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Part | — Why Functional Programming
Matters in Java

Chapter 1. Why Java Developers Struggle with
Complexity

For almost thirty years, Java’s object oriented paradigm has worked well for the
language.However, the combination of mutable state, dispersed responsibili-
ties and implicit dependencies has made systems more challenging to under-
stand.Differentiating between Accidental and Essential causes of complexity is
necessary to understand why.

Accidental vs. Essential Complexity

Essential complexity is the inherent difficulty of the problem you're solving.
If you're building a payment processing system, you genuinely need to handle
currency conversion, fraud detection, and international regulations. These are
irreducible.

Accidental complexity, by contrast, emerges from the tools and patterns we
use to solve the problem. A payment processor doesn’t require mutable state
scattered across six objects connected through hidden references. It doesn't
require deep inheritance hierarchies to model different payment types. These
complexities are artifacts of our design choices, not the problem itself.

Consider a simple domain: customer orders. In a typical object-oriented
design, you might structure it like this:
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public class Order {
private String id;
private Customer customer;
private List<LineItem> items;
private OrderStatus status;
private BigDecimal totalPrice;

public void addItem(LineItem item) {
items.add(item);
recalculateTotalPrice();

}

public void setStatus(OrderStatus newStatus) {
status = newStatus;

}

private void recalculateTotalPrice() {
totalPrice = items.stream()
.map(item -> item.getPrice().multiply(BigDecimal.valueOf(item.
< getQuantity())))
.reduce(Bigbecimal.ZERO, BigDecimal::add);

This design invites problems. If another part of the system reads total-
Price before addItem has finished, it sees stale data. If someone forgets to call
recalculateTotalPrice() after modifying items directly, the total diverges
from reality. The order knows how to modify itself, but nobody knows all the
places that might modify it.

Mutability, Shared State, and Hidden Coupling

The root cause is mutability combined with shared references. When an
object’s state can change, every caller of that object must be aware of:

1. When the state might change

2. How other callers might have already changed it

3. Whether the change theyre about to make contradicts earlier assump-
tions

This creates invisible coupling. A seemingly innocent change to one class
can break behavior in systems far removed from the call site.
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// Somewhere in your code:
Order order = orderService.getOrder(123);
BigDecimal price = order.getTotalPrice(); // Gets $100

// Meanwhile, in another thread or callback:
order.addItem(luxuryItem);

// Your thread resumes:
payments.process(order, price); // Processing with stale price!

This isn’t a bug in any single function—it’s a structural problem created by
mutable shared state.

Why “Just Add Setters” Stops Working

A common Java reflex is to encapsulate mutable state behind setters,
believing this controls how objects change:

public void setItems(List<LineItem> newItems) {
this.items = newItems;
recalculateTotalPrice();

This creates an illusion of control. The setter is one path to mutation, but
the problem persists:

* Whoever holds a reference to the order can still call addItem() directly,
bypassing your setter logic

* Multiple threads can interleave calls in unsafe ways

* Related fields (totalPrice, item count, validity rules) can fall out of sync

» Testing becomes a game of mocking all possible mutation sequences

Setters don't eliminate complexity; they redistribute it across your entire
codebase.

FP as a Tool, Not a Religion

Functional programming offers a different approach: immutable data struc-
tures and pure functions that transform data without side effects. But this isn't
a religious doctrine. Functional programming is a set of practical techniques
for managing complexity.

The goal is not purity for its own sake. The goal is systems you can reason
about, test thoroughly, and modify without fear. Functional programming is
effective because:
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1. Immutability makes concurrency safe — if data cannot change, there’s no
race condition

2. Pure functions enable local reasoning — you can understand a function
by reading only that function

3. Composition enables reuse — you build complex behaviors by combining
simple, well-understood pieces

4. Testing becomes straightforward — input o function o output, with no
hidden state
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