

 [image: Functional programming in Modern Java]

 Functional programming in Modern Java

 Jitin Kayyala

 This book is available at https://leanpub.com/functionalprogramminginmodernjava

 This version was published on 2026-01-28

 [image: publisher's logo]

 * * * * *

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

 © 2026 Jitin Kayyala

Table of Contents
		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		

 Guide

 	
 Cover

Part I — Why Functional Programming Matters in Java

Chapter 1. Why Java Developers Struggle with Complexity

For almost thirty years, Java’s object oriented paradigm has worked well for the language.However, the combination of mutable state, dispersed responsibilities and implicit dependencies has made systems more challenging to understand.Differentiating between Accidental and Essential causes of complexity is necessary to understand why.

Accidental vs. Essential Complexity

Essential complexity is the inherent difficulty of the problem you’re solving. If you’re building a payment processing system, you genuinely need to handle currency conversion, fraud detection, and international regulations. These are irreducible.

Accidental complexity, by contrast, emerges from the tools and patterns we use to solve the problem. A payment processor doesn’t require mutable state scattered across six objects connected through hidden references. It doesn’t require deep inheritance hierarchies to model different payment types. These complexities are artifacts of our design choices, not the problem itself.

Consider a simple domain: customer orders. In a typical object-oriented design, you might structure it like this:

 1 public class Order {
 2 private String id;
 3 private Customer customer;
 4 private List<LineItem> items;
 5 private OrderStatus status;
 6 private BigDecimal totalPrice;
 7
 8 public void addItem(LineItem item) {
 9 items.add(item);
10 recalculateTotalPrice();
11 }
12
13 public void setStatus(OrderStatus newStatus) {
14 status = newStatus;
15 }
16
17 private void recalculateTotalPrice() {
18 totalPrice = items.stream()
19 .map(item -> item.getPrice().multiply(BigDecimal.valueOf(item.getQuantity())))
20 .reduce(BigDecimal.ZERO, BigDecimal::add);
21 }
22 }

This design invites problems. If another part of the system reads totalPrice before addItem has finished, it sees stale data. If someone forgets to call recalculateTotalPrice() after modifying items directly, the total diverges from reality. The order knows how to modify itself, but nobody knows all the places that might modify it.

Mutability, Shared State, and Hidden Coupling

The root cause is mutability combined with shared references. When an object’s state can change, every caller of that object must be aware of:

	
When the state might change

	
How other callers might have already changed it

	
Whether the change they’re about to make contradicts earlier assumptions

This creates invisible coupling. A seemingly innocent change to one class can break behavior in systems far removed from the call site.

1 // Somewhere in your code:
2 Order order = orderService.getOrder(123);
3 BigDecimal price = order.getTotalPrice(); // Gets $100
4
5 // Meanwhile, in another thread or callback:
6 order.addItem(luxuryItem);
7
8 // Your thread resumes:
9 payments.process(order, price); // Processing with stale price!

This isn’t a bug in any single function—it’s a structural problem created by mutable shared state.

Why “Just Add Setters” Stops Working

A common Java reflex is to encapsulate mutable state behind setters, believing this controls how objects change:

1 public void setItems(List<LineItem> newItems) {
2 this.items = newItems;
3 recalculateTotalPrice();
4 }

This creates an illusion of control. The setter is one path to mutation, but the problem persists:

	
Whoever holds a reference to the order can still call addItem() directly, bypassing your setter logic

	
Multiple threads can interleave calls in unsafe ways

	
Related fields (totalPrice, item count, validity rules) can fall out of sync

	
Testing becomes a game of mocking all possible mutation sequences

Setters don’t eliminate complexity; they redistribute it across your entire codebase.

FP as a Tool, Not a Religion

Functional programming offers a different approach: immutable data structures and pure functions that transform data without side effects. But this isn’t a religious doctrine. Functional programming is a set of practical techniques for managing complexity.

The goal is not purity for its own sake. The goal is systems you can reason about, test thoroughly, and modify without fear. Functional programming is effective because:

	
Immutability makes concurrency safe — if data cannot change, there’s no race condition

	
Pure functions enable local reasoning — you can understand a function by reading only that function

	
Composition enables reuse — you build complex behaviors by combining simple, well-understood pieces

	
Testing becomes straightforward — input → function → output, with no hidden state

Chapter 2. A Brief History of Functional Programming (Without the Math)
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Why Functional Programming Didn’t Catch On: A Multifaceted Answer
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 3. Thinking in Data, Not Objects
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Part II — Core Functional Programming Concepts in Java
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 4. Immutability: The Foundation
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 5. Pure Functions and Referential Transparency
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 6. Functions as First-Class Citizens
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 7. Composition Over Inheritance (For Real)
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Composing Standard Functional Interfaces
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Part III — Functional Data Modeling in Modern Java
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 8. Records: Java’s Missing Value Type
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 9. Sealed Types and Algebraic Thinking
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 10. Null Is Not a Feature
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Part IV — Working with Collections Functionally
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 11. Streams: Power and Pitfalls
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 12. Designing with Transformations, Not Loops
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 13. Error Handling Without Exceptions Everywhere
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Part V — Containing Side Effects
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 14. Side Effects Are Inevitable—Chaos Is Optional
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 15. Dependency Injection, But Functional
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Part VI — Introduction to Functional Optics
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 16. The Real Problem: Updating Nested Immutable Data
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 17. Lenses: Focused Reads and Writes
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 18. Prisms: Working with Variants Safely
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 19. Optionals, Lists, and Traversals
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Part VII — Functional Optics in Real Java Code
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 20. Implementing Optics with Records and Sealed Types
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 21. Integrating Optics into Existing Codebases
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 22. Performance, Readability, and Trade-offs
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Part VIII — Putting It All Together
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 23. A Real-World Case Study
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Part IX — Beyond the Book
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 24. Libraries, Tools, and Ecosystem
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 25. How Far Should You Go?
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Chapter 26. The Future of Functional Programming in Java
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

Conclusion
This content is not available in the sample book. The book can be purchased on Leanpub at https://leanpub.com/functionalprogramminginmodernjava.

EPUB/styles/resources/leanpub_pencil.png

EPUB/styles/resources/leanpub_question-circle.png

EPUB/styles/resources/leanpub_warning.png

EPUB/styles/resources/leanpub_comments.png

EPUB/styles/resources/leanpub_bug.png

EPUB/styles/resources/leanpub_info-circle.png

EPUB/media/resources/title_page.png
Programming

in Java:

A Practical Guide
A Practical Guide

A
Functional ‘\'

EPUB/media/resources/publisher-logo.png
[

Leanpub

EPUB/styles/resources/leanpub_key.png

