

Getting Stuff Done with Laravel 4
A journey through application design and development
using PHP’s hottest new framework

Chuck Heintzelman

This book is for sale at http://leanpub.com/gettingstuffdonelaravel

This version was published on 2014-02-02

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 - 2014 Chuck Heintzelman

http://leanpub.com/gettingstuffdonelaravel
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Chuck Heintzelman by spreading the word about this book on Twitter!

The suggested hashtag for this book is #LaravelGSD.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#LaravelGSD

http://twitter.com
https://twitter.com/search?q=%23LaravelGSD
https://twitter.com/search?q=%23LaravelGSD

Contents

Thank You . i

Revision History . ii
A special thank you . ii

About the Sample Version . iii
Contents of Paid Version . iii

Welcome . 1

Chapter 1 - This book’s purpose . 2
What’s not in this book . 2
What’s in this book . 3

Chapter 2 - Who are you? . 4

Chapter 3 - Who am I? . 5

Chapter 4 - What is Laravel? . 6

Chapter 5 - How to justify Laravel . 7

Chapter 6 - Why programmers like Laravel . 9

Chapter 7 - Wordpress: The Good, The Bad, The Ugly . 10

Chapter 8 - Conventions Used in this Book . 11
What OS am I using? . 12

Part 1 - Design Philosophies and Principles . 13

Chapter 16 - SOLID Object Design . 14
Single Responsibility Principle . 14
Open/Closed Principle . 15
Liskov Substitution Principle . 18

CONTENTS

Interface Segregation Principle . 20
Dependency Inversion Principle . 22

Thanks for checking out the Sample . 26

Thank You
I want to sincerely thank you for purchasing this book. I hope you find it engaging, entertaining,
and most of all, useful.

Other Places to Learn Laravel

• The website¹. This is always my first stop to look something up. Check out the forums there.
It’s chock-full of information.

• NetTuts². There’s some nice Laravel tutorials on the site.
• Laravel Testing Decoded³ by Jeffery Way. This book is an awesome resource on how to test
your Laravel code.

• Code Bright⁴ by Dayle Rees. This book is both fun and informative.
• From Apprentice to Artisan⁵ by Taylor Otwell. By the creator of Laravel … need I say more.
• Implementing Laravel⁶ by Chris Fidao. This book focuses on implementing projects with
Laravel. It covers structure and and common patterns. A great book.

• Laravel 4 Cookbook⁷ by Christopher Pitt. This book contains various projects built in Laravel
4.

• Laravel in Action⁸ by Maks Surguy. This book is now available from Manning Publications’s
Early Access program.

¹http://laravel.com
²http://net.tutsplus.com/
³http://leanpub.com/laravel-testing-decoded
⁴http://leanpub.com/codebright
⁵https://leanpub.com/laravel
⁶https://leanpub.com/implementinglaravel
⁷https://leanpub.com/laravel4cookbook
⁸http://www.manning.com/surguy/

http://laravel.com
http://net.tutsplus.com/
http://leanpub.com/laravel-testing-decoded
http://leanpub.com/codebright
https://leanpub.com/laravel
https://leanpub.com/implementinglaravel
https://leanpub.com/laravel4cookbook
http://www.manning.com/surguy/
http://laravel.com
http://net.tutsplus.com/
http://leanpub.com/laravel-testing-decoded
http://leanpub.com/codebright
https://leanpub.com/laravel
https://leanpub.com/implementinglaravel
https://leanpub.com/laravel4cookbook
http://www.manning.com/surguy/

Revision History
Current version: 1.2

Version Date Notes

1.2 02-Feb-2014 Typos and updates for Laravel 4.1
1.1 28-Nov-2013 Typos and general cleanup.
1.0 2-Nov-2013 Fixed many typos and released on Leanpub.
0.9 27-Oct-2013 Finished and released on Leanpub.
0.8 20-Oct-2013 Added 4 chapters, released on Leanpub.
0.7 13-Oct-2013 Added 3 chapters, two appendices. Released on Leanpub.
0.6 6-Oct-2013 Added 8 chapters, finishing Part 3. Released on Leanpub.
0.5 29-Sep-2013 Added 7 chapters to Part 3 and released on Leanpub.
0.4 22-Sep-2013 Added 7 chapters to Part 3 and released on Leanpub.
0.3 15-Sep-2013 Cleanup draft through Part 2. Decided to release first version on Leanpub.
0.2 8-Sep-2013 Finish 1st draft of Part 2
0.1 31-Aug-2013 Finish 1st draft of Welcome and Part 1
0.0 3-Aug-2013 Start writing first draft

A special thank you

Here’s a list of non-anonymous people who have helped me by finding typos and other issues in
these pages.

• Peter Steenbergen
• Jeremy Vaught
• George Gombay
• Mike Bullock
• Kristian Edlund

Thank you very much!

Cover Image

Cover image copyright © Kemaltaner⁹ | Dreamstime.com¹⁰

⁹http://www.dreamstime.com/kemaltaner_info
¹⁰http://www.dreamstime.com/

http://www.dreamstime.com/kemaltaner_info
http://www.dreamstime.com/
http://www.dreamstime.com/kemaltaner_info
http://www.dreamstime.com/

About the Sample Version
Since you’ve downloaded the “Sample” version of the book, you’re not receiving entire thing.

I’m providing the eight chapters from the Welcome section in their entirety. Plus the chapter on
SOLID Object Design. This will give you the flavor of my writing and explain why this book will
be useful.

Contents of Paid Version

If you look at The Leanpub Page¹¹ the entire Table of Contents is presented for you to examine.

Go there. Check it out. See if anything helps you decide to purchase the complete version of this
book.

¹¹https://leanpub.com/gettingstuffdonelaravel

https://leanpub.com/gettingstuffdonelaravel
https://leanpub.com/gettingstuffdonelaravel

Welcome

Welcome to Getting Stuff Done with Laravel. The Welcome part of the book explains what you’ll
get out of the book.

Here’s how things are broadly organized.

Welcome
The first part of the book explains what you’ll get out of the book.

Part 1 - Design Philosophies and Principles
This part talks about general principles of design we’ll follow in creating the application.

Part 2 - Designing the Application
This is the part where we design the actual application.

Part 3 - The Console Application
Next, we make the application usable from the console.

Part 4 - The Web Application
Now we’ll take our creation and put a web skin on it.Mwaa, haa, ha.

Appendices
Supplemental information. Like how to install Composer.

Chapter 1 - This book’s purpose
This book will take you on a journey through Laravel. Hopefully, you’ll go places you’ve never been
and see you things you’ve never seen. It’s a travelogue of sorts. We’ll have a definite destination
(the application we’re creating) and I’ll point out some amazing sights along the way. When you
reach the end, drop me a note at chuckh@gmail.com¹². I’m very interested in what you thought of
the journey.

This book is meant to be experienced. To be used. Please follow along and build the application
chapter by chapter. Each chapter leads to the next. The sections within a chapter flow forward.
Each part of the book builds on the previous.

You could think of the sections in each chapter as cities. Then the chapters themselves are countries,
and the book’s parts are continents and … Okay, enough with the labored traveling analogy.

The focus throughout the book is the step-by-step creation of an application using Laravel 4.

This is not a typical technical manual
I’ve attempted to mimic the actual process of design and development as closely as possible.
This means there are false starts, design changes, and refactoring along the way.

You’ve been warned <grin>.

What’s not in this book

• Every aspect of Laravel. This is not a reference book on the entire framework.
• Caching, Events, or Logging. These are important topics, but the application we’re creating
doesn’t require them.

• Queues, Authentication, Cookies, or Sessions. Again, important stuff, but we don’t need it.
• Database. Yeah, it almost pains me to admit this. One of the greatest aspects of Laravel is
it’s Fluent Query Builder and Eloquent ORM. I mean, what great names. Names that the
implementation fully lives up to. Sadly, I don’t touch on this because … you guessed it …
the application we’re creating doesn’t need it.

¹²mailto:chuckh@gmail.com

mailto:chuckh@gmail.com
mailto:chuckh@gmail.com

Chapter 1 - This book’s purpose 3

What’s in this book

Mostly, me blabbing away about why I’m doing what I’m doing in creating the application. You
may agree with me some of the time. You may argue with me some of the time. Sometimes you may
think I’m a complete idiot. Hopefully, at times you’ll think “Oh yeah. Good one.” But in the end,
you’re getting the nuts-and-bolts of creating a real system that you can use.

Chapter 2 - Who are you?
Most books start with information about the author but the more important question really is “who
are you?”

I’m making the following assumptions:

• You know more about computers than most people.
• You are a programmer.
• You know how to program in PHP. Maybe a little. Maybe a lot.
• You’ve heard of Laravel¹³. (This isn’t a deal-breaker because I’m going to tell you about it.)
• You love programming or want to get back the passion that first drove you to make computers
do your bidding.

• Your name is not Taylor Otwell because if it is, then I’m not worthy.

I’ll do my best to make the material approachable to beginners, yet interesting and in-depth enough
for intermediate programmers to find the material useful.

Bottom line
You want to learn more about Laravel.

¹³http://laravel.com

http://laravel.com
http://laravel.com

Chapter 3 - Who am I?

This is the typical rah-rah, ain’t I great chapter. It’s not going to teach you a single thing
about Laravel. The smartest move you could make right now is to skip to the next chapter.

Hello. My name is Chuck Heintzelman and I write computer programs.

(That felt like I was in front a support group. I hope nobody said “Hi Chuck.”)

Seriously. I’ve written programs since that day in 9th grade when I stayed home “sick” from school
with a borrowed BASIC Language Reference manual and wrote out on paper a game that was like
Asteroids¹⁴ except instead of asteroids flying at you it was other ships firing long white blocks of
death at you.

After long hours of debugging and waiting for the TRS-80 to load/save my program to it’s “mass
storage” (a cassette tape), the game finally worked. This was 33 years ago. Back in the day of
computer dinosaurs, large ferocious beasts filling climate-controlled rooms. No, I’ve never actually
used punched cards, but have seen them in use.

Since then I’ve written programs in Fortran, COBOL (yeah, I know), Assembly Language, Basic, C,
C++, C#, Java, Pascal, Perl, Javascript, and PHP. I’ve tinkered with many, many other languages, but
have not written programs that people actually used.

I’ve created systems for Fortune 500 companies, as well as small Mom-and-Pop stores. Everything
from mail order systems running in Xenix to web applications running in PHP. I’ve started several
companies before the days of the Internet (not before the real beginning of the Internet, just before
the excitement starting in the mid-90s), and a few dot coms since then. And through it all I’ve did
what I loved to do–write computer programs.

Whew! Okay, enough about how great I am.

Here’s my point
Throughout my career I’ve never felt the need to create a book about programming until
now. The sole reason I’m writing this is because of Laravel.

¹⁴http://en.wikipedia.org/wiki/Asteroids_(video_game)

http://en.wikipedia.org/wiki/Asteroids_(video_game)
http://en.wikipedia.org/wiki/Asteroids_(video_game)

Chapter 4 - What is Laravel?
Raise your hand if this sounds familiar

You’ve been tasked with adding a feature to your company’s existing system. Unfortu-
nately, the system was written in PHP 4 and whoever the original programmer was, you
suspect they watched a few too many “Wordpress Gone Wild” videos.

You’ve inherited this codebase with *gasp* no classes, a glut of global variables, and a
structure not unlike a 50,000 piece jigsaw puzzle.

You curse your job, the short sightedness of the management-team, and whatever
possessed you to want to make money by programming in the first place.

After all, programming should be fun. Right?

We’ve all been there.

Enter Laravel.

(Cue the sound of kettle drums: duh-duh duh-duh duh-da-duh)

Laravel is a framework for PHP which makes programming fun again.

Come on man … it’s just a framework

Laravel is not a new language. It’s only a framework. If you cut through all the hyperbole and look
at its essence, Laravel is simply a PHP Framework.

Although, I do agree with the motto from the Laravel web site:

The PHP Framework for Web Artisans.

Ruby On Rails is just a framework. Yet look at the fandom behind it.

Laravel’s not going to magically fix your PHP spaghetti code, but it provides you with a new, fast
and elegant way to get stuff done. (Note, the concept of Getting Stuff Done is a reoccurring theme in
this book.)

In short, Laravel provides you with an architecture that makes PHP programming a joy. You’ll be
able to refactor existing code in a way that is expressive, stylish, and will be easy to maintain and
expand in the future.

Laravel is not a panacea. If your existing codebase sucks, it’s going to be painful to get fromwhere
it is now to where it should be. That’s the nature of our industry.

But, if you want to move to a framework that allows simple expressivity (is that even a word?) then
Laravel is the answer.

Chapter 5 - How to justify Laravel
Here’s the problem (or a problem) …

You must work under the constraints your company places on you. Namely, that you
must support the existing software and develop new code that plays nice with your
existing systems. There’s a mix of .NET, some Java, but most of the existing code is
PHP.

You’ve recently discovered Laravel and like it and want to use it for new development.

How can you justify switching to Laravel?

Let’s put on our detective hat for a minute.

Hmmm. The detectives I know (from TV of course) seem to follow the money when looking for
suspects and motives. So let’s follow the money …

Customers provide money to businesses in exchange for goods and services. The better the product,
and the more customers really want the product, the more money they fork over to the business.

Managers want the business to thrive. They want as many customers as possible to give them as
much money as possible as frequently as possible.

Think about it from management’s perspective …

• I want my customers to be happy.
• I want new customers.
• Customer happiness equates to expectations being met.
• I want my programmers to be able to deliver the requirements on time.
• I want the programming team to be agile. (Whatever that means … see the box below.)
• I want to facilitate customer’s requests in a timely manner.
• I want great developers delivering great products

..

What does Agile even mean?
You ever say or write a word so often that it loses all meaning? Almost like the Smurfs …
everything is smurfing, smurfable, smurferific. Agile seems to be one of those words. It’s way

Chapter 5 - How to justify Laravel 8

..

past the buzzword stage. Everything is Agile this, Agile that. Are people talking about the iterative
software process or something else? Something magical? I really don’t know.

If the above list is the management perspective, then Laravel is easily justified:

• Customers are happy when their needs are addressed and met.
• Customers are even happier when their expectations are exceeded.
• Laravel provides a framework that …

– Makes it easy to extend functionality.
– Follows best-practices in design.
– Allows multiple programmers to collaborate efficiently.
– Makes programmers happy. (Remember managers: a happy programmer is a productive

programmer.)
– Let’s stuff get done faster.
– Encourages unit testing, considering testing a core component of every application.

Laravel provides managers the ability for their programmers to get more done, quicker, and
eliminates many of the obstacles inherent in web application development. I’ll expand on this later.

Pretty easy to justify, ain’t it?

Chapter 6 - Why programmers like
Laravel
Let’s cut to the chase … why would you, as a programmer, want to use Laravel as a framework?

Let me talk a bit about Framework Envy.

(Here I picture talking to a therapist. Him nodding sagely, taking a drag on his pipe and
saying, “Talk about zee framework envy.”)

I’d been given projects written in PHP. These were bloated, PHP 4 projects written by a developer
whose only concept of “class” was that it is something at school to be skipped. And I’d look across
the street at the Ruby developers and silently wish for some natural disaster–earthquake, tornado,
even lightning–to level their building.

Does this make me a bad person?

This was at a time when Ruby was all shiny and new. What made Ruby cool wasn’t the language
itself (although there are very nice aspects to the language). No, what made Ruby cool was Ruby on
Rails.

All the developers were flocking to Ruby on Rails.

Why were they flocking to it?

Because it promised a way of development that was fun. And by fun, I mean powerful, expressive,
and quick to implement. I credit RoR on creating an atmosphere making programming a delight
again. The coding joy instilled by RoR is the exact same feeling as that initial impetus that made us
all want to be programmers.

How sad was it that we were mired in the PHP world? Where any Tom, Dick or Henrietta was a
“PHP Programmer” because they could hack a Wordpress install.

(See the next chapter about Wordpress - The Good, The Bad, The Ugly)

But, no, we were stuck with the requirements that our projects be in PHP. We couldn’t be a cool kid
like all those Ruby developers. They were cutting edge. They were the ones pushing the boundaries,
making a name for themselves.

Along comes Laravel. It takes the best of Ruby on Rails and brings it to the PHP world. Suddenly, a
PHP developer is dealing with routes to controllers instead of individual scripts. Concepts like DRY
(Don’t Repeat Yourself) now have more meaning. Suddenly, we have a “blade” template engine
incorporating the essence of PHP in a way Smarty Templates only dreamed of. We have, quite
literally, the potential of PHP Nirvana.

Does it sound like I think Laravel’s awesome? I hope so.

Chapter 7 - Wordpress: The Good, The
Bad, The Ugly
Wordpress revolutionized blogging. It brought blogging to themasses. Sure, there are other platforms
like blogger and livejournal, but what Wordpress did was put out in the public domain a large,
popular system written PHP.

With the advent of Wordpress, anybody could hack the PHP scripts to make the blogging platform
do what they wanted it do it.

“With great power comes great responsibility.” – Uncle Ben (from Spiderman)

Unfortunately, the power Wordpress availed was not met with great responsibility. Scripts were
hacked with no thought toward overall design or usability. To make matters worse, Wordpress
started in the days of PHP 4, when the language didn’t allow the constructs that allowed true
programmers to create maintainable systems.

Wordpress was the best thing that happened to PHP, but it also was the worst thing that happened
to the language.

It’s a case of too much success in the hands of too few artisans.

This attached a stigma to PHP.

Softwarati¹⁵
Self absorbed programming intellectuals who comment on languages.

For your consideration … a commonly heard quote by the Softwarati:

“Oh. PHP’s a ghetto language. Ugly, hardly maintainable, but it works … most of the
time”

Thank goodness Laravel came along to kick those Softwarati in their upturned noses.

¹⁵Yes, this is a word I totally made up.

Chapter 8 - Conventions Used in this
Book
There are several conventions used through this book.

Code is indented 2 spaces

Usually, I indent code 4 spaces but since this book is available in a variety of eBook formats some
of the smaller screens have horizontal space at a premium.

1 for ($i = 0; $i < 10; $i++)

2 {

3 echo "I can count to ", $i, "\n";

4 }

This is a tip
It is used to highlight a particularly useful piece of information.

This is a warning
It is used to warn you about something to be careful of.

This is an information block
Used to reiterate an important piece of information

This is something to do
When there’s code, or other actions you should take, it’s always proceeded by this symbol.

Trailing ?> is used when opening tag is used.

When coding, I always drop the trailing ?> in a file. But the editor I’m writing this book in makes
everything look wonky when I do it. So, within this book, if I open a PHP block with the PHP tag, I
always close it in the code too. For example:

Chapter 8 - Conventions Used in this Book 12

1 <?php

2 class SomethingOrOther {

3 private $dummy;

4 }

5 ?>

PHP Opening and Closing Tags

In the code examples sometimes the opening PHP tag (<?php) is used when it’s not needed (such as
when showing a portion of a file.) Sometimes the closing PHP tag (‘?>’) is used when it’s not needed.

1 <?php

2 function somethingOrOther()

3 {

4 $this->callSetup();

5 }

6 ?>

With real PHPCode I always omit the closing tag at the end of the file. I’ll leave it to you to determine
whether or not the tags are needed. Be aware the opening and closing tags in the code examples
should not be taken verbatim.

What OS am I using?

I’m writing this manual, the code, etc., using Linux Mint 16¹⁶ which based on Debian and Ubuntu.
It’s basically the same as Ubuntu 13.10¹⁷.

¹⁶http://www.linuxmint.com/
¹⁷http://www.ubuntu.com/

http://www.linuxmint.com/
http://www.ubuntu.com/
http://www.linuxmint.com/
http://www.ubuntu.com/

Part 1 - Design Philosophies and
Principles

There’s not much code in this part of the book. Sorry, it’s all about the design at this point. Here I’ll
discuss general design principles used in building the application.

You may be thinking, “just take me to the code.” For the most part, I concur. It’s often quickest and
easiest just to jump in the code and learn by doing. If you understand the concepts: SOLID Object
Design, Interface as Contract, Dependency Injection, Decoupling, and Inversion of Control, then
skip to Part 2 to begin designing the application.

Chapter 16 - SOLID Object Design
There is a set of principles in object-oriented design called SOLID. It’s an acronym standing for:

• [S]ingle Responsibility
• [O]pen/Closed Principle
• [L]iskov Substitution Principle
• [I]nterface Segregation Principle
• [D]ependency Inversion Principle

Together, they represent a set of best practices which, when followed, makes it more likely software
you develop will be easier to maintain and extend over time.

This chapter explains each principle in greater detail.

Do me a SOLID?
If a programmer comes up to you and says, “Can you do me a SOLID?” Make sure you
understand what you’re being asked.

Single Responsibility Principle

The first letter, ‘S’ in the SOLID acronym, stands for Single Responsibility. The principle states:

“Every class should have a single responsibility, and that responsibility should be
entirely encapsulated by the class. All its services should be narrowly aligned with that
responsibility.”

Another way to think about this is that a class should have one, and only one, reason to change.

Let’s say you have a class that compiles and emails the user a marketing report. What happens if the
delivery method changes? What if the user needs to get the report via text? Or on the web? What if
the report format changes? Or the report’s data source changes? There are many potential reasons
for this class to change.

State the class Purpose without AND
A simple way to implement the Single Responsibility Principle is to be able to define what
the class does without using the word AND

Let’s illustrate this with some code …

Chapter 16 - SOLID Object Design 15

1 // Class Purpose: Compile AND email a user a marketing report.

2 class MarketingReport {

3 public function execute($reportName, $userEmail)

4 {

5 $report = $this->compileReport($reportName);

6 $this->emailUser($report, $userEmail);

7 }

8 private function compileReport($reportName) { ... }

9 private function emailUser($report, $email) { ... }

10 }

In this case we’d break the class into two classes and push the decision as to what report and
who/how to send it up higher in the food chain.

1 // Class Purpose: Compiles a marketing report.

2 class MarketingReporter {

3 public function compileReport($reportName) { ... }

4 }

5

6 interface ReportNotifierInterface {

7 public function sendReport($content, $destination);

8 }

9

10 // Class Purpose: Emails a report to a user

11 class ReportEmailer implements ReportNotifierInterface {

12 public function sendReport($content, $email) { ... }

13 }

Notice how I snuck that interface in there? Aye, I be a slippery bugger with them thar interfaces.

More Robust Classes
By following the Single Responsibility Principle you’ll end up with robust classes. Since
you’re focusing on a single concern, there’s less likelihood of any code changes within the
class breaking functionality outside the class.

Open/Closed Principle

The second letter in the SOLID acronym stands for the Open/Closed principle. This principle states:

Chapter 16 - SOLID Object Design 16

“Software entities (classes, modules, functions, etc.) should be open for extension, but
closed for modification.”

In other words, once you’ve coded a class you should never have to change that code except to fix
bugs. If additional functionality is needed then the class can be extended.

This principle forces you to think “how could this be changed?” Experience is the best teacher here.
You learn to design software setting up patterns that you’ve commonly used in earlier situations.

Don’t Be Too Strict
I’ve found strict adherence to this principle can result in software that is over-engineered.
This occurs when programmers try to think of every potential way a class could be used. A
little bit of this thinking is a good thing, but too much can result in more complex classes
or groups of classes that have no true need of being so complex.

Sorry if this offends die-hard fans of this principle, but hey, I just calls ‘em like I sees ‘em.
It’s a principle, not a law.

Nevertheless, let’s work out a common example. Let’s say you’re working on an account biller,
specifically the portion that processes refunds.

1 class AccountRefundProcessor {

2 protected $repository;

3

4 public function __construct(AccountRepositoryInterface $repo)

5 {

6 $this->repository = $repo;

7 }

8 public function process()

9 {

10 foreach ($this->repository->getAllAccounts() as $account)

11 {

12 if ($account->isRefundDue())

13 {

14 $this->processSingleRefund($account);

15 }

16 }

17 }

18 }

Okay, let’s look at the above code. We’re using Dependency Injection thus the storage of accounts
is separated off into its own repository class. Nice.

Chapter 16 - SOLID Object Design 17

Unfortunately, you arrive at work one day and your boss is upset. Apparently, management has
decided that accounts due large refunds should have a manual review. Uggh.

Okay, what’s wrong with the code above? You’re going to have to modify it, so it’s not closed to
modifications. You could extend it with a subclass, but then you’ll have to duplicate most of the
process() code.

So you set out to refactor the refund processor.

1 interface AccountRefundValidatorInterface {

2 public function isValid(Account $account);

3 }

4 class AccountRefundDueValidator implements AccountRefundValidatorInterface {

5 public function isValid(Account $account)

6 {

7 return ($account->balance > 0) ? true : false;

8 }

9 }

10 class AccountRefundReviewedValidator implements

11 AccountRefundValidatorInterface {

12 public function isValid(Account $account)

13 {

14 if ($account->balance > 1000)

15 {

16 return $account->hasBeenReviewed;

17 }

18 return true;

19 }

20 }

21 class AccountRefundProcessor {

22 protected $repository;

23 protected $validators;

24

25 public function __construct(AccountRepositoryInterface $repo,

26 array $validators)

27 {

28 $this->repository = $repo;

29 $this->validators = $validators;

30 }

31 public function process()

32 {

33 foreach ($this->repository->getAllAccounts() as $account)

34 {

35 $refundIsValid = true;

Chapter 16 - SOLID Object Design 18

36 foreach ($this->validators as $validator)

37 {

38 $refundIsValid = ($refundIsValid and $validator->isValid($account));

39 }

40 if ($refundIsValid)

41 {

42 $this->processSingleRefund($account);

43 }

44 }

45 }

46 }

Now AccountRefundProcess takes an array of validators during construction. The next time
business rules change you can whip out a new validator, add it to the class construction, and you’re
golden.

Liskov Substitution Principle

The “L” in SOLID stands for Liskov substitution principle. This principle states:

“In a computer program if S is a subtype of T, then objects of type T may be replaced with
objects of type S (i.e., objects of type S may be substituted for objects of type T) without
altering any of the desirable properties of that program (correctness, task performed,
etc.).”

Huh? I’d hazard a guess that this part of the SOLID design causes more confusion than just about
any other.

It’s really all about Substitutability, but if we used the ‘S’ from Substitutability our acronym
becomes SOSID instead of SOLID. Can you imagine the conversations?

Programmer 1: “We should follow the S.O.S.I.D. principles when designing classes.”

Programmer 2: “Sausage?”

Programmer 1: “No, SOSID.”

Programmer 2: “Saucy?”

Programmer 1: Calls up Michael Feathers on the phone … “Hey, we need a better acronym.”

Chapter 16 - SOLID Object Design 19

Simply stated, the Liskov Substitution principle means that your program should be able to use
sub-types of classes wherever they use a class.

In other words if you have a Rectangle class, and your program uses a Rectangle class and you have
a Square class derived from the Rectangle. Then the program should be able to use the Square class
anywhere it uses a Rectangle.

Still confused? I know I was confused initially because I wanted to say “Duh? This is pretty obvious”,
yet I feared therewas something I didn’t understand. I mean, why have this as amajor tenet of SOLID
design if it’s so obvious?

Turns out there are some subtle aspects to this principle stating preconditions of subtypes should
not be strengthened and postconditions should not be weakened. Or is it the other way around?
And you can’t have subtypes throw exceptions that aren’t the same (or derived from) exceptions the
supertype throws.

Wow! What else? There are other details about Liskov’s principle I won’t get into here and I fear
I’ve really spent too much time on it.

Liskov’s principle doesn’t matter.

What?

Yeah! I said it. (Technically the principle does matter, so I’m lying to you, but I’ll try to justify my
lie.)

In PHP, if you follow three guidelines then you’re covered 99% of the time with Liskov.

1 - Use Interfaces

Use interfaces. Use them everywhere that makes sense. There’s not much overhead in adding
interfaces and the result is that you have a “pure” level of abstraction that almost guarantees Liskov
Substitution is followed.

2 - Keep implementation details out of interfaces

When you’re using interfaces, don’t have the interface expose any implementation details. Why
would you have a UserAccountInterface provide any details on storage space left?

3 - Watch your type-checking code.

When you write code that operates differently on certain types, you may be breaking Liskov’s
Substitution Principle (and probably several other SOLID principles).

Consider the following code:

Chapter 16 - SOLID Object Design 20

1 class PluginManager {

2 protected $plugins; // array of plugins

3

4 public function add(PluginInterface $plugin)

5 {

6 if ($plugin instanceof SessionHandler)

7 {

8 // Only add if user logged on.

9 if (! Auth::check())

10 {

11 return;

12 }

13 }

14 $this->plugins[] = $plugin;

15 }

16 }

What’s incorrect about that piece of code? It breaks Liskov because the task performed is different
depending on the object type. This is a common enough snippet of code and in a small application,
in the spirit of getting stuff done, I’d be perfectly happy to let it slide.

But … why should an add() method get picky about what’s added. If you think about it, add()’s
being a bit of a control freak. It needs to take a deep breath and give up control. (Hmmm, Inversion
of Control)

Interface Segregation Principle

The ‘I’ in SOLID stands for the Interface Segregation Principle. Interface Segregation states:

“No client should be forced to depend on methods it does not use.”

In plain English this means don’t have bloated interfaces. If you follow the “Single Responsibility
Principle” with your interfaces, then this usually isn’t an issue.

The app we’re designing here will be a small application and this principle probably won’t apply
too much. Interface Segregation becomes more important the larger your application becomes.

Often this principle is violated with drivers. Let’s say you have a cache driver. At it’s simplest a cache
is really nothing more than temporary storage for a data value. Thus a save() or put() method
would be needed and a corresponding load() or get() method. But often what happens is the
designer of the cache wants it to have extra bells and whistles and will design an interface like:

Chapter 16 - SOLID Object Design 21

1 interface CacheInterface {

2 public function put($key, $value, $expires);

3 public function get($key);

4 public function clear($key);

5 public function clearAll();

6 public function getLastAccess($key);

7 public function getNumHits($key);

8 public function callBobForSomeCash();

9 }

Let’s pretend we implement the cache and realize that the getLastAccess() is impossible to
implement because your storage doesn’t allow it. Likewise, getNumHits() is problematic. And we
have no clue how to callBobForSomeCash().Who is this Bob guy? And does he give cash to anyone
that calls? When implementing the interface we decide to just throw exceptions.

1 class StupidCache implements CacheInterface {

2 public function put($key, $value, $expires) { ... }

3 public function get($key) { ... }

4 public function clear($key) { ... }

5 public function clearAll() { ... }

6 public function getLastAccess($key)

7 {

8 throw new BadMethodCallException('not implemented');

9 }

10 public function getNumHits($key)

11 {

12 throw new BadMethodCallException('not implemented');

13 }

14 public function callBobForSomeCache()

15 {

16 throw new BadMethodCallException('not implemented');

17 }

18 }

Ugh. Ugly right?

That’s the crux of the Interface Segregation Principle. Instead, you should create smaller interfaces
such as:

Chapter 16 - SOLID Object Design 22

1 interface CacheInterface {

2 public function put($key, $value, $expires);

3 public function get($key);

4 public function clear($key);

5 public function clearAll();

6 }

7 interface CacheTrackableInterface {

8 public function getLastAccess($key);

9 public function getNumHits($key);

10 }

11 interface CacheFromBobInterface {

12 public function callBobForSomeCash();

13 }

Make sense?

Dependency Inversion Principle

The final ‘D’ in SOLID stands for Dependency Inversion Principle. This states two things:

“A. High-level modules should not depend on low-level modules. Both should depend on
abstractions.”

“B. Abstractions should not depend upon details. Details should depend upon abstrac-
tions.”

Great so what does this mean?

High-level
High-level code is usually more complex and relies on the functioning of low-level code.

Low-level
Low-level code performs basic, focused operations such as accessing the file system or
managing a database.

There’s a spectrum between low-level and high-level. For example, I consider session management
low-level code. Yet session management relies on other low-level code for session storage.

It’s useful to think of high-level and low-level in relation to each other. Session management
is definitely lower than application specific functionality such as logging a user in, but session
management is high-level to the database access layer.

Chapter 16 - SOLID Object Design 23

I’ve heard people say … “Oh, Dependency Inversion is when you implement Inversion of Control.”
or “No. Dependency Injection is what Dependency Inversion is.” Both answers are partially correct,
because both answers can implement Dependency Inversion.

The Dependency Inversion Principle could be better stated as a technique of decoupling class
dependencies. By decoupling, both the high-level logic and low-level objects don’t rely directly on
each other, instead they rely on abstractions.

In the PHPworld …Dependency Inversion is best achieved through what? You guessed it: interfaces.

Isn’t it interesting how all these design principles work together? And how often these principles
bring into play that most unused of PHP constructs: the interface?

..

The Simple Rule of Dependency Inversion
Make objects your high-level code uses always be through interfaces. And have your low-level
code implement those interfaces, and you’ve nailed this principle.

An Example

User authentication is a good example. At the highest level is the code that authenticates a user.

1 <?php

2 interface UserInterface {

3 public function getPassword();

4 }

5

6 interface UserAuthRepositoryInterface {

7 /**

8 * Return UserInterface from the $username

9 */

10 public function fetchByUsername($username);

11 }

12

13 class UserAuth {

14 protected $repository;

15

16 /**

17 * Inject repository dependency

18 */

19 public function __construct(UserAuthRepositoryInterface $repo)

Chapter 16 - SOLID Object Design 24

20 {

21 $this->repository = $repo;

22 }

23

24 /**

25 * Return true if the $username and $password are valid

26 */

27 public function isValid($username, $password)

28 {

29 $user = $this->repository->fetchByUsername($username);

30 if ($user and $user->getPassword() == $password)

31 {

32 return true;

33 }

34 return false;

35 }

36 }

37 ?>

Sowe have the high-level class UserAuth, relying on the abstractions of UserAuthRepositoryInterface
and UserInterface. Now, implementing those two abstractions are almost trivial.

1 <?php

2 class User extends Eloquent implements UserInterface {

3 public function getPassword()

4 {

5 return $this->password;

6 }

7 }

8 class EloquentUserRepository implements UserAuthRepositoryInterface {

9 public function fetchByUsername($username)

10 {

11 return User::where('username', '=', $username)->first();

12 }

13 }

14 ?>

Easy, peasey, lemon-squeezy.

Now, to use the UserAuth we would either construct it with the EloquentUserRepository or bind
the interface to the EloquentUserRepository to automatically inject it.

Chapter 16 - SOLID Object Design 25

Do not confuse the authentication examples used in this chapter with the Laravel Auth
facade. These are just examples to illustrate the principle. Laravel’s implementation,
though similar to these, is far better.

Thanks for checking out the Sample

I hope you enjoyed it.

In fact, I’m hoping you enjoyed it enough to click on over to Getting Stuff Done with Laravel¹⁸ and
investing in the rest of the chapters.

¹⁸https://leanpub.com/gettingstuffdonelaravel

https://leanpub.com/gettingstuffdonelaravel
https://leanpub.com/gettingstuffdonelaravel

	Table of Contents
	Thank You
	Revision History
	A special thank you

	About the Sample Version
	Contents of Paid Version

	Welcome
	Chapter 1 - This book's purpose
	What's not in this book
	What's in this book

	Chapter 2 - Who are you?
	Chapter 3 - Who am I?
	Chapter 4 - What is Laravel?
	Chapter 5 - How to justify Laravel
	Chapter 6 - Why programmers like Laravel
	Chapter 7 - Wordpress: The Good, The Bad, The Ugly
	Chapter 8 - Conventions Used in this Book
	What OS am I using?

	Part 1 - Design Philosophies and Principles
	Chapter 16 - SOLID Object Design
	Single Responsibility Principle
	Open/Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	Thanks for checking out the Sample

