. Think carefully about which
information goes where.

For example, if you’re writing some instructions to run a tool
(known as a runbook), you’d be better off adding a README,
or updating a wiki somewhere, and providing a link in the
commit message.

Any personal gripes



Sometimes I have been known to vent in commit messages. I
try not to do this any more, it’s unprofessional to allow
resentment to be expressed in this way.

Examples of this are “replaces dumb implementation with
something smarter”. This is clearly unacceptable. We
engineers are not unfeeling machines (despite how we are
sometimes portrayed!) but that does not give us the excuse to
be anything less than professional.

If you really feel that you need to vent about something, a
nigh-immutable vector of historical record of your project is
not the place to do it!

Further reading
There are a lot of great posts out there about making good
commits, here are a couple:

- https://tbaggery.com/2008/04/19/a-note-about-git-com
mit-messages.html

- https://8thlight.com/blog/makis-otman/2015/07/08/git-
disciplined.html

https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://8thlight.com/blog/makis-otman/2015/07/08/git-disciplined.html
https://8thlight.com/blog/makis-otman/2015/07/08/git-disciplined.html


A disciplined curated history
In the previous section, we established what a good commit
looks like. However, I seldom get it right the first time!

Thankfully, Git is a distributed version control system (DVCS).
This means that we have our local repository, and if I haven’t
pushed my commits yet, then I can change them to my heart's
content!

Use of branches
Even if I HAVE pushed code, there is often plenty we can do,
provided we are using a branching workflow. More on that in
the next chapter. To keep things simple, this chapter is just
focused on getting it tidy before you push.

Generally, I create a branch for every change I make and
submit it via a pull request (more on those in the next
chapter).

This gives me a degree of isolation, meaning I can work from
a stable base, at the cost of taking on the burden of having to
keep my branch up to date from the source branch.

Caveat - other approaches exist!
Some organisations have solid strategies based around
working directly in a shared branch such as `main` or
`development`, usually because they value super rapid
integration. Do whatever suits your organisation!



Whatever you do, long running branches are a really bad
idea.

Squashing commits
Which of the following commit logs is easier to follow?

Log A

Indent again!
Indentation
Fix
FEATURE-55 Adds standard deviation function
Docs
Oops typo
ISSUE-45 Fixes multiply operator overflow bug

Log B

FEATURE-55 Adds standard deviation function
ISSUE-45 Fixes multiply operator overflow bug

Here is a sample commit history:



In Git, commits “point to” a previous commit (for a full
understanding of this, read up on graph theory), so we can



construct a linear history. So in this diagram, the newest
commit is “Indent again!”

Looking at this history, we can see two “high value” commit
messages (green boxes), with a bunch of “noise” commit
messages (shown in amber). We can easily squash these into
two high value commits:



Then we have a short, contained, high value, clearly
documented history:



Word of caution: don’t go too crazy with the squashing. Refer
to our rules on atomicity in the last chapter.

But that's rewriting history! You MONSTER!
Think of it more as curating history. A historian takes the facts
and weaves them into a coherent narrative, and what you’re
looking to do is similar; when you push commits, you have a
golden opportunity to present an idealised version of history
that is clear to follow.

After all, if you are investigating changes I made, do you really
care about a few typo fixes? Is that really relevant to the
investigation, or will it just add noise?

Furthermore, I only rebase in my own branches. Once
something is merged to a mainline branch, it’s pretty much
etched in stone!

To squash or not to squash?
Sometimes it’s obvious that a commit should be squashed.
For example, let’s say you make a commit and immediately



you git show and spot a typo. There is no value whatsoever
in a separate commit being in history showing you fixing your
typo - it’s just noise! Here’s a flowchart showing how I decide
whether to squash:

This flowchart is far from exhaustive, but hopefully it’ll give
you some rough guidelines.

Sometimes it’s harder to figure out if a squash is called for.
Different people have different opinions on this, but this is my
approach. Just treat this as training wheels - once you’ve



worked this way for a while you’ll get a feel for what you think
belongs in its own commit and what can be squashed. Don’t
overthink it - this whole book is about getting into good habits,
not about turning you into a neurotic overthinker!

I am not advocating for squashing every single commit. If a
commit is neatly atomic and we can back it out trivially by
reverting it, then by all means keep it as-is. If, however, a
commit is NOT atomic, or there are multiple commits to solve
a single problem, you cannot use `git revert` and you have a
far more difficult job of backing out a single change.

Commit often!
It’s a good idea to commit often, so that (a) you have a local
log of what you’ve been working on and (b) if something goes
screwy, you haven’t lost work. This may seem to be in tension
with crafting good commits, but the power of Git is that you
can go back and make a coherent history when you’re ready
to push. When I am doing experimental work firing “tracer
bullets” (hit and hope programming!), I often make a number
of dozens of “safety” commits simply marked “WIP” for “work
in progress” in my working copy. I would not DREAM of
integrating such commits into the main branch of my project,
and I invariably squash/fixup/remove/reword these commits
before pushing!



A disciplined pull request
Your organisation may not use pull requests, but perhaps
you’ll read this section and consider using them. Either way,
it’s a good idea to think about the point of integration of your
work with everybody else’s efforts. It also helps team
cohesion when everyone knows their work has to be
peer-reviewed.

How to conceptualise a pull request
Pull requests (PRs, also known as Merge Requests or MRs)
are where your commits are “staged” for integration with the
mainline product. You could think of it as a “job interview” for
your work. You can think of your pull request comments as the
resume/CV for your efforts.

You are saying “I believe this is something that should be
integrated into the product”, and as such, you must try your
best to express yourself with clarity.

Thankfully, if you’ve followed the guidelines in this book so far,
you’re already nearly there!

Anatomy of a good pull request



Issue ref
Just like the “Anatomy of a good commit message”, a PR
should have an issue reference as part of the title field. This is
not a duplication of information; many Git web front-ends such
as Github, Bitbucket and Gitlab will automatically link issue
references in the PR title to your issue tracker. This is an
enormous time saver for your colleagues reviewing your work,
and supplies vital context for your changes.



Short summary (single line)
Again, this is very similar to the recommendations for
individual commits. A PR may have multiple commits with
their own short summaries, but your PR short summary must
summarise the sum of all the commits. You could consider the
PR to be a ladder composed of rungs (commits). When
writing your short PR summary you are writing the overall
description.

Full description
A PR should detail what has changed and why. You should
demonstrate that you’ve considered potential side effects and
maybe alternative approaches. Don’t assume that your reader
knows everything you know! You never just dump code and
run, you care for your work from the first reading of the ticket
to the deployment to production through to decommissioning,
and this is a critical step - your code is doing an exam to
graduate high school!

Supporting materials (optional)
Just like adding supporting materials in commit messages, we
should have them here too for the benefit of our reviewers.

Test script
Every PR should provide a test script section which tells your
colleagues how you tested your change. This means that (a)
you have demonstrated that you have done due diligence in
testing your changes and (b) anyone coming along should be
able to test your changes before integrating them.



A test script should be a set of steps with assertions, for
example:

- Run the project using the supplied container as per
the README [link]

- Click on the “login” link
- Assert that the new logo is shown

There is rarely such a thing as a truly trivial change, so even if
the test script is just “review the diff and assert that the
changes I made to the README are accurate”, that is
sufficient.

Related PRs (optional)
We may have a section “Related PRs” for when a change
may span multiple repositories. In this diagram, we see an
example of this:



We have raised two pull requests. Each refers to the other,
which is a circular dependency of sorts, so this requires you to
create one first and then the other, and then edit the first one
to mention the other.

If there’s a specific order that the pull requests would need to
be merged in, make that very clear in your pull request
documentation.

Post merge actions (optional)
Sometimes, if a PR is merged, other changes must take
place. For example, if a PR contains a script to modify a
database, the post merge actions could say “run tool foobar
on the command line on the staging database server”.



There may also be actions to update public facing
documentation, should your PR add or modify an API
endpoint,

Having a post merge actions section helps to contextualise
your work within the overall direction of development by
considering the broader scope.

When to raise a pull request? Integrate often!
Many of us in the software industry use agile processes these
days. If we are to be agile, we want our feedback loops to be
as short as possible. Therefore, I prefer to integrate as early
as possible so that:

1. The barrier to integrating future work is lower.
2. My team can see clearly what I am working on, and

identify problems with my approach. This allows us to
“shift left” and tackle problems as early as possible,
before massive investment has been made.

3. I am not asking my colleagues to review 900GB of code
changes in one go.

In the same way that commits should be atomic in the
microscale, so should pull requests in the macro scale.

A pull request may contain many commits:



If this is the case, these commits should be atomic steps to
solving the same overall issue.

So, I raise a pull request as soon as I have something that is
either immediately useful in the product, or something that I
can at least integrate and hide behind a feature toggle.

Long running unintegrated branches are a really bad idea
for several reasons:

1. Harder to integrate as time goes on (due to drift).
2. Lower visibility and transparency with your team.
3. The longer I am working on my branch without

showing my colleagues, the less likely I am to stay on
track

The diagram below demonstrates how frequent integration
reduces the risk of getting off-track:



Don’t expect people to do the work of machines
This is edging towards being out of scope of this book, but
make sure that the changes in your PR pass any quality
standards that your organisation may have. The best place to
do this is firstly on your development machine, and secondly
the act of raising a PR should kick off a build that runs a suite
of tests, static analysis and quality testing tools. Do not expect
humans to waste their time checking that you’ve used curly
braces correctly according to the project standards! Leave
that work to the machines and let the squishy brains do the
abstract thinking!

Beware the phenomenon known as “bikeshedding”:

"The term comes from an illustrative anecdote of a
committee discussing a plan to build a nuclear power
plant. In their meeting they spent the majority of their
time arguing over the color to paint the bikeshed in the
back, because that was the part of the plan that
everybody could understand."
- https://phinze.blog/2014/05/24/useful-tech-terms-part-1.html

https://phinze.blog/2014/05/24/useful-tech-terms-part-1.html


Pull requests are at risk of bikeshedding whereby nobody
tests your actual code but everybody bickers over whether
you’ve indented your code correctly. It’s best to obviate this
risk - apply a standard and hand it off to the machines!

Reviewing pull requests
As well as raising pull requests, we also review them. Here
are some questions I ask:

1. Is it accurately described?
2. Is this going to benefit the project overall?

a. Is it actually pushing the product in the direction
we’re going in?

3. Can I test it?
a. Has a test script been supplied, or is there some

clear way to verify this change?
4. Is it done in a sensible way?

a. Has the developer re-implemented something that
already exists? If so, you’ve got a great teachable
moment!

5. Is the history clean?
6. Do all commits meet the criteria in this book? (atomic,

clearly documented, etc..)

When you review a pull request, you are effectively signing
your name to it and saying “this is good enough for our
product”, so you should test it thoroughly. This isn’t to say
things have to be PERFECT (being overly pedantic will upset
your team!) but we succeed as a team or we fall behind as a
team, so take ownership of everything you review, don’t just
blindly integrate.



Workflow: putting it all together
There are many Git workflows out there, from simple
single-branch linear workflow, through Trunk Based
Development, to complex models like Gitflow. They’re pretty
situational - you pick a workflow that works for your team and
this book is written in such a way as it should benefit ALL Git
workflows.

Here is an approximation of the way I work on features or
fixes day-to-day:



You may notice that I do a LOT of diff reviewing - in fact, I do it
in 3 separate phases! The number of times I have spotted
problems in this manner really is unbelievable. I’ve closed
dozens of pull requests within moments of opening them
because I’ve spotted something that I didn’t spot in my local
development.

In case you haven’t come across the term before, the “delta” a
fancy computer sciency word for the changes made in a
commit - you may hear people refer to it as “the diff”.

Because, as we’ve mentioned, everyone’s workflows are so
different, I’ll leave it at that but suffice to say, I’ve applied
everything in this book and it’s all automatic now.



Applying discipline to other areas
“He that is faithful in that which is least is faithful
also in much: and he that is unjust in the least is
unjust also in much.” - Jesus Christ

I really hope that this book has given you some ideas on how
to improve your discipline in one area of your professional life.
No matter how you approach Git, whether you use the
patterns I use or not, I hope that having read this book will
make you think about your use of this tool, and consider how
you can do it better.

Commit discipline is important but it’s just one small part of
your job as a software professional. When you first start this
level of discipline, the cognitive load will be high, but over
time, it will become second nature. Then, you will start to
actually reduce the cognitive load your version control
requires because it will be semi-automatic, freeing up more
brain power for other activities. This is what I meant at the
start of the book with the “Discipline == Freedom” quote.

Furthermore, a disciplined engineer is extremely attractive to
employers - people are more likely to enjoy working with
disciplined engineers.

If we step back from the nitty-gritty of Git, this book is really
about being intentional about communication. Yes, Git’s an
important part of our job, but hopefully you can see how this
kind of disciplined communication can be applied everywhere
in our jobs:



● Writing specifications
● Giving presentations
● Communicating well - good emails and Slack posts

○ https://iridakos.com/how-to/2019/06/26/comp
osing-better-emails.html

I’ll leave you with three things:
● Be considerate - always assume that other people are

reading your work, even if it’s “future you”. Consider
what they need to know, and how you can help them
become better professionals.

● Be clear - make sure what you say is easy to follow.
Don’t use 100 words when 10 is enough. Don’t
replicate when you can link.

● Be disciplined - what is strange at first will rapidly
become second nature through discipline. Don’t be
too hard on yourself, it will take a while, but you’ll get
there, and you’ll be a better professional for it.

https://iridakos.com/how-to/2019/06/26/composing-better-emails.html
https://iridakos.com/how-to/2019/06/26/composing-better-emails.html


Troubleshooting

This takes too long, I’ve got work to do!
Firstly, it doesn’t take long at all once you’ve gotten into the
habit. Taking a minute or two to craft a decent commit
message or to rebase a branch cleanly is no great hardship.

Secondly - THIS IS YOUR WORK! Communicating to
members of your team, both present and future, and even
your future self, is absolutely as important as the current state
of the codebase. Your commits are one of the most critical
interfaces between you and your team, so surely they should
be as clear as possible?

I encourage you to think more broadly about what your job is,
about what it means to be a professional.

I don’t understand what is a rebase
A few years ago, I wrote this conceptual guide to
understanding Git rebase that should help you
http://radify.io/blog/comic-continuity-and-git-rebase/

My code is well commented, why would I need
to write commit messages?
Whilst there is undoubtedly crossover, commit messages
serve a subtly different purpose to code comments as
commits are intrinsically tied to a point in time and a specific
task. As such, code comments are no substitute for

http://radify.io/blog/comic-continuity-and-git-rebase/


expressing your intent with your commit message, where you
say WHY you made a certain change.

I can’t get my team to “buy in” to Git discipline
Firstly, listen to their concerns. REALLY listen. Do they have
valid points? Think about how you’re approaching this. Are
you shoving it down their throats? Very few of us like to be
ordered about.

Lead by example. Be disciplined, demonstrate value.

If you can get one person on your team to buy in to disciplined
Git usage, the power of shame will eventually raise the game
of the rest of your team ;-).

Also, this book is free, so give them a copy!

The issue number is in the branch name or PR
description, why do I need it in the commit as
well?
The commits are a permanent record. You can think of them
as an audit trail.

Feature branches and pull requests, however, are not
permanent - once they’re merged, they’re gone! Remember
also that a pull request may have more than 1 commit:



So, if you only use the issue number in the branch name or
PR description, once the branch is merged, you’ve essentially
thrown away your audit trail. You don’t have a full log of every
change relating to a ticket. `git blame` will not show you which
line relate to which ticket.

So, yes, add the ticket number to the branch name AND PR
description, but also be sure to include it in each commit
message!

I’m struggling with the technical side of Git
https://git-scm.com/book/en/v2 is a first rate guide to Git.
Keep at it! Git has a learning curve like a brick wall at first but
sooner or later it will “click” for you.

Why do I need to write a test script in my PR?
Shouldn’t that be automated?
Should code have automated tests? Yes.

Should your colleagues know how to run your code? Yes.

https://git-scm.com/book/en/v2


Is it your responsibility to make sure of both? Yes! As IT
professionals, we take ownership of the whole engineering
lifecycle. We succeed as a team, or we fall behind as a team,
so we take radical responsibility for every aspect of what we
do. This is the opposite of culture that leans into constantly
looking to blame others and shirks personal responsibility.

Add automated tests where you can, but also remember that
your colleagues will likely also want to run your code on their
development environments, or on a staging system, or similar,
before integrating it into the product. It is “cheaper” to catch a
problem at this stage rather than back it out later.

Even if your colleagues never run your test script through, at
the very least it shows your working and allows them to make
an informed decision about whether to merge your work.



History

Version Date

Draft 1 August 2019

Draft 2 14 September 2019

Draft 3 - incorporating
feedback from Toby
Maxwell-Lyte and Benjamin
Lavery-Griffiths

18 October 2019

Draft 4 - minor updates 20 August 2020

Draft 5 - reformatting,
incorporating feedback from
Rhodri Pugh

17 September 2021

Draft 6 - incorporating
feedback from Mark McKee

18 September 2021


