Fundamentos
de

José C. Chacén

José C. Chacén
Universidad Complutense de Madrid

Fundamentos de R

Copyright © 2021 José C. Chacén
PUBLICADO POR EL AUTOR

No estd permitida la reproduccién total o parcial de este libro, ni su tratamiento informaético, ni su transmi-
sién de ninguna forma o por cualquier medio, sin el permiso previo y por escrito del titular del Copyright.

ISBN: 978-84-09-32811-6

Puede descargarse desde https://leanpub.com/fundamentosder

Las soluciones a los ejercicios del manual pueden encontrarse en Fundamentos de R: ejercicios resueltos y comentados,
disponible gratuitamente en https://leanpub.com/fundamentosder_ejercicios.

https://leanpub.com/fundamentosder
https://leanpub.com/fundamentosder_ejercicios

A Belén,
quien ha compartido muchas de las

horas de vida dedicadas a este libro

Indice general

Antes de empezar. .. 15
PARTE I: Primeros pasos 21

R: Caracteristicas, historia y recursos 23
1.1 QuéesR 23
1.2 Para entender el presente, algo de historia 25
1.3 Recursos 25
1.4 Instalar Ry RStudio 27

1.5 Comenzar a usar R 27

Una primera inmersion 29
2.1 Acceso a Ry primeras tareas 29
2.2 Algunos objetos de R: vectores y funciones 33

2.3 Mids sobre vectores 36

2.4 Lectura y escritura de archivos 41
2.5 Paguetes 44

2.6 Laayuda 45

2.7 Salir de R 46

PARTE II: Fundamentos 49

Control del entorno y objetos (I) 51

3.1 Localizacion 51

8 José C. Chacén

3.2 El espacio de trabajo o entorno global 54
3.3 Objetos y sus caracteristicas 55

3.4 Funciones genéricas 65

3.5 Operadores 66

3.6 Avisos y errores 67

3.7 Muds control 69

Vectores 71

4.1 Creacion de vectores 71

4.2 Acceso e indices 72

4.3 Unidn de vectores 74

4.4 Condicionales implicitos 76
4.5 Creacion de secuencias 78

4.6 Objetos atémicos y coercion 81

4.7 Reciclado 84

Vectores para informacién numeérica 89
5.1 Vectores enteros 90
5.2 Vectores reales 92
5.3 Vectores complejos 93
5.4 Operaciones con vectores numéricos 95
5.5 Tratamiento de los decimales 99

5.6 Avanzado: Codif. binaria, hexadecimal y octal

5.7 Avanzado: Precision numérica 111
Vectores l6gicos 119

6.1 Condicionales implicitos 120

6.2 Operadores légicos 121

6.3 El trabajo con vectores 16gicos 124
Programacion (I): generalidades 127

7.1 Programas: entradas, salidas y algoritmo 128

7.2 Funciones y control de flujo 131

7.3 Algunos ejemplos (simples) de programacion

106

135

8

10

11

Vectores alfanuméricos 141
8.1 Construccion y propiedades 142
8.2 Concatenacién de informacion alfanumeérica 143
8.3 Salidas alfanumeéricas 146
8.4 Mensajes, avisos y errores 150
8.5 Manipulacion de variables alfanumeéricas: técnicas bdsicas
8.6 Avanzado: Expresiones regulares 158
8.7 Avanzado: Convertir texto en cédigo 169
8.8 Mds sobre cadenas y expresiones regulares 170

Matrices y arrays 173

9.1
9.2
93
9-4

Matrices 173
Arrays 183
Atributos de matrices y arrays 187

Operaciones con matrices 189

Factores 199

10.1
10.2
10.3
10.4

10.5

Un primer acercamiento a los factores 200
Detalles de la construccion de factores 203
Factores ordenados 206

Trabajar con factores 208

Avanzado: los factores en profundidad 211

Listas 215

11.1
11.2
11.3
11.4
11.5

11.6

Creacion de listas 216

El acceso a las listas 217
Aplicaciones de las listas 224
Dividir y unir listas 228
Avanzado: Listas especiales 232

Mds sobre listas 235

153

Fundamentos de R 9

12

13

14

15

10 José C. Chacén

Data frames 237
12.1 Datos estructurados 238
12.2 Construccion y propiedades bdsicas 238

12.3 Detalles de la construccion de data frames

12.4 Manipulacion de data frames: Acceso y seleccion

240

12.6 Manipulacién de data frames: Formatos ancho y largo

12.7 Detalles del acceso, names y length y mds

12.8 Avanzado: el paquete dplyr 269

Informacion especial 279

13.1 Valores especiales 279

13.2 Informacién temporal 289

Entrada y salida de informacion 295
14.1 Entrada y salida por consola 296
14.2 Formatos de archivos de datos 297
14.3 El formato nativo de R 299
14.4 Archivos de texto 300
14.5 Hojas de cdlculo 303
14.6 Datos de programas estadisticos 304
14.7 Lectura de la web 306
14.8 El paquete rio 308

Programacion (I1): Estructuras de control
15.1 Ejecucion condicional 310
15.2 Ejecucion mediante bucles 319
15.3 Sentencias de control 327
15.4 La eficiencia de los bucles en R 329

15.5 Particularidades de las estructuras de control

262

309

330

247

12.5 Manipulacién de data frames: Afiadir y combinar datos

252

260

16 Programacion (I1I): Funciones 333

17

18

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

Por qué usar funciones 334
Creacion y propiedades bdsicas 337
Cuerpo de una funcion 339
Argumentos 347

Entorno de una funcion 354
Externalizar funciones 359

Tipos de funciones 360

Avanzado: Algunos conceptos de programacion funcional

Manipulacién de objetos 371

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17-9

Creacién y eliminacion 372

Visualizacion 374

Ordenacion 375

Atributos 380

Las familias de funciones is.xxx() y as.xxx() 382
Comparacion 384

Union 395

Seleccion 400

Divisién 408

17.10 Manipulaciones recursivas 411

Paquetes 421

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

La importancia de los paquetes en R 421

Un vistazo rdpido 422

Tipos de paquetes en R 423

Localizacion e informacion 424

Descarga e instalacion 429

Carga de paquetes y uso de sus funciones 430
Documentacion y ayuda 435

Funciones para tratar con paquetes 438

Avanzado: Contenido de un paquete 444

18.10 Construccion de paquetes 445

367

Fundamentos de R

11

19

20

21

22

12 José C. Chacén

Gridficos 449
19.1 Qué es un grdfico 450
19.2 La estructura de un grdfico 452
19.3 El paquete grDevices 456
19.4 El paquete graphics 460
19.5 La funcién par() 471
19.6 Otros paquetes grdficos 479
19.7 Avanzado: Grificos paso a paso, 1 480

19.8 Avanzado: Gridficos paso a paso, 2 482

Control del entorno y objetos (1I) 491
20.1 Inicio y configuracion de R 491
20.2 Informacién del sistema 495
20.3 Gestion de directorios y archivos 500
20.4 Proyectos (Projects) 505
20.5 Tuberias (pipes) 507
20.6 Eficiencia 509

20.7 Tipo, clase y modo: confusiones y aclaraciones 517
Programacion orientada a objetos 523
21.1 La programacion orientada a objetos 524

21.2 El sistema S3 524

21.3 Construccion de funciones genéricas 526

21.4 Mecanismos de herencia y el método default 531
21.5 Conocer los objetos implicados en la OOP 533
21.6 Otros sistemas de OOP 537

PARTE III: Aplicaciones 539

Andlisis estadistico con R 541

22.1 El proceso del andlisis estadistico 541
22.2 Algunos andlisis descriptivos e inferenciales 543
22.3 Férmulas 548

22.4 Extraer y reutilizar informacion de la salida 549

23

24

Probabilidad y muestreo 555
23.1 Distribuciones de probabilidad 555
23.2 Muestreo 563
23.3 Simulacién 565

Desde aqui. . . 569
24.1 La primera decision 569
24.2 Capas superiores: el tidyverse 571
24.3 Control de versiones: git 573
24.4 Documentos con R Markdown 574

24.5 Shiny 577
APENDICES 581

Instalacion e interfaces 583
A.1 Instalar Ry RStudio 583
A.2 Actualizar R y los paquetes instalados 585
A.3 Las interfaces de R y RStudio 588

Recomendaciones al escribir cdigo 593
B.1 Espacios, sangrados y saltos de linea 594
B.2 Nombrar 598
B.3 Organizacion 601

B.4 Fuentes y conclusion 604

El disefio del archivo de datos 605
C.1 El orden natural de las cosas 605
C.2 Lo mds importante: el disefio 607
C.3 Especificacion detallada de las variables 607
C.4 Plantillas para introducir los datos 608

C.5 Algunas reglas de nomenclatura y organizacion

Referencias 613

610

Fundamentos de R

13

Antes de empezar. . .

R es una herramienta de andlisis y representacién de datos de
extraordinaria potencia y un lenguaje de programacién completo,
lo que permite, en el &mbito del andlisis de datos, hacer practica-
mente cualquier cosa. El precio a pagar es un aprendizaje lento’
aunque, por contra, la recompensa es doble: por un lado, un control
practicamente absoluto sobre los datos y su tratamiento, anélisis, re-
presentacion, almacenamiento y exportacién; por otro, el libre acceso
a una cantidad ingente de recursos y herramientas libres, gratuitas y
de calidad.

Es IMPORTANTE DEJAR CLARO DESDE AHORA que el objetivo del
manual es aprender R, y no aprender a hacer andlisis estadisticos con

R. Asi, de los dos componentes del anélisis de datos, las técnicas
estadisticas y la herramienta para implementarlas, sélo trataremos
el segundo. Hay multitud de libros sobre todo tipo anélisis de datos
con R,? pero no tantos que se centren en la propia herramienta. El
resultado, en muchos casos, es que el analista se ve limitado por su
conocimiento de R. Y es que cualquier labor profesional requiere

de un conocimiento igualmente profesional de las herramientas
utilizadas. Asi, la calidad de los andlisis a realizar, y su eficiencia,
dependerédn de la profundidad con que conocemos la herramienta y
nuestra fluidez al usarla. Lo que nos lleva al siguiente punto.

HAY TRES FORMAS DE APROXIMARSE A R seglin nuestra experiencia
y la mayoria comienza, de forma natural, por la necesidad de hacer
algtin analisis estadistico: se obtiene una idea ligera de R, lo justo
para hacer algtn andlisis de interés, y vamos luego poco a poco
aprendiendo el resto, mientras se siguen haciendo andlisis.3 Por
desgracia, en cuanto salimos de los ejemplos basicos empiezan los
problemas. No es ficil entender el funcionamiento de R sin una
buena organizacién de los conceptos y con la profundidad que
requieren.

El resultado suele ser uno de tres: el abandono («R es muy dificil»);
el retro-aprendizaje (aprender los conceptos y objetos que ya estamos
usando),* o comenzar, cuando se comprende su necesidad, un apren-
dizaje desde cero, completo y coordinado. Esta dltima aproximacién es la
que usaremos aqui.

* Decimos «lento», y no con una «curva
de aprendizaje empinada» en tanto

una curva tal proporcionaria un gran
aprendizaje en poco tiempo, como se ve.
La segunda curva se ajusta mejor a la
realidad.

Aprendizaje

Tiempo

Aprendizaje

Tiempo

Figura 1: Dos curvas de aprendizaje, la
primera de ellas, empinada.

2 Practicamente todos con una breve
introduccién al lenguaje R.

3 Es frecuente cuando nos iniciamos con
manuales del estilo de Andlisis de tal
tipo con R.

4 Generalmente para entender qué falla
y cémo arreglarlo. Es un aprendizaje
lento, desorganizado y con muchas
lagunas.

16 Antes de empezar...

APRENDER A PROGRAMAR DESDE CERO, en R o cualquier otro len-
guaje, no es facil. Quien ha programado con anterioridad lo sabe. En
caso contrario, es bueno saber que el aprendizaje abarcard dos 4reas
diferentes aunque siempre entremezcladas.

Por un lado, y como en un lenguaje natural, hay que aprender una
semdntica (para nombrar los objetos, junto con su significado y uso)
y una sintaxis (cémo se componen correctamente las instrucciones
en R). Pero a diferencia de los lenguajes naturales, la mas minima
alteracién de cualquiera de ellas (una letra, una coma, un paréntesis)
genera un error. Detectarlo no es siempre ficil y se tarda un tiempo
en aceptar que el problema no es de R ni del manual.>

Pero hay otro lado, menos conocido. Y es que la parte més dificil
(y més interesante) no es escribir c6digo, sino traducir la solucién del
problema a términos del lenguaje de programacién utilizado. Ello
requiere comprender el problema, determinar sus componentes y
las relaciones entre ellos y traducir estos componentes en objetos del
lenguaje y las relaciones en funciones que se aplicaran a esos objetos.
Para ello habrd que adquirir y/o potenciar un pensamiento analitico,
disciplinado y 16gico que no puede sino mejorar el mobiliario de
cualquier cabeza. Precisamente muchos de los ejercicios inciden en
este aspecto, el gran olvidado al practicar un lenguaje. Y es que...

SIN PRACTICA NO HAY APRENDIZAJE, por ello el manual esté pla-
gado de ejercicios. La mayoria se dedica a aplicar lo explicado y en
otros casos se extienden maés alld, lo que requiere conocer alguna
nueva funcién o hacer una bisqueda en la web. En general, se ha
intentado explicar las respuestas cuando lo requieren, pero no sélo
eso: en algunos casos, se ofrecen variantes para conseguir un mismo
proposito, incluso mostrando respuestas erréneas comunes y anali-
zando sus diferencias. El contraste ayuda a entender, y se aprende
maés forzando una funcién a dar error que usandola correctamente
sin mds: sabiendo como y por qué falla, sabremos cémo hacer que no
falle.

Las soluciones estdn disponibles en los Ejercicios resueltos y comen-
tados,® pero es bueno recordar algo que ya sabemos. Dedicar media
hora a resolver un ejercicio simple para descubrir que el error era
un despiste o una tonteria no es una pérdida de tiempo. Cuando se
observa la solucién, y pese a que podamos sentirnos algo idiotas,
hemos conseguido mucho: la probabilidad de que repitamos ese error
es minima.” Por contra, mirar la solucién a la primera dificultad
s6lo mostrard un resultado evidente. No reducira la autoestima (no
ha dado tiempo) pero no habremos aprendido nada. Eso si es una
completa pérdida de tiempo.

EN CUANTO A LA ORGANIZACION, podriamos dividir el texto en dos
grandes dreas: una primera que trata de los objetos que almacenan
informacién y otra que cubre el procesamiento de tales objetos y la

5 Como suele oirse en el dmbito infor-
matico, «maldito ordenador, que no
hace lo que quiero sino lo que le digo».

Disponible gratuitamente
en https://leanpub.com/

fundamentosder_ejercicios.

7 Esto es, hemos aprendido.

https://leanpub.com/fundamentosder_ejercicios
https://leanpub.com/fundamentosder_ejercicios

informacién contenida en ellos. Si entramos en mas detalle, tenemos
una parte inicial, primeros pasos, que muestra una visién general de R
(capitulos 1 y 2) y un primer acercamiento al lenguaje.

Entrando ya en los fundamentos, los capitulos 3 y 4 exponen los
conceptos minimos para conocer y controlar nuestro entorno y los
vectores.® A partir de ahi vamos estudiando los vectores atémicos
(capitulos 5 al 10) y no atémicos (11 y 12), y algunos valores especia-
les (cap. 13), seguidos por los capitulos dedicados a la programacién
basica: lectura y escritura de archivos (14), estructuras de control (15),
funciones (16) y manipulaciones (17). Continuamos con capitulos
dedicados a los paquetes (18) y a los gréficos (19), dos de las grandes
fortalezas de este lenguaje y acabamos este apartado con otro capi-
tulo dedicado al control (20) y la programacién orientada a objetos
(21).

La tercera parte, aplicaciones, es breve. Un capitulo sobre estadistica
(capitulo 22) se dedica a entroncar las fases de un analisis estadistico
con las herramientas, paquetes y demads recursos disponibles para
R. Otro (23) se centra en la probabilidad y el muestreo, mientras que
el dltimo (24) ofrece varias vias de entre las muchas posibles para
seguir aprendiendo R.

Los apéndices complementan todo lo anterior con aspectos practi-
cos que no siempre reciben la atenciéon que merecen. El apéndice A
estd pensado para quienes puedan necesitar ayuda en la instalacién,
actualizacién o para conocer mejor la interfaz que utilizaremos. El
apéndice B ofrece recomendaciones para que nuestro c6digo sea
maés legible, menos propenso a errores y més facil de modificar. Por
altimo, el apéndice C completa las recomendaciones anteriores, pero
esta vez en relacién a la estructura de la informacién contenida en los
archivos de datos.

ForMA Y CONTENIDO. Este manual naci6 como complemento a
actividades docentes. Y lo primero que un docente echa en falta al
escribir, ademads de la natural interaccién, son las preguntas™ y, con
ellas, la posibilidad de esos comentarios frecuentes en cualquier clase;
desde un simple «esto se ampliara en el proximo capitulo» hasta
ejemplos adicionales, enlaces con lo ya visto o comentarios laterales
maés extensos, incluyendo accesos a otros recursos para ilustrar lo
explicado. Su ausencia resulta extrafia, y resta tridimensionalidad a
las explicaciones y a la red de conceptos y relaciones que se dan de
forma natural en la docencia.

Una solucion parcial (y elegante) es el formato Tufte, llamado asi
por Edward R. Tufte (1997; 2001; 2006; 2013)"", quien lo ide6 con
objeto de permitir comentarios e ilustraciones extensos'?.

El resultado final es el que podemos observar: una columna princi-
pal que contiene el desarrollo de los temas y un amplio margen con
frecuentes comentarios, aclaraciones, enlaces a otros temas o amplia-
ciones, ilustraciones y ejemplos y, cémo no, cientos de enlaces a la

Antes de empezar... 17

8 Uno de los ladrillos fundamentales de
R, junto con las funciones.

9 Para la asignatura Métodos infor-
mdticos, impartida en la Universi-

dad Complutense de Madrid den-

tro del Master Interuniversitario

en Metodologia de las Ciencias

del Comportamiento y de la Salud
(http://www.metodologiaccs.es).
©Que en unas ocasiones hemos afnadi-
do retéricamente y, en otras, a través de
ejercicios.

" Edward R. Tufte es un profesor de
ciencia politica y estadistica y pionero y
auténtico especialista en la visualizaciéon
de informacién (en campos como
information design o visual literacy). Es
conocido por conceptos como la data-ink
ratio para referirse a la cantidad de
informacién por unidad de tinta (Tufte,
1990), O poOr resumir sus criticas a
PowerPoint con la frase “Power corrupts.
PowerPoint corrupts absolutely” (Tufte,
2003).

2Y no s6lo por parte del autor; los
margenes dan espacio para comentarios
y anotaciones, en papel o electrénicos,
de los lectores.

http://www.metodologiaccs.es
https://en.wikipedia.org/wiki/Edward_Tufte
https://en.wikipedia.org/wiki/Information_design
https://en.wikipedia.org/wiki/Visual_literacy

18 Antes de empezar...

web. Si se dispone de tiempo para ampliar y explorar, estos enlaces
permitirdn conocer, mas alld del lenguaje R, el mundo de R.

Mopos DE LECTURA. El origen docente de este manual le da una
orientacién muy especifica, aunque hay otros modos de lectura po-
sibles. En total, se dirfa que tres: Uno, el original, con la lectura y
resolucién de todos los capitulos y ejercicios, lo que casi con seguri-
dad llevara a una sélida formacién en R.

Dos, una lectura més 4gil, que puede consistir en los apartados
iniciales de los capitulos. Se observara que los capitulos entran en

cuestiones mds complejas o detalladas conforme avanzan'3, y cada 5 Incluyendo algunos apartados que
comienzan con Avanzado:..., lo que

b . . indica que el nivel puede superar el
tendrd algunas lagunas y es probable que la préctica haga necesario esperable en ese momento, pero puede

lector puede decidir dénde pasar al capitulo siguiente. El aprendizaje

volver para completar la informacién. convenir en una lectura posterior.

Tres, como manual de consulta. Si el indice y la organizacién son
adecuados, es facil acceder a cualquier aspecto de todo lo tratado y
localizar ejemplos, caracteristicas... Y el lector decidird hasta dénde
quiere informarse de tal o cual funcién, objeto o procedimiento.

También es posible utilizarlo como manual de referencia en un
curso de R. En tal caso, la estrategia 6ptima, al menos en mi experien-
cia, ha sido la lectura previa (con sus ejercicios) de algunos capitulos
y posteriormente, en clase, hacer un buen repaso, aclaracion, solu-
cién de dudas y realizacién de maés ejercicios. Los alumnos saben
leer, asi que la interaccién en clase puede dedicarse a dindmicas maés
productivas.

Y NO OLVIDO LOS AGRADECIMIENTOS. Los primeros, para las varias
hornadas de alumnos del Master de Metodologia de las Ciencias
del Comportamiento y de la Salud, que disfrutaron/sufrieron cada
versién de este manual en la asignatura de Métodos informaticos.
Ellos y ellas indicaron errores, mejoras y me animaron a seguir
escribiendo cuando parecia que era una tarea imposible de acabar.

Pero los alumnos son tolerantes, o probablemente no se atrevan a
decirme, directamente, cosas del tipo de «mira, este capitulo es un
completo desastre; no hay quien se entere de nada».™ Que es lo que 14 Especialmente si atin tengo que
vino a decirme Maria José Herndndez Lloreda, amiga y compariera, evaluarles.
de algunos capitulos iniciales. Y que era exactamente lo que necesi-
taba: otra mirada que me llevara a salir de mi burbuja. Asi que si los
capitulos iniciales se entienden, algo imprescindible en un manual
de este tipo, denle las gracias a ella. Otros comparieros también revi-
saron el manual, o incluso lo han utilizado en algunas clases, como
Miguel A. Castellanos. Gracias también a todos ellos.

Pero el mayor agradecimiento es para Belén. Apoyar (y animar) a
alguien que escribe un libro en fines de semana, vacaciones y ratos
libres durante afios es un tostén... por decirlo muy suavemente. Si
sabes de qué hablo, sabes cémo es; si no, da igual lo que te cuenten.

Antes de empezar... 19

Y a pesar de estas ayudas, quedaran erratas e incluso algtin error.
En ambos casos, y como no podia ser de otra manera, toda la respon-
sabilidad es del autor.

Nada mads; esperamos ayudar a aprender R e, idealmente, que se

disfrute del recorrido. Suerte.

José C. Chacon

Colmenarejo, agosto de 2021

PARTE I: Primeros pasos

1
R: Caracteristicas, historia y recursos

Comenzaremos este manual dando una definicién general de
R, pasaremos por algunos datos histéricos y llegaremos hasta la
instalacion y arranque del programa. A continuacién se resumen los
contenidos de este capitulo.

RESUMEN

Qué es R (1.1). Un programa, o sistema, o entorno... Veremos
una idea general de qué tipo de herramienta tenemos an-
te nosotros.

Algo de historia (1.2). El origen de las frecuentes alusiones a
S, y las implicaciones de esta relacion.

Recursos (1.3). ¢(Dénde estd R? ;Qué hay disponible y dénde
y cémo acceder? ;Como resolver mis dudas o buscar ma-
teriales?

Instalacion (1.4). Cémo instalar R y RStudio.

Comenzar a usar R (1.5). Abrir el programa y qué encontramos.

1.1 QuéesR

PoDEMOS DEFINIR R COMO UN ENTORNO, esto es: un sistema
coherente y completamente planificado®. Como todo sistema, incluye
varias partes y funciones, que en el caso de R son:

= un lenguaje de programaciéon completo,

= medios para la lectura, almacenamiento y escritura de datos,

= un conjunto de utilidades para la manipulacién, célculo y andlisis
de los datos y

= herramientas para la creacién de graficos.

Simultaneamente, R es un dialecto del lenguaje S, como se verd
posteriormente. Y, al igual que S, R nace y se orienta principalmente
al analisis estadistico de datos y su representacién grafica.

*Véase en la web del proyecto R https:
//www.r-project.org/about.html

https://www.r-project.org/about.html
https://www.r-project.org/about.html

24 Cap. 1. R: Caracteristicas, historia y recursos

DESDE EL PUNTO DE VISTA DE LA INTERACCION con el usuario, R
es y funciona como un lenguaje de programacion, algo imposible de
olvidar en tanto toda la comunicacién con R es a través de instruc-
ciones de ese lenguaje. Asf, para quien no ha programado nunca, R
es una sorpresa. No hay ments que permitan abrir datos o hacer un
determinado andlisis?.

Las secuencias de acciones (abrir archivo de datos, depurarlos,
obtener algunos descriptivos y gréficos, hacer andlisis, etc.) pueden
ser similares a las de otros programas de analisis mediante mens,
pero hay al menos cinco diferencias fundamentales:

1. Esta secuencia, como se dijo, toma la forma de un didlogo.

2. Los resultados de cada accién pueden almacenarse como nuevos
objetos y reutilizarse.

3. El grado de control y detalle en las manipulaciones, acciones y
especificaciones es generalmente mucho mayor.

4. Se pueden programar andlisis o cdlculos no disponibles.

5. Existen miles de paquetes adicionales, con infinidad de funciones
disponibles para todas las tareas que uno pueda imaginar.

R £s uN PrROYECTO GNU, esto es, uno de los muchos que participan
en el proyecto de colaboracién en software libre3, fundado en 1983
por Richard M. Stallman# en el MIT. Ello que implica que esta dis-
ponible gratuitamente bajo la GNU General Public License para varios
sistemas operativos. El cédigo fuente para el entorno de software R
estd escrito principalmente en C y R, y también en Fortran.

R UTILIZA PROGRAMACION FUNCIONAL Y ORIENTADA A OBJETOS.
La programacién funcional® se basa en las llamadas a funciones,
que encapsulan procedimientos habituales, y permiten construir
programas complejos a partir de médulos sencillos y robustos.

La programacién orientada a objetos® permite, a través de las
llamadas funciones genéricas, modificar el comportamiento de una
misma funcién segtin la clase del objeto al que se aplica.

POR AHORA, Y PARA COMENZAR, basta afiadir que el lenguaje de

R es interpretado, lo que quiere decir que, para poder ejecutarse,
debemos tener abierto el entorno de R”. Ello implica, como ya se dijo,
que escribiremos instrucciones y R respondera con alguna accién.
Estas instrucciones pueden ser escritas y ejecutadas una a una, o
pueden almacenarse como una secuencia ordenada en un archivo y
ejecutarse todas de una vez. En tal caso hablamos de un programa, y
en R se nombran de la forma programa.R.

2 Existen interfaces variadas que
trabajan sobre R de forma mds o menos
visible. Pueden consultarse en el
apartado A.3.3 del primer apéndice.

Shttps://en.wikipedia.org/wiki/GNU_
Project
+https://en.wikipedia.org/wiki/
Richard_Stallman

5 Véase, por ejemplo, https://es.
wikipedia.org/wiki/Programaci%C3%
B3n_funcional

®Para més detalles, vease https:
//es.wikipedia.org/wiki/Programaci%
C3%B3n_orientada_a_objetos.

En realidad, R tiene tres sistemas
de programacioén orientada a objetos,
segln se trate de objetos de tipo S3,
S4 o RC. En el presente manual s6lo
trataremos en detalle los objetos de tipo
S3.

7 Los programas en R no pueden, por
tanto, compilarse y generar archivos
ejecutables independientes del entorno
R. Sobre la diferencia entre unos y otros
lenguajes se hablara, brevemente, en el
apartado 20.6 sobre eficiencia.

https://en.wikipedia.org/wiki/GNU_Project
https://en.wikipedia.org/wiki/GNU_Project
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Richard_Stallman
https://es.wikipedia.org/wiki/Programaci%C3%B3n_funcional
https://es.wikipedia.org/wiki/Programaci%C3%B3n_funcional
https://es.wikipedia.org/wiki/Programaci%C3%B3n_funcional
https://es.wikipedia.org/wiki/Programaci%C3%B3n_orientada_a_objetos
https://es.wikipedia.org/wiki/Programaci%C3%B3n_orientada_a_objetos
https://es.wikipedia.org/wiki/Programaci%C3%B3n_orientada_a_objetos

1.2 Para entender el presente, algo de historia

A veces sorprende que en la ayuda, en referencias o al hablar de
manuales basicos se mencione una y otra vez el lenguaje S. La pre-
gunta evidente es jestamos trabajando con R o con S? La respuesta,
como ya adelantamos, es que R es un dialecto del lenguaje S.

EL PRIMER PASO EN LA HISTORIA DE R es, por tanto, el lenguaje S,
un programa/entorno desarrollado inicialmente por John Chambers,
Rick Becker y Allan Wilks alla por 1975-1976 en los Laboratorios
Bell9. S constituy6 una novedad en su enfoque del andlisis de datos,
basdndose en procesos modulares donde la salida de un médulo
alimentaba al siguiente, siguiendo la secuencia natural de los analisis.
En 1998, la Association for Computing Machinery (ACM) premié a John
M. Chambers con el Software System Award™® por la contribucién que
S supuso dentro del mundo de la estadistica aplicada.

Actualmente existen dos implementaciones (o dialectos) del en-
torno S original: R, parte del proyecto de software libre GNU, y
S-PLUS, un producto comercial de TIBCO Software.

R SE INICIA CUANDO, EN 1993, Ross Thaka y Robert Gentleman
decidieron crear, para sus clases, un entorno estadistico, simplemente
un banco de pruebas que implementara los métodos de Scheme Lisp
y una sintaxis similar a la de S. En una descripcién detallada del
proceso™*, IThaka explica cémo en 1995 dieron acceso ftp al c6digo
fuente bajo los términos de la Free Software Foundation’s GNU general
license. En 1996 se inici6 una lista de correos para r-testers a la que
siguieron otras (r-announce, r-help y r-devel), pero el crecimiento tanto
del propio programa como de los usuarios y sus informes les obligd
a crear en 1997 una estructura de almacenamiento y un grupo que
gestionara el proyecto completo, dando lugar a un equipo principal
(actualmente el R Core Team™) responsable de los cambios que se
realizan en R.

1.3 Recursos

La fuente principal en todo lo referente a R es la web del proyecto
R'3, donde hay informacién general y acceso a recursos variados,
y la CRAN (The Comprehensive R Archive Network, o Red completa
de archivos de R y sus mirrors), mds orientada al almacenamiento y
distribucién del software de R. Es recomendable visitarlas y darse un
paseo por los distintos apartados.

RESPECTO AL SOFTWARE necesario, hay tres elementos principales:

= El propio software de R, la llamada distribucién base, que puede
obtenerse de cualquier Mirror de la CRAN™4, de entre los distri-

PARTE I: Primeros pasos 25

8https://en.wikipedia.org/wiki/S_
(programming_language)

9 Puede verse un breve resumen de la
historia de S en http://ect.bell-labs.
com/s1/S/history.html.

http://www.webcitation.org/
61GQuoudm

De hecho, la ACM consider6 que S

«...will forever alter the way people
analyze, visualize, and manipulate data
[...]S is an elegant, widely accepted, and
enduring software system, with conceptual
integrity, thanks to the insight, taste, and
effort of John Chambers.»

"https://www.stat.auckland.ac.nz/
~ihaka/downloads/Interface98.pdf

https://www.r-project.org/

contributors.html

Bhttp://www.r-project.org/

“http://cran.r-project.org/

https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/S_(programming_language)
http://ect.bell-labs.com/sl/S/history.html
http://ect.bell-labs.com/sl/S/history.html
http://www.webcitation.org/6iGQuou4m
http://www.webcitation.org/6iGQuou4m
https://www.stat.auckland.ac.nz/~ihaka/downloads/Interface98.pdf
https://www.stat.auckland.ac.nz/~ihaka/downloads/Interface98.pdf
https://www.r-project.org/contributors.html
https://www.r-project.org/contributors.html
http://www.r-project.org/
http://cran.r-project.org/

26 Cap. 1. R: Caracteristicas, historia y recursos

buidos por todo el mundo. Deberemos elegir la descarga para
nuestro sistema operativo (disponible en la actualidad para Linux,
macOS*'> y Windows).

= También son herramientas fundamentales los paquetes, o exten-
siones. Puede accederse a ellos a través del enlace Package'® en
la pagina principal de la CRAN. A fecha de hoy (15/08/21), el
repositorio CRAN contabiliza 17974 paquetes disponibles.

= RStudio es un IDE (Integrated Development Environment, o Entorno
de desarrollo integrado) que puede descargarse desde su web'7.
Como su nombre indica, se trata de un entorno (una interfaz, pero
también mucho maés) que facilita enormemente la gestion de toda
la informacién a la hora de trabajar con R.

RESPECTO A LA DOCUMENTACION existen diferentes fuentes. La
principal es la misma web del proyecto R, donde podemos descargar
todo lo necesario para aprender y trabajar con R. En el apartado
Documentation, a la izquierda de la pagina principal encontramos el
enlace Manuals'®, donde disponemos de gran ntimero de manuales.
Los dos primeros de la siguiente lista son probablemente los mas
bésicos y utilizados (Venables et al., 2019; Paradis, 2002), e incluimos
también una tarjeta resumen (Short, 2004)9:

= Venables, W. N., Smith, D. M. & The R Core Team (2012). An
introduction to R. Disponible en http://www.math.vu.nl/sto/
onderwijs/statlearn/R-Binder.pdf.

» Paradis, E. (2005). R for Beginners. Montpellier: University of Mont-
pellier. Disponible en http://cran.r-project.org/doc/contrib/
rdebuts_en.pdf.

= Short, T. (2004). R Reference Card. Disponible en https://cran.
r-project.org/doc/contrib/Short-refcard.pdf.

LA WEB ES OTRA FUENTE INAGOTABLE DE RECURSOS. Frente a una
lista demasiado larga, preferimos mostrar sélo dos referencias:

= Quick R*° es una web que ofrece una guia rdpida, de gran orga-
nizacién y eficiencia. Para cualquier concepto bésico ofrece una
explicacién clara, uno o varios ejemplos de uso y, con frecuencia,
enlaces a informacién mds avanzada o especifica.

= Pero si tenemos cualquier duda, por simple o compleja que sea,
podemos encontrar la solucién escribiendo en un buscador “R
how to...” e indicando el problema o el resultado deseado. En
un porcentaje muy alto de los casos, la respuesta estarad en Stack
Overflow®*, que se ha convertido en el lugar de referencia para
soluciones, explicaciones y recursos varios en R.

5 Anteriormente MacOS X.

®https://cran.r-project.org/web/
packages/

7 http://www.rstudio.com/

®http://cran.r-project.org/manuals.
html

9 Los dos primeros manuales, y otros
muchos, estdn disponibles en espa-
fiol en el apartado Contributed de la
CRAN: https://cran.r-project.org/
other-docs.html

*http://www.statmethods.net/

*'https://stackoverflow.com/
questions/tagged/r

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/
http://www.rstudio.com/
http://cran.r-project.org/manuals.html
http://cran.r-project.org/manuals.html
https://cran.r-project.org/other-docs.html
https://cran.r-project.org/other-docs.html
http://www.math.vu.nl/sto/onderwijs/statlearn/R-Binder.pdf
http://www.math.vu.nl/sto/onderwijs/statlearn/R-Binder.pdf
http://cran.r-project.org/doc/contrib/rdebuts_en.pdf
http://cran.r-project.org/doc/contrib/rdebuts_en.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://www.statmethods.net/
https://stackoverflow.com/questions/tagged/r
https://stackoverflow.com/questions/tagged/r

1.4 Instalar Ry RStudio

La instalacién bésica de R es bien simple, en tanto se trata tnica-
mente de ejecutar el archivo descargado de la CRAN. Salvo casos
especiales, es recomendable usar el directorio por defecto.

La instalaciéon de RStudio es igualmente simple: basta ejecutar el
archivo descargado, que localizara la instalacién de R disponible.

Si la breve informacién anterior no ha sido suficiente para instalar
los programas indicados puede ser conveniente acudir al apartado
A.1 del Apendice A, que detalla la descarga e instalacién de ambos.

1.5 Comenzar a usar R
Tras la instalacién podemos acceder a R de dos formas:

= Pulsando en el icono de R, a la izquierda en la figura 1.1, lo que
abre la ventana principal (la consola) de R.

= A través de RStudio, haciendo click en el icono a la derecha de la
figura 1.1, lo que abre el IDE que usaremos a lo largo de todo el
manual.

La principal ventaja de una interfaz integrada es precisamente eso:
que las diferentes ventanas estdn presentes y organizadas®*. Una vez
abierta, la interfaz de RStudio muestra una apariencia similar a la de
la figura 1.2.

© - =@~ ~ Addins ~ &) Project: (None) ~
@ Untitled1 (7] History Plots Help =0
SourceonSave = O/ ~ > | % | b Sourc o
il R: Arithmetic Mean ~
mean {base} R Documentation

Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage
mean(x, ...)
11 [Gopleven s Rscript = Environment Files Packages Viewer =0
Console | Terminal _0 install @ Update
Name Description Version
ystem Library
y sy Libi
'citation()' para saber cémo citar R o paquetes de R e acepack ACE and AVAS for Selecting Multiple 1.4.1
. ’ Regression Transformations
n publicaciones. backports Reimplementations of Functions 1.1.0
Introduced Since R-3.0.0
Escriba 'demo()' para demostraciones, 'help()' para el base64enc Tools for base64 encoding 0.1-3
sistema on-line de ayuda, bit A class for vectors of 1-bit booleans 1.1-12
o 'help.start()' para abrir el sistema de ayuda HTML c bit64 ﬁusesgg;” for Vectors of 64bit 0.9-7
on su navegador . X bitops Bitwise Operations 1.0-6
Escriba 'q()’ para salir de R. bookdown Authoring Books and Technical 0.4.1
Documents with R Markdown
[Workspace loaded from ~/.RData] boot Bootstrap Functions (Originally by 1.3-19
Angelo Canty for)
caTools Tools: moving window statistics, GIF, ~ 1.17.1

> Base64, ROC AUC, etc.

Aunque las pestafas y su distribucién pueden variar?3, el entorno

de RStudio siempre contendra varias pestafias basicas de uso comun.

Entre ellas observamos la ventana de programa (source panel), arriba
a la izquierda, y debajo aparece la consola. Esta tltima servird para

PARTE I: Primeros pasos 27

R Studio

Figura 1.1: Iconos para R y RStudio. En
este manual usaremos RStudio en todo
momento.

>Y hay otras: funciones adicionales
que facilitan multiples tareas, como las
utilidades para gestionar este manual.

Figura 1.2: Ventana de RStudio con los
cuatro paneles.

» De hecho, podemos configurar qué
ventanas queremos mostrar y en qué
panel estard situada cada una en el
ment Tools/Global Options/Pane
Layout.

28 Cap. 1. R: Caracteristicas, historia y recursos

introducir y ejecutar instrucciones una a una, mientras que la prime-
ra permite editar y almacenar un conjunto de intrucciones, lo que
solemos llamar un programa.

A la derecha se muestran otras dos ventanas habituales: arriba, la
ayuda, mostrando informacién sobre la funcién mean(); debajo, la
pestaria Packages, que muestra los paquetes instalados.

En el capitulo siguiente haremos un recorrido para ver R en fun-
cionamiento y conocer algunas de sus caracteristicas. Para introducir
el cédigo deberemos usar la ventana de consola, que en la figura 1.2
aparece abajo a la izquierda.

No obstante, puede ser recomendable visitar el apartado A.3.2 en
el apéndice A. En él se comentan algunas caracteristicas de RStudio
que son de utilidad desde el primer dia. O también podemos consul-
tarlo en otro momento, para conocer mejor la interfaz.

Ejercicio 1.1.

Localiza y recorre la web del proyecto R si atin no lo has he-
cho. Explora sus apartados, sus paquetes, hojea su revista (The
R Journal). ..

Ejercicio 1.2.

Busca informacién sobre John M. Chambers, Ross Ihaka y Ro-
bert Gentleman, o recorre los enlaces que aparecen a lo largo del
capitulo.

Ejercicio 1.3.

Localiza y explora la web de la CRAN y ve al apartado de des-
carga para tu sistema operativo. Localiza la version adecuada y,
si no lo has hecho atin, descargala e instdlala. Comprueba el nt-
mero actual de paquetes disponibles. Pulsa sobre alguno que te
parezca de interés y explora la informacién que ofrece.

https://www.r-project.org
https://cran.r-project.org

2
Una primera inmersion

En este capitulo introduciremos los principales elementos que se
ponen en juego al trabajar con Ry que serdn tratados a lo largo de to-
do el manual. Siendo introductorio, no podremos entrar en detalle en
ninguna de las cuestiones tratadas; el objetivo es ofrecer una idea de
conjunto, amplia y poco definida. Si que merecen atencién especial
los objetos tratados (vectores y funciones) y sus caracteristicas, ya que
es sobre ellos, y su uso, de lo que hablaremos en estas pédginas.

RESUMEN

Acceso a Ry primeras tareas bdsicas (2.1). Eleccién del modo de
trabajo; los primeros calculos, expresiones y asignaciones.

Dos conjuntos de objetos fundamentales en R. En general, las es-
tructuras de datos, o vectores (2.2), almacenan la informa-
cién y las funciones (2.3) las procesan.

Archivos, tipos, creacion y acceso (2.4). Tipos de archivos, jun-
to con su lectura y escritura, importaciéon y exportacion.

Paquetes (2.5). Dada su importancia, un primer acercamien-
to practico.

La ayuda (2.6). Imprescindible, fuentes de informacién inter-
nas y externas.

2.1 Acceso a Ry primeras tareas

El capitulo anterior aludié a que el trabajo con R es interactivo, esto
es, que toda accién se realiza mediante comandos o instrucciones.
Pues bien, una vez abrimos R a través de la interfaz de RStudio, exis-
ten dos lugares desde los que puede realizarse ese trabajo interactivo,
con usos muy diferentes.

La consola. Principalmente para pruebas o para obtener informacién
especifica, momentanea.

Un archivo. Para una secuencia de acciones organizada y preferible
siempre que se quiera volver sobre el cédigo ejecutado.

30 Cap. 2. Una primera inmersion

Al hablar de una secuencia de acciones organizadas podemos
referirnos a los multiples pasos de un andlisis estadistico, pero puede
tratarse también de los ejemplos de este manual, que podemos copiar
y pegar en un archivo y guardarlo con un nombre, por ejemplo
Cap_02.R. En la figura 2.1 vemos, a la izquierda, el archivo Cap_02.R,
donde aparecen los primeros ejemplos de este capitulo’. A la derecha
tenemos los mismos ejemplos, ejecutados en la consola. Es claro que
el archivo permite guardar la informacién y revisarla o reutilizarla
posteriormente mientras que lo ejecutado en la consola se pierde?.

* Véase que el caracter '#' se utiliza
para incluir comentarios, titulos,
aclaraciones. .. que no se ejecutan.

> En realidad queda registrado en el
historial (véase la pestafia History).

© - X 2 - ~ Addins ~ % TFDR_FIN ~
© | Cap_02R — Console Terminal —_
Source on Save A7 “Run | *% Source ~

1 # Cap_02.R ones.

2 #

3 # J. Chacon Escriba 'demo()' para demostraciones, 'help()' para el sistema on
4 -line de ayuda,

5 # 2.1 Acceso a R y primeras tareas bdsicas o 'help.start()' para abrir el sistema de ayuda HTML con su naveg
6 ador.

7 # 2.1.1 Calculadora Escriba 'gq()' para salir de R.

8

9 2+3 [Workspace loaded from ~/Library/Mobile Documents/com~apple~Cloud
10 Docs/LIBROS/R/IntrodAR/TFDR_FIN/.RData]

11 sqrt(abs(7 * (4 - 6.5)))

12 >2+3

13 # 2.1.2 Evaluaciones y asignaciones [1] 5

14 > sqrt(abs(7 * (4 - 6.5)))

15 2*3 [1] 4.1833

16 >2*3

17 a<- 2*3 [1] 6

18 >a<- 2*3

19 a >a
20 [1] 6

19:2 (Top Level) = R Script ¢

History Connections a0 Environment Files Plots

Si usamos la consola, debemos escribir el cédigo deseado (o bien
copiarlo y pegarlo) y pulsar Enter para ejecutarlo. Si trabajamos con
un archivo, pulsar Enter s6lo servird para introducir un salto de
linea; si queremos ejecutar una linea de c6digo basta con situarnos en
algtn lugar de ella y pulsar Control + Enter. Esta misma combinacién
permite ejecutar un bloque de cédigo previamente seleccionado.

En la consola de R, las instrucciones aparecen precedidas del
prompt (habitualmente el cardcter >"), mientras que las salidas apa-
recen debajo. En este texto se ha eliminado el prompt de las instruc-
ciones (al igual que en un archivo, con objeto facilitar la tarea de
copiar y pegar), que aparecen siempre sobre un fondo de color3. Las
salidas, por su parte, vienen precedidas de los simbolos “##” para
identificarlas claramente.

Pensemos que no existe mejor manera de aprender el lenguaje R*
que usarlo: como en el ejemplo, podemos crear un archivo .Ry pegar
en €l el c6digo copiado de los ejemplos del manual. Después se
recomienda modificarlo. Hay que explorar qué ocurre, incluir nuevas
opciones, cambiar y afiadir... No es ficil romper nada y, en tales
casos, basta aplicar la regla de oro de la informatica: cerrar RStudio y
volver a abrirlo.

Packages Help Viewer a0

Figura 2.1: Ventanas de archivo (izquier-
da) y consola (derecha) en el editor de
RStudio. .

3O gris claro en la versién impresa.

4Y cualquier otro, incluidos los huma-
nos.

Jose

PARTE I: Primeros pasos

Ejercicio 2.1.

En RStudio, podemos situarnos en la ventana de archivo (File/
New File/R Script) y crear un archivo nuevo (yendo al ment
o pulsando el icono situado maés a la izquierda). Después escri-
bimos el comentario # Cap_02.R en la primera linea; al dar a Enter
vemos que el simbolo # aparece en la siguiente linea (luego se-
rd un comentario que tampoco se ejecutara).

Continuamos tal como aparece en la figura 2.1, incluyendo nues-
tro nombre. Después grabamos el archivo en el directorio que eli-
jamos, nombrandolo Cap_02.R.

Después podemos ir al directorio elegido y abrir el archivo con
un editor de textos cualquiera, para comprobar que sé6lo contie-
ne texto comun.

2.1.1 Calculadora

La forma maés facil de empezar es usando R como calculadora.
Podemos escribir en la consola:

2 + 3

[1] 5

Y obtenemos el resultado esperado. Los espacios no son necesa-
rios, pero se recomiendan para mejorar la legibilidad. Podemos usar
igualmente operadores aritméticos y otros habituales. En el ejemplo
realizamos algunas operaciones aritméticas, (7 * (4 - 6.5)), obte-
nemos su valor absoluto con la funcién abs () y calculamos la raiz
cuadrada mediante sqrt():

sqrt(abs(7 * (4 - 6.5)))

[1] 4.1833

2.1.2 Evaluaciones y asignaciones

En cada ejemplo anterior se ha realizado una evaluacién: un proce-
so por el que el intérprete del lenguaje R comprueba si la expresién es
sintacticamente correcta y, en caso afirmativo, la ejecuta y devuelve
un resultado. El resultado es volatil: se muestra en la consola pero no
queda almacenado.

[1] 6

Si queremos almacenar el resultado hemos de hacer una asignacion

5 Ambos sirven para asignar aunque

31

mediante el operador (<-) o bien mediante el signo igual, (=).> El hay alguna diferencia que ya veremos.

32 Cap. 2. Una primera inmersion

valor proporcionado se asignard a una variable que, si no existe

previamente, se creara en el momento de la asignacién.

a<-2=x3

El operador de asignacién se forma mediante los simbolos menor
que, <, y menos, -, y puede utilizarse en ambos sentidos. La asignacion
anterior, por tanto, también puede expresarse como:

2 % 3 ->a

Se observa que las asignaciones no ofrecen ningtin resultado como
respuesta (aunque su valor aparece en el espacio de trabajo, en la
ventana Environment de RStudio)7. Podemos consultar su contenido
simplemente escribiendo su nombre, mediante impresién implicita, o
bien mediante la funcién print(), de forma explicita.

a
[1] 6
print(a)

[1] 6

En la consola, el resultado de ambos procedimientos es idéntico.
Pero en el caso de ejecutarse desde un programa o funcién, sélo la
segunda opcién mostrara el contenido de los objetos.

Hay que tener presente que R es sensible a las maytsculas y mi-
nusculas, luego a y A son variables distintas. La funcién objects()
muestra los objetos presentes en la memoria de trabajo.

A <- -10
a *x A

[1] -60
objects()

[1] "a" "A"

2.1.3 Nombrar

Las variables se nombran utilizando letras, niimeros, y los carac-
teres punto (.) y guién bajo (_). Los nombres pueden comenzar por
una letra o un punto®. Las funciones siguen reglas similares, pero el
punto tiene (o puede tener) un significado especial®.

Tampoco pueden utilizarse las palabras reservadas, que podemos
encontrar en la ayuda (o ejecutando ?reserved) y que se presentan a
continuacion:

Y si existe, su valor serd sustituido
(machacado) por el nuevo, sin mediar
ningiin aviso.

7 Otra forma de lograrlo es mediante el
uso de paréntesis en una asignacion:

(a <- 2 % 3)

[1] 6

8 Que no vaya seguido por un namero:
.Valor seria, por tanto, un nombre
valido; .1valor, no.

9 En las funciones genéricas, donde el
punto indica que esa funcién sélo se
aplica a determinadas clases de objeto.
Se vera en el capitulo 15, dedicado a las
funciones.

PARTE I: Primeros pasos

if else repeat while function for in next break

TRUE FALSE NULL Inf NaN NA NA_integer_ NA_real_ NA_complex_
NA_character_

Asi, son nombres vélidos A, d12, Valor, DATO, .B1 o FOR, y no lo
son 1A, .6VAR, _DATO o for.

Ademés de nombrar, también es conveniente comentar los pro-
gramas, explicando qué se lleva a cabo en cada parte; ello ayuda a
comprender posteriormente el c6digo. Los comentarios se indican
mediante el caracter almohadilla (#), y todo lo que aparezca posterior-
mente en la misma linea no serd ejecutado.

print("Si se ejecuta")

[1] "Si se ejecuta"

Ejercicio 2.2.

Queremos calcular la circunferencia y area de un circulo de
radio 1.8 metros. Recordemos que la circunferencia es dos pi ve-
ces el radio; el drea, por su parte, es pi veces el cuadrado del ra-
dio.

Define y nombra las variables adecuadamente y realiza los calcu-
los necesarios.

2.2 Algunos objetos de R: vectores y funciones

Es frecuente oir que todo lo que existe en R es un objeto. Mas alla de
cuestiones terminolégicas, el resultado practico de este hecho es que,
a cierto nivel, todo lo que forma parte de R es tratable de igual forma:
todo objeto puede copiarse, duplicarse, almacenarse, asignarse. ..

33

Pues bien, de entre todos los tipos de objetos que existen en R™, Existen 24 tipos de objetos en R, como

hay dos grupos especialmente interesantes: aquellos que sirven para veremos a su debido tiempo.
almacenar informacién y los que permiten procesarla; nos referimos a
vectores y funciones.
Un aspecto importante a destacar es que en R, las variables creadas
no necesitan ser declaradas, esto es, indicar su tipo (entero, doble,
caracter. ..) El tipo serd asignado automdticamente dependiendo del
contenido del vector, como veremos.

2.2.1 Vectores

En R, todas las estructuras que almacenan datos son vectores. Ya
se habra observado que antes de las respuestas siempre aparece [1].
Efectivamente:

34 Cap. 2. Una primera inmersion

[1] 12

La razén para ello es que el resultado no es un 12 sin mds (esto
es, un escalar con valor 12); sino un vector de longitud unidad cuyo
primer (y tnico) elemento es 12. El nimero entre corchetes indica el
indice correspondiente a ese primer elemento. Usamos el término
vector en la acepcién propia del &mbito informatico: un conjunto
ordenado de elementos a los que puede accederse mediante un
indice.

Una particularidad de R es que es un lenguaje vectorial, de forma
que, al operar sobre un vector, opera sobre cada uno de sus elementos,
lo que simplifica enormemente el tratamiento de éstos.™* Por lo
demads, cuando tenemos vectores de longitud 1, R funciona de forma
equivalente al tratamiento de escalares.

Si queremos construir un vector, la forma més simple es mediante
la funcién c(), que concatena los elementos introducidos:

v <- ¢(9, -4, 3.14)
v

[1] 9.00 -4.00 3.14

Una vez construido, el vector v estd disponible en memoria. Si
queremos acceder a un elemento particular, debemos introducir su
indice entre corchetes:

v[3]

[1] 3.14

Como veremos luego, existen vectores atdmicos y no atémicos.
Los primeros s6lo pueden almacenar un mismo tipo de elementos
(enteros, caracteres...); los segundos pueden almacenar elementos
variados y son mucho més versétiles.

2.2.2 Funciones

También se puede oir que foda accién realizada en R consiste en la
ejecucion de una funcion. Y es cierto; la simple definicién anterior
implica la ejecucion de dos funciones: asignar (<-) y concatenar (c()):

v <- ¢(9, -4, 3.14)

Si los vectores permiten almacenar los datos, las funciones operan
con esos datos (entre otras muchas tareas). Las funciones van segui-
das siempre de paréntesis entre los que se incluyen los argumentos
que necesita’.

" Lo que procede de su disefio enfoca-
do a la estadistica. A fin de cuentas, una
variable tiene estructura vectorial de
forma natural.

> Algunas funciones no precisan
argumentos, o pueden usar argumentos
predefinidos, aunque sigue siendo
necesario el uso de paréntesis. La
siguiente funcién, por ejemplo, ofrece el
directorio de trabajo actual:

getwd()

[1]
'/Users/jose/Documents/FDR'

PARTE I: Primeros pasos 35

mean(v)

[1] 2.713333

Vemos que mean() devuelve un tnico resultado al recibir un vector.
Otras funciones, sin embargo, operan elemento a elemento, devol-
viendo como resultado un vector de longitud igual al introducido.

sqrt(v)

Warning in sqrt(v): Se han producido NaNs
[1] 3.000000 NaN 1.772005

Se observa que ha habido problemas con el segundo elemento, -4,
del vector v al intentar calcular su raiz cuadrada. R ha devuelto NaN,
acréonimo de Not a Number, o indeterminacion.

Existen multitud de funciones en la instalacién base de R, y tam-
bién en los pagquetes disponibles. Y ademds, es posible construir
nuestras propias funciones para realizar cualquier tipo de tarea. En el
ejemplo construimos la funcién raiz(), que convierte la entrada en

compleja si algtin valor es negativo'3: 13 Solucionando asi el problema anterior,
ya que en el dominio complejo si existe

. . solucién.
raiz <- function(entrada) {

if(any(entrada < 0)) {
entrada <- as.complex(entrada)

}
return(sqrt(entrada))
}
raiz(v)

[1] 3.000000+0i 0.000000+2i 1.772005+01

R es un lenguaje de alto nivel, lo que quiere decir que muchas
de sus instrucciones expresan procesos complejos con un lenguaje
proximo al lenguaje (inglés) natural. Asi, es facil entender qué realiza
el cédigo anterior: raiz() se define (<-) como una funcién (function)
con el argumento entrada; si (if) algtin (any) elemento de la entrada
es menor que 0, entonces entrada se definird (<-) como complejo
(as.complex); al final, se devuelve (return) la raiz cuadrada (sqrt) de
la entrada.

Las funciones son también objetos y, como tales, las funciones
creadas pueden verse dentro del entorno de trabajo, en la ventana
Environment de RStudio. Asi, si se ejecuta el c6digo anterior, dis-
pondremos de un nuevo objeto, raiz(), visible al mostrarlos con la
funciéon s () 4. 4 Equivalente a objects().

36 Cap. 2. Una primera inmersion

1s()

[1] ||a|| ||A|| ||r.aiz|| ||V||

Mas alld de hacer célculos sobre los datos, las funciones abarcan
todo tipo de tareas, como pueden ser:

= Control del entorno, directorio de trabajo, borrado de objetos. ..
= Entrada y salida de archivos, importacién y exportacion. ..
= Creacién de objetos, seleccion, transformacion. ..

Como se ha observado, y como norma a lo largo de todo el texto,
las funciones siempre se mostraran con los paréntesis, lo que ayuda a
diferenciarlas del resto de objetos.

Ejercicio 2.3.

Queremos crear el vector w, que contiene los valores 1, -3, 7y
12. Luego aplicaremos dos funciones al vector: una que dé un re-
sultado tnico, de tipo resumen (como la media) y otra que dé un
resultado elemento a elemento (de igual longitud). Después, com-
prueba los objetos presentes en el espacio de trabajo.

2.3 Mds sobre vectores

Sea cual sea el uso que demos a R, todos los valores que necesi-
temos tratar serdn almacenados en vectores. Tanto si definimos un
simple valor como en n = 20, como si tratamos un archivo de 1500
casos por 300 variables, ambas informaciones se almacenaran en
vectores.

Obviamente, el primer caso requerird un tipo de vector mucho
mas simple que el segundo. Asf, existe una divisién entre vectores
atémicos y no atémicos. Los primeros contienen un tipo determinado de
elementos (enteros, reales, caracteres. ..) y sélo uno; los segundos son
mads complejos, y consisten en agrupaciones de los primeros.

2.3.1 Vectores atémicos

Existen cinco tipos de vectores atémicos en R: enteros, reales,
16gicos, alfanuméricos y complejos.’> A continuacién se define un
vector de cada tipo:

<- c(1eL, 13L)
<- ¢(1, .6, 3)
c(T, FALSE)
<- c("A", "txt")
<- c(1+2i, 4i)

X 0 —~ o k-
A
\

s Hay un sexto tipo, los vectores
raw, muy poco frecuentes y que no
trataremos aqui.

Cuando hablamos de cinco tipos no nos referimos una clasificacién
conceptual sino estructural; el tipo es una propiedad de los obje-
tos'®, y muy importante: indica la estructura de almacenamiento
utilizada lo que, en términos practicos, significa que define todas sus
propiedades en cuanto a lo que puede hacer y lo que no."”

typeof(i); typeof(d); typeof(l); typeof(c); typeof(x)

[1] "integer"

[1] "double"

[1] "logical"

[1] "character"

[1] "complex"

A continuacién mostramos una breve descripcién de cada tipo:

Enteros (integer). Almacenan valores numéricos tnicamente ente-
ros. En el ejemplo se ha utilizado el sufijo L para indicar que los
valores numéricos son de tipo entero®.

Reales (double). Almacenan valores numéricos reales'. Es el tipo por
defecto, esto es, el asignado cuando no se indica nada (como se
observa en el ejemplo).

Légicos (logical). Sélo pueden almacenar valores verdadero y falso; se
puede usar la palabra completa (TRUE, FALSE) o las iniciales (T, F),
pero siempre en maytsculas.

Alfanumeéricos (character). Cualquier cadena de caracteres entrecomi-
llada se considera de tipo alfanumérico; se pueden usar comillas
"dobles" o 'simples’.

Complejos (complex). En el ejemplo se definen usando la expresion al-
gebraica como suma de una parte real y otra imaginaria (definida
mediante el sufijo i unido, sin espacios, a algtin valor numérico).
Véase que tampoco se ha dejado espacio alrededor del signo '+'.

Hay otra forma habitual de generar (una secuencia de) enteros
mediante el operador dos puntos (:); conviene conocerla porque es
frecuente en multitud de operaciones, pero también en la descripcién
de los objetos. En el ejemplo, creamos un vector entero mediante una
secuencia de 10 a 15:

(1 <- 10:15)

[1] 10 11 12 13 14 15

Y también se utiliza a la hora de mostrar la estructura de los
objetos, con la funcién str():*°

PARTE I: Primeros pasos 37

16 Que podemos obtener a través de la
funcion typeof ().

7 Véase que en el ejemplo se han
incluido varias funciones en la misma
linea, lo que puede hacerse usando el
punto y coma, ‘;’.

® La razén se remonta muchos afios
atrds, y se vera en el capitulo 5.

Y La razén del nombre double también
se verd en el mismo capitulo.

2 Tanto la funcién typeof() como
str() se veran en detalle en el siguiente
capitulo. Respecto a str(), basta saber
por ahora que muestra una descripcién
breve del objeto que, en este caso,
incluye la longitud del vector expresado
mediante el operador dos puntos:
[1:6].

38 Cap. 2. Una primera inmersion

str(i)

int [1:6] 10 11 12 13 14 15

Los vectores atomicos también pueden configurarse como estructu-
ras bidimensionales (matrices) o de mds dimensiones (arrays), pero lo
dejamos para mas adelante.

Recordemos ahora que estos vectores son objetos atdémicos, lo que
indica que sélo pueden contener un tipo de datos. ;Qué ocurre, por
tanto, si mezclamos elementos de diferente tipo en un mismo vector?
¢Obtendremos un error?

A <- c(3, "a"); A

[1] "3" "a"

No hay error. R ha coercionado los elementos al tipo que permita
almacenar ambos. En tanto no hay forma (univoca) de convertir 'a’
en un numero, el valor real 3 es convertido al tipo character.

¢Cémo tratar, entonces, con un archivo de datos, que puede conte-
ner informacién de varios tipos? Necesitamos estructuras de almace-
namiento no atémicas.

Ejercicio 2.4.

Vamos a crear un vector atémico de cada uno de los cinco ti-
pos vistos hasta ahora, con dos condiciones: primera, se crearan
en orden, empezando por el tipo que menos versatilidad tiene
y acabando con el que mas; segundo, han de tener longitud cre-
ciente, comenzando en dos.

Consulta el tipo y la estructura de cada vector creado.

2.3.2 Vectores no atémicos

Hay dos objetos que permiten almacenar informacién heterogénea:
las listas y los data frames>".

Listas. Se les llama a veces contenedores universales, ya que pueden
almacenar cualquier vector atémico e incluso también listas y data
frames, y en cualquier cantidad. Son muy utilizadas para reunir
informacioén relacionada (por el ejemplo, los miiltiples resultados
de un andlisis estadistico: coeficientes, descriptivos, intervalos de
confianza, los mismos datos. . .)

Data frames. Son listas especializadas, disefiadas para almacenar
bases de datos en formato filas (casos) por columnas (variables).

Se construyen con las funciones del mismo nombre. En este ca-
so creamos una lista con tres vectores de diferentes tipos: double,
character y logical.

> No existe un término consensuado en
castellano para data frame, aunque en

el manual de Introduccién a R 1o vemos
traducido como hojas de datos. Aqui
hemos preferido dejarlo tal cual.

lista <- list(A
B
C

7:
C(“Uno“, ”dOS”),
T)

lista

$A

[1]1 7

##

$B

[1] "uno" "dos"
##

$C

[1] TRUE

Con data frames el funcionamiento es similar, pero es requisito que
los vectores componentes tengan la misma longitud, algo razonable
en cualquier base de datos.

df <- data.frame(Id = c(1, 2, 4, 5),
Grupo = c("Exp", "Ctr", "Ctr", "Exp"),
VD = ¢(12, 11, 9, 14))

df

Id Grupo VD
1 1 Exp 12

2 2 Ctr 11
3 4 Ctr 9
4 5 Exp 14

Para acceder a su contenido existen varias formas; una de ellas
utiliza el operador $ para unir el nombre del objeto con el nombre
del elemento.??

listas$B
[1] "uno" "dos"
df$Grupo

[1] "EXp" "Ctr‘" "Ctr" "EXp"

Los data frames, ademds, ofrecen un acceso de tipo matricial indi-
cando la fila y columna mediante un par de indices. En los ejemplos
se seleccionan un caso, una variable y la interseccién de ambos?3.

df[2, 1 # Caso 2, todas las variables

Id Grupo VD
2 2 Ctr 11

PARTE I: Primeros pasos 39

2 Por supuesto, también puede acce-
derse mediante corchetes ‘[]” como con
cualquier otro vector. Lo veremos en los
capitulos dedicados a estos objetos.

» Véase que dejar un hueco se inter-
preta como todos los casos o todas las
variables segtin esté en la primera o
segunda posicién, respectivamente.

40 Cap. 2. Una primera inmersion

df[, 3]
[1] 12 11 9 14
df[2, 3]

[1] 11

Ejercicio 2.5.

Utilizando los vectores construidos en el ejercicio anterior, crea
una lista con tres componentes. Contruye también un data frame
con los dos vectores que no usaste para la lista. Probablemente
tendrds que hacer algtn ajuste respecto a la longitud de los com-
ponentes.

Prueba a crear otras listas y data frames con otras combinacio-
nes de esos mismos componentes.

2.3.3 R, un lenguaje vectorial

El carécter vectorial de R no se limita al hecho de que todas sus es-
tructuras de almacenamiento de datos sean vectores. De hecho, estas
estructuras no tendrian mayor valor en si mismas si no estuviesen
acompafiadas de un procesamiento vectorial.

De esta forma, muchas de las acciones que en otros lenguajes
requieren operar sobre cada elemento de un vector mediante algtun
tipo de bucle repetitivo, en R se realizan directamente.

Y no es casualidad. Recordemos que R nace orientado al anélisis
estadistico, donde el tratar con variables constituye el modo habitual
de trabajo. Y una variable se representa de forma natural como
un conjunto de valores ordenados (segun el indice de cada caso);
precisamente un vector.

Por ejemplo, si quiero multiplicar todos los elementos de un vec-
tor por una cantidad, no necesito multiplicar cada elemento por esa
cantidad; basta multiplicar el vector como un todo:

v <- 1:5
v x 10

[1] 10 20 30 40 50

Si volvemos a la estadistica, una operacién como calcular una
media o una varianza, que suele requerir recorrer cada elemento una
y otra vez, en R se reduce a expresiones simples que no necesitan de
ningtn tipo de bucles.

media <- sum(v)/length(v)
varianza <- sum((v - media)”2)/(length(v) - 1)

Este modo de operar requiere un modo de pensar algo diferente,
vectorial, y es frecuente que se tarde un tiempo en lograrlo. Y la via
mas directa es, sin duda, la practica.

Ejercicio 2.6.
Obtén el vector z, resultado de tipificar el vector v, usando pro-
cedimientos vectoriales.

2.4 Lectura y escritura de archivos

Como cualquier otro lenguaje, R puede escribir y leer diferentes
tipos de informacién en multiples formatos. Pero dentro de esta gran
variedad, hay dos tipos principales de archivos que todos usamos:
archivos de programa y archivos de datos.

Archivos de programa. También llamados programas sin més, no son
mdés que una secuencia de acciones (instrucciones en lenguaje R),
agrupadas en un archivo con la extensién .R. El archivo Cap_02.R,
en el que ibamos almacenando las instrucciones de este capitulo,
es un ejemplo de archivo de programa.

Archivos de datos. Son los que contienen la informacién procedente de,
por ejemplo, una investigacién, y que podemos leer desde R. Tam-
bién pueden ser datos generados por R, por ejemplo los resultados
de una simulacién que almacenamos para ser analizados poste-
riormente. En R, los archivos de datos tienen la extension .RData?4,
como en datos.RData.

2.4.1 Archivos de programa

Un archivo de programa no es mas que un archivo de texto con
extension .R que contiene cédigo (instrucciones) de R. Podemos
escribirlo en cualquier editor de texto, aunque siempre serd mejor
en una interfaz de R, para poder ir ejecutando y probando el cédigo
conforme se escribe?>.

Un ejemplo de archivo de programa es Cap_02.R, el archivo que
hemos sugerido crear con los ejemplos del libro. Al usarlo, comproba-
mos que la manera natural de trabajar es recorrer las lineas y ejecutar
aquéllas que nos interesen; a veces se copia y pega una instruccion,
se modifica y se ejecuta para observar su comportamiento. Aunque el
objetivo difiere, la forma del proceso no dista mucho de la utilizado
en un andlisis de datos.

A la vez, en informatica es frecuente llamar programa a un conjunto
de cédigo cerrado que realiza siempre una misma accién cuando

PARTE I: Primeros pasos 41

> O simplemente . rda.

5 En las interfaces especializadas como
RStudio, ademds, colorean el cédigo de
forma que hacen mads reconocibles las
funciones, variables, etc.

42 Cap. 2. Una primera inmersion

se ejecuta®®. Pero recordemos que R es, por disefio, un lenguaje
interpretado (esto es, que no genera archivos que puedan ejecutarse
con independencia del entorno de R), orientado al andlisis estadistico
y, con esta légica, pensado para aplicar unos procedimientos a unos
datos cuyos resultados serviran de entrada a otros procedimientos.

En resumen: en el trabajo con R es habitual utilizar archivos de
programa, pero haciendo una ejecucioén interactiva del c6digo, tal
como hacemos en Cap_02.R. Supongamos, por ejemplo, un analisis
estadistico basico; lo habitual es almacenar en un programa los pasos
a dar, que suelen ser:

= Lectura o importacién de los datos y almacenamiento en un data
frame.

= Andlisis inicial, correccién de errores, depuracion y grabacién del
resultado en un nuevo archivo de datos.

= Descriptivos, gréficos, supuestos. ..

= El andlisis en si.

= Posibles anélisis posteriores.

Cada paso es programado y ejecutado, se estudia el resultado y
se decide el préximo paso, que es programado y ejecutado... Alma-
cenar los pasos permite repetir los procedimientos, corregir errores,
afinar los andlisis y extraer los resultados de diferentes maneras.
Incluso cuando todo ha finalizado, el archivo guardado puede reto-
marse como base para otro andlisis.

Por supuesto, también es posible tener programas que sean cerra-
dos, pero suelen ser mas simples y univocos que lo que se requiere,
por ejemplo, en un andlisis de datos completo. Un caso seria el que
ha llegado a ser el primer ejemplo en cualquier lenguaje de progra-
macion: un programa que, al ser ejecutado, muestra por pantalla el
mensaje “jHola, mundo!”.

Para ello basta escribir la instruccién print("iHola, Mundo!"),
almacenarla en un archivo llamado hola.R y ya tenemos todo un
programa, completamente funcional.

print("iHola, Mundo!")

Podemos ejecutarlo, desde consola o desde dentro de otro progra-
ma, mediante la instruccién source().

source("hola.R")

[1] "iHola, Mundo!"

Mas alld de la simpleza del ejemplo, los programas ejecutados
de esta forma habran de ser, necesariamente, mas simples que lo
requerido por cualquier andlisis®7.

%Y que generalmente tiene una version
ejecutable (por ejemplo, un archivo del
tipo .exe o .app) que puede ejecutarse
con independencia del programa que lo
cred.

7 En principio, aunque es posible que el
programa sea interactivo, y solicite, por
ejemplo, el nombre del archivo de datos
a utilizar o permita hacer elecciones.

Ejercicio 2.7.
Vamos a crear un pequefio programa y luego lo ejecutaremos.
Para ello:

= Abre un archivo nuevo (R Script) en RStudio.

= Escribe un comentario (con #) al inicio indicando el nombre
del programa (programa_1.R) y en la siguiente linea, su autor/a.

= A continuacién crea un vector, v, de longitud 7 con ntimeros
reales en el intervalo [0, 10].

= Calcula la media del vector.

= Muéstrala por pantalla.

= Guarda el archivo con el nombre indicado anteriormente y cié-
rralo.

= Ejecuta el programa.

2.4.2 Archivos de datos

Mas frecuente aun es la creacién y lectura de archivos de datos, que
en R tienen la extensién .RData. Por ejemplo, si trabajando con R
hemos construido el data frame df_datos con los datos ya depurados,
podemos almacenarlo en un archivo usando la funcién save() como
en el ejemplo, lo que creara el archivo datos.RData.

save(df_datos, file = "datos.RData")

De igual forma, en la mayoria de los casos los datos son leidos de
un archivo de datos, procedente de R (en formato RData), como en el
ejemplo a continuacién, mediante la funcién load ().

load("datos.RData")

Pero otras muchas veces el archivo se ha construido con un progra-
ma mas cémodo para el registro de datos8. Es por ello que R incluye
funciones para importar datos de (y exportarlos a) otros formatos.
Estos incluyen archivos de texto (con variadas opciones para separa-
dores, decimales, etc.), hojas de célculo, archivos de otros programas
estadisticos, bases de datos, etc.

A pesar de su utilidad, el capitulo dedicado a la lectura y escritura
de archivos queda atin lejos (en el capitulo 14). Antes necesitamos
conocer, en los capitulos previos, las estructuras de almacenamiento
que luego albergaran la informacién procedente de esos archivos.

Ejercicio 2.8.

Guarda el anterior vector v en un archivo llamado datos.RData
en el directorio de ejercicios. Comprueba la existencia del archi-
vo en el directorio donde se ha almacenado.

PARTE I: Primeros pasos 43

3 Por ejemplo, una hoja de calculo. En
cualquier caso, no es frecuente construir
data frames manualmente, tal como
hicimos en los ejemplos anteriores,
escribiendo las puntuaciones para cada
vector.

44 Cap. 2. Una primera inmersion

Ejercicio 2.9.

Ahora vamos a construir otro programa, programa_2.R, que
leerd el archivo de datos recién construido (datos.RData) y cal-
culard y mostrard la media. Para ello:

m Abre el archivo programa_1.R en RStudio.

s Guardalo con el nombre programa_2.R.

= Cambia la linea donde se creaba el vector v por otra donde se
lea el archivo de datos datos.RData.

= Deja el resto del programa igual.

= Guarda el archivo y ciérralo.

= Comprueba que el archivo existe y estd en el mismo directo-
rio en que estamos situados en R.

= Fjecuta el programa.

Ejercicio 2.10.

Por ultimo, modificaremos el vector v, lo volveremos a grabar
en datos.RData y ejecutaremos de nuevo programa_2.R. También
deberemos comprobar que el resultado de la ejecucién se ajus-
ta al nuevo vector.

2.5 Paquetes

Un paquete (package) es un conjunto de funciones que amplian
las capacidades de R. Como ya se dijo, los paquetes son una de las
grandes fortalezas de R*9, tanto por su cantidad y calidad como por
la velocidad de aparicién y actualizacion.

Para poder usar las funciones de un paquete hemos de dar tres
pasos previamente: descargar el paquete, instalarlo y cargarlo en
memoria. Todo ello puede hacerse mediante la interfaz de RStudio,
o también mediante c6digo. Por ejemplo, si queremos calcular un
estadistico de asimetria (no disponible en la instalacién base de R)

obtendremos un error, ya que no existe tal funcién en la distribucién

base de R.

v <- ¢(2, 4, 3, 2,5, 4, 3, 2)
skewness (v)

» Llegando a los 15000 paquetes para
finales de 2019 y superando los 18000
en 2021, como se observa en la seccién
Packages en la web del proyecto R (https:
//cran.r-project.org/web/packages/.

Error in skewness(v): no se pudo encontrar la funcién "skewness"

Podemos usar la funcién skewness (), disponible en el paquete
e1071. Para ello descargamos, instalamos y cargamos en memoria
dicho paquete.

install.packages("el071")
library("el071")

Ahora si es posible aplicar la funcién.

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/

skewness (v)

[1] 0.3201403

Cualquier usuario, ademds, puede construir sus propios paquetes,
bien para uso personal, bien para ponerlos a disposicién de otros en
la CRAN (o en otros repositorios como, por ejemplo, GitHub3°).

Ejercicio 2.11.
Los vectores x <- c(2, 1, 5, 2, 4)ey <- c(1, 1, 4, 3,
4) contienen informacién ordinal. Queremos conocer una medi-
da de su relacién a través de la correlacién policorica.
Comprueba si R dispone de alguna funcién que responda a
nuestra necesidad; en caso contrario, localiza algin paquete que
si permita el cdlculo, instalalo y 1lévalo a cabo.

2.6 Laayuda

Ademas de todos los recursos disponibles en la web3", R posee un
sistema de ayuda que nos informa en detalle sobre cada instruccién
del lenguaje R. El sistema esta disponible sin necesitar conexién a
la red, y contiene informacién sobre las instrucciones de todos los
paquetes instalados en nuestro ordenador.

Es importante notar cémo, a pesar del cardcter voluntario y co-
laborativo de las contribuciones en R, existe una estructura rigida
a la hora de construir los paquetes que proporciona una uniformi-
dad muy deseable. Uno de los resultados visibles se encuentra en
la ayuda, que siempre muestra la misma estructura e informacién
(descripcion, uso, argumentos, detalles, valores. ..) Teniendo en
cuenta la necesidad de consultar frecuentemente la ayuda para todo
programador, esa uniformidad facilita la tarea en gran medida.

Existen diferentes formas de acceder a la ayuda. Una de ellas
es escribir help.start(), o bien ir al ment Help/R Help3?, pero la
forma méas comun es acudiendo a la ventana de ayuda de RStudio
(figura 2.2).

Hay otras formas de obtener ayuda, como escribir help("mean")
para acceder a informacién sobre alguna instruccién particular, o
bien usando un signo de interrogacién seguido del nombre del
comando deseado, ?mean, lo que nos llevaria a la misma ventana de
ayuda de la figura 2.2. Cuando no buscamos un comando de R, sino
algtn término de interés (por ejemplo, para saber cémo dibujar una
elipse), podemos usar help.search('ellipse') o bien una doble
interrogacion seguida de la palabra a localizar (??7ellipse). R buscard
ese término en cualquier lugar de la ayuda disponible, lo que nos
llevara de nuevo a la ventana de ayuda, mostrando todos los casos en
que aparece.

PARTE I: Primeros pasos 45

3 https://github.com/features.

Y que ya indicamos en el capitulo
anterior.

32 Tanto en la interfaz basica de R como
en RStudio, aunque los resultados
difieren a veces en algunos aspectos.

https://github.com/features

46 Cap. 2. Una primera inmersion

History Plots Help

& 0

R: Arithmetic Mean ~

mean {base} R Documentation

Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.
Usage

mean(x, ...)

Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x An R object. Currently there are methods for numeric/logical vectors and date, date-time and
time interval objects. Complex vectors are allowed for trim = 0, only.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before the mean is
computed. Values of trim outside that range are taken as the nearest endpoint.

na.rm alogical value indicating whether NA values should be stripped before the computation
proceeds.

further arguments passed to or from other methods.

Environment Files Packages Viewer

Dos funciones mas complementan la ayuda disponible: example()
muestra ejemplos de uso de la funcién indicada (extraidos de la
ayuda de la funcién), mientras que demo() hace demostraciones de
las capacidades de R. Algunos ejemplos pueden ser los siguientes:

?plot

??png
example(apply)
demo(colors)

Ejercicio 2.12.

¢(Coémo obtener una media recortada?

Una btisqueda en la ayuda (?trimmed mean) no dice nada, y
usar la doble interrogacién tampoco ayuda mucho. Una btisque-

da en Internet puede ayudar, y también explorar la ayuda de la
funcién mean().

2.7 Salir deR

Al acabar una sesién, indicamos a R que queremos salir con la
funcién q(), del inglés quit. Si existe algtin archivo de cédigo sin
grabar nos preguntard si queremos guardarlo a través de una ventana

de dialogo.

Figura 2.2: Ventana de ayuda en
RStudio para la funcién mean().

PARTE I: Primeros pasos 47

q()

Save workspace image to ~/Documents/B/.RData? [y/n/c]:

Como se aprecia, también nos consulta acerca de guardar el espa-
cio de trabajo, esto es, los objetos activos en memoria, y que podemos
almacenar en un archivo para tenerlos disponibles al abrir otra se-

sioén33. % Es decir, que al volver a abrir tendre-
Deberemos responder indicando la inicial de yes, no o cancel. Los mos los mismos objetos en memoria
. . j que en el momento de salir, con lo que
detalles de los procesos realizados al cerrar (y al abrir) R se verdn con podemos continuar el trabajo en el
detalle en el capitulo 20. En general, no se recomienda, ya que puede punto en que lo dejamos.

haber objetos presentes que no estén en una situacion de uso normal,
o que modifiquen el funcionamiento del programa.

PARTE II: Fundamentos

3
Control del entorno y objetos (I)

El trabajo diario con R exige un control adecuado de lo que ocurre

en cualquier sesion, y ello necesita de algunos conocimientos basicos.

Comenzaremos ahora por conocer algo mas del entorno en que se
ejecuta y de los objetos que se utilizan y dejaremos otras cuestiones
mads avanzadas para el capitulo 20.

RESUMEN

Localizacion (3.1). Veremos cémo saber el directorio en que
estamos trabajando y el modo de moverse por ellos.

Espacio de trabajo (3.2). Trabajar en R requiere crear objetos y
manipularlos. La ventana Environment en RStudio nos pro-
porciona esa informacién.

Todo lo que existe en R es un objeto (3.3). Desde los valores has-
ta las funciones, todo es un objeto almacenable y procesa-
ble. Veremos qué tipos de objetos basicos hay y cémo co-
nocer sus propiedades.

Funciones genéricas (3.4). Son funciones, muy habituales, que
se comportan de diferente manera segtn la propiedad class
de objeto al que se aplican.

Operadores (3.5). Descripcion basica y precedencia.

Avisos y errores (3.6). Parte imprescindible de aprendizaje, con-
viene conocer desde ya sus diferencias.

3.1 Localizacion

Sea uno consciente o no, siempre que ejecutamos un programa
nos encontramos situados en algtin directorio®. El resultado es que
cualquier lectura o escritura de archivos serd realizada, por defecto,
en el directorio donde estamos situados.

Para conocer el directorio de trabajo (working directory) actual
basta usar la funcién getwd(), y para cambiar de directorio usaremos
setwd (), indicando entre los paréntesis, entrecomillado, el directorio

*Que no es lo mismo que una carpeta,
aunque a veces coincidan. Por ejemplo,
existe una carpeta llamada Escritorio,
pero no existe un directorio con tal
nombre; el directorio correspondiente
se llama Desktop.

52 Cap. 3. Control del entorno y objetos (I)

de trabajo que queremos establecer. Comenzamos consultando el
directorio de trabajo actual.?.

getwd ()

[1] "/Users/jose/Documents/B"

El resultado es una cadena de caracteres con la ruta del directorio
donde estamos situados. Dada la estructura de directorios de la
figura de la derecha, si estamos en B y ahora queremos situarnos en
B1, la funcion setwd () admite dos formas de indicar la ruta deseada :

1. Mediante una ruta absoluta: contiene la ruta completa desde el
directorio raiz y, dada una estructura de directorios estable, pode-
mos indicar cualquier directorio existente y siempre funciona.

2. Mediante ruta relativa: sélo se especifican los directorios a partir de
aquél en que estamos situados. Por ese motivo, sélo funcionara cuan-
do la posicion desde donde se ejecute la funcién sea la adecuada.

A continuacion vemos ambas formas de acceder al directorio B1.

setwd("/Users/jose/Documents/B/B1l") # absoluta
setwd("B1") # relativa

Las rutas absolutas tienen otra ventaja: si ahora quiero establecer
como directorio de trabajo B2, no tengo més que indicarlo:

setwd("/Users/jose/Documents/B/B2")

Las rutas relativas, en cambio, han de partir del directorio de
trabajo actual hasta llegar al deseado. En nuestro caso, si estamos
situados en B1, debemos volver a B y luego ir a B2. Para ir hacia atras
(al directorio B, padre del actual, B1) usamos dos puntos (. .), como

vemos:

setwd("../B2")
getwd ()

"/Users/jose/Documents/B/B2"

(Tienen, entonces, alguna utilidad las rutas relativas? Cuando
la estructura de datos no es estable (por ejemplo, cuando copiamos
unos programas a otro directorio o incluso a otro ordenador), todas
la rutas absolutas tendrdn que rehacerse. Pero si hemos utilizado
rutas relativas (desde el directorio del programa, por ejemplo), todo
seguira funcionando igual.

En RStudio podemos ver el directorio de trabajo en la cabecera
de la ventana de consola (véase la figura 3.2). La virgulilla (~) indica
el directorio Home, o directorio del usuario desde cuya cuenta se ha

*La salida presentada es la obtenida en
macOS.

A > B1
B > B2

Figura 3.1: Estructura de directorios.

Console Terminal R Markdown

Figura 3.2: Directorio de trabajo, en la
ventana de consola. Pulsando la flecha
se actualiza la pestafia de directorios de
RStudio.

PARTE II: Fundamentos 53

iniciado R (en nuestro caso, /Users/jose/, y es otra forma completa-
mente valida de indicar rutas en R). Junto al directorio, a su derecha,
vemos una flecha apuntando también a la derecha; si la pulsamos

se activa la pestafia Files en RStudio y se muestra el directorio de
trabajo con todo su contenido (figura 3.3). Desde ahi podemos abrir
en RStudio cualquier archivo que deseemos.

Figura 3.3: En RStudio, la ventana

Environment Files Packages Viewer =
Files, mostrando los directorios
©] New Folder | © Delete «]Rename {g} More ~ o . .
_ utilizados en el ejemplo anterior.
/I\ Home > Documents > B > | .
A Name Size Modified
t.
@] B.Rdata 277 8B Jul 6,201
1 B1
1 B2

En resumen, es imprescindible saber en cada momento cudl es

nuestro directorio de trabajo, asi como la ubicacién de nuestros

archivos de lectura y/o escritura, y volveremos sobre ello en el

capitulo sobre entrada y salida de informacién.3. 3Y de nuevo, de un modo mds técnico,
En ese sentido, el siguiente ejercicio es, mas que recomendable, en el apartado 203.

casi imprescindible para seguir ordenadamente el resto del manual.# 48i las explicaciones del ejercicio no son
suficientes, o si que quiere saber mds
sobre los proyectos, podemos acudir

al apartado 20.4 del segundo capitulo

E] Sz s dedicado al control del entorno.

Es de vital importancia tener un control adecuado sobre dén-
de estamos (desde dénde se estd ejecutando R) y donde estin nues-
tras cosas (programas, datos, salidas. ..). Por ello, en este ejerci-
cio trataremos ambas cuestiones.

Respecto a dénde estdn nuestras cosas, y si no lo has hecho ya,
es un buen momento para tomar el control de los directorios (car-
petas) y archivos. Usa tu explorador de archivos para localizar
el lugar donde se alojaran fodos los archivos (programas, datos,
gréficos, etc.) que se irdn generando al leer (y practicar) este ma-
nual.

Lo habitual es crear un directorio especifico; aqui usaremos
FDR (por Fundamentos de R, obviamente). Podemos situar el di-
rectorio colgando directamente de la carpeta Documentos, que co-
rresponde al directorio Documents (en macOS; en Windows tene-
mos la carpeta Mis Documentos, que corresponde al directorio del
mismo nombre: Documents) o en cualquier otro lugar que que-
ramos. Posteriormente podremos crear nuevas carpetas (por ejem-
plo, para almacenar los datos; o una carpeta por capitulo), pero
ahora ya tenemos un lugar donde se almacenara lo que vayamos
construyendo.

Respecto a ddonde estamos, esto es, desde dénde se estd ejecu-
tando R, depende de cada caso. En general, al abrir RStudio nos

54 Cap. 3. Control del entorno y objetos (I)

situamos en el tdltimo directorio donde estdbamos al cerrar la dl-
tima vez. Podemos cambiar el directorio desde la pestafia Files,
pero vamos a utilizar una herramienta de RStudio que puede fa-
cilitarnos las cosas: los proyectos.

Por ahora, basta decir que un proyecto es una forma de agru-
par, organizar un conjunto de archivos (programas, datos, sali-
das...) de forma cémoda. Una de las comodidades tiene que ver
con el dénde estamos, ya que el proyecto siempre se abrird en el di-
rectorio desde el que se creé.

En resumen: si ya hemos creado nuestro directorio ~/Documents
/FDR podemos crear un proyecto en dicho directorio. Para ello
vamos al menti File en RStudio y pulsamos en New Project; ele-
gimos Existing Directory y lo indicamos. Se creard un archivo con
e nombre del directorio y con extensién .Rproj; en nuestro ca-
so, FDR.Rproj.

Una vez creado, podemos acceder pulsando en este archivo,

y RStudio se abrird en el directorio adecuado y mostrara el mis-
mo estado en que se cerr6 la sesién anterior, espacio de trabajo
y archivos abiertos incluidos.

3.2 El espacio de trabajo o entorno global

Podemos aplicar la pregunta del apartado anterior a los objetos
que creamos en R: ;jdénde estan situados? La respuesta es que todos
los objetos presentes en una sesién de R (cada variable, data frame o
funcién creada) estdn almacenados en el espacio de trabajo, llamado
también entorno global (Global Environment). Mds técnicamente, este
espacio de trabajo constituye uno de los varios entornos (environments),
0 espacios de memoria de que dispone R para almacenar variables,
funciones y datos.

Podemos observar los objetos activos (accesibles) en la sesién
actual en la pestafia Environment en RStudio junto con algunas de
sus propiedades (ver figura 3.4).

Environment Files Packages Viewer

=" # Import Dataset ~ y List ~
Global Environment ~

Values

datos_A num [1:25] -0.989 -0.512 -0..

datos_B num [1:25] -0.468 0.48 -0.7..

datos_B1 num [1:25] 2.9323 -0.1513 1.

datos_B2 num [1:25] @0.672 -0.641 -0...

También podemos saber qué objetos tenemos en nuestro espacio
de trabajo usando cualquiera de las funciones 1s() u objects().

Figura 3.4: En RStudio, la ventana
Environment muestra los objetos
presentes en el espacio de trabajo.
Ademas del nombre y parte de su
contenido, se muestra su clase (num,
que corresponde al tipo double) y su
longitud ([1:25]).

1s()

[1] "datos_A" "datos_B" "datos_B1" "datos_B2"

Existen otros entornos, por ejemplo los asociados a los paquetes
cargados en memoria, y que proporcionan un espacio independiente
para almacenar sus variables y funciones (véase la figura 3.5), pero se
tratardn brevemente en el capitulo 18, dedicado a los paquetes.

Ejercicio 3.2.

Vamos a comprobar la utilidad de los proyectos. Si estamos en
RStudio con uno o més archivos abiertos y con algunos objetos
en el espacio de trabajo, podemos hacer lo siguiente: primero, ce-
rramos RStudio, y damos 0K cuando se nos pregunte si guardar
el espacio de trabajo; a continuacién vamos al directorio que con-
tiene nuestro archivo .Rproj y lo ejecutamos.

Si todo es correcto, RStudio se abrird en el punto exacto don-
de acabamos de cerrar, incluido el espacio de trabajo con todos
los objetos.

3.3 Objetos y sus caracteristicas

Deciamos que todo lo que existe en R es un objeto. Variables, fun-
ciones y otros elementos que veremos mas adelante son objetos y,
como tales, podemos consultarlos, almacenarlos, operar con ellos,
visualizarlos. ..

En tanto el trabajo con R consiste en una continua manipulacién de
objetos, es necesario conocer sus caracteristicas. Para ello disponemos
de un conjunto de funciones cuya misién es informar de ciertos
aspectos fundamentales de los objetos. Dos de estos aspectos son
especialmente importantes: el tipo y la clase. Del primero hablamos en
el capitulo anterior y ahora lo completamos; del segundo hablaremos
ahora, junto con las demds caracteristicas.

3.3.1 La importancia de conocer a fondo los objetos

Antes de comenzar es necesario insistir en la importancia de este
apartado, aunque probablemente no se aprecie completamente hasta
llevar leidos® unos dos tercios del manual. Y sin embargo, su defensa
es bien simple: todo lo que puede hacerse en R tiene la forma

funcidén(objeto),

luego el control de cualquier programa no consiste mas que en tener
clara conciencia, en cada linea, de las propiedades de la funcién()

y del objeto (u objetos) que introducimos como argumento. Expre-
sado de otra forma: cada vez que que tengamos un problema, su

PARTE II: Fundamentos 55

Environment Files Pac
= 5 7> Import Datase

7}, Global Environment ~

)

Global Environment
package:stats
package:graphics
package:grDevices
package:utils
package:datasets

package:methods

package:base

Figura 3.5: Entornos, o environments
disponibles en una sesion basica de R.

5Y practicados.

56 Cap. 3. Control del entorno y objetos (I)

solucién pasard por el andlisis de las propiedades de la funcién (sus
argumentos de entrada, restricciones, salida) y del objeto (tipo, clase,
atributos. . .)

A esto convendria afiadir que R es un lenguaje extraordinariamen-
te rico y versétil, lo que también puede traducirse, para quien no lo
conoce, como desconcertante y propenso a errores. Es frecuente que
existan varias maneras correctas de realizar una misma accién, por
no hablar de ciertas operaciones automaticas® frecuentes que suelen % Como el reciclado o la coercion.
desconcertar las primeras veces.

En resumen, si queremos disfrutar de las bondades de R con
seguridad o, lo que es lo mismo, control, todo nos lleva a conocer los
objetos en profundidad.

Ejercicio 3.3.

Supongamos que tenemos tres vectores de igual longitud, X,
Yy Z, y queremos obtener la matriz de correlaciones. Nada més
facil: sabiendo que cor() proporciona lo que queremos, vamos
a la consola y escribimos:

cor(X, Y, Z2)

’ ’

Error in cor(X, Y, Z): invalid 'use’ argument

¢Qué ha ocurrido? ;Qué ha fallado? ;Qué significa la salida de
error?

Y sobre todo, ;cémo lo solucionamos? Todo pasa por atender
a la ayuda de la funcién cor() y comprobar qué se requiere y qué
hemos introducido.

3.3.2 El tipo, typeof()

La funcién typeof () devuelve el tipo del objeto, que serd una
de las 24 estructuras de almacenamiento disponibles en R. Como
dijimos, el tipo determina la naturaleza del contenido y, derivadas de
ella, sus propiedades.

Hasta ahora hemos visto seis tipos de objetos: cinco correspon-
dientes a vectores atémicos (integer, double, complex, character y
logical) y uno para vectores no atémicos (list, que es el tipo de
listas y data frames).

Volveremos a los ejemplos del capitulo anterior para ilustrar estas
funciones.

i <- c(16L, 13L)
d <- ¢(1, .6, 3)
1 <- (T, FALSE)

C <- c("A", "txt") # character

X <- c(1+2i, 4i) # complex
1st <- list(A = 7, # list

B = ¢("uno", "dos"),

C=T)
df <- data.frame(Id = c(1, 2, 4, 5), # list

GI‘UDO = C("EXp", ||C.tr.||’ “Ctr“, "EXp"),
VD = ¢(12, 11, 9, 14))

Y aplicamos la funcién typeof() a algunos objetos.

typeof(c)

[1] "character"
typeof (1lst)

[1] "list"
typeof (df)

[1] "list"

En tanto todos los objetos necesitan ser almacenados, todos ten-
dran un tipo. Las funciones, por ejemplo, tienen tres posibles tipos,
de los que dependen sus propiedades.”

3.3.3 La clase, class()

La funcién class() sirve para informar de, y establecer, la clase
de un objeto. Si el tipo era un atributo estructural que definia la
naturaleza del objeto, la clase es un atributo funcional, que define los
procedimientos que se podran aplicar.

Su funcionamiento se basa en la programacién orientada a ob-
jetos8, de modo que ciertas funciones se comportan de diferente
manera dependiendo de la clase del objeto al que se aplican.?

Al igual que ocurre con el tipo, todos los objetos tienen una clase.
No obstante, conviene diferenciar entre dos formatos en que nos
encontraremos las clases:

Clase implicita. Derivada del tipo de objeto, coincide con éste para los
objetos que son vectores atémicos o listas. Una excepcion es el caso
de los vectores de tipo double, donde la clase es numeric.

Clase asignada (o explicita). Es la que se afiade a un objeto™, de for-
ma que a partir de ese momento se le podran aplicar todos los
procedimientos (métodos) que existan para esa clase.

En general no tendremos que preocuparnos por la clase de un
objeto, ya que R asigna las clases requeridas en su momento y aplica

PARTE II: Fundamentos 57

7Como es el lenguaje en que estd escrita
la funcién (R o C) o el control de los
argumentos. Pero todo esto se verd a su
debido tiempo.

8 Que veremos en detalle en el capitulo
21.

9 En realidad esas funciones, llamadas
funciones genéricas, se componen de
multiples versiones (técnicamente,
métodos), uno para cada clase. Como
otras cuestiones que ahora simplemente
se presentan, se verdn con todo detalle
en su momento.

*° Decimos se afiade porque todos los
objetos siguen manteniendo su clase
implicita.

58 Cap. 3. Control del entorno y objetos (I)

los métodos adecuados. Ahora sélo veremos, a modo de ilustracion,
la clase de tres objetos: dos conocidos (un vector de enteros y un data
frame) y uno nuevo (una matriz).

Podemos crear un vector de enteros mediante el operador “:” y su
tipo y clase coincidirdn: integer.

i<-1:6
typeof(i); class(i)

[1] "integer"
[1] "integer"

Vemos que el vector ha heredado la clase del tipo; si usamos la
funcién attributes(), que veremos a continuacién, no muestra nin-
gun atributo (NULL), ni siquiera la clase, ya que ésta no es explicita:

attributes (i)

NULL

Ahora podemos usar el vector i para construir la matriz m a través
de la funcién matrix(), indicando el objeto usado para crear la
matriz, el ntimero de filas y el nimero de columnas:

m <- matrix(i, nrow = 2, ncol = 3); m

#it (.11 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Si consultamos su tipo y clase, encontramos lo siguiente:
typeof(m); class(m)

[1] "integer"
[1] "matrix" "array"

Esto es, el objeto m es de tipo integer, lo que significa que estd
almacenado en una estructura idéntica a la usada por i. Pero ahora
tiene una clase explicita doble, matrix y array. La consecuencia es
que, a partir de ahora, a m se le aplicardn los procedimientos (méto-
dos) disefiados para matrices y arrays, en este orden.™*

Como ultimo ejemplo tenemos el data frame df, definido anterior-
mente. Ya vimos que su tipo era list; también dijimos que los data
frames constituian un caso de lista especializada, disefiados especifi-
camente para almacenar bases de datos. Y es razonable pensar que
habrad multitud de procedimientos especificos para tratar con estos
objetos, lo que se consigue gracias a los métodos definidos para su
clase, data. frame:

" Por ejemplo, los disponibles para el
dlgebra matricial.

PARTE II: Fundamentos

typeof (df); class(df)

[1] "list"
[1] "data.frame"

El tipo, no obstante, nos recuerda que todo data frame es, intrinse-
camente, una lista, y se puede tratar (acceder, modificar, extraer...)
como cualquier otra lista. Y ademds, se dispone de todos los procedi-
mientos disefiados para los data frames.

3.3.4 Lalongitud, length()

La funcién length() devuelve la longitud del objeto al que se
aplique. Entendemos por longitud la cantidad de elementos del vector
considerado y, aunque la definicién es univoca, su aplicacién en el
caso de objetos no atémicos debe quedar clara.

En el caso de vectores atémicos es simple; el vector anterior i
contenfa los enteros del 1 al 6, luego su longitud sera 6.

length (1)

[1] 6

En el caso de listas y data frames la longitud se refiere al niimero de
componentes: los elementos de las listas y los elementos (o variables)
de los data frames.

lst

$A

[1]1 7

##

$B

[1] "uno" "dos"
##

$C

[1] TRUE

length(1lst)
[1] 3
df

Id Grupo VD

#1 1 Exp 12
##2 2 Ctr 11
##3 4 Ctr 9
4 5 Exp 14

59

60 Cap. 3. Control del entorno y objetos (I)

length(df)

[1] 3

Por supuesto, también podemos consultar la longitud de los com-

ponentes de una lista o data frame."* Para ello aplicamos la funcién 2 Lo que coincidiria con el ntimero de
length() al elemento que deseemos: €asos.

length(df$Id)

[1] 4

Un dltimo apunte: la funcién length(), como otras muchas en R,
tiene un doble uso: sirve tanto para consultar la longitud de un objeto
como para establecerla®3. Por ejemplo, podemos reducir la longitud '3 En realidad hay dos funciones

del vector i a cuatro elementos de la siguiente forma: Length(), pero es algo cémodamen-
te invisible para los usuarios.

length(i) <- 4; i

[1]1 123 4

Ejercicio 3.4.

Construye toda una serie de objetos (vectores atémicos, ma-
triz, lista, data frame) y consulta para cada uno su tipo, clase y lon-
gitud.

3.3.5 Los nombres, names ()

La funcién names () permite consultar y establecer los nombres de
los elementos de los vectores atémicos y no atémicos. Pero lo maés
interesante de los nombres es que no sélo sirven para etiquetar los
elementos, sino también para acceder a ellos.

Su principal utilidad se muestra al trabajar con listas y data frames.
De hecho, ya hemos hecho uso de los nombres al construir la lista
Ust y el data frame df, y ahora podemos consultar esos nombres.

names (1lst)

[1] ||A|| ||B|| "C"

names (df)
[1] IIIdII IIGrupoll IIVDII
. . 4 Pensemos que en un conjunto de
Y podemos usarlos para acceder a su contenido. En los ejemplos datos con 100 variables es més facil
anteriores, usamos el operador ‘$’, como ya vimos, para enlazar el recordar el nombre de una variable,

por ejemplo, datos$edad que su indice,

3 .1
nombre del objeto con el del elemento:™4 datos[7].

PARTE II: Fundamentos 61

1st$A
[1]1 7
df$vD

[1] 12 11 9 14

También podemos nombrar los elementos de los vectores atémicos,
pero es menos comun. Podemos pensar, por ejemplo, en el caso de
vectores que almacenen coordenadas (x, y); puede ser ttil que, al
mostrar su contenido, se indique a qué dimension se refiere cada

valor:

coord <- c(4, 12)
names (coord) <- c("x", "y")
coord

#H Xy
4 12

Los nombres pueden asignarse al crear el objeto, indicandolos sin
comillas.

(coord <- c(x =4, y = 12))

Xy
4 12

Y también podemos acceder a los elementos a través de los nom-
bres; en tal caso hay que incluir el nombre donde habitualmente
usdbamos un indice numérico:

coord["y"]

#H oy
12

3.3.6 El modo, mode()

Todos los objetos de R poseen un atributo, el modo, que puede
obtenerse con la funcién mode(), y que en general coincide con el tipo
(obtenido mediante typeof()).

La tnica diferencia en cuanto a los vectores atémicos estd en los
vectores de tipo integer y double, ya que ambos tienen mode() =

. . . > Obviamente, esta comprobacion deja

numeric, por lo que puede ser de utilidad para comprobar si un fuera a los vectores complejos, que
vector tiene contenido numeérico independientemente de su tipo.'> tienen mode() = complex.

62 Cap. 3. Control del entorno y objetos (I)

int <- 3L
dou <- 5
typeof(int); typeof(dou)

[1] "integer"

[1] "double"
mode(int); mode(dou)

[1] "numeric"
[1] "numeric"

En este manual se han mantenido deliberadamente separados los
atributos tipo y modo, de forma que sélo utilizaremos el tipo de los
objetos. La razén es que, en la practica, el modo es un atributo un
tanto obsoleto que sélo se mantiene por compatibilidad con S.

No obstante, no es posible excluir el modo de de este manual (o
cualquier otro) ya que aparece con demasiada frecuencia en manua-
les, webs, libros... Y en muchos casos se aprecia cierta confusién con
el modo y el tipo, incluso en manuales bésicos de R.*® En el apartado
20.7 al final del libro se intentan aclarar las diferencias y similitudes.

3.3.7 Otros atributos, attributes()

La funcién attributes() informa de ciertas propiedades, o atri-
butos, del objeto al que se aplica. La utilizamos en un ejemplo al
estudiar la clase y en aquel caso devolvié NULL, ya que se trataba de
un vector atémico sin ninguna caracteristica adicional.

Pero algunos de los objetos creados en los ejemplos tienen propie-
dades que no hemos podido visualizar hasta ahora. Por ejemplo, la
matriz m tiene una propiedad interesante: sus dimensiones.

attributes(m)

$dim
[1] 2 3

La matriz tiene dimensién 2 x 3, como corresponde a lo indicado
al construirla: m <- matrix(i, nrow = 2, ncol = 3). La funcién
attributes() no es la tnica que devuelve esta informacién; también
podemos obtenerla con dim():

dim(m)

[1] 2 3

Los objetos 1st y df también tienen atributos que mostrar. En el
caso de la lista s6lo se muestran los nombres de sus componentes'”.

16 Por ejemplo, el capitulo 3 del manual
An Introduction to R (Venables et al.,
2019) utiliza ambos términos casi como
sinénimos; incluso a veces de forma
incorrecta.

7 Que, como vimos, también se podian
obtener con names ().

attributes(lst)

$names
[1] IIAII IIBII IICII

El data frame df, sin embargo, tiene mas informacion:

attributes(df)

$names

[1] "Id" "Grupo" "VD"
##

$class

[1] "data.frame"

##

$row.names
[1]1 1 2 3 4

Ademas de los nombres (names, para las variables, como vimos)
aparecen los nombres de filas (una secuencia que R afiade automatica-
mente para cada caso) y la clase explicita.

3.3.8 La estructura del objeto, str()

Si bien las funciones anteriores informan de aspectos variados y
ttiles, consultar cada uno de ellos para cada objeto tratado puede ser
tedioso. Una alternativa cémoda es la funcién str(), que muestra la
estructura del objeto. La informacién de salida difiere segtin el objeto,
pero en general informa de los aspectos mas importantes y ttiles a la
hora de tratar con los objetos.

Aplicada a vectores atémicos informa de su tipo o clase, su longi-
tud, y los primeros elementos.

str(1:100)

int [1:160] 12345678910 ...
str(c(2, .3, 16))

num [1:3] 2 0.3 16

str(c("a", "b", "c", "d"))

chr [1:4] "a" "b" "c" "d"

A continuacién aplicamos str() a una matriz, una lista y un
data frame. Puede observarse cémo se muestra, para cada caso, la
informacién maés relevante.

PARTE II: Fundamentos

63

64 Cap. 3. Control del entorno y objetos (I)

str(m)

int [1:2, 1:31 123456
str(lst)

List of 3

$ A: num 7

$ B: chr [1:2] "uno" "dos"
¢ C: logi TRUE

str(df)
'data.frame’: 4 obs. of 3 variables:
$ Id tnum 1245

$ Grupo: chr "Exp" "Ctr" "Ctr" "Exp"

$ VD :num 12 11 9 14

Observamos que str() suele mostrar la clase, no el tipo, en su

descripcién del objeto, aunque no siempre, como se observa con

la matriz m, donde aparece su tipo.’® No obstante, viendo sus di-
mensiones, [1:2, 1:3], se aprecia inmediatamente su naturaleza

8.0 su clase implicita. Por cierto que
en la tabla 3.1 mds adelante s6lo se

bidimensional.

muestra la primera clase, matrix, y se ha
omitido array por simplicidad.

Resumimos en la tabla 3.1 algunas de las propiedades vistas,

aplicadas a los objetos utilizados hasta ahora. Véase que los vectores

de tipo double tienen clase numeric, rompiendo con la simetria

presente en el resto de vectores atomicos.

Tabla 3.1: Informacién sobre vectores

Objetos typeof () class() str()
i integer integer int [1:6] 123456
d double numeric num [1:3] 1 0.6 3
1 logical logical logi [1:2] TRUE FALSE
ch character character chr [1:2] 'A' 'txt'
X complex complex cplx [1:2] 1+2i 0+4i
m integer matrix int [1:2, 1:3] 123456
st list list List of 3
$ A: num 7
$ B: chr [1:2] 'uno' 'dos'
$ C: logi TRUE
df list data.frame ‘'data.frame': 4 obs. of 3 variables:
$ Id tnum 1245

$ Grupo: chr 'Exp' 'Ctr' 'Ctr' 'Exp'
$ VD :num 12 11 9 14

Ejercicio 3.5.

na nombres a los elementos de algunos de ellos. Observa el com-

Utiliza los objetos construidos en el ejercicio anterior y asig-

portamiento de names () con matrices y data frames.

3.4 Funciones genéricas

Si en el capitulo anterior presentamos las funciones, queremos
ahora dedicar un breve espacio a un grupo particular de ellas: las
funciones genéricas. La razén es que acabamos de aludir a ellas en rela-
cién al atributo class() y que, ademds, son mucho mads frecuentes de

lo que pudiera pensarse.

Como ya dijimos en relacion a la clase de los objetos, las funciones
genéricas son un tipo especial de funciones que, dependiendo de
la clase del argumento de entrada, decide qué procedimiento (mds
precisamente, qué método —method) aplicar. Las funciones genéricas
pertenecen al dmbito de la programacién orientada a objetos, pero no es

Luego consulta sus atributos y estructura.

momento ahora de entrar en ningin detalle.™

Por ahora es suficiente saber de su existencia y objetivo, lo que
ayuda a entender porqué funciones como summary ()?° tienen una
respuesta tan diferente segin el objeto. Aqui la vemos aplicada al

vector 16gico 1, a la matriz m y a la lista lst.

summary (1)
Mode
logical
summary (m)
V1
Min.

1st Qu.:
Median :
Mean

3rd Qu.:
Max.
summary (1lst)
Length
#* A1

B 2

C 1

N B B R

FALSE TRUE

1 1

V2
.00 Min. :3
.25 1st Qu.:3
.50 Median :3
.50 Mean :3
.75 3rd Qu.:3
.00 Max. 14

Class Mode

-none- numeric
-none- character
-none- logical

.00
.25
.50
.50
.75
.00

V3
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max.

(o) BN O, B O, BN O, BN O, B O |

.00
.25
.50
.50
.75
.00

PARTE II: Fundamentos 65

* Hay todo un capitulo dedicado a

la programacién orientada a objetos,

e inclye entre otras cuestiones cémo
construir funciones genéricas y métodos
asociados.

** Que muestra un resumen del objeto al
que se aplica.

66 Cap. 3. Control del entorno y objetos (I)

Ejercicio 3.6.
Comprueba el funcionamiento de la funcién summary () con
objetos de clase character y data. frame.

3.5 Operadores

Existen varios tipos de operadores (aritméticos, de comparacién,
l6gicos) que iremos viendo en detalle cuando corresponda. La razén
de mostrarlos ahora, ademas de comenzar a familiarizarnos con
ellos, es atender a su precedencia, esto es, el orden en que se aplicardn
en caso de haber varios en una misma expresién. Desatender a la
precedencia lleva a no pocos errores.

Los operadores mostrados aqui estan ordenados de mayor a
menor precedencia. Son algunos de los que aparecen en la ayuda de
?Syntax, elegidos por su frecuencia; el resto se verd mas adelante.

Tabla 3.2: Operadores: precedencia, tipo y accion

Operador Tipo Numero Accién
$ acceso binario extrae componente
[[I acceso binario indexa vectores
T okk aritmético binario exponenciacién
-+ aritmético unario - y + unario
secuencia binario genera secuencia
* / aritmético binario multiplicacién y divisién
+ - aritmético binario suma y resta
< > <= >= == |= comparacién binario comparaciones
! l6gico unario negacion
& && l6gico binario operador AND
Il légico binario operador OR
-> asignaciéon binario asignacién hacia la derecha
<- asignaciéon binario asignacién hacia la izquierda
= asignaciéon binario asignacién hacia la izquierda

Olvidar las precedencias lleva a errores comunes, como el que se
produce cuando, dado n = 10, queremos generar una secuencia des-
de 1 hastan - 1. En una primera versién, incorrecta, la precedencia
del operador : hace que primero se cree la secuencia 1:10 y después se

reste, a cada elemento del vector, el valor 1.

n <- 10
I:n -1

[11 01234567829

En la siguiente versién tomamos el control: los paréntesis fuer-

PARTE II: Fundamentos 67

zan el cédlculo de n - 1 en primer lugar; posteriormente se crea la
secuencia de 1 a 9.

1:(n - 1) # correcto

[11 123456789

Ejercicio 3.7.

El vector x <- runif(30) se ha construido generando 30 va-
lores aleatorios extraidos de una distribucién uniforme entre los
valores 0 y 1. A partir de él obtén el vector y dados y = X'y
o = Sx tal que:

Utiliza la menor cantidad de paréntesis posible sin perder cla-
ridad.

3.6 Awvisos y errores

Cualquier salida al ejecutar c6digo en R podria catalogarse dentro
de una de estas tres posibilidades:

1. Ejecucién realizada y sin incidencias.
2. Ejecucién realizada con un aviso.
3. Ejecucién abortada debido a un error.

X <- c(-1, 4)

sum(x) # Ejecutado sin incidencias
[1] 3
sqrt(x) # Ejecutado CON aviso

Warning in sqrt(x): Se han producido NaNs

[1] NaN 2

x(2) # No ejecutado POR error

Error in x(2): no se pudo encontrar la funcién "x"

Vése que, incluso en los casos en que no hay error, es conveniente
prestar atencién al c6digo®’. La razén es que R es extraordinariamen- # Especialmente cuando estamos
te robusto, lo que se traduce en que operaciones que suelen dar error comenzando a trabajar con R.
en otros lenguajes, aqui son procesadas sin mds. Ya mostramos un
caso en que dos elementos incompatibles (de diferente tipo) eran

agrupados en un mismo vector:

68 Cap. 3. Control del entorno y objetos (I)

v <- c("a", 4); v

[1] "a" "4"

No hay aviso ni error; sencillamente, el valor 4 ha sido coercionado
al tipo character, resultando en un vector de dicho tipo. Asi, aun-
que el procedimiento se realice sin errores, puede no estar haciendo
exactamente lo que queremos. Ello dependerd de que usemos los ar-
gumentos de la manera apropiada, y que estos tiltimos sean tratados
exactamente de la forma que queremos.

También requiere atencién el segundo caso: hay un aviso, pero
el cédigo se ha ejecutado y, por tanto, devuelve un resultado y el
proceso contintda. Normalmente los avisos indican circunstancias par-
ticulares que pueden ser conocidas por el usuario, o no. Un ejemplo

de ello es el reciclado®?, una operaciéon que R realiza por defecto en 2 Que veremos en detalle al final del ca-
pitulo siguiente. Basicamente, consiste

muchos casos y que quizds no corresponde con lo que queriamos. En o _
en extender un vector reutilizando (reci-

el caso siguiente, queremos sumar dos vectores, elemento a elemento, clando) al final del mismo los valores
pero son de distinta longitud: iniciales hasta alcanzar una longitud
determinada.

al <- c(1, 2, 3, 4)
a2 <- c(10, 20, 30)
a <- al + a2

Warning in al + a2: longitud de objeto mayor no es miltiplo
de la longitud de uno menor

Hay un aviso, cierto, pero el célculo se ha llevado a cabo y la asig-
nacién también. Como se ve, el valor a2[1] = 10 se ha reutilizado
como sumando del cuarto elemento de al[4] = 4.

[1] 11 22 33 14

Este mismo ejemplo puede ilustrar la atencién exigida también
cuando no hay errores ni avisos. ;Creemos que R nos avisard siempre
que recicle algtin vector?

al <- c(1, 2, 3, 4)
a2 <- c(10, 20)
a <- al + a2; a

[1] 11 22 13 24

Parece que no. Por la salida puede inferirse que R s6lo avisara
cuando el vector mayor no sea un miiltiplo entero del menor.

Respecto al tercer caso, los errores abortan la ejecucion, luego aten-
der al c6digo y revisarlo es la tinica opcién.

PARTE II: Fundamentos

Ejercicio 3.8.
Con lo que sabemos hasta ahora, vamos a ejecutar cuatro ac-
ciones: dos de ellas con warning y dos que generen un error.

3.7 Mds control

Para quienes entren por primera vez el mundo de la programacién,
esta introduccion es suficiente para afrontar los siguientes capitulos
con seguridad.

No obstante, aquellas personas que tengan ya experiencia en
programacién pueden querer hojear el capitulo 20 del mismo nombre
que éste, con informacién que completa la que aparece aqui, como
aspectos de inicio y configuracion, gestién y eficiencia.

69

4

Vectores

Creemos haber dejado claro que los vectores® son el ladrillo bésico

de construccién en R, luego bien estd dedicarle un capitulo completo

para conocer en detalle sus propiedades y la forma de interactuar con

ellos.

RESUMEN

Creacidn de vectores (4.1). Funciones para su creacion.

Acceso e indices (4.2). Cémo acceder a algin elemento, o a un
conjunto de ellos, a partir de sus indices.

Unién de vectores (4.3). Uniones unidimensionales o bidimen-
sionales.

Condicionales implicitos (4.4). Son pruebas légicas aplicadas
a los vectores elemento a elemento.

Creacion de secuencias (4.5). Frecuentes, sirven para el control
de indices en vectores hasta la creacién de graficos.

Coercion (4.6). Mecanismo por defecto en vectores atémicos,
fuerza a que todos los elementos sean del mismo tipo.

Reciclado (4.7). Otro mecanismo, aplicado automaticamente
cuando se realiza algtn tipo de unién entre objetos de di-
ferente longitud.

Como hemos visto en los capitulos anteriores, un vector no es

mas que una secuencia ordenada de elementos. Y en tanto considere-

mos vectores atdmicos, s6lo podran contener elementos de la misma

naturaleza (enteros, reales, caracteres, etc.)?

4.1

Creacion de vectores

Recordemos que la forma mads bésica de crear un vector es com-

binar varios elementos mediante el operador c(); su tipo vendra

determinado por el tipo de los elementos que lo componen. Con la

funcién str() vemos a continuacién su estructura.

* Junto con las funciones, por supuesto.

*> Dejaremos por ahora de lado los
vectores no atémicos, listas y data
frames. Pero recordemos que éstos
se componen de los atémicos, luego
todo lo que veremos afectara a sus
contenidos.

72 Cap. 4. Vectores

X <- c(10, 20, 30, 40, 50)
str(x)

num [1:5] 10 20 30 40 50

No obstante, la manera mas habitual de obtener un vector es bien
extrayéndolo de algtn archivo de datos, bien como resultado de
alguna funcién. En el ejemplo siguiente, el vector r contiene 4 valores
aleatorios procedentes de una distribucién normal estandarizada

mediante la funcién rnorm().3 3 La utilizacién de las funciones de
generacién de niimeros aleatorios

es habitual en la construccién de
ejemplos, por lo que la utilizaremos con
frecuencia en el manual.

r <- rnorm(4); r

[1] -0.9133902 -0.4517369 1.0365117 -0.2955906

Otra forma habitual de generar vectores es mediante funciones
especialmente dedicadas, como se vera més adelante, a la creacién de
secuencias.

Ejercicio 4.1.

Podemos ahora generar tres ntimeros aleatorios con distribu-
cién normal con media 100 y desviacion tipica 15. Para ello es ttil
consultar la ayuda, ?rnorm.

4.2 Acceso e indices

Para acceder al contenido de un vector utilizamos el operador de
extraccion, [], introduciendo dentro de los corchetes el indice del
elemento. Téngase en cuenta que en R los indices comienzan siempre

en 14: 4En otros lenguajes, como C, los indices
siempre comienzan en 0.
x[1]
[1] 10

Podemos indicar més de un elemento; en el ejemplo usamos el
operador dos puntos para extraer los elementos con indices 2, 3, y 4.

x[2:4]

[1] 20 30 40

En el siguiente caso se indican dos elementos no contiguos: 3 y
5. Véase que el operador de extraccién ‘[]1’, aplicado a un objeto
unidimensional, espera como argumento un tinico objeto, luego los
dos valores han de ser agrupados dentro de un vector mediante c().

PARTE II: Fundamentos 73

x[c(3, 5)]

[1] 30 50

Si se quiere acceder a un elemento inexistente, el sistema indica que
no esta accesible (NA); y si se hace una asignacidn, el sistema crea ese
elemento y cualesquiera intermedio que sea necesario (asignandoles

el valor NA).5 5 El valor NA tiene un estatus especial en
R, y es utilizado para indicar los datos
perdidos (missing data). Es el acrénimo
de Not Available (no disponible), y se
verd en detalle en el capitulo 13.

x[7]
[1] NA
x[7] <- 70; x

[1] 10 20 30 40 50 NA 70

Si, por el contrario, se quiere excluir algtin elemento, basta indicar

6

su indice (o indices, si son varios) precedido de un signo menos. ®Véase que, en tanto no ha habido

asignacion, x permanece intacto. E1
unico efecto es sobre el resultado
mostrado en consola.

x[-c(3, 4)]
[1] 10 20 50 NA 70

Si utilizamos los corchetes sin indicar ningtn indice, estaremos
aludiendo a fodos los elementos de un vector.

x[] <- 3; x

[1] 3333333

Debe quedar clara la diferencia entre acceder a los elementos de un
vector o acceder a éste como un todo. En las operaciones anteriores, se
ha tratado con uno o varios elementos del objeto; en el siguiente caso, el
objeto en si es afectado hasta el punto de convertirse en otra cosa: un
vector de longitud unidad que contiene el valor l6gico TRUE.

x <-T; x
[1] TRUE
Ejercicio 4.2.

Definido el vector r a continuacién, deduce la salida de las si-
guientes lineas de cédigo:

74 Cap. 4. Vectores

r <- c(10, 20, 30, 40, 50, 60, 70, 80)
ri2]

r[l:5]

ril

ri:]

ril:]

r[:5]

ri2, 3]

ric(2, 3)]
ri-c(2, 3)]
r[5:length(r)]
r{l <- c(2, 3); r

4.3 Union de vectores

Existen diferentes formas de unir la informacién contenida en
dos 0 mds vectores. Pero comencemos con la versién mds simple de
concatenacion: la funcién c(). Como ya sabemos, sirve para crear
vectores indicando sus elementos. No obstante, en los ejemplos
siguientes se amplian los usos que hemos visto.”

(v <- c(1, 2)) # EL ejemplo mas simple
[1] 1 2

(v <- c(v, 5)) # Amplia v

[1] 125

(w <- 10 * v) # Creamos w a partir de v
[1] 10 20 50

(z <- c(v, w)) # Une vectores

[1] 1 2 5 10 20 50

Podemos comprobar que anidar funciones c() no tiene absoluta-
mente ningtn efecto®.

c(100, c(99, c(98, c(97))))

[1] 100 99 98 97

Los ejemplos anteriores ilustran un aumento de la longitud, bien de
un dnico vector, bien concatenando dos o més para crear un vector
nuevo. Esto es vélido para cualquier tipo de vectores atémicos, e

7Véase que en los ejemplo usamos
paréntesis alrededor de las asignaciones;
con ello se consigue una impresiéon

del resultado sin tener que recurrir al
nombre del vector recién creado.

8 Habra que esperar a estudiar las listas
para construir objetos recursivos donde
el anidamiento sf sea posible.

incluso pueden concatenarse elementos de diferente tipo, aunque en
tal caso se aplicara la coerciénd.

Si la unién que necesitamos no requiere concatenar, sino crear
una estructura bidimensional, entonces tenemos que usar una de las
funciones bind: rbind() y cbind(), que realizan la unién por filas o
por columnas, respectivamente.

rb <- rbind(v, w); rb

[,11 [,2] [,3]
v 1 2 5
w10 20 50

cb <- cbind(v, w); cb

vV oW
[1,]1 1 10
[2,]1 2 20
[3,] 5 50

class(rb); class(ch)

[1] "matrix" "array"
[1] "matrix" "array"

El resultado final es bidimensional y atémico, por lo que los ob-
jetos resultantes son de clase matrix y array. Por contra, si los argu-
mentos de cbind() o rbind() son de diferente tipo, los componentes
serdn coercionados. Por ejemplo, creemos el vector 16gico 1.

1 <- c(F, F, T); 1 # Vector tipo logical

[1] FALSE FALSE TRUE

Si lo unimos al vector v, de tipo double, 1 serd coercionado a tipo
double.™

rb <- cbind(v, 1); rb # logical coercionado a double
v 1
[1,1 10
(2,1 20
[3,1 51

str(rb)

num [1:3, 1:2] 125001

- attr(x, "dimnames")=List of 2
..$: NULL

..$ ¢ chr [1:2] "v" "1"

PARTE II: Fundamentos

9 Que mencionamos en los capitulos
anteriores y se vera en detalle en este
capitulo.

* De forma que los valores TRUE y
FALSE se cambian porOy1l, respectiva—
mente.

75

76 Cap. 4. Vectores

Si queremos evitar este comportamiento deberemos utilizar
vectores no atémicos y, por ejemplo, realizar la unién mediante
data.frame(), de forma que cada componente mantenga su tipo
original.

df <- data.frame(v, 1); df

v 1
1 1 FALSE
2 2 FALSE
3 5 TRUE

str(df)

'data.frame’: 3 obs. of 2 variables:
$v:num 125
¢$ 1: logi FALSE FALSE TRUE

Existen modos més complejos de unir informacién, por ejemplo,
cuando unimos dos data frames que contienen dos conjuntos de datos
de un mismo estudio, pero los veremos en el capitulo 12, dedicado a
este tipo de objetos.

Ejercicio 4.3.

Creamos el vector Id (con la identificacién de cuatro pacien-
tes: 103, 110, 156 y 212) y el vector edad (con las edades de los pa-
cientes: 76, 45, 67 y 34).

Después unimos ambos de forma que tengamos una colum-
na por variable y lo asignamos al objeto pac.

¢De qué tipo y clase es el objeto obtenido?

Ejercicio 4.4.

Tenemos los nombres de los cuatro pacientes anteriores (Lau-
ra, Alberto, Francisco, Berta). Podemos crear el data frame pacientes
que contenga los datos de pac mas los nombres.

¢De qué tipo y clase es el objeto obtenido?

4.4 Condicionales implicitos

Una herramienta ampliamente utilizada en R son los condicionales
implicitos, que ilustramos aqui brevemente. Consisten en aprovechar
la naturaleza vectorial de R para aplicar a un vector una condicién
légica que serd evaluada elemento a elemento.

X <- ¢(10, 20, 30, 40, 50)
X > 25

PARTE II: Fundamentos

[1] FALSE FALSE TRUE TRUE TRUE

El resultado es un vector 16gico de la misma longitud que el origi-
nal donde, para cada elemento, se indica si se cumple la condicién.
Otra opcién es solicitar los indices de los elementos que cumplan esa
condicién, lo que se consigue con la funcién which():

which(x > 20)
[1] 345
En R suele hacerse un uso intensivo de condicionales implicitos y,

bien utilizados, permiten extraer gran cantidad de informacién de
forma muy eficiente. Aunque veremos una descripcién detallada

posteriormente'?, vamos a ilustrar su uso con un ejemplo muy " En el capitulo 6, dedicado a los
simple. Volvamos al vector de datos x. vectores l6gicos.
X

[1] 10 20 30 40 50

Si aplicamos una condicién a x obtendremos un vector légico.
Pensemos en aquellos casos con valores superiores a 25.

X > 25
[1] FALSE FALSE TRUE TRUE TRUE
Pues bien, ese vector 16gico es el que permite operar con gran
versatilidad. Por una parte sirve como indice, de forma que al usarlo
sOlo se seleccionardn aquellos elementos correspondientes a valores

TRUE.

x[x > 25]

[1] 30 40 50

Pero también podemos aprovechar los mecanismos de coercion
que incorpora R. Asf, al aplicar funciones matematicas a vectores

l6gicos, éstos son coercionados a ntiimeros’?, lo que permite contar el 2 A tipo integer, concretamente.

numero de casos que cumplen la condicién: Recordemos que los valores TRUE
y FALSE se transforman en 0L y 1L,
respectivamente.

sum(x > 25)

[1] 3

O saber su proporcién:

77

78 Cap. 4. Vectores

mean(x > 25)

[1] 0.6

Ejercicio 4.5.
Partimos del vector edad definido anteriormente. A partir de
él podemos obtener:

= Un vector 16gico donde se indique si el paciente tiene méas de
50 afos.

= Las edades mayores de 50 afios.

= Los indices de los pacientes con més de 50 afios.

= Cudntos pacientes tienen mds de 50 afios.

4.5 Creacion de secuencias

Las secuencias tienen una presencia muy superior a lo que cabria
esperar en principio. Desde operar con los indices en vectores (y
matrices, data frames. ..) o gestionar los indices en los bucles, hasta
crear los valores para una representacion gréfica o generar patrones
complejos. Y para ello contamos con tres funciones basicas como son
el operador dos puntos (:) y las funciones rep() y seq().

4.5.1 El operador dos puntos, :

El operador dos puntos, que vimos brevemente, genera una se-
cuencia de nimeros enteros entre los dos indicados, ambos incluidos,
que puede ser creciente o decreciente:

i<- 2:6
str(i)

int [1:5]1 23 456
j <- 10:1; j

[11 16 9 8 7 6 5 4 3 2 1

En un sistema vectorial, el uso de secuencias de enteros para
aludir a los indices de los elementos de los vectores es muy frecuente.
Asi, los 50 primeros elementos del vector datos pueden asignarse al
vector d_primeros simplemente escribiendo:

d_primeros <- datos[1:50]

Segun los argumentos introducidos, el comportamiento de (:)
puede variar, pero dejamos los detalles para el Cap. 5, donde se
estudiaran en profundidad los vectores numéricos.

4.5.2 La funcion seq()

La funcién seq(), por su parte, crea una secuencia a partir de los
argumentos de entrada. Los méas bdsicos son:

seq(from = 1, to = 10, by = 2)

[11 13579

Aunque su uso puede ser muy simple’3, el comportamiento de
seq() puede llegar a ser bastante complejo, y se recomienda leer la
ayuda para comprender todos los detalles. Los siguientes ejemplos
muestran el uso de los argumentos de seq(); puede observarse
que existe la costumbre, a veces, de omitir el nombre del primer
argumento (o de los primeros, como en este caso) por ser los més
comunes, pero especificar claramente los demdas argumentos, lo que
evita errores y facilita la lectura y comprensién del cédigo en un
momento posterior.

En su versién mds simple podemos indicar simplemente el inicio y
final de la secuencia, usando el valor by = 1 por defecto. Si se indica
by se genera la secuencia correspondiente, deteniéndose antes de
alcanzar el limite si es necesario:

seq(from = 2, to = 14) # De 1 en 1 por defecto

[1] 2 3 4 5 6 7 8 91011 12 13 14

seq(2, 14, by = 5) # Se detiene antes

[1]1 2 7 12

El argumento along.with hace que la secuencia tenga la misma
longitud que el objeto indicado, de forma que ésta se ajustard para
contener los valores necesarios para ir desde from hasta to equiespa-
ciadamente.

v <- 1:5
seq(10, 13, along.with = v)

[1] 10.00 10.75 11.50 12.25 13.00

El argumento length.out tiene un uso similar al anterior, ofrecien-
do una secuencia de una longitud dada. Es til, como en el ejemplo,
para generar una variable a la que se aplicara alguna funcién.

X <- seq(from = -pi, to = pi, length.out = 100)

plot(x, sin(x), "1") # Dibuja la funcidn

PARTE II: Fundamentos 79

3 .
7

3Y conviene que lo sea, salvo casos

excepc ionales.

e
-
v
o
.
X o
£ o 7
@
<
S 4

Figura 4.1: Funcién seno. Los valores
para x se han obtenido como una
secuencia mediante seq().

80 Cap. 4. Vectores

Ejercicio 4.6.
Utilizaremos la funcién seq() para generar:

= v1, un vector con valores desde -3 hasta 3 a intervalos de 0.5

= v2, un vector con valores desde 3 hasta o a intervalos de 0.1

= v3, un vector con 10 valores equiespaciados desde 13 hasta 130

= V4, un vector con 3 valores separados por intervalos de 1/3
desde -9.67

= v5, un vector de la misma longitud que v1, con valores corre-
lativos a partir de 1

Ejercicio 4.7.

(Qué tipo de comportamiento tendra la funcién seq() si se uti-
liza el argumento along.with tinicamente? ;Y si Gnicamente uti-
lizamos length.out? Apliquese al siguiente cédigo.

c(10, 20))
4)

seq(along.with

seq(length.out

4.5.3 La funcién rep()

La funcién rep() sirve para repetir patrones segiin se indique
mediante sus argumentos:

rep(c(l, 2, 3), times = 2) # todo, 2 veces
[11 123123
rep(c(l, 2, 3), each = 2) # cada uno, 2 veces

[11 112233

Obsérvese que, ante la presencia de ambos argumentos, each
necesariamente habra de aplicarse antes que times.

rep(c(l, 2, 3), times = 2, each = 3)

[11111222333111222333

Puede establecerse la repeticién en funcién de la longitud deseada,
incluyendo los argumentos times (por defecto) o each.

rep(c(l, 2, 3), length.out = 5) # Hasta alcanzar la longitud

[11 12312

rep(c(l, 2, 3), each = 2, length.out = 5)

[11 11223

rep() puede utilizarse para establecer variables que indiquen, por

ejemplo, niveles de factores. Supongamos que tenemos 8 casos perte-

necientes a las combinaciones de 2 x 2 condiciones experimentales;

puede construirse de la forma:

fl <- rep(c(l, 2), each
f2 <- rep(c(l, 2), each

cbind(f1l, f2)

##
##
##
##
##
##
##
##
##

[1,1
[2,1
[3,1
[4,]
[5,]
[6,]
(7,1
(8,1

fl f2
1 1
1 1
1 2
1 2
2 1
2 1
2 2
2 2

Ejercicio 4.8.
Ahora podemos combinar las funciones seq() y rep() para

4)
2, times = 2)

generar las siguientes secuencias:

m 5556667778889 99
= 00224460688 1010
m 543215432154321

4.6 Objetos atémicos y coercion

R hace un uso frecuente de lo que se denomina coercidn, esto es,

tomar un objeto de un determinado tipo y forzar su conversién a otro

tipo. El resultado de esta estrategia es doble, y conviene estar al tanto

del mismo:

1. R es extraordinariamente robusto, en el sentido de que es capaz de

digerir (casi) cualquier entrada mediante la coercién, sin generar

errores y evitando al usuario dedicar tiempo a esas conversiones.

2. Por la misma razén, el usuario puede conocer bien esta circuns-

tancia y aprovecharla, o no ser consciente de esas operaciones y

llevarle a errores o resultados aparentemente sin sentido.

Por nuestra parte recomendamos conocer en detalle los mecanis-

mos de coercion existentes y, ademads, atender las indicaciones en la

ayuda de cada funcién, donde se indican las frecuentes coerciones

realizadas.

PARTE II: Fundamentos

81

82 Cap. 4. Vectores

4.6.1 Coercion implicita

Vemos a continuacién las estrategias de coercién automaticas, o
implicitas, que R lleva a cabo en los vectores que, debido a su caracter
atémico, s6lo permiten un tipo de contenido. Cuando mezclamos
tipos de informacién no compatible, la estrategia general presente
en R persigue no perder informacién, o perder la menos posible, de
forma que predomina el tipo mds versdtil, esto es, aquél capaz de
almacenar informacién mas variada. En estos términos tenemos, de
menor a mayor versatilidad,

logical < integer < double < complex < character,

de tal manera que al unir elementos de tipos diferentes el resultado
serd del tipo més a la derecha. Podemos verlo aplicado en la tabla 4.1,
que muestra todas combinaciones de los cinco tipos y sus resultados.

Tabla 4.1: Coercién implicita

typeof () logical integer double

complex character

logical TRUE (TRUE TRUE)

integer 2L (2L, 1L) (2L, 2L)

double 3.14 (3.14, 1.00) (3.14, 2.00) (3.14, 3.14)

complex 4i (0+4i, 1+0i) (0+41i, 2+0i) (0+4i, 3.14+01)
character 'a' ('a', 'TRUE'") (‘a', '2") (‘a', '3.14")

(0+4i, 0+41)
(‘a', '0+4i') ('a', 'a')

Se observa cémo el valor 16gico TRUE, con la menor capacidad
de almacenar informacién!4, es convertido en el valor 1 cuando se
combina con valores numéricos, o es transformado en la cadena
"TRUE" al combinarlo con un elemento alfanumeérico.

En el extremo opuesto estan los vectores alfanuméricos, con la
maxima versatilidad'>, de forma que, cualquier elemento combinado
con elementos alfanuméricos resultard automaticamente en un vector
de cadena.

Todos los ejemplos anteriores de coerciéon implicita son realizados
por R en la construccién de vectores. Pero también las funciones
realizan con frecuencia algunos tipos de coercién. Lo comprobamos
en el apartado sobre condicionales implicitos, donde vimos cémo
algunas funciones matematicas coercionan por defecto los valores
légicos a enteros:

sum(TRUE, TRUE)
[1] 2

Otro ejemplo puede ser el operador [1, que s6lo admite valores
numéricos enteros, truncando los decimales si existen:

* En tanto s6lo puede almacenar
valores binarios.

5 Algo razonable, en tanto una cadena
de caracteres puede almacenar cualquier
cosa expresable por los demas medios.

PARTE II: Fundamentos

X <- ¢c(10, 20, 30)
x[1.9]

[1] 10

No ocurre lo mismo con los vectores alfanuméricos; no existe
coercién, y las comparaciones pueden ser engafiosas.

||3|| 4 g

Error in "3" + "4": argumento no-numérico para operador binario

"3n < g
[1] TRUE
"33" < "4"
[1] TRUE

Se observa que la comparacién acttia sobre las cadenas "33" y "4",
y no sobre los niimeros 33 y 4.

4.6.2 Coercion explicita

Frente a la coercién implicita tenemos la coercién explicita, que
impone un tipo particular al objeto indicado. Se lleva a cabo con
la familia de funciones as.xxx, donde xxx puede tomar los valores
integer, double, logical, character, complex, etc. (véase la ayuda
para conocer todas las opciones)*®. En el capitulo dedicado a manipu- 1 Existe otra familia de funciones
laciones veremos un apartado (17.5) dedicado a esta amplia familia

83

similar, is.xxx, cuyo objetivo es evaluar
] si un objeto es de un determinado
de funciones. tipo. El resultado es un valor légico

La coercién explicita se utiliza con frecuencia en funciones, pa- indicando si se cumple la condici6n.

Las iremos viendo a cuando tratemos

ra garantizar que el argumento introducido es del tipo adecuado. los diferentes objetos

Podemos verlo aplicado en la tabla 4.2.

Tabla 4.2: Coercién explicita

typeof() as.logical as.integer as.double as.complex as.character
logical TRUE 1 1 1+01 "TRUE'
logical FALSE 0 0 0+01 "FALSE'
integer 2L TRUE 2 2401 2!

double 3.14 TRUE 3 3.14+01 '3.14'

complex 2.1+41 TRUE 2 2.1 '2.1+41"

character ‘a' NA NA NA NA

character 'T! TRUE NA NA NA

character '2.1' NA 2 2.1 2.1+01

84 Cap. 4. Vectores

Se observa cémo el comportamiento de estas funciones frente a
los vectores alfanuméricos es mas complejo, ya que las funciones
comprueban si el contenido de las cadenas de caracteres es asimilable
asu tipo. Asi, as.logical() reconoce las cadenas 'T' y 'TRUE",
mientras que las funciones numéricas reconocen e interpretan las
cadenas con contenido numérico.

Ejercicio 4.9.

A continuacién se presenta una serie de definiciones y accio-
nes. El objetivo es predecir el resultado a obtener al ejecutar ca-
da linea de cédigo, indicando en especial tipo y contenido del
resultado obtenido.

vec <- seq(2, 12, length.out = 6)
vec <- as.double(vec)

vec[5] <- "a"

vec <- as.integer(vec)
vec[5] <- T

vec <- as.double(vec)

vec <- vec/2
as.logical(vec)
as.logical(as.integer(vec))

Ejercicio 4.10.

Si tenemos la cadena de caracteres ch <- "1.7+3i". ;Qué re-
sultado podemos esperar obtener de aplicarle las siguientes fun-
ciones: as.integer(), as.double() y as.complex()?

4.7 Reciclado

El reciclado es un procedimiento por el que el sistema extiende un
vector hasta alcanzar la longitud de otro, afiadiendo elementos de
forma circular o ciclica.

El reciclado es usado por defecto en muchas operaciones que
requieren mas de un vector. Por ejemplo, como ya vimos, la suma de
vectores es una operacién que se realiza elemento a elemento:

vl <- c(1, 2)
v2 <- c(10, 20)
vl + v2

[1] 11 22

Pero, ;qué ocurre cuando los vectores tienen distinta longitud?

X <- ¢(1, 2, 3)
y <- ¢(10, 20)
z <- 100

X +y+ 2z

Warning in x + y: longitud de objeto mayor no es miltiplo de

la longitud de uno menor
[1] 111 122 113

Si se observa, el resultado es equivalente a haber sumado los
vectores del siguiente ejemplo. Véase que yy y zz no son mds que y y
z, a los que se han afiadido sus propios elementos (recicldndolos) hasta
alcanzar una longitud igual a 3.

x <-c¢(1, 2, 3)
yy <- ¢(10, 20, 10)
zz <- ¢(100, 100, 100)
X + yy + 2z

[1] 111 122 113

Como vimos en el apartado referido a avisos y errores, el sistema
da una aviso (Warning), pero ejecuta la accién. Al igual que en aque-
lla ocasién, no siempre da un aviso; sélo cuando los vectores no son
multiplos enteros.

X <- 1:8

Y <- seq(10, 40, by = 10)
Z <- c(100, 200)

X;Y; Z

[11 12345678

[1] 10 20 30 40

[1] 100 200
X+Y + Z

[1] 111 222 133 244 115 226 137 248

El reciclado no sélo tiene lugar al operar sobre varios vectores;
también ocurre en la construccién de nuevos objetos a partir de
vectores de diferente longitud, como es el caso con objetos de clase
matrix o data.frame. Al construir una matriz mediante cbind(), el
reciclado lleva a buen término la tarea, aunque da un aviso cuando
los vectores no tienen multiplos enteros entre si.

PARTE II: Fundamentos

85

86

cbh

##
##

##
##
##
##

CB

##
##
##
##
##
##
##
##
##

Cap. 4. Vectores

<- cbind(x, y, z); cb

Warning in cbind(x, y, z): number of rows of result is not a
multiple of vector length (arg 2)

Xy z
[1,] 1 10 100
[2,] 2 20 100
[3,]1 3 10 100

<- chind(X, Y, Z); CB

Xy Z
[1,1 1 10 100
[2,1 2 20 200
[3,1 3 30 100
[4,] 4 40 200
[5,1 5 10 100
[6,]1 6 20 200
[7,1 7 30 100

8

[8,] 40 200

Al construir un data frame, sin embargo, no se exige igualdad de

longitud, pero si que sean mdltiplos enteros. En caso contrario, la

ejecucion da error, y no se lleva a cabo.

df

##

##

DF

##
##
##
##
##
##
##
##
##

<- data.frame(x, y, z)

Error in data.frame(x, y, z)

arguments imply differing number of rows: 3, 2, 1

<- data.frame(X, Y, Z); DF

<
N

10 100
20 200
30 100
40 200
10 100
20 200
30 100
40 200

0 N O Ul A W N PP
0 N O Ul A W N R X

Ejercicio 4.11.

Al igual que en ejercicios anteriores, se presentan una serie de

definiciones y acciones. El objetivo es predecir el resultado a ob-

tener, atendiendo especialmente a si las uniones son factibles o
no y, en caso afirmativo, qué tipo de resultado se obtiene.

dos <- c(100, 200); dos

tres <- c(10, 20, 30); tres
cuatro <- c(1, 2, 3, 4); cuatro
dos + tres

cbind(dos, tres)
data.frame(dos, tres)
chind(dos, cuatro)
data.frame(dos, cuatro)
chind(tres, cuatro)
data.frame(tres, cuatro)
cbind(dos, tres, cuatro)
data.frame(dos, tres, cuatro)

PARTE II: Fundamentos

87

5
Vectores para informacion numeérica

La informacién numérica puede ser almacenada en R en tres
formatos bésicos: de tipo entero (integer), reales (tipo double, o
valores de coma flotante) y niimeros complejos (complex). En este
capitulo nos centraremos en los vectores atémicos de estos tipos, pero
sus caracteristicas y comportamiento seran iguales cuando estos
vectores estén configurados como matrices o arrays o cuando formen
parte de listas o data frames.

Complementamos lo anterior con cuestiones basicas (como las
operaciones numéricas y el tratamiento de los decimales) y otras
avanzadas (como operar con niimeros expresados en base no decimal,
o0 aspectos de precisién numérica).

RESUMEN

Vectores enteros (5.1), reales (5.2) y complejos (5.3). Creacién y
caracteristicas de cada uno.

Operaciones con vectores numeéricos (5.4). Veremos operadores
aritméticos y relacionales, y funciones matematicas.

Tratamiento de los decimales (5.5). En cuatro vertientes: el tra-
tamiento del cardcter coma decimal, el formato visual, la
precisién del valor almacenado y las comparaciones.

Codificacién binaria, hexadecimal y octal (5.6). Formatos de co-
dificacién numérica.

Precision numeérica (5.7). Sobre los limites de toda codificacién
y sus efectos.

Generalmente, R gestionara las variables numéricas habituales
(double e integer) que utilicemos de forma apropiada y pocas veces
necesitaremos conocer o cambiar su clase. Por defecto, R utiliza el
tipo double siempre que definamos un valor numérico, aunque no
tenga decimales:

9o Cap. 5. Vectores para informacién numeérica

n <-7
typeof(n)

[1] "double"

Si queremos definir valores de tipo integer deberemos hacerlo
explicitamente, o usando las funciones apropiadas, como vemos a
continuacion.

5.1 Vectores enteros

Existen al menos cuatro maneras de crear un vector de tipo
integer que contenga, por ejemplo, el valor 7. El resultado de todas
ellas es el mismo, aunque los modos de operar sean muy distintos:

il <- 7L # sufijo L

i2 <- 7:7 # operador dos puntos
i3 <- seq(7, 7) # funcidn seq()

i4 <- as.integer(7) # coercién a integer

La primera forma impone el tipo integer mediante el sufijo L',

y es la mas directa de las cuatro. Las dos siguientes usan funciones
para crear secuencias que, por defecto, devuelven valores enteros: el
operador dos puntos, siempre; la funcién seq(), cuando los valores
inicial, final e intermedios no tengan decimales (si los tienen se alma-
cenard con tipo double). En ambos casos, su uso es un tanto artificial
(una secuencia desde 7 hasta 7) pero cumple el objetivo. La funcién
as.integer(), por dltimo, toma un valor por defecto real (7) y lo
coerciona a integer.

La funcién integer(), por su parte, tiene como funcién crear un
vector de la longitud indicada como argumento, y no hay que confun-
dirla con as.integer(). La primera tiene utilidad para crear vectores
de cierta longitud (con todos sus valores a cero) generalmente para
asignarle sus valores posteriormente.

i5 <- integer(7); i5
[11 0000000

Véase a continuacién que el sufijo L no permite coaccionar
a integer un ntimero con decimales significativos. La funcién
as.integer(), por el contrario, si consigue la coercién.

str(7.0L)

int 7

* El motivo para usar el cardcter L
como indicador de vectores de tipo
integer, parece estar en que, al inicio
de la construccion de R, los enteros
estaban codificados por defecto en
formato largo (Long; con 32 bits en lugar
de los habituales 16 bits por defecto

en aquella época). Véase al respecto
http://stackoverflow.com/questions/
22191324/clarification-of-1-in-r/
22192378#22192378.

http://stackoverflow.com/questions/22191324/clarification-of-l-in-r/22192378#22192378
http://stackoverflow.com/questions/22191324/clarification-of-l-in-r/22192378#22192378
http://stackoverflow.com/questions/22191324/clarification-of-l-in-r/22192378#22192378

PARTE II: Fundamentos

str(7.7L)
num 7.7
str(as.integer(7.7))

int 7

Los enteros se representan en R mediante 32 bits, luego pue-
den tomar 2"31 valores posibles en valor absoluto, ya que un bit
se reserva para el signo. Por tanto, si consideramos valores nega-
tivos y positivos estaran entre - (2°31) + 1y (2°31) - 1, estoes,
en el rango de -2147483647 a 2147483647. La variable del sistema

91

.Machine$integer.max nos informa del maximo entero posible:* 2 Para obtener el mfnimo basta cambiar

de signo.

(max_int <- .Machine$integer.max)

[1] 2147483647

Si excedemos esos limites, el valor no podrad almacenarse en
formato integer; el sistema da un aviso y devuelve NA.

max_int + 1L

Warning in max_int + 1L: NAs producidos por enteros
excedidos

[1] NA

Una opcidn es, en caso de necesidad, pasar al formato double; en
el ejemplo anterior, basta que el valor sumado no tenga el sufijo L.

str(max_int + 1)

num 2.15e+09

Otra opcidn, si por alguna razén hubiera que exceder ese limite
manteniendo el tipo integer, serfa acudir al paquete bit64 (Oehls-

chligel, 2017)3, como se observa a continuacién: 3https://CRAN.R-project.org/
package=bit64.

install.packages("bit64")

library(bit64)

(i64 <- as.integer64(.Machine$integer.max) + 1L)
[1] 2147483648

str(i64)

integer64 2147483648

https://CRAN.R-project.org/%20package=bit64
https://CRAN.R-project.org/%20package=bit64

92 Cap. 5. Vectores para informacién numeérica

Ejercicio 5.1.

A continuacion se muestran varios vectores. Convierte a un
vector entero aquello que no sean ya enteros. Observa cudles pue-
den coercionarse y cudles no, y los resultados.

vl <- ¢c("1", "3.14")

v2 <- 1:12

v3 <- seq(2, 6)

v4 <- seq(0, 5, length.out = 5)
v5 <- rnorm(10)

m <- matrix(1:12, 3, 4)

5.2 Vectores reales

El tipo double, clase numeric, almacena lo que entendemos como
numeros reales?, codificados en formato de coma flotante>, y constitu-
ye el tipo de objeto por defecto para almacenar valores numéricos.

Si queremos coercionar algin vector (generalmente de enteros) a
dobles podemos usar la funcién as.double().

int <- 1:6
(dou <- as.double(int))

[1] 123456

La salida, como se observa, es indiferenciable de la ofrecida por el
vector int ya que ningtn elemento posee decimales. Para confirmar
el cambio debemos comprobar su tipo, clase o usar str().

typeof(dou); class(dou)

[1] "double"

[1] "numeric"
str(dou)

num [1:6] 123 456

Vemos que, a diferencia del resto de vectores atémicos, el tipo y la
clase no coinciden (double y mumeric) y la funcién str() muestra num
y no dou, por ejemplo.

Las variable de tipo doble se codifican mediante 64 bits. Los
valores més grandes y méas pequefios representables mediante este
tipo de vectores pueden obtenerse, como antes, mediante la variable
de sistema .Machine (téngase en cuenta que los valores exactos
pueden variar segiin la maquina).

4 Al igual que en caso de los enteros

y el sufijo L, la denominacién de

double procede de los bits utilizados
por defecto para su codificacién (64
bits), lo que constituia el doble de la
codificacion habitual (o single, de 32
bits). Al contrario del sufijo L para
indicar enteros, esta nomenclatura es
genérica en el &mbito informético, y no
especifica de R.

5 La notacién de coma flotante permite
expresar namero extremadamente
grandes y pequefios, y estd basada en
la notacién cientifica. Véase https://es.
wikipedia.org/wiki/Coma_flotante

https://es.wikipedia.org/wiki/Coma_flotante
https://es.wikipedia.org/wiki/Coma_flotante

PARTE II: Fundamentos 93

.Machine$double.xmin
[1] 2.225074e-308
.Machine$double.xmax

[1] 1.797693e+308

En el caso de los vectores enteros, vimos que sumar una unidad
(explicitamente integer) al valor maximo posible llevaba a la pérdida
del valor, de modo que se asignaba NA. Con los vectores de contenido
numeric, sin embargo, exceder el valor maximo lleva a otro tipo de

resultado®: ¢ ;Por qué no hemos utilizado el mismo
prodimiento anterior, sumando un 1 al
valor méximo? Porque el procedimiento
utilizado por R (o por cualquier sistema
informdtico) en tales casos permitiria
num Inf la codificacién, aparente, pero sin

que hubiera una verdadera codificacion,
exacta de esa unidad afiadida. Puede
entenderse por completo si leemos, mas
funcional: es un nlimero, almacenado como double y con el que se adelante, el apartado 5.7

str(.Machine$double.xmax * 10)

Es importante notar que el valor Inf obtenido es plenamente

puede operar, aunque con todas sus particularidades. Lo mismo
ocurre con -Inf.

Inf + 100

[1] Inf

También podemos usar la notacién cientifica para expresar cual-
quier numero. El resultado es un vector de tipo double sin mayores
atributos; por tanto, esta notacién es simplemente una forma de ex-
presar cantidades numéricas, y no constituye un tipo particular de

codificacién en R7. 7 En algunos lenguajes se permite usar,
ademas de la e, el cardcter d, pero no en
R
<- 2.45e-2
€ = e <- 2.45d-2
str(e) ## Error: unexpected symbol in

'e <- 2.45d'

num 0.0245

Ejercicio 5.2.

Una de las cinco constantes que implementa R es pi. Y uno de
los usos posibles es crear una secuencia de valores entre —277 y
27 para hacer un gréfico, por ejemplo, de la funcién coseno.

5.3 Vectores complejos

Si no necesitas utilizar ndmeros complejos, o incluso si no has oido
hablar de ellos, nuestra recomendacién es saltar este apartado. En

94 Cap. 5. Vectores para informacién numeérica

caso contrario, estamos de suerte, ya que R da soporte a los niimeros
complejos de manera comoda.

Comencemos recordando que un nimero complejo? es un nimero
con dos componentes (una parte real y otra imaginaria) que puede
representarse de la forma x + yi donde x e y son niimeros reales e i es
el valor que satisface la igualdad i> = —1.

Un ntmero complejo puede representarse como un punto de
coordenadas (x,y) en el plano complejo, lo que se conoce como
diagrama de Argand. El primer elemento representa la parte real (x) y
el segundo la parte imaginaria (yi)°.

La expresion anterior, z = x + yi, se conoce como forma algebraica,
cartesiana o rectangular. Otra forma de representar un nimero
complejo es mediante la forma polar, cuyos componentes son el mddulo
() y el argumento (¢), de modo que z = r(cos ¢ + isin ¢). La figura 5.1
muestra los dos tipos de componentes del ntimero complejo z.

Existen varias formas de definir un ntimero complejo en R. La mas
simple es, como ya hemos usado en ocasiones, la forma algebraica. R
reconoce el sufijo i junto a un valor numérico (sin espacios) y crea un
objeto de tipo complex™®:

z <- 4431
str(z)

cplx 4+31i

Otra forma es mediante la funcién complex(), que permite especifi-
car un nimero complejo tanto en forma cartesiana como polar:

z1l <- complex(real = 4, imaginary = 3)
z2 <- complex(modulus = 2, argument = pi/4)

La forma polar también permite expresar z usando la férmula de
Euler: z = re!?. Sir =2 y ¢ = 11/4, entonces:

z2 <- 2 x exp(li * pi/4)

De igual forma que creamos un niimero complejo, podemos
obtener sus componentes en ambos formatos: algebraico y polar.™" .
Las funciones para ello son:

Re(z1l); Im(zl)

[1] 4

[1] 3
Mod(z1l); Arg(zl)

[1] 5

8 Véase https://en.wikipedia.org/
wiki/Complex_number.

9 A veces se utiliza el cardcter j para
indicar la parte imaginaria del complejo,
especialmente en algunas dreas de la
ingenieria. En R s6lo puede utilizarse i.

' Véase que R omite por defecto los
espacios alrededor del operador
suma (+) cuando se trata de expresar
complejos.

Diagrama de Argand

Re

Figura 5.1: Componente de las formas
cartesiana (azul) y polar (rojo) al
representar el complejo z. El eje de
abcisas representa el componente real
y, el de ordenadas, el componente
imaginario.

™ El médulo, r, indica la longitud del
vector z, y se obtiene mediante la expre-
sion r = |z| = /x2 + y2. El argumento,
¢, corresponde al angulo que forma el
vector z (en radianes) y cuyo calculo a
partir de x e y depende del cuadrante
donde se sitte z (Véase su calculo

en https://en.wikipedia.org/wiki/
Complex_number).

https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Complex_number

PARTE II: Fundamentos

[1] 0.6435011

Por ultimo, el conjugado complejo de z se nombra Z y se define como
z = Re(z) — Im(z) i. En R podemos obtenerlo mediante la funcién
Conj ().

Conj(zl)

[1] 4-31

Como con otros tipos de objetos, R dispone de las funciones
as.complex() e is.complex(), que sirven, respectivamente, para
coercionar a tipo complex y comprobar si un objeto pertenece a este
tipo.

Véase en el ejemplo que la funcién as.complex() hace que el
objeto al que se aplica sea asignado a dicho tipo aunque, obviamente,
no posee parte imaginaria, por lo que ésta sera igual a 0i.

(vx <- as.complex(-9))
[1] -9+01
is.complex(vx)

[1] TRUE

Su utilidad mds inmediata es obtener soluciones cuando el espacio
de los nimeros reales no contiene la solucién requerida:

sqrt(as.complex(-9))

[1] 0+31i

Al final del capitulo 5 del manual de Ejercicios resueltos y comenta-
dos hay un ejercicio complementario para poner en practica el uso de
vectores complejos en R.

5.4 Operaciones con vectores numéricos

Por defecto, las operaciones aritméticas que incluyen dos (o mas)
vectores numéricos se realizan elemento a elemento, como hemos

95

odido comprobar:1? 2 Recordemos que, si las longitudes no
q &
son iguales, se aplicara el reciclado por

vl <- 1:5 defecto.

v2 <- seq(10, 50, by = 10)
vl + v2

[1] 11 22 33 44 55

A continuacién se muestran algunos operadores (aritméticos y
relacionales) y funciones matematicas.

96 Cap. 5. Vectores para informacién numeérica

5.4.1

Operadores aritméticos

Los operadores aritméticos (unarios y binarios) son:

Tabla 5.1: Operadores aritméticos

Operacién Operacién Operaciéon
+x Positivo X -y Resta x "y Exponenciacion
-x Negativo x * y Producto x%% y xmody
X +y Suma x / y Division X%/ % y Division entera

La mayoria de los operadores ya se han utilizado y son de uso

comun, asi que mostramos las operaciones menos conocidas. Véase

que la exponenciacion (") también puede indicarse mediante el

operador (x*). El operador %/ % ofrece la parte entera del cociente

resultante, mientras que %% nos da el resto de la divisién entera.

2 xx 8 # Exponenciaciodn
[1] 256
19/7 # Division

[1] 2.714286

[1] 5

Véase que estos operadores (excepto '

Divisidén entera

Resto de la divisidn entera

ool
6%

y '%/%') son utiliza-

bles igualmente con ntiimeros complejos, donde se aplica la aritmética

compleja por defecto.

z1 <- 3+2i

z2 <- 1-1i

z1l + z2 # Suma

[1] 4+1i

z1 x z2 # Producto

[1] 5-1i

PARTE II: Fundamentos 97

z1 / z2
[1] 0.5+2.51
z1l ~ z2

[1] 4.987933-4.1543611

Ejercicio 5.3.
Dado el vector v <- 1:12, sustituye por cero los multiplos de

5.4.2 Funciones matemidticas bdsicas

R posee una ingente cantidad de funciones, tanto en la distribucién
base como en los paquetes disponibles, por lo que un listado com-
pleto puede ser poco préctico. Las que siguen son algunas funciones
comunes, elegidas s6lo con afén ilustrativo®3. Por claridad, hemos " Muchas de ellas aparecen en la ayuda

omitido los paréntesis. ba)o el titulo de S3 Group Generic Fun-
ctions. Para acceder, podemos teclear en

. . la ventana de ayuda S3groupGeneric.
Tabla 5.2: Algunas funciones matematicas

abs floor sqrt sin sum cumsum mean
sign ceiling exp cos prod cumprod median
trunc log tan max cummax sd
round log2 asin min cummin var
logl® acos range cor
atan

Iremos viendo algunas de ellas més adelante. Una es round(),
en la columna de las funciones dedicadas a redondeo, que permite
indicarlos decimales a mantener:

round(54321.12345, 2)

[1] 54321.12

Cuando se requieran funciones mds especializadas podremos
buscarlas bien mediante ?funcién o ??funcién, bien a través de
algtn buscador. En la ayuda podremos encontrar informacién sobre
los argumentos y los resultados que proporciona.

Ejercicio 5.4.
Calcula el sumatorio y el productorio del vector v <- 1:4.

98 Cap. 5. Vectores para informacién numeérica

5.4.3 Operadores relacionales

Los operadores relacionales también acttian elemento a elemento,
y ofrecen resultados de tipo logical (véase la tabla 5.3). Ponen a
prueba relaciones del tipo mayor/menor e igualdad/desigualdad
y son, entre otras utilidades, la base de los condicionales implicitos
vistos anteriormente.

Tabla 5.3: Operadores relacionales

Prueba Prueba
< Menor == Igualdad
<= Menor oigual != Desigualdad
> Mayor !x No x

>= Mayor o igual

Veamos algunos ejemplos:
X <- 0:5; x
[11 012345
X <3
[1] TRUE TRUE TRUE FALSE FALSE FALSE
X >= 3
[1] FALSE FALSE FALSE TRUE TRUE TRUE

y <- c(ll 11 2! 41 41 4)
X =y

[1] TRUE FALSE FALSE TRUE FALSE TRUE
x[x < 3]

[1] 01 2

Se observa cémo, salvo la tltima linea de cédigo, la salida siempre
es de tipo logical. En la altima linea se utiliza un condicional impli-
cito (x < 3) para obtener los indices de los elementos mostrados.

El operador negacién, ! (o —x), es un caso especial en tanto es
unario (esto es, no pone dos objetos en relacién). Se incluye aqui por
razones de consistencia, pero hay que tener presente su funciona-
miento: invierte los valores l6gicos:

PARTE II: Fundamentos 99

le(T, F, T)

[1] FALSE TRUE FALSE

Existen también los operadores ldgicos pero, en tanto operan con
vectores de tipo logical (o coercionan a logical el argumento de
entrada), se verdn en el préximo capitulo.

Ejercicio 5.5.

Obtenemos los vectores v1 y v2 muestreando 5 elementos del
vector v <- 0:10 mediante la instruccién sample(). Indica, pa-
ra cada elemento de v1, si es mayor que el elemento correspon-
diente de v2.

5.4.4 Algebra matricial

Dejaremos las operaciones matriciales para cuando conozcamos
mejor estos objetos: el capitulo 9, dedicado a matrices y arrays.

5.5 Tratamiento de los decimales

Como vimos en relacion a los vectores numéricos, los valores
reales utilizan una codificacién de coma flotante, y sus detalles, in-
cluidos los valores méximos y minimos, ya se estudiaron entonces'4. 4Y se ampliard posteriormente en la
No obstante, existen cuatro aspectos a tener en cuenta en cuanto al seccion 5.7 sobre la precision numérica.
trabajo con los decimales y que se comentardn por separado.
El primero de ellos es anecdético (aunque de conocimiento obliga-
do) y se refiere al uso del cardcter coma decimal en algunos entornos,
frente al punto decimal utilizado en R por defecto. Aunque es una
cuestién de formato, suele generar errores que hay que conocer.
El segundo aspecto se refiere a cuestiones de redondeo, pero
a efectos tinicamente de formato, esto es, el nimero de decimales
mostrado (con independencia de los decimales codificados), mientras
que el tercero trata del redondeo a efectos de codificacién del ntimero,
lo que implica eliminacién de decimales (con el consiguiente cambio
en la precisién de los valores utilizados), algo que requiere mayor
cuidado.
Por ultimo, veremos la forma adecuada de hacer comparaciones
para que no nos afecten cuestiones derivadas de la codificacién.

5.5.1 La coma decimal

Frente al estandar del punto decimal, operar con la coma decimal
es, mas que otra cosa, un pequefio engorro que requiere atenciéon
adicional. Por ejemplo, es frecuente importar datos que, al contener ,

. . . 5Y, en el caso de importar a un data fra-
comas decimales, son interpretados como texto y autométicamente me, es posible que acaben convertidos en

codificados como tipo character®. objetos de clase factor.

100 Cap. 5. Vectores para informacion numérica

La forma de trabajar en estos casos es usar un argumento que
indique este hecho, por ejemplo mediante el argumento dec en
funciones de lectura y escritura de datos:*® *® Que veremos en su momento. Por

ahora baste conocer este detalle.

read.table("Datos.txt", dec = ",")

También es posible, de modo general, cambiar el modo en que
R genera las salidas a través del argumento OutDec en la funcién
options()'7, pero ello no afectard al tratamiento de los valores de- 7 Puede ser interesante echar un vistazo
a las opciones disponibles, bien para
modificarlas, bien simplemente para
tnicamente con el punto decimal. conocer su existencia y sus valores por
defecto. La manera maés fécil de ver las
opciones junto con una descripcién de

cimales. Es decir, aunque muestre la coma decimal sigue operando

op1.:10ns (OutDec= ", ") cada una es usar la ayuda:
print(2.3) ?getOption

[1] 2,3

2,3 +1

r o

Error: <text>:1:2: inesperado ’,
1: 2,
~

Esta opcién es 1til, por ejemplo, para publicaciones que exijan el

formato de coma decimal. Posteriormente, es conveniente devolver la

opcion OutDec a su estado originaIIS. ® En caso de no hacerlo, R volver4 al
estado por defecto al reiniciarse.

5.5.2 El formato visual de los decimales

Por defecto, el nimero de digitos que muestra R es de 7. Como
puede comprobarse, este limite se aplica a la cantidad de digitos
significativos o relevantes con cierta flexibilidad.

1/3
[1] 0.3333333
1000/3

[1] 333.3333

Como otras tantas cuestiones, este comportamiento viene definido
por un pardmetro que podemos obtener de la siguiente forma:

getOption("digits")

[1]1 7

PARTE II: Fundamentos 101

Si modificamos el pardmetro, la salida cambia aunque, como se
indica en la ayuda, el valor indicado serd s6lo una sugerencia, esto
es, que el nimero de caracteres mostrados puede variar en funcién
de otros criterios (generalmente evitar la pérdida de informacion
relevante). Esto puede observarse en el ejemplo siguiente:

options(digits = 2)
a<-1/3; a

[1] 0.33
b <- 1000/3; b

[1] 333

Esta funcién sélo afecta al niimero de digitos mostrados; como es
de esperar, el ntimero de digitos almacenados mantiene su precisiéon

origina119: 9 E] pardmetro digits acepta valores
entre 1y 22. Forzar a valores maximos,
de hecho, puede llevarnos a algunas
sorpresas, por ejemplo:
a; b options(digits = 22)

a

[1] 0.3333333333333333148296

options(digits = 12)

[1] 0.333333333333 Las razones de este extrafio resultado
pueden consultarse en el dltimo aparta-
[1] 333.333333333 do de este capitulo, aunque queda un

poco fuera del alcance de este tema en

N . . una primera lectura.
Una de las utilidades bdsicas del control de decimales es, por

ejemplo, presentar los resultados de acuerdo con los estdndares de
publicacién. Un caso frecuente serfa la presentacién de una matriz de
correlaciones:

options(digits = 7) # Por defecto

al <- rnorm(5); a2 <- rnorm(5); a3 <- rnorm(5)
a <- chind(al, a2, a3)

cor(a)

#i#t al a2 a3
al 1.0000000 0.8638040 0.3513575
a2 0.8638040 1.0000000 0.4016519
a3 0.3513575 0.4016519 1.0000000

options(digits = 3)
cor(a)

al a2 a3
al 1.000 0.864 0.351
a2 0.864 1.000 0.402
a3 0.351 0.402 1.000

	Antes de empezar…
	PARTE I: Primeros pasos
	R: Características, historia y recursos
	Qué es R
	Para entender el presente, algo de historia
	Recursos
	Instalar R y RStudio
	Comenzar a usar R

	Una primera inmersión
	Acceso a R y primeras tareas
	Algunos objetos de R: vectores y funciones
	Más sobre vectores
	Lectura y escritura de archivos
	Paquetes
	La ayuda
	Salir de R

	PARTE II: Fundamentos
	Control del entorno y objetos (I)
	Localización
	El espacio de trabajo o entorno global
	Objetos y sus características
	Funciones genéricas
	Operadores
	Avisos y errores
	Más control

	Vectores
	Creación de vectores
	Acceso e índices
	Unión de vectores
	Condicionales implícitos
	Creación de secuencias
	Objetos atómicos y coerción
	Reciclado

	Vectores para información numérica
	Vectores enteros
	Vectores reales
	Vectores complejos
	Operaciones con vectores numéricos
	Tratamiento de los decimales

