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Part I — Why Functional Programming Matters in Java


Chapter 1. Why Java Developers Struggle with Complexity


For almost thirty years, Java’s object oriented paradigm has worked well for the language.However, the combination of mutable state, dispersed responsibilities and implicit dependencies has made systems more challenging to understand.Differentiating between Accidental and Essential causes of complexity is necessary to understand why.




Accidental vs. Essential Complexity




Essential complexity is the inherent difficulty of the problem you’re solving. If you’re building a payment processing system, you genuinely need to handle currency conversion, fraud detection, and international regulations. These are irreducible.




Accidental complexity, by contrast, emerges from the tools and patterns we use to solve the problem. A payment processor doesn’t require mutable state scattered across six objects connected through hidden references. It doesn’t require deep inheritance hierarchies to model different payment types. These complexities are artifacts of our design choices, not the problem itself.




Consider a simple domain: customer orders. In a typical object-oriented design, you might structure it like this:



 1 public class Order {
 2     private String id;
 3     private Customer customer;
 4     private List<LineItem> items;
 5     private OrderStatus status;
 6     private BigDecimal totalPrice;
 7     
 8     public void addItem(LineItem item) {
 9         items.add(item);
10         recalculateTotalPrice();
11     }
12     
13     public void setStatus(OrderStatus newStatus) {
14         status = newStatus;
15     }
16     
17     private void recalculateTotalPrice() {
18         totalPrice = items.stream()
19             .map(item -> item.getPrice().multiply(BigDecimal.valueOf(item.getQuantity())))
20             .reduce(BigDecimal.ZERO, BigDecimal::add);
21     }
22 }





This design invites problems. If another part of the system reads totalPrice before addItem has finished, it sees stale data. If someone forgets to call recalculateTotalPrice() after modifying items directly, the total diverges from reality. The order knows how to modify itself, but nobody knows all the places that might modify it.




Mutability, Shared State, and Hidden Coupling




The root cause is mutability combined with shared references. When an object’s state can change, every caller of that object must be aware of:





	
When the state might change



	
How other callers might have already changed it



	
Whether the change they’re about to make contradicts earlier assumptions








This creates invisible coupling. A seemingly innocent change to one class can break behavior in systems far removed from the call site.



1 // Somewhere in your code:
2 Order order = orderService.getOrder(123);
3 BigDecimal price = order.getTotalPrice(); // Gets $100
4 
5 // Meanwhile, in another thread or callback:
6 order.addItem(luxuryItem);
7 
8 // Your thread resumes:
9 payments.process(order, price); // Processing with stale price!





This isn’t a bug in any single function—it’s a structural problem created by mutable shared state.




Why “Just Add Setters” Stops Working




A common Java reflex is to encapsulate mutable state behind setters, believing this controls how objects change:



1 public void setItems(List<LineItem> newItems) {
2     this.items = newItems;
3     recalculateTotalPrice();
4 }





This creates an illusion of control. The setter is one path to mutation, but the problem persists:





	
Whoever holds a reference to the order can still call addItem() directly, bypassing your setter logic



	
Multiple threads can interleave calls in unsafe ways



	
Related fields (totalPrice, item count, validity rules) can fall out of sync



	
Testing becomes a game of mocking all possible mutation sequences








Setters don’t eliminate complexity; they redistribute it across your entire codebase.




FP as a Tool, Not a Religion




Functional programming offers a different approach: immutable data structures and pure functions that transform data without side effects. But this isn’t a religious doctrine. Functional programming is a set of practical techniques for managing complexity.




The goal is not purity for its own sake. The goal is systems you can reason about, test thoroughly, and modify without fear. Functional programming is effective because:





	
Immutability makes concurrency safe — if data cannot change, there’s no race condition



	
Pure functions enable local reasoning — you can understand a function by reading only that function



	
Composition enables reuse — you build complex behaviors by combining simple, well-understood pieces



	
Testing becomes straightforward — input → function → output, with no hidden state
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