

Fundamentos de R

José C. Chacón
Universidad Complutense de Madrid

Copyright © 2021 José C. Chacón

publicado por el autor

No está permitida la reproducción total o parcial de este libro, ni su tratamiento informático, ni su transmi-
sión de ninguna forma o por cualquier medio, sin el permiso previo y por escrito del titular del Copyright.

ISBN: 978-84-09-32811-6

Puede descargarse desde https://leanpub.com/fundamentosder

Las soluciones a los ejercicios del manual pueden encontrarse en Fundamentos de R: ejercicios resueltos y comentados,
disponible gratuitamente en https://leanpub.com/fundamentosder_ejercicios.

https://leanpub.com/fundamentosder
https://leanpub.com/fundamentosder_ejercicios

A Belén,

quien ha compartido muchas de las

horas de vida dedicadas a este libro

Índice general

Antes de empezar. . . 15

PARTE I: Primeros pasos 21

1 R: Características, historia y recursos 23

1.1 Qué es R 23

1.2 Para entender el presente, algo de historia 25

1.3 Recursos 25

1.4 Instalar R y RStudio 27

1.5 Comenzar a usar R 27

2 Una primera inmersión 29

2.1 Acceso a R y primeras tareas 29

2.2 Algunos objetos de R: vectores y funciones 33

2.3 Más sobre vectores 36

2.4 Lectura y escritura de archivos 41

2.5 Paquetes 44

2.6 La ayuda 45

2.7 Salir de R 46

PARTE II: Fundamentos 49

3 Control del entorno y objetos (I) 51

3.1 Localización 51

8 José C. Chacón

3.2 El espacio de trabajo o entorno global 54

3.3 Objetos y sus características 55

3.4 Funciones genéricas 65

3.5 Operadores 66

3.6 Avisos y errores 67

3.7 Más control 69

4 Vectores 71

4.1 Creación de vectores 71

4.2 Acceso e índices 72

4.3 Unión de vectores 74

4.4 Condicionales implícitos 76

4.5 Creación de secuencias 78

4.6 Objetos atómicos y coerción 81

4.7 Reciclado 84

5 Vectores para información numérica 89

5.1 Vectores enteros 90

5.2 Vectores reales 92

5.3 Vectores complejos 93

5.4 Operaciones con vectores numéricos 95

5.5 Tratamiento de los decimales 99

5.6 Avanzado: Codif. binaria, hexadecimal y octal 106

5.7 Avanzado: Precisión numérica 111

6 Vectores lógicos 119

6.1 Condicionales implícitos 120

6.2 Operadores lógicos 121

6.3 El trabajo con vectores lógicos 124

7 Programación (I): generalidades 127

7.1 Programas: entradas, salidas y algoritmo 128

7.2 Funciones y control de flujo 131

7.3 Algunos ejemplos (simples) de programación 135

Fundamentos de R 9

8 Vectores alfanuméricos 141

8.1 Construcción y propiedades 142

8.2 Concatenación de información alfanumérica 143

8.3 Salidas alfanuméricas 146

8.4 Mensajes, avisos y errores 150

8.5 Manipulación de variables alfanuméricas: técnicas básicas 153

8.6 Avanzado: Expresiones regulares 158

8.7 Avanzado: Convertir texto en código 169

8.8 Más sobre cadenas y expresiones regulares 170

9 Matrices y arrays 173

9.1 Matrices 173

9.2 Arrays 183

9.3 Atributos de matrices y arrays 187

9.4 Operaciones con matrices 189

10 Factores 199

10.1 Un primer acercamiento a los factores 200

10.2 Detalles de la construcción de factores 203

10.3 Factores ordenados 206

10.4 Trabajar con factores 208

10.5 Avanzado: los factores en profundidad 211

11 Listas 215

11.1 Creación de listas 216

11.2 El acceso a las listas 217

11.3 Aplicaciones de las listas 224

11.4 Dividir y unir listas 228

11.5 Avanzado: Listas especiales 232

11.6 Más sobre listas 235

10 José C. Chacón

12 Data frames 237

12.1 Datos estructurados 238

12.2 Construcción y propiedades básicas 238

12.3 Detalles de la construcción de data frames 240

12.4 Manipulación de data frames: Acceso y selección 247

12.5 Manipulación de data frames: Añadir y combinar datos 252

12.6 Manipulación de data frames: Formatos ancho y largo 260

12.7 Detalles del acceso, names y length y más 262

12.8 Avanzado: el paquete dplyr 269

13 Información especial 279

13.1 Valores especiales 279

13.2 Información temporal 289

14 Entrada y salida de información 295

14.1 Entrada y salida por consola 296

14.2 Formatos de archivos de datos 297

14.3 El formato nativo de R 299

14.4 Archivos de texto 300

14.5 Hojas de cálculo 303

14.6 Datos de programas estadísticos 304

14.7 Lectura de la web 306

14.8 El paquete rio 308

15 Programación (II): Estructuras de control 309

15.1 Ejecución condicional 310

15.2 Ejecución mediante bucles 319

15.3 Sentencias de control 327

15.4 La eficiencia de los bucles en R 329

15.5 Particularidades de las estructuras de control 330

Fundamentos de R 11

16 Programación (III): Funciones 333

16.1 Por qué usar funciones 334

16.2 Creación y propiedades básicas 337

16.3 Cuerpo de una función 339

16.4 Argumentos 347

16.5 Entorno de una función 354

16.6 Externalizar funciones 359

16.7 Tipos de funciones 360

16.8 Avanzado: Algunos conceptos de programación funcional 367

17 Manipulación de objetos 371

17.1 Creación y eliminación 372

17.2 Visualización 374

17.3 Ordenación 375

17.4 Atributos 380

17.5 Las familias de funciones is.xxx() y as.xxx() 382

17.6 Comparación 384

17.7 Unión 395

17.8 Selección 400

17.9 División 408

17.10 Manipulaciones recursivas 411

18 Paquetes 421

18.1 La importancia de los paquetes en R 421

18.2 Un vistazo rápido 422

18.3 Tipos de paquetes en R 423

18.4 Localización e información 424

18.5 Descarga e instalación 429

18.6 Carga de paquetes y uso de sus funciones 430

18.7 Documentación y ayuda 435

18.8 Funciones para tratar con paquetes 438

18.9 Avanzado: Contenido de un paquete 444

18.10 Construcción de paquetes 445

12 José C. Chacón

19 Gráficos 449

19.1 Qué es un gráfico 450

19.2 La estructura de un gráfico 452

19.3 El paquete grDevices 456

19.4 El paquete graphics 460

19.5 La función par() 471

19.6 Otros paquetes gráficos 479

19.7 Avanzado: Gráficos paso a paso, 1 480

19.8 Avanzado: Gráficos paso a paso, 2 482

20 Control del entorno y objetos (II) 491

20.1 Inicio y configuración de R 491

20.2 Información del sistema 495

20.3 Gestión de directorios y archivos 500

20.4 Proyectos (Projects) 505

20.5 Tuberías (pipes) 507

20.6 Eficiencia 509

20.7 Tipo, clase y modo: confusiones y aclaraciones 517

21 Programación orientada a objetos 523

21.1 La programación orientada a objetos 524

21.2 El sistema S3 524

21.3 Construcción de funciones genéricas 526

21.4 Mecanismos de herencia y el método default 531

21.5 Conocer los objetos implicados en la OOP 533

21.6 Otros sistemas de OOP 537

PARTE III: Aplicaciones 539

22 Análisis estadístico con R 541

22.1 El proceso del análisis estadístico 541

22.2 Algunos análisis descriptivos e inferenciales 543

22.3 Fórmulas 548

22.4 Extraer y reutilizar información de la salida 549

Fundamentos de R 13

23 Probabilidad y muestreo 555

23.1 Distribuciones de probabilidad 555

23.2 Muestreo 563

23.3 Simulación 565

24 Desde aquí. . . 569

24.1 La primera decisión 569

24.2 Capas superiores: el tidyverse 571

24.3 Control de versiones: git 573

24.4 Documentos con R Markdown 574

24.5 Shiny 577

APÉNDICES 581

A Instalación e interfaces 583

A.1 Instalar R y RStudio 583

A.2 Actualizar R y los paquetes instalados 585

A.3 Las interfaces de R y RStudio 588

B Recomendaciones al escribir código 593

B.1 Espacios, sangrados y saltos de línea 594

B.2 Nombrar 598

B.3 Organización 601

B.4 Fuentes y conclusión 604

C El diseño del archivo de datos 605

C.1 El orden natural de las cosas 605

C.2 Lo más importante: el diseño 607

C.3 Especificación detallada de las variables 607

C.4 Plantillas para introducir los datos 608

C.5 Algunas reglas de nomenclatura y organización 610

Referencias 613

Antes de empezar. . .

R es una herramienta de análisis y representación de datos de
extraordinaria potencia y un lenguaje de programación completo,
lo que permite, en el ámbito del análisis de datos, hacer práctica-
mente cualquier cosa. El precio a pagar es un aprendizaje lento1 1 Decimos «lento», y no con una «curva

de aprendizaje empinada» en tanto
una curva tal proporcionaría un gran
aprendizaje en poco tiempo, como se ve.
La segunda curva se ajusta mejor a la
realidad.

aunque, por contra, la recompensa es doble: por un lado, un control
prácticamente absoluto sobre los datos y su tratamiento, análisis, re-
presentación, almacenamiento y exportación; por otro, el libre acceso
a una cantidad ingente de recursos y herramientas libres, gratuitas y
de calidad.

Tiempo
A

pr
en

di
za

je

Tiempo

A
pr

en
di

za
je

Figura 1: Dos curvas de aprendizaje, la
primera de ellas, empinada.

Es importante dejar claro desde ahora que el objetivo del
manual es aprender R, y no aprender a hacer análisis estadísticos con
R. Así, de los dos componentes del análisis de datos, las técnicas
estadísticas y la herramienta para implementarlas, sólo trataremos
el segundo. Hay multitud de libros sobre todo tipo análisis de datos
con R,2 pero no tantos que se centren en la propia herramienta. El

2 Prácticamente todos con una breve
introducción al lenguaje R.

resultado, en muchos casos, es que el analista se ve limitado por su
conocimiento de R. Y es que cualquier labor profesional requiere
de un conocimiento igualmente profesional de las herramientas
utilizadas. Así, la calidad de los análisis a realizar, y su eficiencia,
dependerán de la profundidad con que conocemos la herramienta y
nuestra fluidez al usarla. Lo que nos lleva al siguiente punto.

Hay tres formas de aproximarse a R según nuestra experiencia
y la mayoría comienza, de forma natural, por la necesidad de hacer
algún análisis estadístico: se obtiene una idea ligera de R, lo justo
para hacer algún análisis de interés, y vamos luego poco a poco
aprendiendo el resto, mientras se siguen haciendo análisis.3 Por 3 Es frecuente cuando nos iniciamos con

manuales del estilo de Análisis de tal
tipo con R.

desgracia, en cuanto salimos de los ejemplos básicos empiezan los
problemas. No es fácil entender el funcionamiento de R sin una
buena organización de los conceptos y con la profundidad que
requieren.

El resultado suele ser uno de tres: el abandono («R es muy difícil»);
el retro-aprendizaje (aprender los conceptos y objetos que ya estamos
usando),4 o comenzar, cuando se comprende su necesidad, un apren- 4 Generalmente para entender qué falla

y cómo arreglarlo. Es un aprendizaje
lento, desorganizado y con muchas
lagunas.

dizaje desde cero, completo y coordinado. Esta última aproximación es la
que usaremos aquí.

16 Antes de empezar...

Aprender a programar desde cero, en R o cualquier otro len-
guaje, no es fácil. Quien ha programado con anterioridad lo sabe. En
caso contrario, es bueno saber que el aprendizaje abarcará dos áreas
diferentes aunque siempre entremezcladas.

Por un lado, y como en un lenguaje natural, hay que aprender una
semántica (para nombrar los objetos, junto con su significado y uso)
y una sintaxis (cómo se componen correctamente las instrucciones
en R). Pero a diferencia de los lenguajes naturales, la más mínima
alteración de cualquiera de ellas (una letra, una coma, un paréntesis)
genera un error. Detectarlo no es siempre fácil y se tarda un tiempo
en aceptar que el problema no es de R ni del manual.5 5 Como suele oírse en el ámbito infor-

mático, «maldito ordenador, que no
hace lo que quiero sino lo que le digo».

Pero hay otro lado, menos conocido. Y es que la parte más difícil
(y más interesante) no es escribir código, sino traducir la solución del
problema a términos del lenguaje de programación utilizado. Ello
requiere comprender el problema, determinar sus componentes y
las relaciones entre ellos y traducir estos componentes en objetos del
lenguaje y las relaciones en funciones que se aplicarán a esos objetos.
Para ello habrá que adquirir y/o potenciar un pensamiento analítico,
disciplinado y lógico que no puede sino mejorar el mobiliario de
cualquier cabeza. Precisamente muchos de los ejercicios inciden en
este aspecto, el gran olvidado al practicar un lenguaje. Y es que. . .

Sin práctica no hay aprendizaje, por ello el manual está pla-
gado de ejercicios. La mayoría se dedica a aplicar lo explicado y en
otros casos se extienden más allá, lo que requiere conocer alguna
nueva función o hacer una búsqueda en la web. En general, se ha
intentado explicar las respuestas cuando lo requieren, pero no sólo
eso: en algunos casos, se ofrecen variantes para conseguir un mismo
propósito, incluso mostrando respuestas erróneas comunes y anali-
zando sus diferencias. El contraste ayuda a entender, y se aprende
más forzando una función a dar error que usándola correctamente
sin más: sabiendo cómo y por qué falla, sabremos cómo hacer que no
falle.

Las soluciones están disponibles en los Ejercicios resueltos y comen-
tados,6 pero es bueno recordar algo que ya sabemos. Dedicar media

6 Disponible gratuitamente

en https://leanpub.com/

fundamentosder_ejercicios.
hora a resolver un ejercicio simple para descubrir que el error era
un despiste o una tontería no es una pérdida de tiempo. Cuando se
observa la solución, y pese a que podamos sentirnos algo idiotas,
hemos conseguido mucho: la probabilidad de que repitamos ese error
es mínima.7 Por contra, mirar la solución a la primera dificultad 7 Esto es, hemos aprendido.

sólo mostrará un resultado evidente. No reducirá la autoestima (no
ha dado tiempo) pero no habremos aprendido nada. Eso sí es una
completa pérdida de tiempo.

En cuanto a la organización, podríamos dividir el texto en dos
grandes áreas: una primera que trata de los objetos que almacenan
información y otra que cubre el procesamiento de tales objetos y la

https://leanpub.com/fundamentosder_ejercicios
https://leanpub.com/fundamentosder_ejercicios

Antes de empezar... 17

información contenida en ellos. Si entramos en más detalle, tenemos
una parte inicial, primeros pasos, que muestra una visión general de R

(capítulos 1 y 2) y un primer acercamiento al lenguaje.
Entrando ya en los fundamentos, los capítulos 3 y 4 exponen los

conceptos mínimos para conocer y controlar nuestro entorno y los
vectores.8 A partir de ahí vamos estudiando los vectores atómicos 8 Uno de los ladrillos fundamentales de

R, junto con las funciones.(capítulos 5 al 10) y no atómicos (11 y 12), y algunos valores especia-
les (cap. 13), seguidos por los capítulos dedicados a la programación
básica: lectura y escritura de archivos (14), estructuras de control (15),
funciones (16) y manipulaciones (17). Continuamos con capítulos
dedicados a los paquetes (18) y a los gráficos (19), dos de las grandes
fortalezas de este lenguaje y acabamos este apartado con otro capí-
tulo dedicado al control (20) y la programación orientada a objetos
(21).

La tercera parte, aplicaciones, es breve. Un capítulo sobre estadística
(capítulo 22) se dedica a entroncar las fases de un análisis estadístico
con las herramientas, paquetes y demás recursos disponibles para
R. Otro (23) se centra en la probabilidad y el muestreo, mientras que
el último (24) ofrece varias vías de entre las muchas posibles para
seguir aprendiendo R.

Los apéndices complementan todo lo anterior con aspectos prácti-
cos que no siempre reciben la atención que merecen. El apéndice A
está pensado para quienes puedan necesitar ayuda en la instalación,
actualización o para conocer mejor la interfaz que utilizaremos. El
apéndice B ofrece recomendaciones para que nuestro código sea
más legible, menos propenso a errores y más fácil de modificar. Por
último, el apéndice C completa las recomendaciones anteriores, pero
esta vez en relación a la estructura de la información contenida en los
archivos de datos.

Forma y contenido. Este manual nació como complemento a
actividades docentes9. Y lo primero que un docente echa en falta al

9 Para la asignatura Métodos infor-
máticos, impartida en la Universi-
dad Complutense de Madrid den-
tro del Máster Interuniversitario
en Metodología de las Ciencias
del Comportamiento y de la Salud
(http://www.metodologiaccs.es).escribir, además de la natural interacción, son las preguntas10 y, con
10 Que en unas ocasiones hemos añadi-
do retóricamente y, en otras, a través de
ejercicios.

ellas, la posibilidad de esos comentarios frecuentes en cualquier clase;
desde un simple «esto se ampliará en el próximo capítulo» hasta
ejemplos adicionales, enlaces con lo ya visto o comentarios laterales
más extensos, incluyendo accesos a otros recursos para ilustrar lo
explicado. Su ausencia resulta extraña, y resta tridimensionalidad a
las explicaciones y a la red de conceptos y relaciones que se dan de
forma natural en la docencia.

Una solución parcial (y elegante) es el formato Tufte, llamado así
por Edward R. Tufte (1997; 2001; 2006; 2013)11, quien lo ideó con

11 Edward R. Tufte es un profesor de
ciencia política y estadística y pionero y
auténtico especialista en la visualización
de información (en campos como
information design o visual literacy). Es
conocido por conceptos como la data-ink
ratio para referirse a la cantidad de
información por unidad de tinta (Tufte,
1990), o por resumir sus críticas a
PowerPoint con la frase “Power corrupts.
PowerPoint corrupts absolutely” (Tufte,
2003).

objeto de permitir comentarios e ilustraciones extensos12.

12 Y no sólo por parte del autor; los
márgenes dan espacio para comentarios
y anotaciones, en papel o electrónicos,
de los lectores.

El resultado final es el que podemos observar: una columna princi-
pal que contiene el desarrollo de los temas y un amplio margen con
frecuentes comentarios, aclaraciones, enlaces a otros temas o amplia-
ciones, ilustraciones y ejemplos y, cómo no, cientos de enlaces a la

http://www.metodologiaccs.es
https://en.wikipedia.org/wiki/Edward_Tufte
https://en.wikipedia.org/wiki/Information_design
https://en.wikipedia.org/wiki/Visual_literacy

18 Antes de empezar...

web. Si se dispone de tiempo para ampliar y explorar, estos enlaces
permitirán conocer, más allá del lenguaje R, el mundo de R.

Modos de lectura. El origen docente de este manual le da una
orientación muy específica, aunque hay otros modos de lectura po-
sibles. En total, se diría que tres: Uno, el original, con la lectura y
resolución de todos los capítulos y ejercicios, lo que casi con seguri-
dad llevará a una sólida formación en R.

Dos, una lectura más ágil, que puede consistir en los apartados
iniciales de los capítulos. Se observará que los capítulos entran en
cuestiones más complejas o detalladas conforme avanzan13, y cada 13 Incluyendo algunos apartados que

comienzan con Avanzado:. . . , lo que
indica que el nivel puede superar el
esperable en ese momento, pero puede
convenir en una lectura posterior.

lector puede decidir dónde pasar al capítulo siguiente. El aprendizaje
tendrá algunas lagunas y es probable que la práctica haga necesario
volver para completar la información.

Tres, como manual de consulta. Si el índice y la organización son
adecuados, es fácil acceder a cualquier aspecto de todo lo tratado y
localizar ejemplos, características. . . Y el lector decidirá hasta dónde
quiere informarse de tal o cual función, objeto o procedimiento.

También es posible utilizarlo como manual de referencia en un
curso de R. En tal caso, la estrategia óptima, al menos en mi experien-
cia, ha sido la lectura previa (con sus ejercicios) de algunos capítulos
y posteriormente, en clase, hacer un buen repaso, aclaración, solu-
ción de dudas y realización de más ejercicios. Los alumnos saben
leer, así que la interacción en clase puede dedicarse a dinámicas más
productivas.

Y no olvido los agradecimientos. Los primeros, para las varias
hornadas de alumnos del Máster de Metodología de las Ciencias
del Comportamiento y de la Salud, que disfrutaron/sufrieron cada
versión de este manual en la asignatura de Métodos informáticos.
Ellos y ellas indicaron errores, mejoras y me animaron a seguir
escribiendo cuando parecía que era una tarea imposible de acabar.

Pero los alumnos son tolerantes, o probablemente no se atrevan a
decirme, directamente, cosas del tipo de «mira, este capítulo es un
completo desastre; no hay quien se entere de nada».14 Que es lo que 14 Especialmente si aún tengo que

evaluarles.vino a decirme María José Hernández Lloreda, amiga y compañera,
de algunos capítulos iniciales. Y que era exactamente lo que necesi-
taba: otra mirada que me llevara a salir de mi burbuja. Así que si los
capítulos iniciales se entienden, algo imprescindible en un manual
de este tipo, denle las gracias a ella. Otros compañeros también revi-
saron el manual, o incluso lo han utilizado en algunas clases, como
Miguel Á. Castellanos. Gracias también a todos ellos.

Pero el mayor agradecimiento es para Belén. Apoyar (y animar) a
alguien que escribe un libro en fines de semana, vacaciones y ratos
libres durante años es un tostón. . . por decirlo muy suavemente. Si
sabes de qué hablo, sabes cómo es; si no, da igual lo que te cuenten.

Antes de empezar... 19

Y a pesar de estas ayudas, quedarán erratas e incluso algún error.
En ambos casos, y como no podía ser de otra manera, toda la respon-
sabilidad es del autor.

Nada más; esperamos ayudar a aprender R e, idealmente, que se
disfrute del recorrido. Suerte.

José C. Chacón
Colmenarejo, agosto de 2021

PARTE I: Primeros pasos

1
R: Características, historia y recursos

Comenzaremos este manual dando una definición general de
R, pasaremos por algunos datos históricos y llegaremos hasta la
instalación y arranque del programa. A continuación se resumen los
contenidos de este capítulo.

RESUMEN

Qué es R (1.1). Un programa, o sistema, o entorno. . . Veremos
una idea general de qué tipo de herramienta tenemos an-
te nosotros.

Algo de historia (1.2). El origen de las frecuentes alusiones a
S, y las implicaciones de esta relación.

Recursos (1.3). ¿Dónde está R? ¿Qué hay disponible y dónde
y cómo acceder? ¿Cómo resolver mis dudas o buscar ma-
teriales?

Instalación (1.4). Cómo instalar R y RStudio.
Comenzar a usar R (1.5). Abrir el programa y qué encontramos.

1.1 Qué es R

Podemos definir R como un entorno, esto es: un sistema
coherente y completamente planificado1. Como todo sistema, incluye 1 Véase en la web del proyecto R https:

//www.r-project.org/about.htmlvarias partes y funciones, que en el caso de R son:

un lenguaje de programación completo,
medios para la lectura, almacenamiento y escritura de datos,
un conjunto de utilidades para la manipulación, cálculo y análisis
de los datos y
herramientas para la creación de gráficos.

Simultáneamente, R es un dialecto del lenguaje S, como se verá
posteriormente. Y, al igual que S, R nace y se orienta principalmente
al análisis estadístico de datos y su representación gráfica.

https://www.r-project.org/about.html
https://www.r-project.org/about.html

24 Cap. 1. R: Características, historia y recursos

Desde el punto de vista de la interacción con el usuario, R
es y funciona como un lenguaje de programación, algo imposible de
olvidar en tanto toda la comunicación con R es a través de instruc-
ciones de ese lenguaje. Así, para quien no ha programado nunca, R
es una sorpresa. No hay menús que permitan abrir datos o hacer un
determinado análisis2. 2 Existen interfaces variadas que

trabajan sobre R de forma más o menos
visible. Pueden consultarse en el
apartado A.3.3 del primer apéndice.

Las secuencias de acciones (abrir archivo de datos, depurarlos,
obtener algunos descriptivos y gráficos, hacer análisis, etc.) pueden
ser similares a las de otros programas de análisis mediante menús,
pero hay al menos cinco diferencias fundamentales:

1. Esta secuencia, como se dijo, toma la forma de un diálogo.
2. Los resultados de cada acción pueden almacenarse como nuevos

objetos y reutilizarse.
3. El grado de control y detalle en las manipulaciones, acciones y

especificaciones es generalmente mucho mayor.
4. Se pueden programar análisis o cálculos no disponibles.
5. Existen miles de paquetes adicionales, con infinidad de funciones

disponibles para todas las tareas que uno pueda imaginar.

3 https://en.wikipedia.org/wiki/GNU_

Project
4 https://en.wikipedia.org/wiki/

Richard_Stallman

R es un proyecto GNU, esto es, uno de los muchos que participan
en el proyecto de colaboración en software libre3, fundado en 1983
por Richard M. Stallman4 en el MIT. Ello que implica que está dis-
ponible gratuitamente bajo la GNU General Public License para varios
sistemas operativos. El código fuente para el entorno de software R

está escrito principalmente en C y R, y también en Fortran.

R utiliza programación funcional y orientada a objetos.
La programación funcional5 se basa en las llamadas a funciones, 5 Véase, por ejemplo, https://es.

wikipedia.org/wiki/Programaci%C3%

B3n_funcional
que encapsulan procedimientos habituales, y permiten construir
programas complejos a partir de módulos sencillos y robustos.

La programación orientada a objetos6 permite, a través de las 6 Para más detalles, vease https:

//es.wikipedia.org/wiki/Programaci%

C3%B3n_orientada_a_objetos.
En realidad, R tiene tres sistemas

de programación orientada a objetos,
según se trate de objetos de tipo S3,
S4 o RC. En el presente manual sólo
trataremos en detalle los objetos de tipo
S3.

llamadas funciones genéricas, modificar el comportamiento de una
misma función según la clase del objeto al que se aplica.

Por ahora, y para comenzar, basta añadir que el lenguaje de
R es interpretado, lo que quiere decir que, para poder ejecutarse,
debemos tener abierto el entorno de R7. Ello implica, como ya se dijo,

7 Los programas en R no pueden, por
tanto, compilarse y generar archivos
ejecutables independientes del entorno
R. Sobre la diferencia entre unos y otros
lenguajes se hablará, brevemente, en el
apartado 20.6 sobre eficiencia.

que escribiremos instrucciones y R responderá con alguna acción.
Estas instrucciones pueden ser escritas y ejecutadas una a una, o
pueden almacenarse como una secuencia ordenada en un archivo y
ejecutarse todas de una vez. En tal caso hablamos de un programa, y
en R se nombran de la forma programa.R.

https://en.wikipedia.org/wiki/GNU_Project
https://en.wikipedia.org/wiki/GNU_Project
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Richard_Stallman
https://es.wikipedia.org/wiki/Programaci%C3%B3n_funcional
https://es.wikipedia.org/wiki/Programaci%C3%B3n_funcional
https://es.wikipedia.org/wiki/Programaci%C3%B3n_funcional
https://es.wikipedia.org/wiki/Programaci%C3%B3n_orientada_a_objetos
https://es.wikipedia.org/wiki/Programaci%C3%B3n_orientada_a_objetos
https://es.wikipedia.org/wiki/Programaci%C3%B3n_orientada_a_objetos

PARTE I: Primeros pasos 25

1.2 Para entender el presente, algo de historia

A veces sorprende que en la ayuda, en referencias o al hablar de
manuales básicos se mencione una y otra vez el lenguaje S. La pre-
gunta evidente es ¿estamos trabajando con R o con S? La respuesta,
como ya adelantamos, es que R es un dialecto del lenguaje S.

El primer paso en la historia de R es, por tanto, el lenguaje S8, 8 https://en.wikipedia.org/wiki/S_

(programming_language)un programa/entorno desarrollado inicialmente por John Chambers,
Rick Becker y Allan Wilks allá por 1975-1976 en los Laboratorios
Bell9. S constituyó una novedad en su enfoque del análisis de datos, 9 Puede verse un breve resumen de la

historia de S en http://ect.bell-labs.

com/sl/S/history.html.
basándose en procesos modulares donde la salida de un módulo
alimentaba al siguiente, siguiendo la secuencia natural de los análisis.
En 1998, la Association for Computing Machinery (ACM) premió a John
M. Chambers con el Software System Award10 por la contribución que 10 http://www.webcitation.org/

6iGQuou4mS supuso dentro del mundo de la estadística aplicada.
De hecho, la ACM consideró que S

«. . . will forever alter the way people
analyze, visualize, and manipulate data
[. . .] S is an elegant, widely accepted, and
enduring software system, with conceptual
integrity, thanks to the insight, taste, and
effort of John Chambers.»

Actualmente existen dos implementaciones (o dialectos) del en-
torno S original: R, parte del proyecto de software libre GNU, y
S-PLUS, un producto comercial de TIBCO Software.

R se inicia cuando, en 1993, Ross Ihaka y Robert Gentleman
decidieron crear, para sus clases, un entorno estadístico, simplemente
un banco de pruebas que implementara los métodos de Scheme Lisp
y una sintaxis similar a la de S. En una descripción detallada del
proceso11, Ihaka explica cómo en 1995 dieron acceso ftp al código 11 https://www.stat.auckland.ac.nz/

~ihaka/downloads/Interface98.pdffuente bajo los términos de la Free Software Foundation’s GNU general
license. En 1996 se inició una lista de correos para r-testers a la que
siguieron otras (r-announce, r-help y r-devel), pero el crecimiento tanto
del propio programa como de los usuarios y sus informes les obligó
a crear en 1997 una estructura de almacenamiento y un grupo que
gestionara el proyecto completo, dando lugar a un equipo principal
(actualmente el R Core Team12) responsable de los cambios que se 12 https://www.r-project.org/

contributors.htmlrealizan en R.

1.3 Recursos

La fuente principal en todo lo referente a R es la web del proyecto
R13, donde hay información general y acceso a recursos variados, 13 http://www.r-project.org/

y la CRAN (The Comprehensive R Archive Network, o Red completa
de archivos de R y sus mirrors), más orientada al almacenamiento y
distribución del software de R. Es recomendable visitarlas y darse un
paseo por los distintos apartados.

Respecto al software necesario, hay tres elementos principales:

El propio software de R, la llamada distribución base, que puede
obtenerse de cualquier Mirror de la CRAN14, de entre los distri- 14 http://cran.r-project.org/

https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/S_(programming_language)
http://ect.bell-labs.com/sl/S/history.html
http://ect.bell-labs.com/sl/S/history.html
http://www.webcitation.org/6iGQuou4m
http://www.webcitation.org/6iGQuou4m
https://www.stat.auckland.ac.nz/~ihaka/downloads/Interface98.pdf
https://www.stat.auckland.ac.nz/~ihaka/downloads/Interface98.pdf
https://www.r-project.org/contributors.html
https://www.r-project.org/contributors.html
http://www.r-project.org/
http://cran.r-project.org/

26 Cap. 1. R: Características, historia y recursos

buidos por todo el mundo. Deberemos elegir la descarga para
nuestro sistema operativo (disponible en la actualidad para Linux,
macOS15 y Windows). 15 Anteriormente MacOS X.

También son herramientas fundamentales los paquetes, o exten-
siones. Puede accederse a ellos a través del enlace Package16 en 16 https://cran.r-project.org/web/

packages/la página principal de la CRAN. A fecha de hoy (15/08/21), el
repositorio CRAN contabiliza 17974 paquetes disponibles.

RStudio es un IDE (Integrated Development Environment, o Entorno
de desarrollo integrado) que puede descargarse desde su web17. 17 http://www.rstudio.com/

Como su nombre indica, se trata de un entorno (una interfaz, pero
también mucho más) que facilita enormemente la gestión de toda
la información a la hora de trabajar con R.

Respecto a la documentación existen diferentes fuentes. La
principal es la misma web del proyecto R, donde podemos descargar
todo lo necesario para aprender y trabajar con R. En el apartado
Documentation, a la izquierda de la página principal encontramos el
enlace Manuals18, donde disponemos de gran número de manuales. 18 http://cran.r-project.org/manuals.

htmlLos dos primeros de la siguiente lista son probablemente los más
básicos y utilizados (Venables et al., 2019; Paradis, 2002), e incluimos
también una tarjeta resumen (Short, 2004)19: 19 Los dos primeros manuales, y otros

muchos, están disponibles en espa-
ñol en el apartado Contributed de la
CRAN: https://cran.r-project.org/
other-docs.html

Venables, W. N., Smith, D. M. & The R Core Team (2012). An
introduction to R. Disponible en http://www.math.vu.nl/sto/

onderwijs/statlearn/R-Binder.pdf.
Paradis, E. (2005). R for Beginners. Montpellier: University of Mont-
pellier. Disponible en http://cran.r-project.org/doc/contrib/

rdebuts_en.pdf.
Short, T. (2004). R Reference Card. Disponible en https://cran.

r-project.org/doc/contrib/Short-refcard.pdf.

La web es otra fuente inagotable de recursos. Frente a una
lista demasiado larga, preferimos mostrar sólo dos referencias:

Quick R20 es una web que ofrece una guía rápida, de gran orga- 20 http://www.statmethods.net/

nización y eficiencia. Para cualquier concepto básico ofrece una
explicación clara, uno o varios ejemplos de uso y, con frecuencia,
enlaces a información más avanzada o específica.
Pero si tenemos cualquier duda, por simple o compleja que sea,
podemos encontrar la solución escribiendo en un buscador “R
how to. . . ” e indicando el problema o el resultado deseado. En
un porcentaje muy alto de los casos, la respuesta estará en Stack
Overflow21, que se ha convertido en el lugar de referencia para 21 https://stackoverflow.com/

questions/tagged/rsoluciones, explicaciones y recursos varios en R.

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/
http://www.rstudio.com/
http://cran.r-project.org/manuals.html
http://cran.r-project.org/manuals.html
https://cran.r-project.org/other-docs.html
https://cran.r-project.org/other-docs.html
http://www.math.vu.nl/sto/onderwijs/statlearn/R-Binder.pdf
http://www.math.vu.nl/sto/onderwijs/statlearn/R-Binder.pdf
http://cran.r-project.org/doc/contrib/rdebuts_en.pdf
http://cran.r-project.org/doc/contrib/rdebuts_en.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://www.statmethods.net/
https://stackoverflow.com/questions/tagged/r
https://stackoverflow.com/questions/tagged/r

PARTE I: Primeros pasos 27

1.4 Instalar R y RStudio

La instalación básica de R es bien simple, en tanto se trata única-
mente de ejecutar el archivo descargado de la CRAN. Salvo casos
especiales, es recomendable usar el directorio por defecto.

La instalación de RStudio es igualmente simple: basta ejecutar el
archivo descargado, que localizará la instalación de R disponible.

Si la breve información anterior no ha sido suficiente para instalar
los programas indicados puede ser conveniente acudir al apartado
A.1 del Apendice A, que detalla la descarga e instalación de ambos.

1.5 Comenzar a usar R

Tras la instalación podemos acceder a R de dos formas:
Figura 1.1: Iconos para R y RStudio. En
este manual usaremos RStudio en todo
momento.Pulsando en el icono de R, a la izquierda en la figura 1.1, lo que

abre la ventana principal (la consola) de R.
A través de RStudio, haciendo click en el icono a la derecha de la
figura 1.1, lo que abre el IDE que usaremos a lo largo de todo el
manual.

La principal ventaja de una interfaz integrada es precisamente eso:
que las diferentes ventanas están presentes y organizadas22. Una vez 22 Y hay otras: funciones adicionales

que facilitan múltiples tareas, como las
utilidades para gestionar este manual.

abierta, la interfaz de RStudio muestra una apariencia similar a la de
la figura 1.2.

Figura 1.2: Ventana de RStudio con los
cuatro paneles.

Aunque las pestañas y su distribución pueden variar23, el entorno 23 De hecho, podemos configurar qué
ventanas queremos mostrar y en qué
panel estará situada cada una en el
menú Tools/Global Options/Pane

Layout.

de RStudio siempre contendrá varias pestañas básicas de uso común.
Entre ellas observamos la ventana de programa (source panel), arriba
a la izquierda, y debajo aparece la consola. Esta última servirá para

28 Cap. 1. R: Características, historia y recursos

introducir y ejecutar instrucciones una a una, mientras que la prime-
ra permite editar y almacenar un conjunto de intrucciones, lo que
solemos llamar un programa.

A la derecha se muestran otras dos ventanas habituales: arriba, la
ayuda, mostrando información sobre la función mean(); debajo, la
pestaña Packages, que muestra los paquetes instalados.

En el capítulo siguiente haremos un recorrido para ver R en fun-
cionamiento y conocer algunas de sus características. Para introducir
el código deberemos usar la ventana de consola, que en la figura 1.2
aparece abajo a la izquierda.

No obstante, puede ser recomendable visitar el apartado A.3.2 en
el apéndice A. En él se comentan algunas características de RStudio

que son de utilidad desde el primer día. O también podemos consul-
tarlo en otro momento, para conocer mejor la interfaz.

Ejercicio 1.1.
Localiza y recorre la web del proyecto R si aún no lo has he-

cho. Explora sus apartados, sus paquetes, hojea su revista (The
R Journal). . .

Ejercicio 1.2.

Busca información sobre John M. Chambers, Ross Ihaka y Ro-
bert Gentleman, o recorre los enlaces que aparecen a lo largo del
capítulo.

Ejercicio 1.3.

Localiza y explora la web de la CRAN y ve al apartado de des-
carga para tu sistema operativo. Localiza la versión adecuada y,
si no lo has hecho aún, descárgala e instálala. Comprueba el nú-
mero actual de paquetes disponibles. Pulsa sobre alguno que te
parezca de interés y explora la información que ofrece.

https://www.r-project.org
https://cran.r-project.org

2
Una primera inmersión

En este capítulo introduciremos los principales elementos que se
ponen en juego al trabajar con R y que serán tratados a lo largo de to-
do el manual. Siendo introductorio, no podremos entrar en detalle en
ninguna de las cuestiones tratadas; el objetivo es ofrecer una idea de
conjunto, amplia y poco definida. Sí que merecen atención especial
los objetos tratados (vectores y funciones) y sus características, ya que
es sobre ellos, y su uso, de lo que hablaremos en estas páginas.

RESUMEN

Acceso a R y primeras tareas básicas (2.1). Elección del modo de
trabajo; los primeros cálculos, expresiones y asignaciones.

Dos conjuntos de objetos fundamentales en R. En general, las es-
tructuras de datos, o vectores (2.2), almacenan la informa-
ción y las funciones (2.3) las procesan.

Archivos, tipos, creación y acceso (2.4). Tipos de archivos, jun-
to con su lectura y escritura, importación y exportación.

Paquetes (2.5). Dada su importancia, un primer acercamien-
to práctico.

La ayuda (2.6). Imprescindible, fuentes de información inter-
nas y externas.

2.1 Acceso a R y primeras tareas

El capítulo anterior aludió a que el trabajo con R es interactivo, esto
es, que toda acción se realiza mediante comandos o instrucciones.
Pues bien, una vez abrimos R a través de la interfaz de RStudio, exis-
ten dos lugares desde los que puede realizarse ese trabajo interactivo,
con usos muy diferentes.

La consola. Principalmente para pruebas o para obtener información
específica, momentánea.

Un archivo. Para una secuencia de acciones organizada y preferible
siempre que se quiera volver sobre el código ejecutado.

30 Cap. 2. Una primera inmersión

Al hablar de una secuencia de acciones organizadas podemos
referirnos a los múltiples pasos de un análisis estadístico, pero puede
tratarse también de los ejemplos de este manual, que podemos copiar
y pegar en un archivo y guardarlo con un nombre, por ejemplo
Cap_02.R. En la figura 2.1 vemos, a la izquierda, el archivo Cap_02.R,
donde aparecen los primeros ejemplos de este capítulo1. A la derecha 1 Véase que el carácter '#' se utiliza

para incluir comentarios, títulos,
aclaraciones. . . que no se ejecutan.

tenemos los mismos ejemplos, ejecutados en la consola. Es claro que
el archivo permite guardar la información y revisarla o reutilizarla
posteriormente mientras que lo ejecutado en la consola se pierde2.

2 En realidad queda registrado en el
historial (véase la pestaña History).

Figura 2.1: Ventanas de archivo (izquier-
da) y consola (derecha) en el editor de
RStudio. .

Si usamos la consola, debemos escribir el código deseado (o bien
copiarlo y pegarlo) y pulsar Enter para ejecutarlo. Si trabajamos con
un archivo, pulsar Enter sólo servirá para introducir un salto de
línea; si queremos ejecutar una línea de código basta con situarnos en
algún lugar de ella y pulsar Control + Enter. Esta misma combinación
permite ejecutar un bloque de código previamente seleccionado.

En la consola de R, las instrucciones aparecen precedidas del
prompt (habitualmente el carácter ‘>’), mientras que las salidas apa-
recen debajo. En este texto se ha eliminado el prompt de las instruc-
ciones (al igual que en un archivo, con objeto facilitar la tarea de
copiar y pegar), que aparecen siempre sobre un fondo de color3. Las 3 O gris claro en la versión impresa.

salidas, por su parte, vienen precedidas de los símbolos “##” para
identificarlas claramente.

Pensemos que no existe mejor manera de aprender el lenguaje R4 4 Y cualquier otro, incluidos los huma-
nos.que usarlo: como en el ejemplo, podemos crear un archivo .R y pegar

en él el código copiado de los ejemplos del manual. Después se
recomienda modificarlo. Hay que explorar qué ocurre, incluir nuevas
opciones, cambiar y añadir. . . No es fácil romper nada y, en tales
casos, basta aplicar la regla de oro de la informática: cerrar RStudio y
volver a abrirlo.

Jose

PARTE I: Primeros pasos 31

Ejercicio 2.1.
En RStudio, podemos situarnos en la ventana de archivo (File/

New File/R Script) y crear un archivo nuevo (yendo al menú
o pulsando el icono situado más a la izquierda). Después escri-
bimos el comentario # Cap_02.R en la primera línea; al dar a Enter

vemos que el símbolo # aparece en la siguiente línea (luego se-
rá un comentario que tampoco se ejecutará).

Continuamos tal como aparece en la figura 2.1, incluyendo nues-
tro nombre. Después grabamos el archivo en el directorio que eli-
jamos, nombrándolo Cap_02.R.

Después podemos ir al directorio elegido y abrir el archivo con
un editor de textos cualquiera, para comprobar que sólo contie-
ne texto común.

2.1.1 Calculadora

La forma más fácil de empezar es usando R como calculadora.
Podemos escribir en la consola:

2 + 3

[1] 5

Y obtenemos el resultado esperado. Los espacios no son necesa-
rios, pero se recomiendan para mejorar la legibilidad. Podemos usar
igualmente operadores aritméticos y otros habituales. En el ejemplo
realizamos algunas operaciones aritméticas, (7 * (4 - 6.5)), obte-
nemos su valor absoluto con la función abs() y calculamos la raíz
cuadrada mediante sqrt():

sqrt(abs(7 * (4 - 6.5)))

[1] 4.1833

2.1.2 Evaluaciones y asignaciones

En cada ejemplo anterior se ha realizado una evaluación: un proce-
so por el que el intérprete del lenguaje R comprueba si la expresión es
sintácticamente correcta y, en caso afirmativo, la ejecuta y devuelve
un resultado. El resultado es volátil: se muestra en la consola pero no
queda almacenado.

2 * 3

[1] 6

Si queremos almacenar el resultado hemos de hacer una asignación
mediante el operador (<-) o bien mediante el signo igual, (=).5 El

5 Ambos sirven para asignar aunque
hay alguna diferencia que ya veremos.

32 Cap. 2. Una primera inmersión

valor proporcionado se asignará a una variable que, si no existe
previamente, se creará en el momento de la asignación.6 6 Y si existe, su valor será sustituido

(machacado) por el nuevo, sin mediar
ningún aviso.a <- 2 * 3

El operador de asignación se forma mediante los símbolos menor
que, <, y menos, -, y puede utilizarse en ambos sentidos. La asignación
anterior, por tanto, también puede expresarse como:

2 * 3 -> a

Se observa que las asignaciones no ofrecen ningún resultado como
respuesta (aunque su valor aparece en el espacio de trabajo, en la
ventana Environment de RStudio)7. Podemos consultar su contenido 7 Otra forma de lograrlo es mediante el

uso de paréntesis en una asignación:
(a <- 2 * 3)

[1] 6

simplemente escribiendo su nombre, mediante impresión implícita, o
bien mediante la función print(), de forma explícita.

a

[1] 6

print(a)

[1] 6

En la consola, el resultado de ambos procedimientos es idéntico.
Pero en el caso de ejecutarse desde un programa o función, sólo la
segunda opción mostrará el contenido de los objetos.

Hay que tener presente que R es sensible a las mayúsculas y mi-
núsculas, luego a y A son variables distintas. La función objects()

muestra los objetos presentes en la memoria de trabajo.

A <- -10

a * A

[1] -60

objects()

[1] "a" "A"

2.1.3 Nombrar

Las variables se nombran utilizando letras, números, y los carac-
teres punto (.) y guión bajo (_). Los nombres pueden comenzar por
una letra o un punto8. Las funciones siguen reglas similares, pero el

8 Que no vaya seguido por un número:
.Valor sería, por tanto, un nombre
válido; .1Valor, no.punto tiene (o puede tener) un significado especial9.
9 En las funciones genéricas, donde el
punto indica que esa función sólo se
aplica a determinadas clases de objeto.
Se verá en el capítulo 15, dedicado a las
funciones.

Tampoco pueden utilizarse las palabras reservadas, que podemos
encontrar en la ayuda (o ejecutando ?reserved) y que se presentan a
continuación:

PARTE I: Primeros pasos 33

if else repeat while function for in next break

TRUE FALSE NULL Inf NaN NA NA_integer_ NA_real_ NA_complex_

NA_character_

Así, son nombres válidos A, d12, Valor, DATO, .B1 o FOR, y no lo
son 1A, .6VAR, _DATO o for.

Además de nombrar, también es conveniente comentar los pro-
gramas, explicando qué se lleva a cabo en cada parte; ello ayuda a
comprender posteriormente el código. Los comentarios se indican
mediante el carácter almohadilla (#), y todo lo que aparezca posterior-
mente en la misma línea no será ejecutado.

Los comentarios no se ejecutan

print("No se ejecuta")

print("Sí se ejecuta")

[1] "Sí se ejecuta"

Ejercicio 2.2.
Queremos calcular la circunferencia y área de un círculo de

radio 1.8 metros. Recordemos que la circunferencia es dos pi ve-
ces el radio; el área, por su parte, es pi veces el cuadrado del ra-
dio.

Define y nombra las variables adecuadamente y realiza los cálcu-
los necesarios.

2.2 Algunos objetos de R: vectores y funciones

Es frecuente oír que todo lo que existe en R es un objeto. Más allá de
cuestiones terminológicas, el resultado práctico de este hecho es que,
a cierto nivel, todo lo que forma parte de R es tratable de igual forma:
todo objeto puede copiarse, duplicarse, almacenarse, asignarse. . .

Pues bien, de entre todos los tipos de objetos que existen en R10, 10 Existen 24 tipos de objetos en R, como
veremos a su debido tiempo.hay dos grupos especialmente interesantes: aquellos que sirven para

almacenar información y los que permiten procesarla; nos referimos a
vectores y funciones.

Un aspecto importante a destacar es que en R, las variables creadas
no necesitan ser declaradas, esto es, indicar su tipo (entero, doble,
carácter. . .) El tipo será asignado automáticamente dependiendo del
contenido del vector, como veremos.

2.2.1 Vectores

En R, todas las estructuras que almacenan datos son vectores. Ya
se habrá observado que antes de las respuestas siempre aparece [1].
Efectivamente:

34 Cap. 2. Una primera inmersión

3 * 4

[1] 12

La razón para ello es que el resultado no es un 12 sin más (esto
es, un escalar con valor 12); sino un vector de longitud unidad cuyo
primer (y único) elemento es 12. El número entre corchetes indica el
índice correspondiente a ese primer elemento. Usamos el término
vector en la acepción propia del ámbito informático: un conjunto
ordenado de elementos a los que puede accederse mediante un
índice.

Una particularidad de R es que es un lenguaje vectorial, de forma
que, al operar sobre un vector, opera sobre cada uno de sus elementos,
lo que simplifica enormemente el tratamiento de éstos.11 Por lo 11 Lo que procede de su diseño enfoca-

do a la estadística. A fin de cuentas, una
variable tiene estructura vectorial de
forma natural.

demás, cuando tenemos vectores de longitud 1, R funciona de forma
equivalente al tratamiento de escalares.

Si queremos construir un vector, la forma más simple es mediante
la función c(), que concatena los elementos introducidos:

v <- c(9, -4, 3.14)

v

[1] 9.00 -4.00 3.14

Una vez construido, el vector v está disponible en memoria. Si
queremos acceder a un elemento particular, debemos introducir su
índice entre corchetes:

v[3]

[1] 3.14

Como veremos luego, existen vectores atómicos y no atómicos.
Los primeros sólo pueden almacenar un mismo tipo de elementos
(enteros, caracteres. . .); los segundos pueden almacenar elementos
variados y son mucho más versátiles.

2.2.2 Funciones

También se puede oír que toda acción realizada en R consiste en la
ejecución de una función. Y es cierto; la simple definición anterior
implica la ejecución de dos funciones: asignar (<-) y concatenar (c()):

v <- c(9, -4, 3.14)

Si los vectores permiten almacenar los datos, las funciones operan
con esos datos (entre otras muchas tareas). Las funciones van segui-
das siempre de paréntesis entre los que se incluyen los argumentos
que necesita12.

12 Algunas funciones no precisan
argumentos, o pueden usar argumentos
predefinidos, aunque sigue siendo
necesario el uso de paréntesis. La
siguiente función, por ejemplo, ofrece el
directorio de trabajo actual:
getwd()

[1]

'/Users/jose/Documents/FDR'

PARTE I: Primeros pasos 35

mean(v) # Media aritmética

[1] 2.713333

Vemos que mean() devuelve un único resultado al recibir un vector.
Otras funciones, sin embargo, operan elemento a elemento, devol-
viendo como resultado un vector de longitud igual al introducido.

sqrt(v) # Raíz cuadrada

Warning in sqrt(v): Se han producido NaNs

[1] 3.000000 NaN 1.772005

Se observa que ha habido problemas con el segundo elemento, -4,
del vector v al intentar calcular su raíz cuadrada. R ha devuelto NaN,
acrónimo de Not a Number, o indeterminación.

Existen multitud de funciones en la instalación base de R, y tam-
bién en los paquetes disponibles. Y además, es posible construir
nuestras propias funciones para realizar cualquier tipo de tarea. En el
ejemplo construimos la función raiz(), que convierte la entrada en
compleja si algún valor es negativo13: 13 Solucionando así el problema anterior,

ya que en el dominio complejo sí existe
solución.

raiz <- function(entrada) {

if(any(entrada < 0)) {

entrada <- as.complex(entrada)

}

return(sqrt(entrada))

}

raiz(v)

[1] 3.000000+0i 0.000000+2i 1.772005+0i

R es un lenguaje de alto nivel, lo que quiere decir que muchas
de sus instrucciones expresan procesos complejos con un lenguaje
próximo al lenguaje (inglés) natural. Así, es fácil entender qué realiza
el código anterior: raiz() se define (<-) como una función (function)
con el argumento entrada; si (if) algún (any) elemento de la entrada

es menor que 0, entonces entrada se definirá (<-) como complejo
(as.complex); al final, se devuelve (return) la raíz cuadrada (sqrt) de
la entrada.

Las funciones son también objetos y, como tales, las funciones
creadas pueden verse dentro del entorno de trabajo, en la ventana
Environment de RStudio. Así, si se ejecuta el código anterior, dis-
pondremos de un nuevo objeto, raiz(), visible al mostrarlos con la
función ls()14. 14 Equivalente a objects().

36 Cap. 2. Una primera inmersión

ls()

[1] "a" "A" "raiz" "v"

Más allá de hacer cálculos sobre los datos, las funciones abarcan
todo tipo de tareas, como pueden ser:

Control del entorno, directorio de trabajo, borrado de objetos. . .
Entrada y salida de archivos, importación y exportación. . .
Creación de objetos, selección, transformación. . .

Como se ha observado, y como norma a lo largo de todo el texto,
las funciones siempre se mostrarán con los paréntesis, lo que ayuda a
diferenciarlas del resto de objetos.

Ejercicio 2.3.
Queremos crear el vector w, que contiene los valores 1, -3, 7 y

12. Luego aplicaremos dos funciones al vector: una que dé un re-
sultado único, de tipo resumen (como la media) y otra que dé un
resultado elemento a elemento (de igual longitud). Después, com-
prueba los objetos presentes en el espacio de trabajo.

2.3 Más sobre vectores

Sea cual sea el uso que demos a R, todos los valores que necesi-
temos tratar serán almacenados en vectores. Tanto si definimos un
simple valor como en n = 20, como si tratamos un archivo de 1500

casos por 300 variables, ambas informaciones se almacenarán en
vectores.

Obviamente, el primer caso requerirá un tipo de vector mucho
más simple que el segundo. Así, existe una división entre vectores
atómicos y no atómicos. Los primeros contienen un tipo determinado de
elementos (enteros, reales, caracteres. . .) y sólo uno; los segundos son
más complejos, y consisten en agrupaciones de los primeros.

2.3.1 Vectores atómicos

Existen cinco tipos de vectores atómicos en R: enteros, reales,
lógicos, alfanuméricos y complejos.15 A continuación se define un 15 Hay un sexto tipo, los vectores

raw, muy poco frecuentes y que no
trataremos aquí.

vector de cada tipo:

i <- c(10L, 13L) # integer

d <- c(1, .6, 3) # double

l <- c(T, FALSE) # logical

c <- c("A", "txt") # character

x <- c(1+2i, 4i) # complex

PARTE I: Primeros pasos 37

Cuando hablamos de cinco tipos no nos referimos una clasificación
conceptual sino estructural; el tipo es una propiedad de los obje-
tos16, y muy importante: indica la estructura de almacenamiento 16 Que podemos obtener a través de la

función typeof().utilizada lo que, en términos prácticos, significa que define todas sus
propiedades en cuanto a lo que puede hacer y lo que no.17 17 Véase que en el ejemplo se han

incluido varias funciones en la misma
línea, lo que puede hacerse usando el
punto y coma, ‘;’.typeof(i); typeof(d); typeof(l); typeof(c); typeof(x)

[1] "integer"

[1] "double"

[1] "logical"

[1] "character"

[1] "complex"

A continuación mostramos una breve descripción de cada tipo:

Enteros (integer). Almacenan valores numéricos únicamente ente-
ros. En el ejemplo se ha utilizado el sufijo L para indicar que los
valores numéricos son de tipo entero18. 18 La razón se remonta muchos años

atrás, y se verá en el capítulo 5.Reales (double). Almacenan valores numéricos reales19. Es el tipo por
19 La razón del nombre double también
se verá en el mismo capítulo.defecto, esto es, el asignado cuando no se indica nada (como se

observa en el ejemplo).
Lógicos (logical). Sólo pueden almacenar valores verdadero y falso; se

puede usar la palabra completa (TRUE, FALSE) o las iniciales (T, F),
pero siempre en mayúsculas.

Alfanuméricos (character). Cualquier cadena de caracteres entrecomi-
llada se considera de tipo alfanumérico; se pueden usar comillas
"dobles" o 'simples'.

Complejos (complex). En el ejemplo se definen usando la expresión al-
gebraica como suma de una parte real y otra imaginaria (definida
mediante el sufijo i unido, sin espacios, a algún valor numérico).
Véase que tampoco se ha dejado espacio alrededor del signo '+'.

Hay otra forma habitual de generar (una secuencia de) enteros
mediante el operador dos puntos (:); conviene conocerla porque es
frecuente en multitud de operaciones, pero también en la descripción
de los objetos. En el ejemplo, creamos un vector entero mediante una
secuencia de 10 a 15:

(i <- 10:15)

[1] 10 11 12 13 14 15

Y también se utiliza a la hora de mostrar la estructura de los
objetos, con la función str():20

20 Tanto la función typeof() como
str() se verán en detalle en el siguiente
capítulo. Respecto a str(), basta saber
por ahora que muestra una descripción
breve del objeto que, en este caso,
incluye la longitud del vector expresado
mediante el operador dos puntos:
[1:6].

38 Cap. 2. Una primera inmersión

str(i)

int [1:6] 10 11 12 13 14 15

Los vectores atómicos también pueden configurarse como estructu-
ras bidimensionales (matrices) o de más dimensiones (arrays), pero lo
dejamos para más adelante.

Recordemos ahora que estos vectores son objetos atómicos, lo que
indica que sólo pueden contener un tipo de datos. ¿Qué ocurre, por
tanto, si mezclamos elementos de diferente tipo en un mismo vector?
¿Obtendremos un error?

A <- c(3, "a"); A

[1] "3" "a"

No hay error. R ha coercionado los elementos al tipo que permita
almacenar ambos. En tanto no hay forma (unívoca) de convertir 'a'
en un número, el valor real 3 es convertido al tipo character.

¿Cómo tratar, entonces, con un archivo de datos, que puede conte-
ner información de varios tipos? Necesitamos estructuras de almace-
namiento no atómicas.

Ejercicio 2.4.
Vamos a crear un vector atómico de cada uno de los cinco ti-

pos vistos hasta ahora, con dos condiciones: primera, se crearan
en orden, empezando por el tipo que menos versatilidad tiene
y acabando con el que más; segundo, han de tener longitud cre-
ciente, comenzando en dos.

Consulta el tipo y la estructura de cada vector creado.

2.3.2 Vectores no atómicos

Hay dos objetos que permiten almacenar información heterogénea:
las listas y los data frames21. 21 No existe un término consensuado en

castellano para data frame, aunque en
el manual de Introducción a R lo vemos
traducido como hojas de datos. Aquí
hemos preferido dejarlo tal cual.

Listas. Se les llama a veces contenedores universales, ya que pueden
almacenar cualquier vector atómico e incluso también listas y data
frames, y en cualquier cantidad. Son muy utilizadas para reunir
información relacionada (por el ejemplo, los múltiples resultados
de un análisis estadístico: coeficientes, descriptivos, intervalos de
confianza, los mismos datos. . .)

Data frames. Son listas especializadas, diseñadas para almacenar
bases de datos en formato filas (casos) por columnas (variables).

Se construyen con las funciones del mismo nombre. En este ca-
so creamos una lista con tres vectores de diferentes tipos: double,
character y logical.

PARTE I: Primeros pasos 39

lista <- list(A = 7,

B = c("uno", "dos"),

C = T)

lista

$A

[1] 7

##

$B

[1] "uno" "dos"

##

$C

[1] TRUE

Con data frames el funcionamiento es similar, pero es requisito que
los vectores componentes tengan la misma longitud, algo razonable
en cualquier base de datos.

df <- data.frame(Id = c(1, 2, 4, 5),

Grupo = c("Exp", "Ctr", "Ctr", "Exp"),

VD = c(12, 11, 9, 14))

df

Id Grupo VD

1 1 Exp 12

2 2 Ctr 11

3 4 Ctr 9

4 5 Exp 14

Para acceder a su contenido existen varias formas; una de ellas
utiliza el operador $ para unir el nombre del objeto con el nombre
del elemento.22 22 Por supuesto, también puede acce-

derse mediante corchetes ‘[]’ como con
cualquier otro vector. Lo veremos en los
capítulos dedicados a estos objetos.

lista$B

[1] "uno" "dos"

df$Grupo

[1] "Exp" "Ctr" "Ctr" "Exp"

Los data frames, además, ofrecen un acceso de tipo matricial indi-
cando la fila y columna mediante un par de índices. En los ejemplos
se seleccionan un caso, una variable y la intersección de ambos23. 23 Véase que dejar un hueco se inter-

preta como todos los casos o todas las
variables según esté en la primera o
segunda posición, respectivamente.

df[2,] # Caso 2, todas las variables

Id Grupo VD

2 2 Ctr 11

40 Cap. 2. Una primera inmersión

df[, 3] # Variable 3, todos los casos

[1] 12 11 9 14

df[2, 3] # Caso 2, variable 3

[1] 11

Ejercicio 2.5.
Utilizando los vectores construidos en el ejercicio anterior, crea

una lista con tres componentes. Contruye también un data frame
con los dos vectores que no usaste para la lista. Probablemente
tendrás que hacer algún ajuste respecto a la longitud de los com-
ponentes.

Prueba a crear otras listas y data frames con otras combinacio-
nes de esos mismos componentes.

2.3.3 R, un lenguaje vectorial

El carácter vectorial de R no se limita al hecho de que todas sus es-
tructuras de almacenamiento de datos sean vectores. De hecho, estas
estructuras no tendrían mayor valor en sí mismas si no estuviesen
acompañadas de un procesamiento vectorial.

De esta forma, muchas de las acciones que en otros lenguajes
requieren operar sobre cada elemento de un vector mediante algún
tipo de bucle repetitivo, en R se realizan directamente.

Y no es casualidad. Recordemos que R nace orientado al análisis
estadístico, donde el tratar con variables constituye el modo habitual
de trabajo. Y una variable se representa de forma natural como
un conjunto de valores ordenados (según el índice de cada caso);
precisamente un vector.

Por ejemplo, si quiero multiplicar todos los elementos de un vec-
tor por una cantidad, no necesito multiplicar cada elemento por esa
cantidad; basta multiplicar el vector como un todo:

v <- 1:5

v * 10

[1] 10 20 30 40 50

Si volvemos a la estadística, una operación como calcular una
media o una varianza, que suele requerir recorrer cada elemento una
y otra vez, en R se reduce a expresiones simples que no necesitan de
ningún tipo de bucles.

PARTE I: Primeros pasos 41

media <- sum(v)/length(v)

varianza <- sum((v - media)^2)/(length(v) - 1)

Este modo de operar requiere un modo de pensar algo diferente,
vectorial, y es frecuente que se tarde un tiempo en lograrlo. Y la vía
más directa es, sin duda, la práctica.

Ejercicio 2.6.
Obtén el vector z, resultado de tipificar el vector v, usando pro-

cedimientos vectoriales.

2.4 Lectura y escritura de archivos

Como cualquier otro lenguaje, R puede escribir y leer diferentes
tipos de información en múltiples formatos. Pero dentro de esta gran
variedad, hay dos tipos principales de archivos que todos usamos:
archivos de programa y archivos de datos.

Archivos de programa. También llamados programas sin más, no son
más que una secuencia de acciones (instrucciones en lenguaje R),
agrupadas en un archivo con la extensión .R. El archivo Cap_02.R,
en el que íbamos almacenando las instrucciones de este capítulo,
es un ejemplo de archivo de programa.

Archivos de datos. Son los que contienen la información procedente de,
por ejemplo, una investigación, y que podemos leer desde R. Tam-
bién pueden ser datos generados por R, por ejemplo los resultados
de una simulación que almacenamos para ser analizados poste-
riormente. En R, los archivos de datos tienen la extensión .RData24, 24 O simplemente .rda.

como en datos.RData.

2.4.1 Archivos de programa

Un archivo de programa no es más que un archivo de texto con
extensión .R que contiene código (instrucciones) de R. Podemos
escribirlo en cualquier editor de texto, aunque siempre será mejor
en una interfaz de R, para poder ir ejecutando y probando el código
conforme se escribe25. 25 En las interfaces especializadas como

RStudio, además, colorean el código de
forma que hacen más reconocibles las
funciones, variables, etc.

Un ejemplo de archivo de programa es Cap_02.R, el archivo que
hemos sugerido crear con los ejemplos del libro. Al usarlo, comproba-
mos que la manera natural de trabajar es recorrer las líneas y ejecutar
aquéllas que nos interesen; a veces se copia y pega una instrucción,
se modifica y se ejecuta para observar su comportamiento. Aunque el
objetivo difiere, la forma del proceso no dista mucho de la utilizado
en un análisis de datos.

A la vez, en informática es frecuente llamar programa a un conjunto
de código cerrado que realiza siempre una misma acción cuando

42 Cap. 2. Una primera inmersión

se ejecuta26. Pero recordemos que R es, por diseño, un lenguaje 26 Y que generalmente tiene una versión
ejecutable (por ejemplo, un archivo del
tipo .exe o .app) que puede ejecutarse
con independencia del programa que lo
creó.

interpretado (esto es, que no genera archivos que puedan ejecutarse
con independencia del entorno de R), orientado al análisis estadístico
y, con esta lógica, pensado para aplicar unos procedimientos a unos
datos cuyos resultados servirán de entrada a otros procedimientos.

En resumen: en el trabajo con R es habitual utilizar archivos de
programa, pero haciendo una ejecución interactiva del código, tal
como hacemos en Cap_02.R. Supongamos, por ejemplo, un análisis
estadístico básico; lo habitual es almacenar en un programa los pasos
a dar, que suelen ser:

Lectura o importación de los datos y almacenamiento en un data
frame.
Análisis inicial, corrección de errores, depuración y grabación del
resultado en un nuevo archivo de datos.
Descriptivos, gráficos, supuestos. . .
El análisis en sí.
Posibles análisis posteriores.

Cada paso es programado y ejecutado, se estudia el resultado y
se decide el próximo paso, que es programado y ejecutado. . . Alma-
cenar los pasos permite repetir los procedimientos, corregir errores,
afinar los análisis y extraer los resultados de diferentes maneras.
Incluso cuando todo ha finalizado, el archivo guardado puede reto-
marse como base para otro análisis.

Por supuesto, también es posible tener programas que sean cerra-
dos, pero suelen ser más simples y unívocos que lo que se requiere,
por ejemplo, en un análisis de datos completo. Un caso sería el que
ha llegado a ser el primer ejemplo en cualquier lenguaje de progra-
mación: un programa que, al ser ejecutado, muestra por pantalla el
mensaje “¡Hola, mundo!”.

Para ello basta escribir la instrucción print("¡Hola, Mundo!"),
almacenarla en un archivo llamado hola.R y ya tenemos todo un
programa, completamente funcional.

print("¡Hola, Mundo!")

Podemos ejecutarlo, desde consola o desde dentro de otro progra-
ma, mediante la instrucción source().

source("hola.R")

[1] "¡Hola, Mundo!"

Más allá de la simpleza del ejemplo, los programas ejecutados
de esta forma habrán de ser, necesariamente, más simples que lo
requerido por cualquier análisis27.

27 En principio, aunque es posible que el
programa sea interactivo, y solicite, por
ejemplo, el nombre del archivo de datos
a utilizar o permita hacer elecciones.

PARTE I: Primeros pasos 43

Ejercicio 2.7.
Vamos a crear un pequeño programa y luego lo ejecutaremos.

Para ello:

Abre un archivo nuevo (R Script) en RStudio.
Escribe un comentario (con #) al inicio indicando el nombre
del programa (programa_1.R) y en la siguiente línea, su autor/a.
A continuación crea un vector, v, de longitud 7 con números
reales en el intervalo [0, 10].
Calcula la media del vector.
Muéstrala por pantalla.
Guarda el archivo con el nombre indicado anteriormente y cié-
rralo.
Ejecuta el programa.

2.4.2 Archivos de datos

Más frecuente aún es la creación y lectura de archivos de datos, que
en R tienen la extensión .RData. Por ejemplo, si trabajando con R

hemos construido el data frame df_datos con los datos ya depurados,
podemos almacenarlo en un archivo usando la función save() como
en el ejemplo, lo que creará el archivo datos.RData.

save(df_datos, file = "datos.RData")

De igual forma, en la mayoría de los casos los datos son leídos de
un archivo de datos, procedente de R (en formato RData), como en el
ejemplo a continuación, mediante la función load().

load("datos.RData")

Pero otras muchas veces el archivo se ha construido con un progra-
ma más cómodo para el registro de datos28. Es por ello que R incluye 28 Por ejemplo, una hoja de cálculo. En

cualquier caso, no es frecuente construir
data frames manualmente, tal como
hicimos en los ejemplos anteriores,
escribiendo las puntuaciones para cada
vector.

funciones para importar datos de (y exportarlos a) otros formatos.
Éstos incluyen archivos de texto (con variadas opciones para separa-
dores, decimales, etc.), hojas de cálculo, archivos de otros programas
estadísticos, bases de datos, etc.

A pesar de su utilidad, el capítulo dedicado a la lectura y escritura
de archivos queda aún lejos (en el capítulo 14). Antes necesitamos
conocer, en los capítulos previos, las estructuras de almacenamiento
que luego albergarán la información procedente de esos archivos.

Ejercicio 2.8.
Guarda el anterior vector v en un archivo llamado datos.RData

en el directorio de ejercicios. Comprueba la existencia del archi-
vo en el directorio donde se ha almacenado.

44 Cap. 2. Una primera inmersión

Ejercicio 2.9.

Ahora vamos a construir otro programa, programa_2.R, que
leerá el archivo de datos recién construido (datos.RData) y cal-
culará y mostrará la media. Para ello:

Abre el archivo programa_1.R en RStudio.
Guárdalo con el nombre programa_2.R.
Cambia la línea donde se creaba el vector v por otra donde se
lea el archivo de datos datos.RData.
Deja el resto del programa igual.
Guarda el archivo y ciérralo.
Comprueba que el archivo existe y está en el mismo directo-
rio en que estamos situados en R.
Ejecuta el programa.

Ejercicio 2.10.

Por último, modificaremos el vector v, lo volveremos a grabar
en datos.RData y ejecutaremos de nuevo programa_2.R. También
deberemos comprobar que el resultado de la ejecución se ajus-
ta al nuevo vector.

2.5 Paquetes

Un paquete (package) es un conjunto de funciones que amplían
las capacidades de R. Como ya se dijo, los paquetes son una de las
grandes fortalezas de R29, tanto por su cantidad y calidad como por 29 Llegando a los 15000 paquetes para

finales de 2019 y superando los 18000

en 2021, como se observa en la sección
Packages en la web del proyecto R (https:
//cran.r-project.org/web/packages/.

la velocidad de aparición y actualización.
Para poder usar las funciones de un paquete hemos de dar tres

pasos previamente: descargar el paquete, instalarlo y cargarlo en
memoria. Todo ello puede hacerse mediante la interfaz de RStudio,
o también mediante código. Por ejemplo, si queremos calcular un
estadístico de asimetría (no disponible en la instalación base de R)
obtendremos un error, ya que no existe tal función en la distribución
base de R.

v <- c(2, 4, 3, 2, 5, 4, 3, 2)

skewness(v) # Intenta aplicar una función

Error in skewness(v): no se pudo encontrar la función "skewness"

Podemos usar la función skewness(), disponible en el paquete
e1071. Para ello descargamos, instalamos y cargamos en memoria
dicho paquete.

install.packages("e1071") # Descarga e instala

library("e1071") # Carga en memoria

Ahora sí es posible aplicar la función.

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/

PARTE I: Primeros pasos 45

skewness(v) # Aplica una función

[1] 0.3201403

Cualquier usuario, además, puede construir sus propios paquetes,
bien para uso personal, bien para ponerlos a disposición de otros en
la CRAN (o en otros repositorios como, por ejemplo, GitHub30). 30 https://github.com/features.

Ejercicio 2.11.
Los vectores x <- c(2, 1, 5, 2, 4) e y <- c(1, 1, 4, 3,

4) contienen información ordinal. Queremos conocer una medi-
da de su relación a través de la correlación policórica.

Comprueba si R dispone de alguna función que responda a
nuestra necesidad; en caso contrario, localiza algún paquete que
sí permita el cálculo, instálalo y llévalo a cabo.

2.6 La ayuda

Además de todos los recursos disponibles en la web31, R posee un 31 Y que ya indicamos en el capítulo
anterior.sistema de ayuda que nos informa en detalle sobre cada instrucción

del lenguaje R. El sistema está disponible sin necesitar conexión a
la red, y contiene información sobre las instrucciones de todos los
paquetes instalados en nuestro ordenador.

Es importante notar cómo, a pesar del carácter voluntario y co-
laborativo de las contribuciones en R, existe una estructura rígida
a la hora de construir los paquetes que proporciona una uniformi-
dad muy deseable. Uno de los resultados visibles se encuentra en
la ayuda, que siempre muestra la misma estructura e información
(descripción, uso, argumentos, detalles, valores. . .) Teniendo en
cuenta la necesidad de consultar frecuentemente la ayuda para todo
programador, esa uniformidad facilita la tarea en gran medida.

Existen diferentes formas de acceder a la ayuda. Una de ellas
es escribir help.start(), o bien ir al menú Help/R Help32, pero la 32 Tanto en la interfaz básica de R como

en RStudio, aunque los resultados
difieren a veces en algunos aspectos.

forma más común es acudiendo a la ventana de ayuda de RStudio

(figura 2.2).
Hay otras formas de obtener ayuda, como escribir help("mean")

para acceder a información sobre alguna instrucción particular, o
bien usando un signo de interrogación seguido del nombre del
comando deseado, ?mean, lo que nos llevaría a la misma ventana de
ayuda de la figura 2.2. Cuando no buscamos un comando de R, sino
algún término de interés (por ejemplo, para saber cómo dibujar una
elipse), podemos usar help.search('ellipse') o bien una doble
interrogación seguida de la palabra a localizar (??ellipse). R buscará
ese término en cualquier lugar de la ayuda disponible, lo que nos
llevará de nuevo a la ventana de ayuda, mostrando todos los casos en
que aparece.

https://github.com/features

46 Cap. 2. Una primera inmersión

Figura 2.2: Ventana de ayuda en
RStudio para la función mean().

Dos funciones más complementan la ayuda disponible: example()
muestra ejemplos de uso de la función indicada (extraídos de la
ayuda de la función), mientras que demo() hace demostraciones de
las capacidades de R. Algunos ejemplos pueden ser los siguientes:

?plot

??png

example(apply)

demo(colors)

Ejercicio 2.12.
¿Cómo obtener una media recortada?
Una búsqueda en la ayuda (?trimmed mean) no dice nada, y

usar la doble interrogación tampoco ayuda mucho. Una búsque-
da en Internet puede ayudar, y también explorar la ayuda de la
función mean().

2.7 Salir de R

Al acabar una sesión, indicamos a R que queremos salir con la
función q(), del inglés quit. Si existe algún archivo de código sin
grabar nos preguntará si queremos guardarlo a través de una ventana
de diálogo.

PARTE I: Primeros pasos 47

q()

Save workspace image to ~/Documents/B/.RData? [y/n/c]:

Como se aprecia, también nos consulta acerca de guardar el espa-
cio de trabajo, esto es, los objetos activos en memoria, y que podemos
almacenar en un archivo para tenerlos disponibles al abrir otra se-
sión33. 33 Es decir, que al volver a abrir tendre-

mos los mismos objetos en memoria
que en el momento de salir, con lo que
podemos continuar el trabajo en el
punto en que lo dejamos.

Deberemos responder indicando la inicial de yes, no o cancel. Los
detalles de los procesos realizados al cerrar (y al abrir) R se verán con
detalle en el capítulo 20. En general, no se recomienda, ya que puede
haber objetos presentes que no estén en una situación de uso normal,
o que modifiquen el funcionamiento del programa.

PARTE II: Fundamentos

3
Control del entorno y objetos (I)

El trabajo diario con R exige un control adecuado de lo que ocurre
en cualquier sesión, y ello necesita de algunos conocimientos básicos.
Comenzaremos ahora por conocer algo más del entorno en que se
ejecuta y de los objetos que se utilizan y dejaremos otras cuestiones
más avanzadas para el capítulo 20.

RESUMEN

Localización (3.1). Veremos cómo saber el directorio en que
estamos trabajando y el modo de moverse por ellos.

Espacio de trabajo (3.2). Trabajar en R requiere crear objetos y
manipularlos. La ventana Environment en RStudio nos pro-
porciona esa información.

Todo lo que existe en R es un objeto (3.3). Desde los valores has-
ta las funciones, todo es un objeto almacenable y procesa-
ble. Veremos qué tipos de objetos básicos hay y cómo co-
nocer sus propiedades.

Funciones genéricas (3.4). Son funciones, muy habituales, que
se comportan de diferente manera según la propiedad class

de objeto al que se aplican.
Operadores (3.5). Descripción básica y precedencia.
Avisos y errores (3.6). Parte imprescindible de aprendizaje, con-

viene conocer desde ya sus diferencias.

3.1 Localización

Sea uno consciente o no, siempre que ejecutamos un programa
nos encontramos situados en algún directorio1. El resultado es que 1 Que no es lo mismo que una carpeta,

aunque a veces coincidan. Por ejemplo,
existe una carpeta llamada Escritorio,
pero no existe un directorio con tal
nombre; el directorio correspondiente
se llama Desktop.

cualquier lectura o escritura de archivos será realizada, por defecto,
en el directorio donde estamos situados.

Para conocer el directorio de trabajo (working directory) actual
basta usar la función getwd(), y para cambiar de directorio usaremos
setwd(), indicando entre los paréntesis, entrecomillado, el directorio

52 Cap. 3. Control del entorno y objetos (I)

de trabajo que queremos establecer. Comenzamos consultando el
directorio de trabajo actual.2. 2 La salida presentada es la obtenida en

macOS.

getwd()

[1] "/Users/jose/Documents/B"

El resultado es una cadena de caracteres con la ruta del directorio
donde estamos situados. Dada la estructura de directorios de la
figura de la derecha, si estamos en B y ahora queremos situarnos en
B1, la función setwd() admite dos formas de indicar la ruta deseada :

Figura 3.1: Estructura de directorios.
1. Mediante una ruta absoluta: contiene la ruta completa desde el

directorio raíz y, dada una estructura de directorios estable, pode-
mos indicar cualquier directorio existente y siempre funciona.

2. Mediante ruta relativa: sólo se especifican los directorios a partir de
aquél en que estamos situados. Por ese motivo, sólo funcionará cuan-
do la posición desde donde se ejecute la función sea la adecuada.

A continuación vemos ambas formas de acceder al directorio B1.

setwd("/Users/jose/Documents/B/B1") # absoluta

setwd("B1") # relativa

Las rutas absolutas tienen otra ventaja: si ahora quiero establecer
como directorio de trabajo B2, no tengo más que indicarlo:

setwd("/Users/jose/Documents/B/B2")

Las rutas relativas, en cambio, han de partir del directorio de
trabajo actual hasta llegar al deseado. En nuestro caso, si estamos
situados en B1, debemos volver a B y luego ir a B2. Para ir hacia atrás
(al directorio B, padre del actual, B1) usamos dos puntos (..), como
vemos:

setwd("../B2")

getwd()

"/Users/jose/Documents/B/B2"

¿Tienen, entonces, alguna utilidad las rutas relativas? Cuando
la estructura de datos no es estable (por ejemplo, cuando copiamos
unos programas a otro directorio o incluso a otro ordenador), todas
la rutas absolutas tendrán que rehacerse. Pero si hemos utilizado
rutas relativas (desde el directorio del programa, por ejemplo), todo
seguirá funcionando igual.

Figura 3.2: Directorio de trabajo, en la
ventana de consola. Pulsando la flecha
se actualiza la pestaña de directorios de
RStudio.

En RStudio podemos ver el directorio de trabajo en la cabecera
de la ventana de consola (véase la figura 3.2). La virgulilla (~) indica
el directorio Home, o directorio del usuario desde cuya cuenta se ha

PARTE II: Fundamentos 53

iniciado R (en nuestro caso, /Users/jose/, y es otra forma completa-
mente válida de indicar rutas en R). Junto al directorio, a su derecha,
vemos una flecha apuntando también a la derecha; si la pulsamos
se activa la pestaña Files en RStudio y se muestra el directorio de
trabajo con todo su contenido (figura 3.3). Desde ahí podemos abrir
en RStudio cualquier archivo que deseemos.

Figura 3.3: En RStudio, la ventana
Files, mostrando los directorios
utilizados en el ejemplo anterior.

En resumen, es imprescindible saber en cada momento cuál es
nuestro directorio de trabajo, así como la ubicación de nuestros
archivos de lectura y/o escritura, y volveremos sobre ello en el
capítulo sobre entrada y salida de información.3. 3 Y de nuevo, de un modo más técnico,

en el apartado 20.3.En ese sentido, el siguiente ejercicio es, más que recomendable,
casi imprescindible para seguir ordenadamente el resto del manual.4 4 Si las explicaciones del ejercicio no son

suficientes, o si que quiere saber más
sobre los proyectos, podemos acudir
al apartado 20.4 del segundo capítulo
dedicado al control del entorno.Ejercicio 3.1.

Es de vital importancia tener un control adecuado sobre dón-
de estamos (desde dónde se está ejecutando R) y dónde están nues-
tras cosas (programas, datos, salidas. . .). Por ello, en este ejerci-
cio trataremos ambas cuestiones.

Respecto a dónde están nuestras cosas, y si no lo has hecho ya,
es un buen momento para tomar el control de los directorios (car-
petas) y archivos. Usa tu explorador de archivos para localizar
el lugar donde se alojarán todos los archivos (programas, datos,
gráficos, etc.) que se irán generando al leer (y practicar) este ma-
nual.

Lo habitual es crear un directorio específico; aquí usaremos
FDR (por Fundamentos de R, obviamente). Podemos situar el di-
rectorio colgando directamente de la carpeta Documentos, que co-
rresponde al directorio Documents (en macOS; en Windows tene-
mos la carpeta Mis Documentos, que corresponde al directorio del
mismo nombre: Documents) o en cualquier otro lugar que que-
ramos. Posteriormente podremos crear nuevas carpetas (por ejem-
plo, para almacenar los datos; o una carpeta por capítulo), pero
ahora ya tenemos un lugar donde se almacenará lo que vayamos
construyendo.

Respecto a dónde estamos, esto es, desde dónde se está ejecu-
tando R, depende de cada caso. En general, al abrir RStudio nos

54 Cap. 3. Control del entorno y objetos (I)

situamos en el último directorio donde estábamos al cerrar la úl-
tima vez. Podemos cambiar el directorio desde la pestaña Files,
pero vamos a utilizar una herramienta de RStudio que puede fa-
cilitarnos las cosas: los proyectos.

Por ahora, basta decir que un proyecto es una forma de agru-
par, organizar un conjunto de archivos (programas, datos, sali-
das. . .) de forma cómoda. Una de las comodidades tiene que ver
con el dónde estamos, ya que el proyecto siempre se abrirá en el di-
rectorio desde el que se creó.

En resumen: si ya hemos creado nuestro directorio ~/Documents

/FDR podemos crear un proyecto en dicho directorio. Para ello
vamos al menú File en RStudio y pulsamos en New Project; ele-
gimos Existing Directory y lo indicamos. Se creará un archivo con
e nombre del directorio y con extensión .Rproj; en nuestro ca-
so, FDR.Rproj.

Una vez creado, podemos acceder pulsando en este archivo,
y RStudio se abrirá en el directorio adecuado y mostrará el mis-
mo estado en que se cerró la sesión anterior, espacio de trabajo
y archivos abiertos incluidos.

3.2 El espacio de trabajo o entorno global

Podemos aplicar la pregunta del apartado anterior a los objetos
que creamos en R: ¿dónde están situados? La respuesta es que todos
los objetos presentes en una sesión de R (cada variable, data frame o
función creada) están almacenados en el espacio de trabajo, llamado
también entorno global (Global Environment). Más técnicamente, este
espacio de trabajo constituye uno de los varios entornos (environments),
o espacios de memoria de que dispone R para almacenar variables,
funciones y datos.

Podemos observar los objetos activos (accesibles) en la sesión
actual en la pestaña Environment en RStudio junto con algunas de
sus propiedades (ver figura 3.4).

Figura 3.4: En RStudio, la ventana
Environment muestra los objetos
presentes en el espacio de trabajo.
Además del nombre y parte de su
contenido, se muestra su clase (num,
que corresponde al tipo double) y su
longitud ([1:25]).

También podemos saber qué objetos tenemos en nuestro espacio
de trabajo usando cualquiera de las funciones ls() u objects().

PARTE II: Fundamentos 55

ls()

[1] "datos_A" "datos_B" "datos_B1" "datos_B2"

Existen otros entornos, por ejemplo los asociados a los paquetes
cargados en memoria, y que proporcionan un espacio independiente
para almacenar sus variables y funciones (véase la figura 3.5), pero se
tratarán brevemente en el capítulo 18, dedicado a los paquetes.

Figura 3.5: Entornos, o environments
disponibles en una sesión básica de R.

Ejercicio 3.2.
Vamos a comprobar la utilidad de los proyectos. Si estamos en

RStudio con uno o más archivos abiertos y con algunos objetos
en el espacio de trabajo, podemos hacer lo siguiente: primero, ce-
rramos RStudio, y damos OK cuando se nos pregunte si guardar
el espacio de trabajo; a continuación vamos al directorio que con-
tiene nuestro archivo .Rproj y lo ejecutamos.

Si todo es correcto, RStudio se abrirá en el punto exacto don-
de acabamos de cerrar, incluido el espacio de trabajo con todos
los objetos.

3.3 Objetos y sus características

Decíamos que todo lo que existe en R es un objeto. Variables, fun-
ciones y otros elementos que veremos más adelante son objetos y,
como tales, podemos consultarlos, almacenarlos, operar con ellos,
visualizarlos. . .

En tanto el trabajo con R consiste en una continua manipulación de
objetos, es necesario conocer sus características. Para ello disponemos
de un conjunto de funciones cuya misión es informar de ciertos
aspectos fundamentales de los objetos. Dos de estos aspectos son
especialmente importantes: el tipo y la clase. Del primero hablamos en
el capítulo anterior y ahora lo completamos; del segundo hablaremos
ahora, junto con las demás características.

3.3.1 La importancia de conocer a fondo los objetos

Antes de comenzar es necesario insistir en la importancia de este
apartado, aunque probablemente no se aprecie completamente hasta
llevar leídos5 unos dos tercios del manual. Y sin embargo, su defensa 5 Y practicados.

es bien simple: todo lo que puede hacerse en R tiene la forma

función(objeto),

luego el control de cualquier programa no consiste más que en tener
clara conciencia, en cada línea, de las propiedades de la función()

y del objeto (u objetos) que introducimos como argumento. Expre-
sado de otra forma: cada vez que que tengamos un problema, su

56 Cap. 3. Control del entorno y objetos (I)

solución pasará por el análisis de las propiedades de la función (sus
argumentos de entrada, restricciones, salida) y del objeto (tipo, clase,
atributos. . .)

A esto convendría añadir que R es un lenguaje extraordinariamen-
te rico y versátil, lo que también puede traducirse, para quien no lo
conoce, como desconcertante y propenso a errores. Es frecuente que
existan varias maneras correctas de realizar una misma acción, por
no hablar de ciertas operaciones automáticas6 frecuentes que suelen 6 Como el reciclado o la coerción.

desconcertar las primeras veces.
En resumen, si queremos disfrutar de las bondades de R con

seguridad o, lo que es lo mismo, control, todo nos lleva a conocer los
objetos en profundidad.

Ejercicio 3.3.
Supongamos que tenemos tres vectores de igual longitud, X,

Y y Z, y queremos obtener la matriz de correlaciones. Nada más
fácil: sabiendo que cor() proporciona lo que queremos, vamos
a la consola y escribimos:

cor(X, Y, Z)

Error in cor(X, Y, Z): invalid ’use’ argument

¿Qué ha ocurrido? ¿Qué ha fallado? ¿Qué significa la salida de
error?

Y sobre todo, ¿cómo lo solucionamos? Todo pasa por atender
a la ayuda de la función cor() y comprobar qué se requiere y qué
hemos introducido.

3.3.2 El tipo, typeof()

La función typeof() devuelve el tipo del objeto, que será una
de las 24 estructuras de almacenamiento disponibles en R. Como
dijimos, el tipo determina la naturaleza del contenido y, derivadas de
ella, sus propiedades.

Hasta ahora hemos visto seis tipos de objetos: cinco correspon-
dientes a vectores atómicos (integer, double, complex, character y
logical) y uno para vectores no atómicos (list, que es el tipo de
listas y data frames).

Volveremos a los ejemplos del capítulo anterior para ilustrar estas
funciones.

i <- c(10L, 13L) # integer

d <- c(1, .6, 3) # double

l <- c(T, FALSE) # logical

PARTE II: Fundamentos 57

c <- c("A", "txt") # character

x <- c(1+2i, 4i) # complex

lst <- list(A = 7, # list

B = c("uno", "dos"),

C = T)

df <- data.frame(Id = c(1, 2, 4, 5), # list

Grupo = c("Exp", "Ctr", "Ctr", "Exp"),

VD = c(12, 11, 9, 14))

Y aplicamos la función typeof() a algunos objetos.

typeof(c)

[1] "character"

typeof(lst)

[1] "list"

typeof(df)

[1] "list"

En tanto todos los objetos necesitan ser almacenados, todos ten-
drán un tipo. Las funciones, por ejemplo, tienen tres posibles tipos,
de los que dependen sus propiedades.7 7 Como es el lenguaje en que está escrita

la función (R o C) o el control de los
argumentos. Pero todo esto se verá a su
debido tiempo.3.3.3 La clase, class()

La función class() sirve para informar de, y establecer, la clase
de un objeto. Si el tipo era un atributo estructural que definía la
naturaleza del objeto, la clase es un atributo funcional, que define los
procedimientos que se podrán aplicar.

Su funcionamiento se basa en la programación orientada a ob-
jetos8, de modo que ciertas funciones se comportan de diferente 8 Que veremos en detalle en el capítulo

21.manera dependiendo de la clase del objeto al que se aplican.9
9 En realidad esas funciones, llamadas
funciones genéricas, se componen de
múltiples versiones (técnicamente,
métodos), uno para cada clase. Como
otras cuestiones que ahora simplemente
se presentan, se verán con todo detalle
en su momento.

Al igual que ocurre con el tipo, todos los objetos tienen una clase.
No obstante, conviene diferenciar entre dos formatos en que nos
encontraremos las clases:

Clase implícita. Derivada del tipo de objeto, coincide con éste para los
objetos que son vectores atómicos o listas. Una excepción es el caso
de los vectores de tipo double, donde la clase es numeric.

Clase asignada (o explícita). Es la que se añade a un objeto10, de for- 10 Decimos se añade porque todos los
objetos siguen manteniendo su clase
implícita.

ma que a partir de ese momento se le podrán aplicar todos los
procedimientos (métodos) que existan para esa clase.

En general no tendremos que preocuparnos por la clase de un
objeto, ya que R asigna las clases requeridas en su momento y aplica

58 Cap. 3. Control del entorno y objetos (I)

los métodos adecuados. Ahora sólo veremos, a modo de ilustración,
la clase de tres objetos: dos conocidos (un vector de enteros y un data
frame) y uno nuevo (una matriz).

Podemos crear un vector de enteros mediante el operador ‘:’ y su
tipo y clase coincidirán: integer.

i <- 1:6

typeof(i); class(i)

[1] "integer"

[1] "integer"

Vemos que el vector ha heredado la clase del tipo; si usamos la
función attributes(), que veremos a continuación, no muestra nin-
gún atributo (NULL), ni siquiera la clase, ya que ésta no es explícita:

attributes(i)

NULL

Ahora podemos usar el vector i para construir la matriz m a través
de la función matrix(), indicando el objeto usado para crear la
matriz, el número de filas y el número de columnas:

m <- matrix(i, nrow = 2, ncol = 3); m

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Si consultamos su tipo y clase, encontramos lo siguiente:

typeof(m); class(m)

[1] "integer"

[1] "matrix" "array"

Esto es, el objeto m es de tipo integer, lo que significa que está
almacenado en una estructura idéntica a la usada por i. Pero ahora
tiene una clase explícita doble, matrix y array. La consecuencia es
que, a partir de ahora, a m se le aplicarán los procedimientos (méto-
dos) diseñados para matrices y arrays, en este orden.11 11 Por ejemplo, los disponibles para el

álgebra matricial.Como último ejemplo tenemos el data frame df, definido anterior-
mente. Ya vimos que su tipo era list; también dijimos que los data
frames constituían un caso de lista especializada, diseñados específi-
camente para almacenar bases de datos. Y es razonable pensar que
habrá multitud de procedimientos específicos para tratar con estos
objetos, lo que se consigue gracias a los métodos definidos para su
clase, data.frame:

PARTE II: Fundamentos 59

typeof(df); class(df)

[1] "list"

[1] "data.frame"

El tipo, no obstante, nos recuerda que todo data frame es, intrínse-
camente, una lista, y se puede tratar (acceder, modificar, extraer. . .)
como cualquier otra lista. Y además, se dispone de todos los procedi-
mientos diseñados para los data frames.

3.3.4 La longitud, length()

La función length() devuelve la longitud del objeto al que se
aplique. Entendemos por longitud la cantidad de elementos del vector
considerado y, aunque la definición es unívoca, su aplicación en el
caso de objetos no atómicos debe quedar clara.

En el caso de vectores atómicos es simple; el vector anterior i
contenía los enteros del 1 al 6, luego su longitud será 6.

length(i)

[1] 6

En el caso de listas y data frames la longitud se refiere al número de
componentes: los elementos de las listas y los elementos (o variables)
de los data frames.

lst

$A

[1] 7

##

$B

[1] "uno" "dos"

##

$C

[1] TRUE

length(lst)

[1] 3

df

Id Grupo VD

1 1 Exp 12

2 2 Ctr 11

3 4 Ctr 9

4 5 Exp 14

60 Cap. 3. Control del entorno y objetos (I)

length(df)

[1] 3

Por supuesto, también podemos consultar la longitud de los com-
ponentes de una lista o data frame.12 Para ello aplicamos la función 12 Lo que coincidiría con el número de

casos.length() al elemento que deseemos:

length(df$Id)

[1] 4

Un último apunte: la función length(), como otras muchas en R,
tiene un doble uso: sirve tanto para consultar la longitud de un objeto
como para establecerla13. Por ejemplo, podemos reducir la longitud 13 En realidad hay dos funciones

length(), pero es algo cómodamen-
te invisible para los usuarios.

del vector i a cuatro elementos de la siguiente forma:

length(i) <- 4; i

[1] 1 2 3 4

Ejercicio 3.4.
Construye toda una serie de objetos (vectores atómicos, ma-

triz, lista, data frame) y consulta para cada uno su tipo, clase y lon-
gitud.

3.3.5 Los nombres, names()

La función names() permite consultar y establecer los nombres de
los elementos de los vectores atómicos y no atómicos. Pero lo más
interesante de los nombres es que no sólo sirven para etiquetar los
elementos, sino también para acceder a ellos.

Su principal utilidad se muestra al trabajar con listas y data frames.
De hecho, ya hemos hecho uso de los nombres al construir la lista
lst y el data frame df, y ahora podemos consultar esos nombres.

names(lst)

[1] "A" "B" "C"

names(df)

[1] "Id" "Grupo" "VD"

Y podemos usarlos para acceder a su contenido. En los ejemplos
anteriores, usamos el operador ‘$’, como ya vimos, para enlazar el
nombre del objeto con el del elemento:14

14 Pensemos que en un conjunto de
datos con 100 variables es más fácil
recordar el nombre de una variable,
por ejemplo, datos$edad que su índice,
datos[7].

PARTE II: Fundamentos 61

lst$A

[1] 7

df$VD

[1] 12 11 9 14

También podemos nombrar los elementos de los vectores atómicos,
pero es menos común. Podemos pensar, por ejemplo, en el caso de
vectores que almacenen coordenadas (x, y); puede ser útil que, al
mostrar su contenido, se indique a qué dimensión se refiere cada
valor:

coord <- c(4, 12)

names(coord) <- c("x", "y")

coord

x y

4 12

Los nombres pueden asignarse al crear el objeto, indicándolos sin
comillas.

(coord <- c(x = 4, y = 12))

x y

4 12

Y también podemos acceder a los elementos a través de los nom-
bres; en tal caso hay que incluir el nombre donde habitualmente
usábamos un índice numérico:

coord["y"]

y

12

3.3.6 El modo, mode()

Todos los objetos de R poseen un atributo, el modo, que puede
obtenerse con la función mode(), y que en general coincide con el tipo
(obtenido mediante typeof()).

La única diferencia en cuanto a los vectores atómicos está en los
vectores de tipo integer y double, ya que ambos tienen mode() =

numeric, por lo que puede ser de utilidad para comprobar si un
vector tiene contenido numérico independientemente de su tipo.15

15 Obviamente, esta comprobación deja
fuera a los vectores complejos, que
tienen mode() = complex.

62 Cap. 3. Control del entorno y objetos (I)

int <- 3L

dou <- 5

typeof(int); typeof(dou)

[1] "integer"

[1] "double"

mode(int); mode(dou)

[1] "numeric"

[1] "numeric"

En este manual se han mantenido deliberadamente separados los
atributos tipo y modo, de forma que sólo utilizaremos el tipo de los
objetos. La razón es que, en la práctica, el modo es un atributo un
tanto obsoleto que sólo se mantiene por compatibilidad con S.

No obstante, no es posible excluir el modo de de este manual (o
cualquier otro) ya que aparece con demasiada frecuencia en manua-
les, webs, libros. . . Y en muchos casos se aprecia cierta confusión con
el modo y el tipo, incluso en manuales básicos de R.16 En el apartado 16 Por ejemplo, el capítulo 3 del manual

An Introduction to R (Venables et al.,
2019) utiliza ambos términos casi como
sinónimos; incluso a veces de forma
incorrecta.

20.7 al final del libro se intentan aclarar las diferencias y similitudes.

3.3.7 Otros atributos, attributes()

La función attributes() informa de ciertas propiedades, o atri-
butos, del objeto al que se aplica. La utilizamos en un ejemplo al
estudiar la clase y en aquel caso devolvió NULL, ya que se trataba de
un vector atómico sin ninguna característica adicional.

Pero algunos de los objetos creados en los ejemplos tienen propie-
dades que no hemos podido visualizar hasta ahora. Por ejemplo, la
matriz m tiene una propiedad interesante: sus dimensiones.

attributes(m)

$dim

[1] 2 3

La matriz tiene dimensión 2 x 3, como corresponde a lo indicado
al construirla: m <- matrix(i, nrow = 2, ncol = 3). La función
attributes() no es la única que devuelve esta información; también
podemos obtenerla con dim():

dim(m)

[1] 2 3

Los objetos lst y df también tienen atributos que mostrar. En el
caso de la lista sólo se muestran los nombres de sus componentes17.

17 Que, como vimos, también se podían
obtener con names().

PARTE II: Fundamentos 63

attributes(lst)

$names

[1] "A" "B" "C"

El data frame df, sin embargo, tiene más información:

attributes(df)

$names

[1] "Id" "Grupo" "VD"

##

$class

[1] "data.frame"

##

$row.names

[1] 1 2 3 4

Además de los nombres (names, para las variables, como vimos)
aparecen los nombres de filas (una secuencia que R añade automática-
mente para cada caso) y la clase explícita.

3.3.8 La estructura del objeto, str()

Si bien las funciones anteriores informan de aspectos variados y
útiles, consultar cada uno de ellos para cada objeto tratado puede ser
tedioso. Una alternativa cómoda es la función str(), que muestra la
estructura del objeto. La información de salida difiere según el objeto,
pero en general informa de los aspectos más importantes y útiles a la
hora de tratar con los objetos.

Aplicada a vectores atómicos informa de su tipo o clase, su longi-
tud, y los primeros elementos.

str(1:100)

int [1:100] 1 2 3 4 5 6 7 8 9 10 ...

str(c(2, .3, 16))

num [1:3] 2 0.3 16

str(c("a", "b", "c", "d"))

chr [1:4] "a" "b" "c" "d"

A continuación aplicamos str() a una matriz, una lista y un
data frame. Puede observarse cómo se muestra, para cada caso, la
información más relevante.

64 Cap. 3. Control del entorno y objetos (I)

str(m)

int [1:2, 1:3] 1 2 3 4 5 6

str(lst)

List of 3

$ A: num 7

$ B: chr [1:2] "uno" "dos"

$ C: logi TRUE

str(df)

’data.frame’: 4 obs. of 3 variables:

$ Id : num 1 2 4 5

$ Grupo: chr "Exp" "Ctr" "Ctr" "Exp"

$ VD : num 12 11 9 14

Observamos que str() suele mostrar la clase, no el tipo, en su
descripción del objeto, aunque no siempre, como se observa con
la matriz m, donde aparece su tipo.18 No obstante, viendo sus di- 18 O su clase implícita. Por cierto que

en la tabla 3.1 más adelante sólo se
muestra la primera clase, matrix, y se ha
omitido array por simplicidad.

mensiones, [1:2, 1:3], se aprecia inmediatamente su naturaleza
bidimensional.

Resumimos en la tabla 3.1 algunas de las propiedades vistas,
aplicadas a los objetos utilizados hasta ahora. Véase que los vectores
de tipo double tienen clase numeric, rompiendo con la simetría
presente en el resto de vectores atómicos.

Tabla 3.1: Información sobre vectores

Objetos typeof() class() str()

i integer integer int [1:6] 1 2 3 4 5 6

d double numeric num [1:3] 1 0.6 3

l logical logical logi [1:2] TRUE FALSE

ch character character chr [1:2] 'A' 'txt'

x complex complex cplx [1:2] 1+2i 0+4i

m integer matrix int [1:2, 1:3] 1 2 3 4 5 6

lst list list List of 3

$ A: num 7

$ B: chr [1:2] 'uno' 'dos'

$ C: logi TRUE

df list data.frame 'data.frame': 4 obs. of 3 variables:

$ Id : num 1 2 4 5

$ Grupo: chr 'Exp' 'Ctr' 'Ctr' 'Exp'

$ VD : num 12 11 9 14

PARTE II: Fundamentos 65

Ejercicio 3.5.
Utiliza los objetos construidos en el ejercicio anterior y asig-

na nombres a los elementos de algunos de ellos. Observa el com-
portamiento de names() con matrices y data frames.

Luego consulta sus atributos y estructura.

3.4 Funciones genéricas

Si en el capítulo anterior presentamos las funciones, queremos
ahora dedicar un breve espacio a un grupo particular de ellas: las
funciones genéricas. La razón es que acabamos de aludir a ellas en rela-
ción al atributo class() y que, además, son mucho más frecuentes de
lo que pudiera pensarse.

Como ya dijimos en relación a la clase de los objetos, las funciones
genéricas son un tipo especial de funciones que, dependiendo de
la clase del argumento de entrada, decide qué procedimiento (más
precisamente, qué método —method) aplicar. Las funciones genéricas
pertenecen al ámbito de la programación orientada a objetos, pero no es
momento ahora de entrar en ningún detalle.19 19 Hay todo un capítulo dedicado a

la programación orientada a objetos,
e inclye entre otras cuestiones cómo
construir funciones genéricas y métodos
asociados.

Por ahora es suficiente saber de su existencia y objetivo, lo que
ayuda a entender porqué funciones como summary()20 tienen una

20 Que muestra un resumen del objeto al
que se aplica.

respuesta tan diferente según el objeto. Aquí la vemos aplicada al
vector lógico l, a la matriz m y a la lista lst.

summary(l)

Mode FALSE TRUE

logical 1 1

summary(m)

V1 V2 V3

Min. :1.00 Min. :3.00 Min. :5.00

1st Qu.:1.25 1st Qu.:3.25 1st Qu.:5.25

Median :1.50 Median :3.50 Median :5.50

Mean :1.50 Mean :3.50 Mean :5.50

3rd Qu.:1.75 3rd Qu.:3.75 3rd Qu.:5.75

Max. :2.00 Max. :4.00 Max. :6.00

summary(lst)

Length Class Mode

A 1 -none- numeric

B 2 -none- character

C 1 -none- logical

66 Cap. 3. Control del entorno y objetos (I)

Ejercicio 3.6.
Comprueba el funcionamiento de la función summary() con

objetos de clase character y data.frame.

3.5 Operadores

Existen varios tipos de operadores (aritméticos, de comparación,
lógicos) que iremos viendo en detalle cuando corresponda. La razón
de mostrarlos ahora, además de comenzar a familiarizarnos con
ellos, es atender a su precedencia, esto es, el orden en que se aplicarán
en caso de haber varios en una misma expresión. Desatender a la
precedencia lleva a no pocos errores.

Los operadores mostrados aquí están ordenados de mayor a
menor precedencia. Son algunos de los que aparecen en la ayuda de
?Syntax, elegidos por su frecuencia; el resto se verá más adelante.

Tabla 3.2: Operadores: precedencia, tipo y acción

Operador Tipo Número Acción

$ acceso binario extrae componente
[[[acceso binario indexa vectores
ˆ ** aritmético binario exponenciación
- + aritmético unario - y + unario
: secuencia binario genera secuencia

* / aritmético binario multiplicación y división
+ - aritmético binario suma y resta

< > <= >= == != comparación binario comparaciones
! lógico unario negación

& && lógico binario operador AND
| || lógico binario operador OR
-> asignación binario asignación hacia la derecha
<- asignación binario asignación hacia la izquierda
= asignación binario asignación hacia la izquierda

Olvidar las precedencias lleva a errores comunes, como el que se
produce cuando, dado n = 10, queremos generar una secuencia des-
de 1 hasta n - 1. En una primera versión, incorrecta, la precedencia
del operador : hace que primero se cree la secuencia 1:10 y después se
reste, a cada elemento del vector, el valor 1.

n <- 10

1:n - 1 # incorrecto

[1] 0 1 2 3 4 5 6 7 8 9

En la siguiente versión tomamos el control: los paréntesis fuer-

PARTE II: Fundamentos 67

zan el cálculo de n - 1 en primer lugar; posteriormente se crea la
secuencia de 1 a 9.

1:(n - 1) # correcto

[1] 1 2 3 4 5 6 7 8 9

Ejercicio 3.7.
El vector x <- runif(30) se ha construido generando 30 va-

lores aleatorios extraídos de una distribución uniforme entre los
valores 0 y 1. A partir de él obtén el vector y dados µ = X̄ y
σ = SX tal que:

y = f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

Utiliza la menor cantidad de paréntesis posible sin perder cla-
ridad.

3.6 Avisos y errores

Cualquier salida al ejecutar código en R podría catalogarse dentro
de una de estas tres posibilidades:

1. Ejecución realizada y sin incidencias.
2. Ejecución realizada con un aviso.
3. Ejecución abortada debido a un error.

x <- c(-1, 4)

sum(x) # Ejecutado sin incidencias

[1] 3

sqrt(x) # Ejecutado CON aviso

Warning in sqrt(x): Se han producido NaNs

[1] NaN 2

x(2) # No ejecutado POR error

Error in x(2): no se pudo encontrar la función "x"

Vése que, incluso en los casos en que no hay error, es conveniente
prestar atención al código21. La razón es que R es extraordinariamen- 21 Especialmente cuando estamos

comenzando a trabajar con R.te robusto, lo que se traduce en que operaciones que suelen dar error
en otros lenguajes, aquí son procesadas sin más. Ya mostramos un
caso en que dos elementos incompatibles (de diferente tipo) eran
agrupados en un mismo vector:

68 Cap. 3. Control del entorno y objetos (I)

v <- c("a", 4); v

[1] "a" "4"

No hay aviso ni error; sencillamente, el valor 4 ha sido coercionado
al tipo character, resultando en un vector de dicho tipo. Así, aun-
que el procedimiento se realice sin errores, puede no estar haciendo
exactamente lo que queremos. Ello dependerá de que usemos los ar-
gumentos de la manera apropiada, y que estos últimos sean tratados
exactamente de la forma que queremos.

También requiere atención el segundo caso: hay un aviso, pero
el código se ha ejecutado y, por tanto, devuelve un resultado y el
proceso continúa. Normalmente los avisos indican circunstancias par-
ticulares que pueden ser conocidas por el usuario, o no. Un ejemplo
de ello es el reciclado22, una operación que R realiza por defecto en 22 Que veremos en detalle al final del ca-

pítulo siguiente. Básicamente, consiste
en extender un vector reutilizando (reci-
clando) al final del mismo los valores
iniciales hasta alcanzar una longitud
determinada.

muchos casos y que quizás no corresponde con lo que queríamos. En
el caso siguiente, queremos sumar dos vectores, elemento a elemento,
pero son de distinta longitud:

a1 <- c(1, 2, 3, 4)

a2 <- c(10, 20, 30)

a <- a1 + a2

Warning in a1 + a2: longitud de objeto mayor no es múltiplo

de la longitud de uno menor

Hay un aviso, cierto, pero el cálculo se ha llevado a cabo y la asig-
nación también. Como se ve, el valor a2[1] = 10 se ha reutilizado
como sumando del cuarto elemento de a1[4] = 4.

a

[1] 11 22 33 14

Este mismo ejemplo puede ilustrar la atención exigida también
cuando no hay errores ni avisos. ¿Creemos que R nos avisará siempre
que recicle algún vector?

a1 <- c(1, 2, 3, 4)

a2 <- c(10, 20)

a <- a1 + a2; a

[1] 11 22 13 24

Parece que no. Por la salida puede inferirse que R sólo avisará
cuando el vector mayor no sea un múltiplo entero del menor.

Respecto al tercer caso, los errores abortan la ejecución, luego aten-
der al código y revisarlo es la única opción.

PARTE II: Fundamentos 69

Ejercicio 3.8.
Con lo que sabemos hasta ahora, vamos a ejecutar cuatro ac-

ciones: dos de ellas con warning y dos que generen un error.

3.7 Más control

Para quienes entren por primera vez el mundo de la programación,
esta introducción es suficiente para afrontar los siguientes capítulos
con seguridad.

No obstante, aquellas personas que tengan ya experiencia en
programación pueden querer hojear el capítulo 20 del mismo nombre
que éste, con información que completa la que aparece aquí, como
aspectos de inicio y configuración, gestión y eficiencia.

4
Vectores

Creemos haber dejado claro que los vectores1 son el ladrillo básico 1 Junto con las funciones, por supuesto.

de construcción en R, luego bien está dedicarle un capítulo completo
para conocer en detalle sus propiedades y la forma de interactuar con
ellos.

RESUMEN

Creación de vectores (4.1). Funciones para su creación.
Acceso e índices (4.2). Cómo acceder a algún elemento, o a un

conjunto de ellos, a partir de sus índices.
Unión de vectores (4.3). Uniones unidimensionales o bidimen-

sionales.
Condicionales implícitos (4.4). Son pruebas lógicas aplicadas

a los vectores elemento a elemento.
Creación de secuencias (4.5). Frecuentes, sirven para el control

de índices en vectores hasta la creación de gráficos.
Coerción (4.6). Mecanismo por defecto en vectores atómicos,

fuerza a que todos los elementos sean del mismo tipo.
Reciclado (4.7). Otro mecanismo, aplicado automáticamente

cuando se realiza algún tipo de unión entre objetos de di-
ferente longitud.

Como hemos visto en los capítulos anteriores, un vector no es
más que una secuencia ordenada de elementos. Y en tanto considere-
mos vectores atómicos, sólo podrán contener elementos de la misma
naturaleza (enteros, reales, caracteres, etc.)2 2 Dejaremos por ahora de lado los

vectores no atómicos, listas y data
frames. Pero recordemos que éstos
se componen de los atómicos, luego
todo lo que veremos afectará a sus
contenidos.

4.1 Creación de vectores

Recordemos que la forma más básica de crear un vector es com-
binar varios elementos mediante el operador c(); su tipo vendrá
determinado por el tipo de los elementos que lo componen. Con la
función str() vemos a continuación su estructura.

72 Cap. 4. Vectores

x <- c(10, 20, 30, 40, 50)

str(x)

num [1:5] 10 20 30 40 50

No obstante, la manera más habitual de obtener un vector es bien
extrayéndolo de algún archivo de datos, bien como resultado de
alguna función. En el ejemplo siguiente, el vector r contiene 4 valores
aleatorios procedentes de una distribución normal estandarizada
mediante la función rnorm().3 3 La utilización de las funciones de

generación de números aleatorios
es habitual en la construcción de
ejemplos, por lo que la utilizaremos con
frecuencia en el manual.

r <- rnorm(4); r

[1] -0.9133902 -0.4517369 1.0365117 -0.2955906

Otra forma habitual de generar vectores es mediante funciones
especialmente dedicadas, como se verá más adelante, a la creación de
secuencias.

Ejercicio 4.1.
Podemos ahora generar tres números aleatorios con distribu-

ción normal con media 100 y desviación típica 15. Para ello es útil
consultar la ayuda, ?rnorm.

4.2 Acceso e índices

Para acceder al contenido de un vector utilizamos el operador de
extracción, [], introduciendo dentro de los corchetes el índice del
elemento. Téngase en cuenta que en R los índices comienzan siempre
en 14: 4 En otros lenguajes, como C, los índices

siempre comienzan en 0.

x[1]

[1] 10

Podemos indicar más de un elemento; en el ejemplo usamos el
operador dos puntos para extraer los elementos con índices 2, 3, y 4.

x[2:4]

[1] 20 30 40

En el siguiente caso se indican dos elementos no contiguos: 3 y
5. Véase que el operador de extracción ‘[]’, aplicado a un objeto
unidimensional, espera como argumento un único objeto, luego los
dos valores han de ser agrupados dentro de un vector mediante c().

PARTE II: Fundamentos 73

x[c(3, 5)]

[1] 30 50

Si se quiere acceder a un elemento inexistente, el sistema indica que
no esta accesible (NA); y si se hace una asignación, el sistema crea ese
elemento y cualesquiera intermedio que sea necesario (asignándoles
el valor NA).5 5 El valor NA tiene un estatus especial en

R, y es utilizado para indicar los datos
perdidos (missing data). Es el acrónimo
de Not Available (no disponible), y se
verá en detalle en el capítulo 13.

x[7] # Acceso

[1] NA

x[7] <- 70; x # Asignación

[1] 10 20 30 40 50 NA 70

Si, por el contrario, se quiere excluir algún elemento, basta indicar
su índice (o índices, si son varios) precedido de un signo menos.6 6 Véase que, en tanto no ha habido

asignación, x permanece intacto. El
único efecto es sobre el resultado
mostrado en consola.x[-c(3, 4)]

[1] 10 20 50 NA 70

Si utilizamos los corchetes sin indicar ningún índice, estaremos
aludiendo a todos los elementos de un vector.

x[] <- 3; x

[1] 3 3 3 3 3 3 3

Debe quedar clara la diferencia entre acceder a los elementos de un
vector o acceder a éste como un todo. En las operaciones anteriores, se
ha tratado con uno o varios elementos del objeto; en el siguiente caso, el
objeto en sí es afectado hasta el punto de convertirse en otra cosa: un
vector de longitud unidad que contiene el valor lógico TRUE.

x <- T; x

[1] TRUE

Ejercicio 4.2.
Definido el vector r a continuación, deduce la salida de las si-

guientes líneas de código:

74 Cap. 4. Vectores

r <- c(10, 20, 30, 40, 50, 60, 70, 80)

r[2]

r[1:5]

r[]

r[:]

r[1:]

r[:5]

r[2, 3]

r[c(2, 3)]

r[-c(2, 3)]

r[5:length(r)]

r[] <- c(2, 3); r

4.3 Unión de vectores

Existen diferentes formas de unir la información contenida en
dos o más vectores. Pero comencemos con la versión más simple de
concatenación: la función c(). Como ya sabemos, sirve para crear
vectores indicando sus elementos. No obstante, en los ejemplos
siguientes se amplían los usos que hemos visto.7 7 Véase que en los ejemplo usamos

paréntesis alrededor de las asignaciones;
con ello se consigue una impresión
del resultado sin tener que recurrir al
nombre del vector recién creado.

(v <- c(1, 2)) # El ejemplo más simple

[1] 1 2

(v <- c(v, 5)) # Amplía v

[1] 1 2 5

(w <- 10 * v) # Creamos w a partir de v

[1] 10 20 50

(z <- c(v, w)) # Une vectores

[1] 1 2 5 10 20 50

Podemos comprobar que anidar funciones c() no tiene absoluta-
mente ningún efecto8. 8 Habrá que esperar a estudiar las listas

para construir objetos recursivos donde
el anidamiento sí sea posible.

c(100, c(99, c(98, c(97))))

[1] 100 99 98 97

Los ejemplos anteriores ilustran un aumento de la longitud, bien de
un único vector, bien concatenando dos o más para crear un vector
nuevo. Esto es válido para cualquier tipo de vectores atómicos, e

PARTE II: Fundamentos 75

incluso pueden concatenarse elementos de diferente tipo, aunque en
tal caso se aplicará la coerción9. 9 Que mencionamos en los capítulos

anteriores y se verá en detalle en este
capítulo.

Si la unión que necesitamos no requiere concatenar, sino crear
una estructura bidimensional, entonces tenemos que usar una de las
funciones bind: rbind() y cbind(), que realizan la unión por filas o
por columnas, respectivamente.

rb <- rbind(v, w); rb

[,1] [,2] [,3]

v 1 2 5

w 10 20 50

cb <- cbind(v, w); cb

v w

[1,] 1 10

[2,] 2 20

[3,] 5 50

class(rb); class(cb)

[1] "matrix" "array"

[1] "matrix" "array"

El resultado final es bidimensional y atómico, por lo que los ob-
jetos resultantes son de clase matrix y array. Por contra, si los argu-
mentos de cbind() o rbind() son de diferente tipo, los componentes
serán coercionados. Por ejemplo, creemos el vector lógico l.

l <- c(F, F, T); l # Vector tipo logical

[1] FALSE FALSE TRUE

Si lo unimos al vector v, de tipo double, l será coercionado a tipo
double.10 10 De forma que los valores TRUE y

FALSE se cambian por 0 y 1, respectiva-
mente.rb <- cbind(v, l); rb # logical coercionado a double

v l

[1,] 1 0

[2,] 2 0

[3,] 5 1

str(rb)

num [1:3, 1:2] 1 2 5 0 0 1

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "v" "l"

76 Cap. 4. Vectores

Si queremos evitar este comportamiento deberemos utilizar
vectores no atómicos y, por ejemplo, realizar la unión mediante
data.frame(), de forma que cada componente mantenga su tipo
original.

df <- data.frame(v, l); df

v l

1 1 FALSE

2 2 FALSE

3 5 TRUE

str(df)

’data.frame’: 3 obs. of 2 variables:

$ v: num 1 2 5

$ l: logi FALSE FALSE TRUE

Existen modos más complejos de unir información, por ejemplo,
cuando unimos dos data frames que contienen dos conjuntos de datos
de un mismo estudio, pero los veremos en el capítulo 12, dedicado a
este tipo de objetos.

Ejercicio 4.3.
Creamos el vector Id (con la identificación de cuatro pacien-

tes: 103, 110, 156 y 212) y el vector edad (con las edades de los pa-
cientes: 76, 45, 67 y 34).

Después unimos ambos de forma que tengamos una colum-
na por variable y lo asignamos al objeto pac.

¿De qué tipo y clase es el objeto obtenido?

Ejercicio 4.4.

Tenemos los nombres de los cuatro pacientes anteriores (Lau-
ra, Alberto, Francisco, Berta). Podemos crear el data frame pacientes
que contenga los datos de pac más los nombres.

¿De qué tipo y clase es el objeto obtenido?

4.4 Condicionales implícitos

Una herramienta ampliamente utilizada en R son los condicionales
implícitos, que ilustramos aquí brevemente. Consisten en aprovechar
la naturaleza vectorial de R para aplicar a un vector una condición
lógica que será evaluada elemento a elemento.

x <- c(10, 20, 30, 40, 50)

x > 25

PARTE II: Fundamentos 77

[1] FALSE FALSE TRUE TRUE TRUE

El resultado es un vector lógico de la misma longitud que el origi-
nal donde, para cada elemento, se indica si se cumple la condición.
Otra opción es solicitar los índices de los elementos que cumplan esa
condición, lo que se consigue con la función which():

which(x > 20)

[1] 3 4 5

En R suele hacerse un uso intensivo de condicionales implícitos y,
bien utilizados, permiten extraer gran cantidad de información de
forma muy eficiente. Aunque veremos una descripción detallada
posteriormente11, vamos a ilustrar su uso con un ejemplo muy 11 En el capítulo 6, dedicado a los

vectores lógicos.simple. Volvamos al vector de datos x.

x

[1] 10 20 30 40 50

Si aplicamos una condición a x obtendremos un vector lógico.
Pensemos en aquellos casos con valores superiores a 25.

x > 25

[1] FALSE FALSE TRUE TRUE TRUE

Pues bien, ese vector lógico es el que permite operar con gran
versatilidad. Por una parte sirve como índice, de forma que al usarlo
sólo se seleccionarán aquellos elementos correspondientes a valores
TRUE.

x[x > 25]

[1] 30 40 50

Pero también podemos aprovechar los mecanismos de coerción
que incorpora R. Así, al aplicar funciones matemáticas a vectores
lógicos, éstos son coercionados a números12, lo que permite contar el 12 A tipo integer, concretamente.

Recordemos que los valores TRUE

y FALSE se transforman en 0L y 1L,
respectivamente.

número de casos que cumplen la condición:

sum(x > 25)

[1] 3

O saber su proporción:

78 Cap. 4. Vectores

mean(x > 25)

[1] 0.6

Ejercicio 4.5.
Partimos del vector edad definido anteriormente. A partir de

él podemos obtener:

Un vector lógico donde se indique si el paciente tiene más de
50 años.
Las edades mayores de 50 años.
Los índices de los pacientes con más de 50 años.
Cuántos pacientes tienen más de 50 años.

4.5 Creación de secuencias

Las secuencias tienen una presencia muy superior a lo que cabría
esperar en principio. Desde operar con los índices en vectores (y
matrices, data frames. . .) o gestionar los índices en los bucles, hasta
crear los valores para una representación gráfica o generar patrones
complejos. Y para ello contamos con tres funciones básicas como son
el operador dos puntos (:) y las funciones rep() y seq().

4.5.1 El operador dos puntos, :

El operador dos puntos, que vimos brevemente, genera una se-
cuencia de números enteros entre los dos indicados, ambos incluidos,
que puede ser creciente o decreciente:

i <- 2:6

str(i)

int [1:5] 2 3 4 5 6

j <- 10:1; j

[1] 10 9 8 7 6 5 4 3 2 1

En un sistema vectorial, el uso de secuencias de enteros para
aludir a los índices de los elementos de los vectores es muy frecuente.
Así, los 50 primeros elementos del vector datos pueden asignarse al
vector d_primeros simplemente escribiendo:

d_primeros <- datos[1:50]

Según los argumentos introducidos, el comportamiento de (:)
puede variar, pero dejamos los detalles para el Cap. 5, donde se
estudiarán en profundidad los vectores numéricos.

PARTE II: Fundamentos 79

4.5.2 La función seq()

La función seq(), por su parte, crea una secuencia a partir de los
argumentos de entrada. Los más básicos son:

seq(from = 1, to = 10, by = 2)

[1] 1 3 5 7 9

Aunque su uso puede ser muy simple13, el comportamiento de 13 Y conviene que lo sea, salvo casos
excepcionales.seq() puede llegar a ser bastante complejo, y se recomienda leer la

ayuda para comprender todos los detalles. Los siguientes ejemplos
muestran el uso de los argumentos de seq(); puede observarse
que existe la costumbre, a veces, de omitir el nombre del primer
argumento (o de los primeros, como en este caso) por ser los más
comunes, pero especificar claramente los demás argumentos, lo que
evita errores y facilita la lectura y comprensión del código en un
momento posterior.

En su versión más simple podemos indicar simplemente el inicio y
final de la secuencia, usando el valor by = 1 por defecto. Si se indica
by se genera la secuencia correspondiente, deteniéndose antes de
alcanzar el límite si es necesario:

seq(from = 2, to = 14) # De 1 en 1 por defecto

[1] 2 3 4 5 6 7 8 9 10 11 12 13 14

seq(2, 14, by = 5) # Se detiene antes

[1] 2 7 12

El argumento along.with hace que la secuencia tenga la misma
longitud que el objeto indicado, de forma que ésta se ajustará para
contener los valores necesarios para ir desde from hasta to equiespa-
ciadamente.

v <- 1:5

seq(10, 13, along.with = v)

[1] 10.00 10.75 11.50 12.25 13.00

El argumento length.out tiene un uso similar al anterior, ofrecien-
do una secuencia de una longitud dada. Es útil, como en el ejemplo,
para generar una variable a la que se aplicará alguna función.

x <- seq(from = -pi, to = pi, length.out = 100)

plot(x, sin(x), "l") # Dibuja la función

−3 −2 −1 0 1 2 3

−
1.

0
0.

0
0.

5
1.

0

x

si
n(

x)

Figura 4.1: Función seno. Los valores
para x se han obtenido como una
secuencia mediante seq().

80 Cap. 4. Vectores

Ejercicio 4.6.
Utilizaremos la función seq() para generar:

v1, un vector con valores desde -3 hasta 3 a intervalos de 0.5
v2, un vector con valores desde 3 hasta 0 a intervalos de 0.1
v3, un vector con 10 valores equiespaciados desde 13 hasta 130

v4, un vector con 3 valores separados por intervalos de 1/3

desde -9.67

v5, un vector de la misma longitud que v1, con valores corre-
lativos a partir de 1

Ejercicio 4.7.

¿Qué tipo de comportamiento tendrá la función seq() si se uti-
liza el argumento along.with únicamente? ¿Y si únicamente uti-
lizamos length.out? Aplíquese al siguiente código.

seq(along.with = c(10, 20))

seq(length.out = 4)

4.5.3 La función rep()

La función rep() sirve para repetir patrones según se indique
mediante sus argumentos:

rep(c(1, 2, 3), times = 2) # todo, 2 veces

[1] 1 2 3 1 2 3

rep(c(1, 2, 3), each = 2) # cada uno, 2 veces

[1] 1 1 2 2 3 3

Obsérvese que, ante la presencia de ambos argumentos, each
necesariamente habrá de aplicarse antes que times.

rep(c(1, 2, 3), times = 2, each = 3)

[1] 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3

Puede establecerse la repetición en función de la longitud deseada,
incluyendo los argumentos times (por defecto) o each.

rep(c(1, 2, 3), length.out = 5) # Hasta alcanzar la longitud

[1] 1 2 3 1 2

PARTE II: Fundamentos 81

rep(c(1, 2, 3), each = 2, length.out = 5)

[1] 1 1 2 2 3

rep() puede utilizarse para establecer variables que indiquen, por
ejemplo, niveles de factores. Supongamos que tenemos 8 casos perte-
necientes a las combinaciones de 2× 2 condiciones experimentales;
puede construirse de la forma:

f1 <- rep(c(1, 2), each = 4)

f2 <- rep(c(1, 2), each = 2, times = 2)

cbind(f1, f2)

f1 f2

[1,] 1 1

[2,] 1 1

[3,] 1 2

[4,] 1 2

[5,] 2 1

[6,] 2 1

[7,] 2 2

[8,] 2 2

Ejercicio 4.8.
Ahora podemos combinar las funciones seq() y rep() para

generar las siguientes secuencias:

5 5 5 6 6 6 7 7 7 8 8 8 9 9 9

0 0 2 2 4 4 6 6 8 8 10 10

5 4 3 2 1 5 4 3 2 1 5 4 3 2 1

4.6 Objetos atómicos y coerción

R hace un uso frecuente de lo que se denomina coerción, esto es,
tomar un objeto de un determinado tipo y forzar su conversión a otro
tipo. El resultado de esta estrategia es doble, y conviene estar al tanto
del mismo:

1. R es extraordinariamente robusto, en el sentido de que es capaz de
digerir (casi) cualquier entrada mediante la coerción, sin generar
errores y evitando al usuario dedicar tiempo a esas conversiones.

2. Por la misma razón, el usuario puede conocer bien esta circuns-
tancia y aprovecharla, o no ser consciente de esas operaciones y
llevarle a errores o resultados aparentemente sin sentido.

Por nuestra parte recomendamos conocer en detalle los mecanis-
mos de coerción existentes y, además, atender las indicaciones en la
ayuda de cada función, donde se indican las frecuentes coerciones
realizadas.

82 Cap. 4. Vectores

4.6.1 Coerción implícita

Vemos a continuación las estrategias de coerción automáticas, o
implícitas, que R lleva a cabo en los vectores que, debido a su carácter
atómico, sólo permiten un tipo de contenido. Cuando mezclamos
tipos de información no compatible, la estrategia general presente
en R persigue no perder información, o perder la menos posible, de
forma que predomina el tipo más versátil, esto es, aquél capaz de
almacenar información más variada. En estos términos tenemos, de
menor a mayor versatilidad,

logical < integer < double < complex < character,

de tal manera que al unir elementos de tipos diferentes el resultado
será del tipo más a la derecha. Podemos verlo aplicado en la tabla 4.1,
que muestra todas combinaciones de los cinco tipos y sus resultados.

Tabla 4.1: Coerción implícita

typeof() logical integer double complex character

logical TRUE (TRUE TRUE)

integer 2L (2L, 1L) (2L, 2L)

double 3.14 (3.14, 1.00) (3.14, 2.00) (3.14, 3.14)

complex 4i (0+4i, 1+0i) (0+4i, 2+0i) (0+4i, 3.14+0i) (0+4i, 0+4i)

character 'a' ('a', 'TRUE') ('a', '2') ('a', '3.14') ('a', '0+4i') ('a', 'a')

Se observa cómo el valor lógico TRUE, con la menor capacidad
de almacenar información14, es convertido en el valor 1 cuando se 14 En tanto sólo puede almacenar

valores binarios.combina con valores numéricos, o es transformado en la cadena
"TRUE" al combinarlo con un elemento alfanumérico.

En el extremo opuesto están los vectores alfanuméricos, con la
máxima versatilidad15, de forma que, cualquier elemento combinado 15 Algo razonable, en tanto una cadena

de caracteres puede almacenar cualquier
cosa expresable por los demás medios.

con elementos alfanuméricos resultará automáticamente en un vector
de cadena.

Todos los ejemplos anteriores de coerción implícita son realizados
por R en la construcción de vectores. Pero también las funciones
realizan con frecuencia algunos tipos de coerción. Lo comprobamos
en el apartado sobre condicionales implícitos, donde vimos cómo
algunas funciones matemáticas coercionan por defecto los valores
lógicos a enteros:

sum(TRUE, TRUE)

[1] 2

Otro ejemplo puede ser el operador [], que sólo admite valores
numéricos enteros, truncando los decimales si existen:

PARTE II: Fundamentos 83

x <- c(10, 20, 30)

x[1.9]

[1] 10

No ocurre lo mismo con los vectores alfanuméricos; no existe
coerción, y las comparaciones pueden ser engañosas.

"3" + "4"

Error in "3" + "4": argumento no-numérico para operador binario

"3" < "4"

[1] TRUE

"33" < "4"

[1] TRUE

Se observa que la comparación actúa sobre las cadenas "33" y "4",
y no sobre los números 33 y 4.

4.6.2 Coerción explícita

Frente a la coerción implícita tenemos la coerción explícita, que
impone un tipo particular al objeto indicado. Se lleva a cabo con
la familia de funciones as.xxx, donde xxx puede tomar los valores
integer, double, logical, character, complex, etc. (véase la ayuda
para conocer todas las opciones)16. En el capítulo dedicado a manipu- 16 Existe otra familia de funciones

similar, is.xxx, cuyo objetivo es evaluar
si un objeto es de un determinado
tipo. El resultado es un valor lógico
indicando si se cumple la condición.
Las iremos viendo a cuando tratemos
los diferentes objetos.

laciones veremos un apartado (17.5) dedicado a esta amplia familia
de funciones.

La coerción explícita se utiliza con frecuencia en funciones, pa-
ra garantizar que el argumento introducido es del tipo adecuado.
Podemos verlo aplicado en la tabla 4.2.

Tabla 4.2: Coerción explícita

typeof() as.logical as.integer as.double as.complex as.character

logical TRUE 1 1 1+0i 'TRUE'

logical FALSE 0 0 0+0i 'FALSE'

integer 2L TRUE 2 2+0i '2'

double 3.14 TRUE 3 3.14+0i '3.14'

complex 2.1+4i TRUE 2 2.1 '2.1+4i'

character 'a' NA NA NA NA

character 'T' TRUE NA NA NA

character '2.1' NA 2 2.1 2.1+0i

84 Cap. 4. Vectores

Se observa cómo el comportamiento de estas funciones frente a
los vectores alfanuméricos es más complejo, ya que las funciones
comprueban si el contenido de las cadenas de caracteres es asimilable
a su tipo. Así, as.logical() reconoce las cadenas 'T' y 'TRUE',
mientras que las funciones numéricas reconocen e interpretan las
cadenas con contenido numérico.

Ejercicio 4.9.
A continuación se presenta una serie de definiciones y accio-

nes. El objetivo es predecir el resultado a obtener al ejecutar ca-
da línea de código, indicando en especial tipo y contenido del
resultado obtenido.

vec <- seq(2, 12, length.out = 6)

vec <- as.double(vec)

vec[5] <- "a"

vec <- as.integer(vec)

vec[5] <- T

vec <- as.double(vec)

vec <- vec/2

as.logical(vec)

as.logical(as.integer(vec))

Ejercicio 4.10.
Si tenemos la cadena de caracteres ch <- "1.7+3i". ¿Qué re-

sultado podemos esperar obtener de aplicarle las siguientes fun-
ciones: as.integer(), as.double() y as.complex()?

4.7 Reciclado

El reciclado es un procedimiento por el que el sistema extiende un
vector hasta alcanzar la longitud de otro, añadiendo elementos de
forma circular o cíclica.

El reciclado es usado por defecto en muchas operaciones que
requieren más de un vector. Por ejemplo, como ya vimos, la suma de
vectores es una operación que se realiza elemento a elemento:

v1 <- c(1, 2)

v2 <- c(10, 20)

v1 + v2

[1] 11 22

Pero, ¿qué ocurre cuando los vectores tienen distinta longitud?

PARTE II: Fundamentos 85

x <- c(1, 2, 3)

y <- c(10, 20)

z <- 100

x + y + z

Warning in x + y: longitud de objeto mayor no es múltiplo de

la longitud de uno menor

[1] 111 122 113

Si se observa, el resultado es equivalente a haber sumado los
vectores del siguiente ejemplo. Véase que yy y zz no son más que y y
z, a los que se han añadido sus propios elementos (reciclándolos) hasta
alcanzar una longitud igual a 3.

x <- c(1, 2, 3)

yy <- c(10, 20, 10)

zz <- c(100, 100, 100)

x + yy + zz

[1] 111 122 113

Como vimos en el apartado referido a avisos y errores, el sistema
da una aviso (Warning), pero ejecuta la acción. Al igual que en aque-
lla ocasión, no siempre da un aviso; sólo cuando los vectores no son
múltiplos enteros.

X <- 1:8

Y <- seq(10, 40, by = 10)

Z <- c(100, 200)

X; Y; Z

[1] 1 2 3 4 5 6 7 8

[1] 10 20 30 40

[1] 100 200

X + Y + Z

[1] 111 222 133 244 115 226 137 248

El reciclado no sólo tiene lugar al operar sobre varios vectores;
también ocurre en la construcción de nuevos objetos a partir de
vectores de diferente longitud, como es el caso con objetos de clase
matrix o data.frame. Al construir una matriz mediante cbind(), el
reciclado lleva a buen término la tarea, aunque da un aviso cuando
los vectores no tienen múltiplos enteros entre sí.

86 Cap. 4. Vectores

cb <- cbind(x, y, z); cb

Warning in cbind(x, y, z): number of rows of result is not a

multiple of vector length (arg 2)

x y z

[1,] 1 10 100

[2,] 2 20 100

[3,] 3 10 100

CB <- cbind(X, Y, Z); CB

X Y Z

[1,] 1 10 100

[2,] 2 20 200

[3,] 3 30 100

[4,] 4 40 200

[5,] 5 10 100

[6,] 6 20 200

[7,] 7 30 100

[8,] 8 40 200

Al construir un data frame, sin embargo, no se exige igualdad de
longitud, pero sí que sean múltiplos enteros. En caso contrario, la
ejecución da error, y no se lleva a cabo.

df <- data.frame(x, y, z)

Error in data.frame(x, y, z) :

arguments imply differing number of rows: 3, 2, 1

DF <- data.frame(X, Y, Z); DF

X Y Z

1 1 10 100

2 2 20 200

3 3 30 100

4 4 40 200

5 5 10 100

6 6 20 200

7 7 30 100

8 8 40 200

Ejercicio 4.11.
Al igual que en ejercicios anteriores, se presentan una serie de

definiciones y acciones. El objetivo es predecir el resultado a ob-

PARTE II: Fundamentos 87

tener, atendiendo especialmente a si las uniones son factibles o
no y, en caso afirmativo, qué tipo de resultado se obtiene.

dos <- c(100, 200); dos

tres <- c(10, 20, 30); tres

cuatro <- c(1, 2, 3, 4); cuatro

dos + tres

cbind(dos, tres)

data.frame(dos, tres)

cbind(dos, cuatro)

data.frame(dos, cuatro)

cbind(tres, cuatro)

data.frame(tres, cuatro)

cbind(dos, tres, cuatro)

data.frame(dos, tres, cuatro)

5
Vectores para información numérica

La información numérica puede ser almacenada en R en tres
formatos básicos: de tipo entero (integer), reales (tipo double, o
valores de coma flotante) y números complejos (complex). En este
capítulo nos centraremos en los vectores atómicos de estos tipos, pero
sus características y comportamiento serán iguales cuando estos
vectores estén configurados como matrices o arrays o cuando formen
parte de listas o data frames.

Complementamos lo anterior con cuestiones básicas (como las
operaciones numéricas y el tratamiento de los decimales) y otras
avanzadas (como operar con números expresados en base no decimal,
o aspectos de precisión numérica).

RESUMEN

Vectores enteros (5.1), reales (5.2) y complejos (5.3). Creación y
características de cada uno.

Operaciones con vectores numéricos (5.4). Veremos operadores
aritméticos y relacionales, y funciones matemáticas.

Tratamiento de los decimales (5.5). En cuatro vertientes: el tra-
tamiento del carácter coma decimal, el formato visual, la
precisión del valor almacenado y las comparaciones.

Codificación binaria, hexadecimal y octal (5.6). Formatos de co-
dificación numérica.

Precisión numérica (5.7). Sobre los límites de toda codificación
y sus efectos.

Generalmente, R gestionará las variables numéricas habituales
(double e integer) que utilicemos de forma apropiada y pocas veces
necesitaremos conocer o cambiar su clase. Por defecto, R utiliza el
tipo double siempre que definamos un valor numérico, aunque no
tenga decimales:

90 Cap. 5. Vectores para información numérica

n <- 7

typeof(n)

[1] "double"

Si queremos definir valores de tipo integer deberemos hacerlo
explícitamente, o usando las funciones apropiadas, como vemos a
continuación.

5.1 Vectores enteros

Existen al menos cuatro maneras de crear un vector de tipo
integer que contenga, por ejemplo, el valor 7. El resultado de todas
ellas es el mismo, aunque los modos de operar sean muy distintos:

i1 <- 7L # sufijo L

i2 <- 7:7 # operador dos puntos

i3 <- seq(7, 7) # función seq()

i4 <- as.integer(7) # coerción a integer

La primera forma impone el tipo integer mediante el sufijo L1, 1 El motivo para usar el carácter L
como indicador de vectores de tipo
integer, parece estar en que, al inicio
de la construcción de R, los enteros
estaban codificados por defecto en
formato largo (Long; con 32 bits en lugar
de los habituales 16 bits por defecto
en aquella época). Véase al respecto
http://stackoverflow.com/questions/

22191324/clarification-of-l-in-r/

22192378#22192378.

y es la más directa de las cuatro. Las dos siguientes usan funciones
para crear secuencias que, por defecto, devuelven valores enteros: el
operador dos puntos, siempre; la función seq(), cuando los valores
inicial, final e intermedios no tengan decimales (si los tienen se alma-
cenará con tipo double). En ambos casos, su uso es un tanto artificial
(una secuencia desde 7 hasta 7) pero cumple el objetivo. La función
as.integer(), por último, toma un valor por defecto real (7) y lo
coerciona a integer.

La función integer(), por su parte, tiene como función crear un
vector de la longitud indicada como argumento, y no hay que confun-
dirla con as.integer(). La primera tiene utilidad para crear vectores
de cierta longitud (con todos sus valores a cero) generalmente para
asignarle sus valores posteriormente.

i5 <- integer(7); i5

[1] 0 0 0 0 0 0 0

Véase a continuación que el sufijo L no permite coaccionar
a integer un número con decimales significativos. La función
as.integer(), por el contrario, sí consigue la coerción.

str(7.0L)

int 7

http://stackoverflow.com/questions/22191324/clarification-of-l-in-r/22192378#22192378
http://stackoverflow.com/questions/22191324/clarification-of-l-in-r/22192378#22192378
http://stackoverflow.com/questions/22191324/clarification-of-l-in-r/22192378#22192378

PARTE II: Fundamentos 91

str(7.7L)

num 7.7

str(as.integer(7.7))

int 7

Los enteros se representan en R mediante 32 bits, luego pue-
den tomar 2ˆ31 valores posibles en valor absoluto, ya que un bit
se reserva para el signo. Por tanto, si consideramos valores nega-
tivos y positivos estarán entre -(2ˆ31) + 1 y (2ˆ31) - 1, esto es,
en el rango de -2147483647 a 2147483647. La variable del sistema
.Machine$integer.max nos informa del máximo entero posible:2 2 Para obtener el mínimo basta cambiar

de signo.

(max_int <- .Machine$integer.max)

[1] 2147483647

Si excedemos esos límites, el valor no podrá almacenarse en
formato integer; el sistema da un aviso y devuelve NA.

max_int + 1L

Warning in max_int + 1L: NAs producidos por enteros

excedidos

[1] NA

Una opción es, en caso de necesidad, pasar al formato double; en
el ejemplo anterior, basta que el valor sumado no tenga el sufijo L.

str(max_int + 1)

num 2.15e+09

Otra opción, si por alguna razón hubiera que exceder ese límite
manteniendo el tipo integer, sería acudir al paquete bit64 (Oehls-
chlägel, 2017)3, como se observa a continuación: 3 https://CRAN.R-project.org/

package=bit64.

install.packages("bit64")

library(bit64)

(i64 <- as.integer64(.Machine$integer.max) + 1L)

[1] 2147483648

str(i64)

integer64 2147483648

https://CRAN.R-project.org/%20package=bit64
https://CRAN.R-project.org/%20package=bit64

92 Cap. 5. Vectores para información numérica

Ejercicio 5.1.
A continuación se muestran varios vectores. Convierte a un

vector entero aquello que no sean ya enteros. Observa cuáles pue-
den coercionarse y cuáles no, y los resultados.

v1 <- c("1", "3.14")

v2 <- 1:12

v3 <- seq(2, 6)

v4 <- seq(0, 5, length.out = 5)

v5 <- rnorm(10)

m <- matrix(1:12, 3, 4)

5.2 Vectores reales

El tipo double, clase numeric, almacena lo que entendemos como
números reales4, codificados en formato de coma flotante5, y constitu- 4 Al igual que en caso de los enteros

y el sufijo L, la denominación de
double procede de los bits utilizados
por defecto para su codificación (64

bits), lo que constituía el doble de la
codificación habitual (o single, de 32

bits). Al contrario del sufijo L para
indicar enteros, esta nomenclatura es
genérica en el ámbito informático, y no
específica de R.
5 La notación de coma flotante permite
expresar número extremadamente
grandes y pequeños, y está basada en
la notación científica. Véase https://es.

wikipedia.org/wiki/Coma_flotante

ye el tipo de objeto por defecto para almacenar valores numéricos.
Si queremos coercionar algún vector (generalmente de enteros) a

dobles podemos usar la función as.double().

int <- 1:6

(dou <- as.double(int))

[1] 1 2 3 4 5 6

La salida, como se observa, es indiferenciable de la ofrecida por el
vector int ya que ningún elemento posee decimales. Para confirmar
el cambio debemos comprobar su tipo, clase o usar str().

typeof(dou); class(dou)

[1] "double"

[1] "numeric"

str(dou)

num [1:6] 1 2 3 4 5 6

Vemos que, a diferencia del resto de vectores atómicos, el tipo y la
clase no coinciden (double y mumeric) y la función str() muestra num

y no dou, por ejemplo.
Las variable de tipo doble se codifican mediante 64 bits. Los

valores más grandes y más pequeños representables mediante este
tipo de vectores pueden obtenerse, como antes, mediante la variable
de sistema .Machine (téngase en cuenta que los valores exactos
pueden variar según la máquina).

https://es.wikipedia.org/wiki/Coma_flotante
https://es.wikipedia.org/wiki/Coma_flotante

PARTE II: Fundamentos 93

.Machine$double.xmin

[1] 2.225074e-308

.Machine$double.xmax

[1] 1.797693e+308

En el caso de los vectores enteros, vimos que sumar una unidad
(explícitamente integer) al valor máximo posible llevaba a la pérdida
del valor, de modo que se asignaba NA. Con los vectores de contenido
numeric, sin embargo, exceder el valor máximo lleva a otro tipo de
resultado6: 6 ¿Por qué no hemos utilizado el mismo

prodimiento anterior, sumando un 1 al
valor máximo? Porque el procedimiento
utilizado por R (o por cualquier sistema
informático) en tales casos permitiría
la codificación, aparente, pero sin
que hubiera una verdadera codificación,
exacta de esa unidad añadida. Puede
entenderse por completo si leemos, más
adelante, el apartado 5.7

str(.Machine$double.xmax * 10)

num Inf

Es importante notar que el valor Inf obtenido es plenamente
funcional: es un número, almacenado como double y con el que se
puede operar, aunque con todas sus particularidades. Lo mismo
ocurre con -Inf.

Inf + 100

[1] Inf

También podemos usar la notación científica para expresar cual-
quier numero. El resultado es un vector de tipo double sin mayores
atributos; por tanto, esta notación es simplemente una forma de ex-
presar cantidades numéricas, y no constituye un tipo particular de
codificación en R7. 7 En algunos lenguajes se permite usar,

además de la e, el carácter d, pero no en
R

e <- 2.45d-2

Error: unexpected symbol in

'e <- 2.45d'

e <- 2.45e-2

str(e)

num 0.0245

Ejercicio 5.2.
Una de las cinco constantes que implementa R es pi. Y uno de

los usos posibles es crear una secuencia de valores entre −2π y
2π para hacer un gráfico, por ejemplo, de la función coseno.

5.3 Vectores complejos

Si no necesitas utilizar números complejos, o incluso si no has oído
hablar de ellos, nuestra recomendación es saltar este apartado. En

94 Cap. 5. Vectores para información numérica

caso contrario, estamos de suerte, ya que R da soporte a los números
complejos de manera cómoda.

Comencemos recordando que un número complejo8 es un número 8 Véase https://en.wikipedia.org/

wiki/Complex_number.con dos componentes (una parte real y otra imaginaria) que puede
representarse de la forma x + yi donde x e y son números reales e i es
el valor que satisface la igualdad i2 = −1.

Un número complejo puede representarse como un punto de
coordenadas (x, y) en el plano complejo, lo que se conoce como
diagrama de Argand. El primer elemento representa la parte real (x) y
el segundo la parte imaginaria (yi)9. 9 A veces se utiliza el carácter j para

indicar la parte imaginaria del complejo,
especialmente en algunas áreas de la
ingeniería. En R sólo puede utilizarse i.

La expresión anterior, z = x + yi, se conoce como forma algebraica,
cartesiana o rectangular. Otra forma de representar un número
complejo es mediante la forma polar, cuyos componentes son el módulo
(r) y el argumento (ϕ), de modo que z = r(cos ϕ + i sin ϕ). La figura 5.1
muestra los dos tipos de componentes del número complejo z.

Existen varias formas de definir un número complejo en R. La más
simple es, como ya hemos usado en ocasiones, la forma algebraica. R
reconoce el sufijo i junto a un valor numérico (sin espacios) y crea un
objeto de tipo complex10: 10 Véase que R omite por defecto los

espacios alrededor del operador
suma (+) cuando se trata de expresar
complejos.

Diagrama de Argand

Im

Rex

y z

ϕ

r

Figura 5.1: Componente de las formas
cartesiana (azul) y polar (rojo) al
representar el complejo z. El eje de
abcisas representa el componente real
y, el de ordenadas, el componente
imaginario.

z <- 4+3i

str(z)

cplx 4+3i

Otra forma es mediante la función complex(), que permite especifi-
car un número complejo tanto en forma cartesiana como polar:

z1 <- complex(real = 4, imaginary = 3)

z2 <- complex(modulus = 2, argument = pi/4)

La forma polar también permite expresar z usando la fórmula de
Euler: z = reiϕ. Si r = 2 y ϕ = π/4, entonces:

z2 <- 2 * exp(1i * pi/4)

De igual forma que creamos un número complejo, podemos
obtener sus componentes en ambos formatos: algebraico y polar.11 . 11 El módulo, r, indica la longitud del

vector z, y se obtiene mediante la expre-
sión r = |z| =

√
x2 + y2. El argumento,

ϕ, corresponde al ángulo que forma el
vector z (en radianes) y cuyo cálculo a
partir de x e y depende del cuadrante
donde se sitúe z (Véase su cálculo
en https://en.wikipedia.org/wiki/

Complex_number).

Las funciones para ello son:

Re(z1); Im(z1)

[1] 4

[1] 3

Mod(z1); Arg(z1)

[1] 5

https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Complex_number

PARTE II: Fundamentos 95

[1] 0.6435011

Por último, el conjugado complejo de z se nombra z̄ y se define como
z̄ = Re(z) − Im(z) i. En R podemos obtenerlo mediante la función
Conj().

Conj(z1)

[1] 4-3i

Como con otros tipos de objetos, R dispone de las funciones
as.complex() e is.complex(), que sirven, respectivamente, para
coercionar a tipo complex y comprobar si un objeto pertenece a este
tipo.

Véase en el ejemplo que la función as.complex() hace que el
objeto al que se aplica sea asignado a dicho tipo aunque, obviamente,
no posee parte imaginaria, por lo que ésta será igual a 0i.

(vx <- as.complex(-9))

[1] -9+0i

is.complex(vx)

[1] TRUE

Su utilidad más inmediata es obtener soluciones cuando el espacio
de los números reales no contiene la solución requerida:

sqrt(as.complex(-9))

[1] 0+3i

Al final del capítulo 5 del manual de Ejercicios resueltos y comenta-
dos hay un ejercicio complementario para poner en práctica el uso de
vectores complejos en R.

5.4 Operaciones con vectores numéricos

Por defecto, las operaciones aritméticas que incluyen dos (o más)
vectores numéricos se realizan elemento a elemento, como hemos
podido comprobar:12 12 Recordemos que, si las longitudes no

son iguales, se aplicará el reciclado por
defecto.v1 <- 1:5

v2 <- seq(10, 50, by = 10)

v1 + v2

[1] 11 22 33 44 55

A continuación se muestran algunos operadores (aritméticos y
relacionales) y funciones matemáticas.

96 Cap. 5. Vectores para información numérica

5.4.1 Operadores aritméticos

Los operadores aritméticos (unarios y binarios) son:

Tabla 5.1: Operadores aritméticos

Operación Operación Operación

+x Positivo x - y Resta x ˆ y Exponenciación
-x Negativo x * y Producto x % % y x mod y

x + y Suma x / y División x %/ % y División entera

La mayoría de los operadores ya se han utilizado y son de uso
común, así que mostramos las operaciones menos conocidas. Véase
que la exponenciación (ˆ) también puede indicarse mediante el
operador (**). El operador %/ % ofrece la parte entera del cociente
resultante, mientras que % % nos da el resto de la división entera.

2 ** 8 # Exponenciación

[1] 256

19/7 # División

[1] 2.714286

19 %/% 7 # División entera

[1] 2

19 %% 7 # Resto de la división entera

[1] 5

Véase que estos operadores (excepto ' % %' y ' %/ %') son utiliza-
bles igualmente con números complejos, donde se aplica la aritmética
compleja por defecto.

z1 <- 3+2i

z2 <- 1-1i

z1 + z2 # Suma

[1] 4+1i

z1 * z2 # Producto

[1] 5-1i

PARTE II: Fundamentos 97

z1 / z2 # División

[1] 0.5+2.5i

z1 ^ z2 # Exponenciación

[1] 4.987933-4.154361i

Ejercicio 5.3.
Dado el vector v <- 1:12, sustituye por cero los múltiplos de

3.

5.4.2 Funciones matemáticas básicas

R posee una ingente cantidad de funciones, tanto en la distribución
base como en los paquetes disponibles, por lo que un listado com-
pleto puede ser poco práctico. Las que siguen son algunas funciones
comunes, elegidas sólo con afán ilustrativo13. Por claridad, hemos 13 Muchas de ellas aparecen en la ayuda

bajo el título de S3 Group Generic Fun-
ctions. Para acceder, podemos teclear en
la ventana de ayuda S3groupGeneric.

omitido los paréntesis.

Tabla 5.2: Algunas funciones matemáticas

abs floor sqrt sin sum cumsum mean

sign ceiling exp cos prod cumprod median

trunc log tan max cummax sd

round log2 asin min cummin var

log10 acos range cor

atan

Iremos viendo algunas de ellas más adelante. Una es round(),
en la columna de las funciones dedicadas a redondeo, que permite
indicarlos decimales a mantener:

round(54321.12345, 2)

[1] 54321.12

Cuando se requieran funciones más especializadas podremos
buscarlas bien mediante ?función o ??función, bien a través de
algún buscador. En la ayuda podremos encontrar información sobre
los argumentos y los resultados que proporciona.

Ejercicio 5.4.
Calcula el sumatorio y el productorio del vector v <- 1:4.

98 Cap. 5. Vectores para información numérica

5.4.3 Operadores relacionales

Los operadores relacionales también actúan elemento a elemento,
y ofrecen resultados de tipo logical (véase la tabla 5.3). Ponen a
prueba relaciones del tipo mayor/menor e igualdad/desigualdad
y son, entre otras utilidades, la base de los condicionales implícitos
vistos anteriormente.

Tabla 5.3: Operadores relacionales

Prueba Prueba

< Menor == Igualdad
<= Menor o igual != Desigualdad
> Mayor !x No x

>= Mayor o igual

Veamos algunos ejemplos:

x <- 0:5; x

[1] 0 1 2 3 4 5

x < 3 # Menor que

[1] TRUE TRUE TRUE FALSE FALSE FALSE

x >= 3 # Mayor o igual que

[1] FALSE FALSE FALSE TRUE TRUE TRUE

y <- c(1, 1, 2, 4, 4, 4)

x != y # Distinto

[1] TRUE FALSE FALSE TRUE FALSE TRUE

x[x < 3]

[1] 0 1 2

Se observa cómo, salvo la última línea de código, la salida siempre
es de tipo logical. En la última línea se utiliza un condicional implí-
cito (x < 3) para obtener los índices de los elementos mostrados.

El operador negación, ! (o ¬x), es un caso especial en tanto es
unario (esto es, no pone dos objetos en relación). Se incluye aquí por
razones de consistencia, pero hay que tener presente su funciona-
miento: invierte los valores lógicos:

PARTE II: Fundamentos 99

!c(T, F, T)

[1] FALSE TRUE FALSE

Existen también los operadores lógicos pero, en tanto operan con
vectores de tipo logical (o coercionan a logical el argumento de
entrada), se verán en el próximo capítulo.

Ejercicio 5.5.
Obtenemos los vectores v1 y v2 muestreando 5 elementos del

vector v <- 0:10 mediante la instrucción sample(). Indica, pa-
ra cada elemento de v1, si es mayor que el elemento correspon-
diente de v2.

5.4.4 Algebra matricial

Dejaremos las operaciones matriciales para cuando conozcamos
mejor estos objetos: el capítulo 9, dedicado a matrices y arrays.

5.5 Tratamiento de los decimales

Como vimos en relación a los vectores numéricos, los valores
reales utilizan una codificación de coma flotante, y sus detalles, in-
cluidos los valores máximos y mínimos, ya se estudiaron entonces14. 14 Y se ampliará posteriormente en la

sección 5.7 sobre la precisión numérica.No obstante, existen cuatro aspectos a tener en cuenta en cuanto al
trabajo con los decimales y que se comentarán por separado.

El primero de ellos es anecdótico (aunque de conocimiento obliga-
do) y se refiere al uso del carácter coma decimal en algunos entornos,
frente al punto decimal utilizado en R por defecto. Aunque es una
cuestión de formato, suele generar errores que hay que conocer.

El segundo aspecto se refiere a cuestiones de redondeo, pero
a efectos únicamente de formato, esto es, el número de decimales
mostrado (con independencia de los decimales codificados), mientras
que el tercero trata del redondeo a efectos de codificación del número,
lo que implica eliminación de decimales (con el consiguiente cambio
en la precisión de los valores utilizados), algo que requiere mayor
cuidado.

Por último, veremos la forma adecuada de hacer comparaciones
para que no nos afecten cuestiones derivadas de la codificación.

5.5.1 La coma decimal

Frente al estándar del punto decimal, operar con la coma decimal
es, más que otra cosa, un pequeño engorro que requiere atención
adicional. Por ejemplo, es frecuente importar datos que, al contener
comas decimales, son interpretados como texto y automáticamente
codificados como tipo character15.

15 Y, en el caso de importar a un data fra-
me, es posible que acaben convertidos en
objetos de clase factor.

100 Cap. 5. Vectores para información numérica

La forma de trabajar en estos casos es usar un argumento que
indique este hecho, por ejemplo mediante el argumento dec en
funciones de lectura y escritura de datos:16 16 Que veremos en su momento. Por

ahora baste conocer este detalle.

read.table("Datos.txt", dec = ",")

También es posible, de modo general, cambiar el modo en que
R genera las salidas a través del argumento OutDec en la función
options()17, pero ello no afectará al tratamiento de los valores de- 17 Puede ser interesante echar un vistazo

a las opciones disponibles, bien para
modificarlas, bien simplemente para
conocer su existencia y sus valores por
defecto. La manera más fácil de ver las
opciones junto con una descripción de
cada una es usar la ayuda:
?getOption

cimales. Es decir, aunque muestre la coma decimal sigue operando
únicamente con el punto decimal.

options(OutDec= ",")

print(2.3)

[1] 2,3

2,3 + 1

Error: <text>:1:2: inesperado ’,’

1: 2,

^

Esta opción es útil, por ejemplo, para publicaciones que exijan el
formato de coma decimal. Posteriormente, es conveniente devolver la
opción OutDec a su estado original18. 18 En caso de no hacerlo, R volverá al

estado por defecto al reiniciarse.

5.5.2 El formato visual de los decimales

Por defecto, el número de dígitos que muestra R es de 7. Como
puede comprobarse, este límite se aplica a la cantidad de dígitos
significativos o relevantes con cierta flexibilidad.

1/3

[1] 0.3333333

1000/3

[1] 333.3333

Como otras tantas cuestiones, este comportamiento viene definido
por un parámetro que podemos obtener de la siguiente forma:

getOption("digits")

[1] 7

PARTE II: Fundamentos 101

Si modificamos el parámetro, la salida cambia aunque, como se
indica en la ayuda, el valor indicado será sólo una sugerencia, esto
es, que el número de caracteres mostrados puede variar en función
de otros criterios (generalmente evitar la pérdida de información
relevante). Esto puede observarse en el ejemplo siguiente:

options(digits = 2)

a <- 1/3; a

[1] 0.33

b <- 1000/3; b

[1] 333

Esta función sólo afecta al número de dígitos mostrados; como es
de esperar, el número de dígitos almacenados mantiene su precisión
original19: 19 El parámetro digits acepta valores

entre 1 y 22. Forzar a valores máximos,
de hecho, puede llevarnos a algunas
sorpresas, por ejemplo:
options(digits = 22)

a

[1] 0.3333333333333333148296

Las razones de este extraño resultado
pueden consultarse en el último aparta-
do de este capítulo, aunque queda un
poco fuera del alcance de este tema en
una primera lectura.

options(digits = 12)

a; b

[1] 0.333333333333

[1] 333.333333333

Una de las utilidades básicas del control de decimales es, por
ejemplo, presentar los resultados de acuerdo con los estándares de
publicación. Un caso frecuente sería la presentación de una matriz de
correlaciones:

options(digits = 7) # Por defecto

a1 <- rnorm(5); a2 <- rnorm(5); a3 <- rnorm(5)

a <- cbind(a1, a2, a3)

cor(a)

a1 a2 a3

a1 1.0000000 0.8638040 0.3513575

a2 0.8638040 1.0000000 0.4016519

a3 0.3513575 0.4016519 1.0000000

options(digits = 3)

cor(a)

a1 a2 a3

a1 1.000 0.864 0.351

a2 0.864 1.000 0.402

a3 0.351 0.402 1.000

	Antes de empezar…
	PARTE I: Primeros pasos
	R: Características, historia y recursos
	Qué es R
	Para entender el presente, algo de historia
	Recursos
	Instalar R y RStudio
	Comenzar a usar R

	Una primera inmersión
	Acceso a R y primeras tareas
	Algunos objetos de R: vectores y funciones
	Más sobre vectores
	Lectura y escritura de archivos
	Paquetes
	La ayuda
	Salir de R

	PARTE II: Fundamentos
	Control del entorno y objetos (I)
	Localización
	El espacio de trabajo o entorno global
	Objetos y sus características
	Funciones genéricas
	Operadores
	Avisos y errores
	Más control

	Vectores
	Creación de vectores
	Acceso e índices
	Unión de vectores
	Condicionales implícitos
	Creación de secuencias
	Objetos atómicos y coerción
	Reciclado

	Vectores para información numérica
	Vectores enteros
	Vectores reales
	Vectores complejos
	Operaciones con vectores numéricos
	Tratamiento de los decimales

