GIT wewewe

KNOW ABSTRACTIONS YOU VSE.

e T

\T& Y ..
f
5

3
“J/
'4

o,
A

<

I
f.')‘,
| -

ﬁj;\(EK DRAG

refs
heads remotes- refs—— Qoo
me/Local:F origua— heac};—,——- = o
. fog;z/ﬂ'?oqi[g-- ’tko :M -\\ Baa L)
bmﬂ b :O A
. E r'[__\? i ar \
Sl \»
0L BhazZ||| reds |
e] Lhends remotes- || J
e baz:Z 0}“3“_'(‘1 ,«l j
?Ooia 09'-_.-
X
>troc king (UPSJ(TEOM)

_sremote -Jtmd(m%

Git intermediate
Know abstractions you use.

Jacek Drag

GIT intermediate
Know abstractions you use.
SAMPLE

Copyright © 2023 Jacek Drag

Preface
Discover the beauty and elegance of Git! Learn to create decent, professional repositories!

Bearing the proper abstractions in mind, you know why and what should be done; It is easier then, to find
the answer to how to do it.

The book gives the reader a good sense of Git’s mechanics. It is particularly useful when less obvious
situations occur.

The book can be read as “from zero to hero” guide. Nevertheless, after months/years of using Git, it is
practical to take a break and return to the roots, from time to time.

The book is addressed mainly to people working with code and affecting the way the code is managed:
programmers, devops, technical leaders, architects, project managers, etc. It may also be useful for students
of technical faculties, or even for everyone who wants to have multiple versions of the work they create.

Git locally

Refs — normal and symbolic, branches
Now we know that Git repository is represented by directed, acyclic commit graph. Next goal is to:

* Expand (grow) the graph by creating new commits.
* Traverse the graph.
A ref points to a commit. (For programmers: analogy to the pointers is accurate). Refs are constantly used

during everyday work. Ref, in opposite to commit, can change —first pointing to commit A, later to commit
B.

There are two kinds of refs:

e Normal ref points to a commit. It just stores a commit ID.

* Symbolic ref points to another ref. It stores the name of the ref.

Most refs are stored in subdirectories of .git/refs directory. Some special refs (used for current work) are
stored directly in .git directory.

One of the most important kind of refs is branch. By default, master is the first branch created during
initialization of the repository.

Facility of creating, merging and distributed sharing branches is one of the fundamental Git features, that
makes Git so powerful distributed version control system (DVCS).

Refs are used for effective dealing with the commit graph.

o They can point directly to commits (normal refs) or to another refs (symbolic refs).
Branches are normal refs, so branches point to commits. These commits are called tips of
the branches (from a given moment).

The most important ref — HEAD

HEAD is the most important ref. Git repository cannot exist without HEAD. Working with Git always means
using HEAD, even if unconsciously.

Usually HEAD is a symbolic ref (it points to a branch. However, that is not always the case. When HEAD isn’t
a symbolic ref, you are in detached HEAD state (which will be discussed soon). Although some people like to
work in detached HEAD state, it isn’t a typical approach. In fact, if you work in detached HEAD state, Git will
most likely be reminding you about it, and it will ask you to switch to the more typical state, which is the one
with HEAD pointing to some branch.

HEAD
* Is stored in .git/HEAD file.

* Typically, if the repository is empty (no commits have been created), it points to the yet not existing
branch master.

e During commit:

o At first, the commit to which HEAD is pointing to (most likely—as a symbolic ref —indirectly),
becomes the parent of the commit being created. That means, it is written to the one-element

parents list of the new-created commit.

o After saving the new-created commit in the repository (map of objects), HEAD starts to point to this
new commit. Normally it means, that the branch pointed by HEAD changes. In detached HEAD state
however, this means that HEAD itself changes.

o Git cannot function without HEAD. During committing, the commit pointed by HEAD
becomes the only parent of the new-created commit.

A couple of experiments with refs and HEAD
Assuming that Git:

o Stores objects in .git/objects directory.
e Storesrefsin .git/refs directory.

e Must have HEAD, which is stored in .git/HEAD file.
Let’s try to create a Git repository manually.
Manual, minimalistic git init

mkdir experiment6

cd experiment6

mkdir -p .git/objects

mkdir -p .git/refs

echo 'ref: refs/heads/master' > .git/HEAD
git status

It works!
Let’s keep going!

git symbolic-ref HEAD @

git rev-parse HEAD @

git commit --allow-empty -m"init repo"

touch y.txt

git add y.txt

git rev-parse HEAD ®

git commit -m"Committed when HEAD was $(git rev-parse HEAD)."
git rev-parse HEAD @

git cat-file commit HEAD ®

(D HEAD is a symbolic ref pointing to the branch master (we’ll talk about heads in a while).
(@ HEAD is not pointing to any commit yet. There are no commits in the repository for now.
(® HEAD value before committing.

@ HEAD value after committing.

(® The parent of the new commit is the previous HEAD’s value.

Heads as tips of the branches and branches

As mentioned before, the idea of branches is one of the most important concepts that makes Git so powerful.

What are those branches?

Technically, they are just (normal) refs, living in the .git/refs/heads directory.
Why notin .qit/refs/branches though?!

The answer is:

Technically, a branch is just a ref. However, to realize what the term 'branch' really means, we have to
consider the ref as a tip of the branch. The branch is defined by its tip and the parent relationship.

So, we can see the 'branch’ as a subgraph: consisting of its tip itself and all commits reachable by parent
relationship.

Now, reversing the order, we can see the branch as something that starts at the first commit (the root) of the
repository and expands, possibly diverging and merging, until it finally reaches its tip — the current commit.
Moreover, that branch still can grow —it’s as easy as creating a new commit on its tip (i.e. when HEAD is
pointing to the tip).

If we take this point of view, our refs will indeed be pointing to the tips of the branches. Therefore,
refs/heads may be technically more accurate location.

During work, HEAD wusually points to the 'current' branch (its tip), e.g.
.git/refs/heads/master. It allows the branch to grow by creating a new commit on the tip
of the branch.

Useful checks

git symbolic-ref HEAD @
git rev-parse refs/heads/master @

o git rev-parse HEAD ®
(@ HEAD is a symbolic ref, it points to some branch, e.g. refs/heads/master.

@ refs/heads/master is a normal ref, which points to some commit — the tip of the branch
(its head).

(® HEAD indirectly points to the same commit as refs/heads/master
Yeah —if HEAD points to refs/heads/master, what other commit could it indirectly point
to?

Naming conventions

Name of a branch can include slashes (/). Using it makes the names look like file paths or contained in
namespaces. It might be a good idea to decide on some convention for big projects. E.g. dividing branches
into some categories:

o feature/* from short-lived branches intended to develop features,

o user/<user>/* for individual programmers, so that they can have their own branches without polluting
the "general namespace",

or anything else that seems useful.

Useful commands

git branch Display local branches.

git branch -vv Display branches taking into account tracking info.
git branch --all Display local and tracking branches.
git show-ref Display refs.

git symbolic-ref <name> Display which ref <name> is pointing to.

Lightweight tags

Another kind of refs are lightweight tags. They are normal refs used to (temporary) tag commits. To tag
commits permanently annotated tags should be used, which are not refs but Git objects (see [git-objects]).

Addressing expressions — traversing graph, sets of commits
Documentation: gitrevisions

As you know, commits are identified by the commit ID (SHA-1, hash). Along with ancestors relationship they
create acyclic, directed graph. Thanks to the refs (like branches, annotated tags), some of the nodes of the
graph (commits) can be easily reached.

But is it possible to reach any other commits in any other way than by refs or commits ID?

Well, it is. Git allows the user to identify commits by some expressions. By these expressions, you can
reference:

* commits
 any Git objects (see [git-objects]) —trees, blobs, tags

* sets of commits

Most often expressions identifying commits are used, but the others can be useful as well. Commands used
for calculating the expressions values are:

* git rev-parse

o git rev-list

These are complicated in general. Here is the simplest form:
git rev-parse <expressions>

displays revision, that is SHA-1 of the object/objects specified by <expressions>.

In many Git commands branches names etc. are passed as parameters. In reality, most
o often appropriate expressions can be used. A branch name is a special example of the
simplest expression.

Some commands can get as parameters expressions that might not be obvious for the user, such as pushing a
blob, instead of a commit.

https://git-scm.com/docs/gitrevisions
https://git-scm.com/docs/git-rev-parse
https://git-scm.com/docs/git-rev-list

Expressions identifying a commit
Most often used and the simplest expressions are:

e branch names, tags

* HEAD
Below rev will stand for some expression addressing a certain commit.
More complicated expressions that are most often used, are those using operators:

¢ tilde: ~

e roof: A

rev~[n]

References the n-th ancestor of rev. For the merge commits it walks along the main inheritance line, i.e. it
always picks the first parent from the list.

n defaults to 0, for n = 0 it just references rev.

Some identities
* rev~0 =rev
e rev~1 =rev~
* rev~~ =rey~2
e reve~2 =rev~3
* rev~3~2 =rev~5

We are just summing the amount of tildes, and that is how we calculate the amount of generations for
which we have to go backwards along the main inheritance line.

revA[n]

References the n-th commit on the parents list of rev.
n defaults to 0, for n = 0 it just references rev.

Some identities
e revhd =rev
* revA =rev?
e revMAT = revA

o revMA2 = revM\2
There is no summing here. Every single roof in the expressions above references another parents list.
Let’s notice that —so to speak accidentally — we have:

e rev~d =revhd =rev
e rev~ =revh =rev~1 =rev/i

* rev~~ = revA\

o reve~~ = reyMA

s etc.

However, if tilde is followed by a number (different from 0 and 1), let’s say n, the rev~n expression means
something totally different from rev/n.

One could say that tilde is going backwards vertically, always choosing the most right direction (in the graph
drown by git log --graph). On the other hand, roof goes horizontally along the parents list.

Tilde appears to be easier in usage (it’s easier to type rev~5 than revA\). But roof must be used in order to
turn from the main inheritance path.

Small experiment

git rev-parse HEAD HEAD~0 HEAD"@ HEAD~ HEADA
git rev-parse master master~@ master”@ master~ master”

<refname>@{<n>}

These expressions (with <n> positive) are calculated based on reflog (see [reflog]). <refname> can be
skipped. In that case, the current branch will be used. Most often <refname> is a branch name but, among
others, HEAD can be used as well.

@{-<n>}
The negative values reference previous HEAD values (branches/commits).

git checkout @{-1}
git checkout -

[<branchname>]@{upstream}

References the upstream of <branchname>, provided it is set.

<branchname> can be skipped, then the current branch will be used.

@{upstream} can be abbreviated to @{u}, so @{u} is the shortest form referencing the upstream of the
current branch.

@
@ alone is an abbreviation for HEAD.

Expressions identifying other Git objects

The previous expressions reference commits. Other expressions can be used to reference other Git objects.
revA{<type>}

where type is optional and defaults to commit. Other possibilities are tree, blob and tag.

Let’s say, that there is tag v1.1 in the repository. In that case, expression v1.1 references this tag itself, and the
v1.17M{} (thatis v1.17{commit}) expression references the commit decorated by the tag.

git show --name-only

git rev-parse master{tree}

Versions of blobs and trees

<rev>:<path>—values stored in commits

This references the value (blob/tree) of file/directory <path> stored in <rev>.

For instance, HEAD~:README is content of file README stored in the 'previous' commit. master:README is
content of that file stored in (the tip of) branch master.

How can you reference to the project main directory (that is how to calculate HEADA{tree}) in that
notation? It will be HEAD: (with empty <path>).

:[<n>:]<path>—values stored in the index

This references the file content (blob) of <path> stored in the index as version <n> (see [blob-versions-in-
index]).

<n> defaults to 0. It is the current file content. Others possible values are 1, 2 and 3. They are used to mark
merge conflicts.

Thus, git rev-parse :README.md references the current (not conflicted) README.md file content stored in
the index.

Having the file/tree value, you can display its content using git cat-file command, e.g.

git cat-file -p HEAD:README.md @D
git cat-file -p HEAD~: @

(@ README.md file content from the current commit.

@ Project main directory value from the previous commit.

Expressions referencing commits ranges
Some commands don’t operate on single commits, but on commit sets (ranges).

<rev>

In that context <rev> expression means reflexive-transitive complement of the parent relationship.
Meaning all commits that are reachable from <rev>, i.e. the ones reachable by the ancestor relationship.
Let’s remember that a commit is considered to be reachable from itself.

A<rev>

References commits unreachable from <rev>.

<revl>..<rev2>—two dots, 'missing commits'

One could say, that this expression references 'missing commits'. I.e. commits reachable from the <rev2>,
but unreachable from the <rev1>. In other words, these from the commit <rev2> history, which are missing
in the commit <rev1> history.

This is an abbreviation for the ~<rev1> <rev2>. That range is used, among others, during the git rebase
operation.

<revl>...<rev2> —three dots, symmetric difference

I.e. commits reachable from <rev1> or <rev2>, but not from both.

In both cases (two and three dots) you can skip <rev1> as well as <rev2>. They default to HEAD.

[<range>, ...]
Some of the expressions above you can put one after another, which means the common part of the
individual ranges.

E.g.git log revl rev2 ---.

Graphical tools — Git isn’t a hardliner

This book focuses on working with command line. However, sometimes it is more efficient to use graphical
tools, including IDE. This is especially true for comparing files contents and conflicts resolving.

It turns out that Git is not a hardliner. Even during work with command line, it allows to use graphical tools
for some purposes! Specifically, difftool and mergetool can be configured. Personally, I usually use mergetool
for conflicts resolving:

git mergetool

Example of mergetool configuration

git config --global merge.tool intellij-idea @
git config --global mergetool.intellij-idea.cmd "intellij-idea-ultimate merge $LOCAL $REMOTE $BASE $MERGED' @

@ Defining a tool used for conflict resolving.

(@ Configuration of this tool (how to run it).

IDE can be also very useful for commit preparing. Especially creating a commit from only some selected
changes can be much easier with IDE.

Normally, after creating a new file in the working tree, IDE asks if it should instantly add the file to the index.
It is a good idea. Similarly, when deleting a file, it is better to instantly delete the file from the index.

Index (staging area)

At the very beginning, let’s settle some issues:

o Are the index and the staging areaindeed exactly the same thing?
Yes, they are two names of the same thing.

The index is stored in the .git/index file.

This topic is often mistaken even by experienced Git users. So let’s emphasize the proper abstractions again.

o The staging area (also called the index) is the project state that will be saved with the
upcoming git commit command.

o git commit does not save content of the working tree but content of the index!

Therefore, preparing a commit is putting the project files in the proper states into the staging area.

One can see an analogy to working with ACID, read committed database. When you have an open

transaction in the database, you are modifying its contents:

e Adding some rows.

* Modifying some others.

* Deleting some others.
You can do this in many steps, and each next step can modify the rows modified in the previous steps. You
can even:

* Modify rows that you have added earlier.

* Delete rows that you have added earlier.

* Restore rows that you have deleted earlier (might be hard).

Roll back all the changes.

And all these changes (new state of the rows that are involved in the transaction) are invisible for the others
until the changes are committed. During the commit the new database state is being saved and becomes
visible for the other transactions.

The index can be seen as a modified project state:

* not committed yet
 not visible for the bystanders yet

¢ still modifiable,

which during committing will be (as a whole) saved and exposed as a new commit.
o The index also stores the information about merge conflicts, but it will be discussed later.

There is one more very important difference:

* In the database transaction, only the rows modified by this transaction are involved. In the meantime
other transactions can change other (not modified by your transaction) rows (read-committed
transaction). As a result, the state after commit doesn’t have to be exactly the one from before the
transaction with the changes applied.

» Staging area is the whole project content (serializable transaction).
After committing the created commit will contain the exact index content. While committing Git does not
care about:

* what is in the working tree,

e what is in other commits,

¢ it makes no comparisons,

* it does not apply any patches,

« it takes the index content as it is. And this exact content is saved in the new commit.

One of the most common mistakes is thinking that it is the information about changes between the commit
and its parent what is stored in the index.

I do want to convince you how it really works. Therefore, let’s do some experiment with the git Is-files

10

https://git-scm.com/docs/git-ls-files

command. The command displays information about the files in the index and in the working tree.

Experiment

* Clone some small repository (so that there are no changes in the working tree).

* Execute the following commands and watch.

git status @

git 1s-files --stage @
rm .git/index ®

git status @

git 1s-files --stage ®
git reset --hard ®

git status

git 1s-files --stage

> 7727

git 1s-files --stage @
git add zzz

git 1s-files --stage
git commit -m"Add zzz"
git 1ls-files --stage @
@ "nothing to commit"
@ Listing the files in the index.
® Deleting the index. Normally, never do that!
@ "Changes to be committed" contains all project files!
(® Because the index is empty! All the files were previously in the index but were deleted from there.
® Restoring everything (especially the index) to the state from HEAD.
@ The index hasn’t changed.
There is a new file in the index.
(© The index hasn’t changed.

You can guess the meaning of the majority of the results displayed by git 1s-files. Except for the mysterious
zeros. This will be discussed with merge conflicts (see [merge-conflicts]).

From the git status documentation

Displays paths that have differences between the index file and the current HEAD commit, (...
). The first are what you would commit by running git commit; (...)

From the git add documentation

The "index" holds a snapshot of the content of the working tree, and it is this snapshot that is
taken as the contents of the next commit.

git checkout vs git reset

One can ask: As git checkout and git reset --hard both change HEAD, the index and the working tree, are
they not the same? There is one subtle, yet important difference between them:

hard reset Does not modify HEAD itself, but the branch pointed by HEAD.

11

checkout Modifies HEAD itself, switching it to another branch.
It doesn’t modify the branch itself — neither the original, nor the new one.

The above illustrates intentions of the two commands:
hard reset Clears the foreground and prepares for resuming the development
» of the current branch
o starting from the indicated commit.
checkout Clears the foreground and prepares for resuming the development

¢ of the indicated branch

 from its tip.

Table 1. changes made by the commands

command changes HEAD/branch changes index changes working tree
git reset --soft branch no no
git reset --mixed branch yes no
git reset --hard branch yes yes
git checkout HEAD yes yes

12

Git remotely

The first part of the book was about working with a local repository, i.e. about growing the commit graph.

The second part will treat about cooperating with the remote repositories, i.e. about sharing (downloading
and sending) parts of the graph from/to other repositories. This part is surprisingly short. It turns out that
most of the hard work is local.

Branches: local, remote, tracking, remote-tracking and upstreams
There are several kinds of branches:

¢ local branches, those are normal branches — We have been working with them so far.
They can be displayed with the git branch command.

* remote branches, those are branches in remote repositories. Let’s notice, that they are local branches in
the remote repository, and only from our repository’s point of view they are remote.
Actually, this isn’t any special kind of branch. Usage of the local/remote term just allows us to distinguish
if a mormal' branch is from the local repository or rather from any remote one.
The remote branches can be displayed with the git 1s-remote [<remote>] command. The result is a little
bit richer than the one for the local branches.

* remote-tracking branches, those are representations of remote branches in the local repository.
Such branches correspond to the remote branches with the same names and store the values (commit
IDs) of appropriate remote branches. The values come from the last synchronization time with the
remote repository. Those branches are not created explicitly!
Remote-tracking branches can be displayed with git branch -a command. They are the ones like
remotes/<remote>/<branch>. So, such a branch is identified by two names:

- the name of the remote repository,
- the name of the branch in this remote repository.

* tracking branches, those are local branches related to some remote-tracking branches. The remote-
tracking branch plays the role of upstream in this relationship. Similar to remote branches tracking
branch isn’t a name of a special kind of branch. It is a statement, that an upstream has been set for this
branch. Each local branch can become or cease to be a tracking branch, because its upstream can always
be set or unset

There are two main kinds of branches:

* normal branch
o Itis identified by refs/heads/<branch>.

o It can be a branch in a remote repository (i.e. identified by refs/heads/<branch> in
the remote repository), not in the local one.
o It is called then a remote branch. In case of a local repository it is called a local
branch.

o It can have an upstream (a remote-tracking branch) set, which allows it to
cooperate with the remote branch.

It is called then a tracking branch.
o It is changing during the graph development, i.e. during execution of commands:

commit, checkout, reset, merge, rebase and revert.

13

* remote-tracking branch
o Itis identified by refs/remotes/<remote>/<branch>.
o It stores the value of a remote branch.
o It can be an upstream of a normal branch (making the normal branch tracking).
o It is changing only during exchanging the subgraphs with the remote repositories,

i.e. during execution of commands: fetch and push.

upstream is a property of a local branch establishing a connection between this branch

o and a remote branch.

The values of upstreams are remote-tracking branches.

It’s high time for some experiments.

1. Let’s try to switch to a remote-tracking branch:
git checkout remotes/origin/<somebranch>

We are in detached HEAD state, in the commit pointed by remotes/origin/<somebranch>.

Let’s go back:
git checkout -
2. Let’s do it otherwise.
git checkout origin/<somebranch>

Detached HEAD again. Git has found <somebranch> in remotes.
Let’s go back:

git checkout -
3. Third time lucky:
git checkout <somebranch>
Something different! Git said:

Switched to branch 'release'
Your branch is up-to-date with 'origin/release’.

git branch

14

A new branch has been created:

git branch -vv

* <somebranch> 1867d2b [<remote>/<somebranch>] <commit message>

Git found the branch <somebranch> among the remote-tracking branches remotes/<remote>/*. On that basis Git
created branch <somebranch> and set its:

 value to the commit pointed by remotes/<remote>/<somebranch>,

* upstream to branch remotes/<remote>/<somebranch>.

This new local branch <somebranch> is ready to cooperate with remote branch <somebranch> from repository
<remote>. These branches are related, by the upstream of the local branch. The value of this upstream is
remote-tracking branch remotes/<remote>/<somebranch>.

For example, let’s say that you are co-working with others developing branch foo.
Local branch foo can be related to some remote branch, e.g. origin/foo, by setting the upstream.

The intention is clear: You want to share your work—developed in foo—with others, by sending new
commits to the remote repository. From there, they can fetch those commits. If someone has pushed their
commits to that repository, you can fetch them to your local repository.

Setting an upstream explicitly

Switching to a remote branch creates a local branch and sets its upstream. However, sometimes you may
want to manage the upstreams manually.

Setting the upstream explicitly

git checkout -b <somebranch> <remote>/<somebranch>"{commit} @
git branch --set-upstream-to=<remote>/<somebranch> @

@ Creating the local branch pointing to the same commit as the remote-tracking branch. Without setting the
upstream.

@ Setting the upstream.

The upstream can be unset with:
git branch --unset-upstream <branch>

command. While the remote-tracking branches are not removed manually, it can be done either with a
special command, or during fetching the changes from the remote repository.

git fetch— fetching subgraphs from a remote repository

Documentation: git fetch

15

https://git-scm.com/docs/git-fetch

In this chapter you will learn to fetch commits from a remote repository.

Reminder: a branch is just a non-symbolic ref pointing to some commit. Sometimes we say that the given
commit is the tip of the branch or the value of the branch.

Fetching a single branch

You know, that the value of local branch foo changes during execution of git commit command. It also
changes during execution of the following commands: checkout, reset (mixed i hard), merge, rebase, revert.
But when and how does the value of remote-tracking branch origin/foo changes?

Let’s assume that new commits have appeared in the branch foo in the remote repository. Which means, that
branch foo has changed in the remote repository (where the branch is local). Which means it points to
another commit than the corresponding remote-tracking branch in your repository points to.

During execution of git fetch origin foo the following things happen:
e Checking foo's value in the remote repository (what a commit it is) and writing this information to

.git/FETCH_HEAD.

 If the commit is absent in the local repository, it gets fetched from the remote repository. The commit
itself and all necessary objects, that is the whole history of the commit.

e In the local repository remote-tracking branch origin/foo gets moved to the commit written in
.git/FETCH_HEAD.

That’s it! Your local graph has grown, and branch origin/foo points to the same commit as foo in the remote
repository again.
Notice, that local branch foo has not changed!

A real example:

git fetch origin main

remote: Enumerating objects: 1449, done.
remote: Counting objects: 100% (1137/1137), done.
remote: Compressing objects: 100% (442/442), done.
remote: Total 1449 (delta 501), reused 1079 (delta 484), pack-reused 312
Receiving objects: 100% (1449/1449), 529.77 KiB | 11.52 MiB/s, done.
Resolving deltas: 100% (517/517), completed with 144 local objects.
From https://github.com/spring-projects/spring-framework
* branch main -> FETCH_HEAD
7700570253. .a6cd8a78e2 main -> origin/main

Let’s see, what the individual lines mean:
* branch main -> FETCH_HEAD
Value of the remote branch main is written to FETCH_HEAD.

7700570253. .36cdB8a78e2 main -> origin/main

16

remote-tracking branch ‘origin/main® pointed to commit 7700570253",
and points to ‘abcd8a78e2", now.

* Lines with
> Enumerating — Git enumerates objects to be fetched.

o Counting, -+, Resolving— Git fetches the enumerated objects, compressing them for the time of
transport.

If there was nothing to fetch, the message would be much shorter:

From https://github.com/spring-projects/spring-framework
* branch main -> FETCH_HEAD

How long does such a fetch last? You can experiment, fetching some repository, e.g.

git init

git remote add origin https://github.com/spring-projects/spring-framework
time git fetch origin main

time git checkout main

git log --pretty=oneline | wc -1

The result is not bad, as for such a large repository:
Several seconds to fetch the full project history

remote: Enumerating objects: 582278, done.

remote: Counting objects: 100% (555/555), done.

remote: Compressing objects: 100% (351/351), done.

remote: Total 582278 (delta 111), reused 449 (delta 87), pack-reused 581723
Receiving objects: 100% (582278/582278), 158.27 MiB | 17.29 MiB/s, done.
Resolving deltas: 100% (285908/285908), done.

From https://github.com/spring-projects/spring-framework

* branch main -> FETCH_HEAD

* [new branch] main -> origin/main

real 0m15,718s

user 0m18,050s
Sys 0m2,499s

Half second to switch to a branch

Branch 'main' set up to track remote branch 'main' from 'origin' by rebasing.
Switched to a new branch 'main’

real 0m@,553s
user 0mo,346s
Ssys 0m@,203s

Repository contains over 26000 commits

git rev-list --all --count
26162

17

After git fetch <remote> <branch> execution, in the local repository:

e The value of the remote-tracking branch <remote>/<branch> is set to the same commit
as the value of the remote branch <branch>.

e The whole history of the commit (the subgraph) is contained in the local repository.
git fetchis a 'safe' operation. It modifies only:

o ¢ the local repository — adding new object to it,

* the remote-tracking branches,
and it does nothing:

* in the working tree,

» with the local branches (even with the tracking ones).

In addition, all tags reachable from the tip of branch <branch> are fetched.

Fetching many branches

You don’t have to specify the branch you want to fetch.
git fetch <remote>

is enough. Git will do a bit more, it:

 Fetches all new remote branches and creates remote-tracking branches for them.
* Updates all remote-tracking branches.

 Fetches tags reachable from the remote-tracking branches.

Usually, you don’t have to specify the remote you want to fetch from. You can type:
git fetch

How does Git know which remote repository should be taken into account? There are two options:

e If the current branch is a tracking one, the remote of the upstream is used.

e Otherwise, the name origin is used.

The changes from all remote repositories can also be fetched at once:
git fetch --all

In fact the above examples are the most common cases. In reality the Git world is much richer and a simple
git fetch uses various configurable settings. As usual, the defaults allow the user not to care too much about
it.

18

General form of fetching

In general, git fetch command looks like this:
git fetch [<options>] [<repository> [<refspec>::-]]

Instead of simple <remote> more general <repository> can be used. Instead of <branch> a <refspec> list can be
used.

We will go back to that after describing [repo-and-urls] and [refspec]. In particular, the following versions of
the fetch command will be described:

git fetch <remote> <remote-branch>:<local-branch>

Deleting withered branches

A remote branch can be deleted, but it does not mean that the remote-tracking branch, which tracks the
branch, will also disappear. It won’t. Even after execution of git fetch. The only thing done when fetching is
noticing in the local repository that the corresponding remote branch does not exist anymore. One could call
a remote-tracking branch without its remote counterpart: dangling (as it is a ref) or withered (as it is a
branch).

You can make git fetch delete withered branches this way:
git fetch -p

or without fetching with the command:
git remote prune <remote>

Notice, that both commands have to connect to the remote repository to see which branches were there
deleted.

Useful options

--dry-run Do not execute. Just show what is about to happen.
(-a | --all) Fetch from all remotes.
--depth=<depth> Do not fetch the whole history but to the given depth only.

There exist also several similar options.

(-p | --prune) Delete the remote-tracking branches which don’t have the corresponding remote
branches anymore.

(-P | --prune-tags) Delete all tags absent in the remote repository. Including these which were
created only locally!

19

(-n | --no-tags) Do not fetch the tags.

(-t | --tags) Fetch all tags, even not reachable from any branch. This option can be useful
when the branch was deleted but some tags, not reachable anymore, are still
relevant. Normally, only reachable tags are fetched.

o git fetch modifies the remote-tracking branches only. It does not modify the local
branches unless forced!

20

Supplements

git rebase —default values of parameters

git rebase command was described in the first part of the book (see [git-rebase-local]). But the second part
was needed to fully describe git rebase's default parameters.

In the general form below all parameters are optional:
git rebase [-i] [--onto <new-base>] [<upstream> [<branch>]]
If you don’t give any of them, the following values will be used:
git rebase --onto HEAD@{upstream} HEAD@{upstream} HEAD
For example, if master is the current branch:
git rebase
expands to:
git rebase --onto origin/master origin/master master

This command rebases the commits added to branch master locally onto master fetched from origin. So it is
integration of the local development with what has been developed remotely.

By default, the values of the command:
git rebase [-i] [--onto <new-base>] [<upstream> [<branch>]]

are:
o <branch> HEAD, more precisely the current branch.
<upstream> Upstream of branch <branch>.

<new-base> The value of the <upstream> parameter
In particular, if parameter <upstream> is not given explicitly, <new-base>
defaults to the upstream of branch <branch>.

21

	Git intermediate: Know abstractions you use.
	Preface
	Git locally
	Refs — normal and symbolic, branches
	Addressing expressions — traversing graph, sets of commits
	Graphical tools — Git isn’t a hardliner
	Index (staging area)
	git checkout vs git reset

	Git remotely
	Branches: local, remote, tracking, remote-tracking and upstreams
	git fetch — fetching subgraphs from a remote repository

	Supplements
	git rebase — default values of parameters

