Functional
Programming
in
TypeScript

An Approachable Guide

Adegoke Akintoye

Functional
Programming
in
TypeScript

An Approachable Guide

Adegoke Akintoye

All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage and retrieval system, without permission in writing from the
publisher.

Copyright © 2024 by Adegoke Akintoye
First edition. March 31, 2024.
Juri Books (email: call.juri@outlook.com tel: +2349012885870)

Disclaimer

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

mailto:call.juri@outlook.com

Other Books By The Author:

Mastering JavaScript Array Methods: A Beginner's Guide to Simplifying Array

Manipulation

Mastering JavaScript String Methods: A Beginner's Guide to Simplifying String

Manipulation

Mastering Coding Test: 50 Problems with Solutions

Mastering Design Patterns in TypeScript: An Approachable Guide

Object-Oriented Programming In TypeScript: A Beqginner's Guide

Mastering TypeScript: A Beginner’s Guide

JavaScript: The Ultimate Guide to Interview Questions

Integrating HTMX with Laravel: An Approachable Guide

Object-Oriented Programming in PHP:An Approachable Guide

Functional Programming in TypeScript: An Approachable Guide

Laravel Guide

Mastering APl Development with Laravel

HTMX Guide

Lumen llluminated

Easy, Fast, and Practical PWA

https://go.kintoye.com.ng/Lumen-Illuminated
https://go.kintoye.com.ng/HtmxGuide
https://go.kintoye.com.ng/LaravelApiDev
https://go.kintoye.com.ng/LaravelGuide
https://go.kintoye.com.ng/ts-fp
https://go.kintoye.com.ng/php-oop
https://go.kintoye.com.ng/HtmxPlusLaravel
https://go.kintoye.com.ng/js-interview-guide
https://go.kintoye.com.ng/ts-beginner
https://go.kintoye.com.ng/ts-oop
https://go.kintoye.com.ng/ts-dp
https://go.kintoye.com.ng/MasteringCodingTest50
https://go.kintoye.com.ng/JSStringMethods
https://go.kintoye.com.ng/JSStringMethods
https://go.kintoye.com.ng/JSArrayMethods
https://go.kintoye.com.ng/JSArrayMethods
https://go.kintoye.com.ng/EasyFastPracticalPWA

Table of Contents

Functional Programming in TypeScript: An Approachable Guide............cccccevviiiiienieinininiieeeeieeeeeeenn 8
PLOTACE. ..ttt ettt ettt et h e bbbt e bt et e ae et e et e beeeabe s 8
Introduction to Functional Programming...........cccceceeiererrienienennienieneeieeteseere st esieeesieeesineeennees 8

WY TYPESCIIPE? ettt ettt st e e st e e s be e e s sba e e s s tae e saae s ssaesssbeeeesnssssaaeessnnassnes 8

HOW 10 USE ThiS BOOK....cueiiiiiiiiiiiieieeieeeeetcteeetet ettt sttt et 8
Chapter 1: INtroduction t0 TYPESCIIPL....cccuutiriuiiiriieiriteirieeeree et srte e steessreessteeesbeesssteessaseessasaesssneeens 10
OVEIVIEW Of TYPESCIIPL.ccuuteeiieeiieeiteeieett ettt ettt ettt e st et e st e e bt e st e e st e sabeessabteessbaeessnseeesnnees 10
WY TYPESCIIPL?. .t eeiieeetee ettt ettt ettt s b e e st e e sata e e sabaeessbeeesasaessasaesssssaeeessnsssaaesssnnns 10
Setting Up YOUr ENVIIONIMENL.cc..oiiiiiiiiiiiieiieeiieciteete sttt st sre e e e eeenneees 10
BasiC TYPES N TYPOSCIIPL..ceeieeuiieeeeiieeieeiteeeeetteeeeritee e ettt e s e stteeeessibteeessareeesssanaaeeeeessessnssssnnssssnnee 11
AATTAYS. ettt ettt ettt e ettt e s ettt e e e e e e e s e b b e e e s e a bt e e e e et a e e e e aba e e s e ba e e e e e nbaeeeeennraeeeenne 11
TUPLE. ettt ettt st e e st e e st e e et e e e st e e et e e e ba e e e bt e e et e e e eabee s ataaeeeennrbaaeeeennns 11
BIIUINL ¢ttt ettt s et e e et e e s e eabb e e s bt e e s e mbaaeesemraaeeeeeeeens 11
Functions and AITOW FUNCHIONS.c...eiiiiiiiiieeeeteeeet ettt ettt s e e s e nee s 11
OPLioNAl PATAIMELETS......ceccviiiieeieiiieeieeit ettt ettt sttt s et e st e s bt e s abe e be e e abaeeeabaeeeabaeeensaeeas 12
CONCIUSION. ...ttt ettt et e et e bt e st e e bt e s e e e bt e s me e e bt e s st e s s e e nsee e st enseesaseeennnees 12
Chapter 2: Functional Programming BasiCs..........cccueerieerieriiiinieniieeiteeieesteeie ettt e s e s 13
What is Functional ProgramIming?..........ccceeeviiiiriiiiiniieiiiieeniieeeiieesieeesseeessneessseesssseessssesssseessssssesesns 13
PUre FUNCHIOMS.coiiiiiiiiiiiiiiiiiicieccecretc ettt aa e ban e e s e anna e 13
IMIMIULADITIEY . eeeteeeteece ettt st s et e e st e e s be e e sabe e e sbeeeabaesssanrbaaeesennsraaeeeenns 13
Higher-Order FUNCHONS.cctootiiiriiiirieeteeeteieeteetere ettt sttt st sbe v st s st sne s e e sseeeneenas 14
Function COMPOSITION.....cc.uvttiieiiieeeieiiieeeeeiteeeestteeesstteeessarteeeesateeeessasaeesssssraaeeeesssssssssssnsnsssnnes 14
Working with Arrays and ODJECES.....c..ueeuiirieiriierieeterte ettt sttt ste et e satessaee s bteessabeeessnsaeenans 14
ATTAY METNOMS. ...ceiiiieiiieieeeee ettt et e st e e s stae e s ba e e sabaessabeessaseessssaessssaeessnnnnes 14
Object and Array IMmUtability......c.eoeeerriiinieriiiieeee ettt st 15
Destructuring and SPread OPEIator..........cccveirrueeiriueernireernireersieessreessseesssseesssseesssseesssssseesssssssees 15
CONCIUSION. ..ttt ettt st sa bttt b e st sbe et e e st e e bt e besate bt ebeeatesbeeaneesanee 15
Chapter 3: Working with Arrays and ODJECES.........eiirieeriieeriieeniieeniteenieeenieeesreeesreessssereeessssssseeeessns 16
ATTAY METNOGS. ...cceeiieeiieieeieeete ettt sttt et b et st s bt e bt et e s st e b e et e saeesbeeaneeanees 16
TT1AD . v teeeeeuereeeeesureeeesuseeeeesurteeessssaeessssseesssssteessassseeeesssaaessansteeeesssteesannsaaeesassaaaeeeeeeeeeessssannnnnnrrane 16

BILEOT ettt ettt bttt b et st e st e e e bt e s beesnneeane 16
TEAUCE. ...ttt ettt et et e et e e bt e e st e s at e e bt e e st e e bt e e ab e e bt e e ae e e beeease e st eemeeeseesaseenneennneenns 16
Object and Array IMmMUaDIlity........eevueerieiiiiniiiiteeeetee ettt sttt sae e 17

O DJBCES. e ueteeeiteeeitee ettt e ettt e et e st e e s bt e et e e s bt e e s bt e e st e e e s sba e e st e e et b e e e ab e e e aa e e et aeeearaeennbaaeeeeanrraaeenn 17
AATTAYS. ottt ettt e et e e s e et e e e e et e e e b et e s e a b bt e e e e bt e e s e b et e s e e bbb baa b et e e eeeeeeeeeeeanns 17
Destructuring and SPread OPEIatOr.........ccccuveerrueerririernireerriieessteessseessseesssesssssesssssesssssesssssessssseeesssns 17
DESITUCTUTIIIZ ...t eueteeeite ettt ettt ettt e et e ettt e s bt e e e bt e e st e e s e ab e e sabeessbeesnbeesasteeeesnnnaaeeeeenssneas 18
Spread Operator in FUNCtion Calls..........coocieiriiiiniiiiiiecieeeieecrteeere s e e s s siaaeeeeeeas 18
CONCIUSION. ..ttt ettt st sa bttt b e st sbe et e e st e e bt e besate bt ebeeatesbeeaneesanee 18
Chapter 4: Advanced Types iN TYPESCTIPL...cc.utiiruieiriiiiiieeeiieeeiteeeiteeseeesreeesreeeseteessaseesssreessssssseeeeenns 19
Union and INterseCtion TYPES........cceevuerieruiriierienieiteetesteete sttt et sttt et st e ssestesse e sesabesseesbeeseneeeans 19
UNIOIN TYPES..etteeieitteeeeiteee ettt e sttt e e s et e e e e s aet e e e s bbe e e ssabaeeeesssteeessnssaeesessaaeeassssaaeeessnnnnnns 19
INEETSECEION TYPES. .. ueiieiiiiiietieitte ettt ettt ettt e ettt e e et e e s earb e e s esnateeseensreeesesmsaeesessnnnnnnnnnnee 19
GIIETICS. ..t ettt ettt ettt e ettt e et e e et e s ab e e e e ab e e e ab e e e st e e e bt e e eabbeeeabaeeembaeeembaesensaeesennnes 20
Type Guards and Discriminated UNIONS........cc.covueeterrierienienirienteneestentesre e seesreereseessesseesseesseenes 20
TYPE GUATMS. ...ttt ettt e et s e s bt e s bt e s bt e s bt e s ae e s b e e smb e e st e ssaesaseesanee st esaneeenans 20

DiSCIIMINATEA UNIOMS. ..t ee e e e e e s s sssssssssssnnssnssssssssssssnssssessnnnnnses 21

[@0e aTal 1113 To) o HH PP PP PPPPPPPRRR 21

Chapter 5: Advanced Functional CONCEPLS........ccccueierueeriieeriieeniieeniieeenieeesreeesreessseeesssseessseesssssseeessnns 23
CUITYIIIZ . ¢ ttteee ettt ettt e ettt e e ettt e e e et e e s e bt e e s s sbt e e e e e asaeeeseassa e e e s snsteeeeanssaeeeeansbaeesasnnaeesssnnsneesennnres 23
Partial APPLICATION.cciiuvieiiiieiteeeteecte ettt ettt e e ste e et e e e ateessabeesabeessseeesssaasssseaessseeensnseeesenns 23
RECUISION. ...ttt e ab e e ba e e s bt e s sabe e e sabe e s abeesmaaeeeeeas 24
IMIMIOIZATION.eeiiitieiieeeite ettt ettt et s et e s bt e st e st e s bt e e s bt e e s bt e s e bt e s enbeeeenbeesenbeeesnreeeeas 24
CONCIUSION. ..ttt ettt s ettt et e s bt et s st e sat et e e st e sbeebesaee st esseentenseeaneenanee 25
Chapter 6: Functional Error Handling.........c.c.coecueiiriiiiniieiiiecieecieeeieeseesere e e e e s sseree e s s ssivaeeeeeea 26
OPTION TYPES...eeeiiiiiieeieitteeeetee ettt e ettt e s ettt e e s eeabt e e e e s seeeessmsaeee s e srttesesnsssssaebeeeeeaeeseessnsnnnns 26
RO TIPS .. teeitieeeieeecte ettt ettt e st e e te e s st e e s tb e e s st e e ssaeesssaeesssaeenssaeenssaeensseeesseeesrsaaaeens 27
Using Try and Catch FUnCtionally........cccceceiierieniinieniiiriceeeieeesiteieereeeesre ettt 27
Creating Safe FUNCHOMNS.iiiuiiiieeiieeieeie et ettt ete et e e steesaesaeessae e seessaeesseessseesssaessssseessssseesasnees 28
CONCIUSION. ..ttt ettt ettt et s bttt et s bt b e st esat et e e st e s bt e besate st esseentenbeeaneesanee 28
Chapter 7: Functional Design PatteImS.........cccvuteriieiriieiniiieinieeinieessieessieeesteessaeessssaesssseesssseesssseesssneeens 29
FUnCtor and MODAA..........ooieieriinieieeeneeerteet ettt ettt et e sb st s e sbe et sat e e be e e s e e e sat e e enneeeaees 29
FUINCEOT ..ttt ettt ettt e st e et e e e st e e e bt e e s baeeebaeeseennes 29
IMIOMAM. .. ettt ettt ettt et e st e bt st s bt e bt et e e he e bt s et e s bt et e e atenbe e abeeeaneeas 29
The ODSEIVET PAOIM.....c..eeiiuiieuieiiieeieeiteet ettt et et e st et e st e e bt e st e e sseesabeesseeeaseesseesaseenneeennreeenn 30
The FACtOrY PatLeIM......cc.ceitiriiriiiieeiterieeieeitest ettt e st se st sat et s e sb e e bt st e s bt e sbe st e saseesaneesaseesaseenas 31
CONCIUSION. ...ttt ettt et e st e bt eeat e e bt e e ab e e bt e e ab e e bt e sabeeabeensbeenseennbesaseeeennes 32
Chapter 8: State ManagemMeNL.........cccueeverruerierrierienieriertentesteetesseessesstesseesseetesseessessesseesseessessssessnsessnnes 33
IMIMULADIE STALE......neiiiiiiiee ettt et ettt et e st e s bt e st e bt e sab e e smeesabeesneesbeenans 33
Why IIMMULabIe STAL?......coiiiiiiieiiiieeie ettt sttt s bt et e st e e sate e s sbe e e sssbeeessneeenans 33
Example: Updating State Immutably.........cccooviiiiiiiiniiiiiieccceecec e 33
Using Libraries for State Management............ccceevuerierernienienienieneenieneesseesseseesseeesseeesseesnseesseesanes 34
REAUX. ..ttt e et e bt e et esae e et e e bt e e bt e aee et e e s ae e e bt e saae s nneeeeane 34
Basic Redux EXAmMIPIe.......cccoiiiiiiiiiiiieeeeetete ettt sttt ettt s e e 34
Custom Hooks for State ManagemeNt.........c.cccueereeerieeriueeireeneessieeseessseessessseeseessseesssessseesssssssnnes 35
Example: UseCounter Custom HOOK...........cocueririiiriiniiiiiiienieeneeeeeeeteseere e 35
CONCIUSION. ...ttt ettt et et e st e e bt e e at e e bt e s ab e e b e e s ab e e bt e sabeeseesseeenseesabesaseeeannees 35
Chapter 9: Building a Functional Web AppPliCation...........ccccevuerieriirrienienerienieneeeeseesreesiee e 36
Project Overview: A Task Management APpPliCatioN.........ccevueerrieeriieeniieeniieenieeesireeeeeesereeeessnnnns 36
Setting Up the Project With TYPeSCIIPL.....cc.eevuerieriiiiriiieteeteeeeetee ettt e 36
Designing the Application ATCHITECIUTE.........cccviiriuiiiriieirieeertee et et e ssteesste e st essraeeessssaraeeessnnnns 36
DIreCtOrY SIIUCTUTE.uuiiiiiiiiiiiiiitieeiteeete ettt ettt et s ba e e s br e e st e e s e s aban e e e e e snnnnees 37
Implementing Functional COMPONENTS..........coctiiiiriiienieeieenieetee ettt st esite et e st eeeareeeesneeeeeaee 37
TASK COMPONENL.....ciriiiitierieeiterieeiteeste et estesteesteeseesstesbeesateessaesssesseesstesssaesssesnseessseeenssneesnnnes 37
State Management in @ FUNCtional Style..........coouiiiiiiiiiiniiiiecccee e e 38
SettiNG UP REAUX.....eitiriiiiieieriteeeeete ettt ettt st e b e st sbe e b s e s bt e be e e e sse e nesaneeaee 38
Integrating Redux with the APPliCAtION........c.uiiviiiiriiiiiieecee e e 39
Adding Functional INteTaCtiVILYcceeruerutrriirieniieiienieriteteetese et st et e et esre st e e sbeeessaeeemeeesnreenns 40
Testing Your Functional APPliCAtiON........eiveuieiriieiriieiiieeecteesteeeseessee et e e steessaaeeeseaeessaeesssseeeaeens 40
CONCIUSION. ..ttt ettt ettt et s ettt et s bt be st esat et e e st e s bt e besate st e b eentenbeeaneenanee 41
Chapter 10: Performance Optimization in Functional Programming............ccccevveevervieniienieeneeenieennen. 42
Immutable Data SIIUCIUTES.cocuertiiirienieterteett ettt ettt ettt e b e st sae et st esse e b saeessneesareens 42
Using Libraries for Immutable Data StIUCIUTES.........c.ecoveeeieeieerieeieeeteerieeeeeeesreeeesveeeessveeeennnens 42
Optimizing RECUISION.ccccuiiiiiiiiiiiiiiiiitctetet ettt a e s ba e s sra e s saraeeas 42
Refactoring Recursive FUNCHOMNS.ccuieiierieeiiecieeieeeteecie et eveeseeesteeseeebeessaeevaesssassseassnasnns 43

Lazy EVAIUALION. .. .ceteiiiiiiieeteteetecte ettt sttt sttt b e et s bt e sbe st e satesbeesnesseeseenas 43

Implementing Lazy Evaluation in TYPeSCTIPL......cccceterirriirieniiiierteieeieseesreeteseesreeee e 43

Memoization for Function OptimizZation.........c.cccuieeieerieerieniieeiieeteeseeeiteeseesseesseesseesseesssessssesssessnns 44
Implementing MemMOIZAtiON......c..cccerierierierierieiteetereet ettt ettt st sae et esabeesareesnreesareesanes 44
CONCIUSION. ...ttt ettt et e st e e bt e e at e e bt e s ab e e bt e s st e e bt e sabe e beensbeenneensbesaseeeannees 44
Chapter 11: Functional Programming in the Real WOrld...........ccccoceeiiniiiiniiniiiiicnececeeeeee 45
Integrating FP into Large CodebDases.........cc.eieuiiiriiiiriiiiiieeieeeeeeseeesree st e sseeessiaeessaaeessaeessnaenns 45
Refactoring to Pure FUNCLONS.......ccccooiiiiriiniiierieeceeesee ettt sttt 45
Adopting Immutable Data StIUCIUTES..........coevuierriieerrieeeiieeerreeerteeeeeessreeessreeesaeessseessssssaeeesssnnns 45
Introducing Higher-Order FUNCLIONS.........c.cocveriiriirienieeeiereeesterteteetesre ettt 46
Debugging FUNCtional Code.........c.ueiiiuiiiriiiiiiieiniiecsiee ettt e sste e ssiee e st e e st e s sabaessaaesssseasnssaaeeas 46
Using Pure Functions t0 YOUr AdVantage.........ccceeerruerienierienienienieseenteetesseesseseesseesseseessessseesas 46
Leveraging TypeScript for Better Debugg@ing...........ccceeiiirviieriieniieeiienieeeeeee e eeevee e 47
Functional Programming and Team DYNamiCS.........cccecuererruerierernenienienientenieneesseeseeesreeesseessneesnne 47
Encouraging Collaboration..........ciecieiiiieieiieieiieieieeseieessieessteessteeeseaeessateessaaeessaeesssneesssseessssnnns 47
Promoting Code Reusability.......cccccoiiiiriiriiriirieieeecceeeeteetesee ettt 47
Enhancing Code Readability...........cooiiriiiiiiiieieeeeeeee ettt s 47
CONCIUSION. ..ttt ettt ettt et s ettt et s bt b e s st e sae e b e e st e sbeebesat e st esbeentenseeaneenanee 47
Chapter 12: Further Resources and Continuous Learning...........ccceccveeeveeeniieeeniieeeniueensieessneesssssnneeeeesns 48
Expanding Your KNOWIEAGE..........coueeieriiiiiiiirieeeientc ettt ettt sv st sne e sae e 48
BOOKS. ..ttt et e ettt e et e bt e s ate e bt e e e b eeeennee 48
ONLINE COUISES. ...cuvtiuririieteeterteetterte et esteeste st e st ete et esbe e besatesae e s e eatesseeasesatesseeseeessteessseesnseennseenans 48
Documentation and Official RE@SOUITES.........cc.eevuirieriirienieieeieetee ettt ettt saee e 49
StAYING UPAALOQ....ccveeuiiiiiiieieeiieieeeeteteeteet ettt ettt et et ettt s e st e b e st e s bt e be e st e e smneesaneeensees 49
Follow Key Figures and COMMUINITIES.cccvveerrieeriierriiieiniieeesieessieessseessseesssessssseessssseeessssnnns 49
Bl0gs and INEWSIELETS.eouiiiiiiiriieieeteetee ettt ettt st sb e st be e bt e st e e smbeeenneenas 49
Practice and COnIIDULION.cooiiiiiiieee ettt ettt b et e e s e e 49
OPEeN SOUTCE PrOJECLS....cocuviiiiiiiiiiiiiiiiieitiecrecte ettt sbe e s sane e e ann e 49
PerSONAl PIOJECES. ...viiiiieiiiieeeiteeeiteeete ettt eett et e st e e teessate e s st e e s sbeessseesssseessssaessseaenssseenssaeennes 49
COdING ChallENEES......ceouiiiieiieiieieeteteeetee ettt ettt sttt sat et st esae e bt sstesseebeeneeeas 50
CONCIUSION. ...ttt ettt et et e st e e bt e e at e e bt e s ab e e b e e s ab e e bt e sabeeseesseeenseesabesaseeeannees 50
AADPENAIX vttt ettt st ettt h bt st sh et e et e bt et e s a b e e bt et e et e nbeeenteennneenns 51
TypeScript CoONfIGUIATION.ceoutiieriertieieeie sttt sttt ettt et s et et e s bt e sbe et e saeesabeesaseesasee s 51
ESCOMTIE . JSOM ..ttt ettt ettt e et e e st e st e e st e et e e st e ssbeesstesabeesatessneesssesasaensaaennns 51
Functional Programming Libraries and TOOIS...........cccccuttrruiiriieiiiieinieceieceieessee s esee e saneee e e 51
LDTATI@S. .ttt ettt et b et b et sh bt et e s bt e b et e bt e b e e eneeea 51
TOOLS. e ettt ettt ettt h e et e bt e et e bt e et e e ae e et e e ebee s e abe e e s e ane e e e enreeeeenraes 52

Preface

Welcome to "Functional Programming in TypeScript: An Approachable Guide", a book
designed to introduce you to the world of functional programming through the lens of
TypeScript. This book is crafted for those who are new to functional programming or
TypeScript, or perhaps both, and are looking to understand how these two can work
together to create robust, scalable, and maintainable applications.

Introduction to Functional Programming

Functional programming is a paradigm that treats computation as the evaluation of
mathematical functions and avoids changing-state and mutable data. It offers a
powerful, expressive, and concise way to write software. Despite its roots in
mathematics, you don't need to be a mathematician to grasp its concepts and apply
them to your coding practices.

Why TypeScript?

TypeScript, a superset of JavaScript, brings static types to the dynamic world of
JavasScript, offering a balance between the flexibility of JavaScript and the safety of
static typing. This combination makes TypeScript an ideal language for learning
functional programming, as it allows for catching errors early in the development
process and provides a more structured approach to JavaScript development.

How to Use This Book

This book is structured to take you on a journey from the foundational concepts of
TypeScript and functional programming to more advanced topics and finally, applying
what you've learned in a real-world project. Here's how to make the most out of this
guide:

« Start at the Beginning: Even if you're familiar with TypeScript or functional
programming, the early chapters lay the groundwork for the concepts discussed
later on.

* Code Along: Each chapter includes examples and exercises. Type out the
examples and complete the exercises to reinforce your learning.

* Project Chapter: The project chapter is designed to utilize the knowledge
you've acquired. Approach it as both a learning tool and a practical application of
the book's concepts.

* Beyond the Book: The final sections and the appendix provide resources for
further learning and exploration. Functional programming and TypeScript are
vast subjects, and there's always more to learn.

Whether you're a student, a professional developer looking to expand your skill set, or
a hobbyist interested in the elegance of functional programming, this book is for you.
By the end of this journey, you will have a solid understanding of functional
programming principles, how they can be applied in TypeScript, and the confidence to
use these concepts in your projects or workplace.

Let's embark on this journey together, exploring the beauty and efficiency of functional
programming in TypeScript.

Chapter 1: Introduction to TypeScript

Welcome to the first step of your journey into functional programming with TypeScript!
This chapter is designed to introduce you to TypeScript, a powerful tool that enhances
JavaScript with types, making your code more robust and easier to maintain. We'll
start with the basics and gradually move to more complex concepts, all accompanied
by code examples. Let's dive in!

Overview of TypeScript

TypeScript is a superset of JavaScript, which means that any valid JavaScript code is
also valid TypeScript code. The main difference is that TypeScript adds type
annotations, allowing you to explicitly define the types of variables, function
parameters, and return values. This feature helps catch errors early in the
development process, such as type mismatches, before they become bugs in the
running application.

Why TypeScript?

» Early Error Detection: By checking types, TypeScript can catch errors at
compile time that JavaScript would only catch at runtime.

+ Code Documentation: Types serve as documentation for your code, making it
clearer what kind of data is passed around.

» IDE Support: TypeScript is supported by most Integrated Development
Environments (IDEs), providing helpful features like auto-completion and inline
documentation.

Setting Up Your Environment

To start using TypeScript, you need to have Node.js installed on your computer. Once
Node.js is installed, you can install TypeScript globally via npm (Node Package
Manager) with the following command:

npm install -g typescript

After installing TypeScript, you can compile a . ts file to JavaScript using the tsc
(TypeScript Compiler) command. For example, if you have a file named hello. ts,
you can compile it to hello. js by running:

tsc hello.ts

Basic Types in TypeScript

TypeScript supports several basic types, including number, string, boolean, null,
undefined, symbol, and bigint. Let's see how to use them:

let id: number = 5;

let name: string = "Alice";
let isStudent: boolean = true;
let x: null = null;

let y: undefined = undefined;

Arrays
In TypeScript, you can define arrays in two ways:

let ids: number[] = [1, 2, 3, 4, 5];
// 0Or using the generic array type
let names: Array<string> = ["Alice", "Bob", "Charlie"];

Tuple

Tuples allow you to express an array with a fixed number of elements whose types are
known, but need not be the same.

let person: [number, string, boolean] = [1, "Alice", true];

Enum

Enums allow you to define a set of named constants, making your code more readable
and manageable.

enum Direction {

up,

Down,

Left,

Right,
+

let go: Direction = Direction.Up;

Functions and Arrow Functions

Functions in TypeScript can have typed parameters and return values:

function add(a: number, b: number): number {
return a + b;
}

// Arrow function with types
const subtract = (a: number, b: number): number => a - b;

Optional Parameters

TypeScript allows function parameters to be optional, indicated by a ? after the
parameter name. Optional parameters must follow required parameters.

function greet(name: string, greeting?: string): string {
return “${greeting || "Hello"}, ${name}!";
b

Conclusion

This chapter introduced you to TypeScript, covering the setup process, basic types,
arrays, tuples, enums, and functions. By understanding these fundamentals, you're
well on your way to leveraging TypeScript's power in functional programming. In the
next chapter, we'll dive into the basics of functional programming and how TypeScript's
type system can help enforce functional programming principles.

Remember, the best way to learn is by doing. Try out the examples provided,
experiment with them, and modify them to see what happens. Happy coding!

Appendix

The appendix serves as a supplementary section to provide additional resources,
configurations, and tools that can enhance your journey in functional programming
with TypeScript. Here, we'll cover TypeScript configuration basics, recommend
functional programming libraries and tools, and provide a glossary of terms used
throughout the book.

TypeScript Configuration

tsconfig.json

A tsconfig. json file in a TypeScript project specifies the root files and the compiler
options required to compile the project. Below is a basic example of a
tsconfig. json file suitable for a project focused on functional programming:

{
"compilerOptions": {
"target": "es6",
"module": "commonjs",
"strict": true,
"esModuleInterop": true,
"forceConsistentCasingInFileNames": true,
"moduleResolution": "node",
"skipLibCheck": true,
"outDir": "./dist"
}
"include": ["src/**/*"]
}

This configuration ensures strict type-checking, enabling ES6 module syntax and
outputting compiled files to a dist directory.

Functional Programming Libraries and Tools

Libraries

» fp-ts: Alibrary that brings typed functional programming to TypeScript. It
provides developers with functional data types and functions to work with them.

GitHub: https://github.com/gcanti/fp-ts

* Immutable.js: Offers persistent immutable data structures, making it easier to
follow the immutability principle without sacrificing performance.

GitHub: https://github.com/immutable-js/immutable-js

* Ramda: A practical functional library focused on simplicity and composability
without extending core JavaScript objects.

GitHub: https://github.com/ramda/ramda

Tools

* Prettier: An opinionated code formatter that supports TypeScript. It helps
maintain consistent code style, especially useful in team environments.

Website: https://prettier.io/

* ESLint: A pluggable and configurable linter tool for identifying and reporting on
patterns in JavaScript and TypeScript. With the right set of rules, it can
encourage functional programming practices.

Website: https://eslint.orq/

https://eslint.org/

Glossary

* Immutability: The principle of not changing data after it has been created.
Instead, operations that would otherwise modify data produce a new copy of the
data with the changes applied.

* Pure Function: A function that, given the same input, will always return the
same output and does not have any observable side effects.

* Higher-Order Function: A function that takes one or more functions as
arguments, or returns a function as its result.

* Currying: The process of transforming a function that takes multiple arguments
into a sequence of functions that each take a single argument.

* Monad: A design pattern used in functional programming to handle operations
and changes in state in a pure functional way. Monads wrap values and provide
a way to chain operations on those wrapped values.

* Functor: An object that can be mapped over, applying a function to each value
in the object to produce a new object.

	Other Books By The Author:
	Preface
	Introduction to Functional Programming
	Why TypeScript?
	How to Use This Book

	Chapter 1: Introduction to TypeScript
	Overview of TypeScript
	Why TypeScript?

	Setting Up Your Environment
	Basic Types in TypeScript
	Arrays
	Tuple
	Enum

	Functions and Arrow Functions
	Optional Parameters

	Conclusion

	Appendix
	TypeScript Configuration
	tsconfig.json

	Functional Programming Libraries and Tools
	Libraries
	Tools

	Glossary

