—unctional
Programmin
In Java

{with: Vavr.io}

Practical functional programming in Java using Vauvr.io functional library

dimitris papadimitriou

FUNCTIONAL PROGRAMMING IN JAVA WITH VAVR

Practical functional programming in Java using Vauvr.io functional library

Dimitris Papadimitriou
This version was published on 03/09/2020

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

Feel free to contact me at:

https://www.linkedin.com/in/dimitrispapadimitriou/

https://leanpub.com/u/dimitrispapadim

https://medium.com/@dimpapadim3

https://github.com/dimitris-papadimitriou-chr

dimitrispapadim@live.com

Acknowledgments :

https://pixabay.com/photos/volcano-java-indonesia-mount-seremu-16212/

© 2020 Dimitris Papadimitriou

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://www.linkedin.com/in/dimitrispapadimitriou/
https://leanpub.com/u/dimitrispapadim
https://medium.com/@dimpapadim3
https://github.com/dimitris-papadimitriou-chr
mailto:dimitrispapadim@live.com
https://pixabay.com/photos/volcano-java-indonesia-mount-seremu-16912/

Contents
1 Java FUNCHONAl FEAUIESevviiiiiiiiiiiiiiieeeeeeeeeee ettt 4
1.1 FUNCHONAl INTEITACES.o e e e e e e 4
CALEGONIES . 10
A U] [ox (] £ ST PP PPPPPPTPTR 12
2.1 The ldentity FUNCION.........oouiiiiii i e e e e e e 12
211 Maybe Functor Example with java Optional ..., 14
2.1.2 Optional in Vavr.io aka Optioncoooeeoioiieeeeeeeeeeee e 15
2.1.3 Maybe Functor Example with Vavr.io Option...........ccooeveeiiiieiiieeeeeeeeeeeeeeee, 16
2.2 Combining Future and Option - Future<Option<T>>.......ccccccoiiiiiiiiiiiiiiiinnneennn, 17
B MONAAS .. 19
3.1 Validation MONAdcooiiiiiiiii 19
4 A Clean Functional Architecture EXample ... 21
411 Clean Architecture with Spring BOOL............ccevvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 21
4.2 A Functional Applications ArChiteCtUre............ovuuiiiiii i 23
4.3 Download and Setup the ProOjJECT.........uuuuuuiiiiiiiiiiiiiiiiiiiiieiebieeeeeeaeeeeneeeaeeeeeneeeeeeaeeees 25
4.4 Clean Architecture with Spring Boot and Vavr.io.................ueeeiiiiiiiiiiiiiiiiiiiiiiiii. 26
4.5 How to Run the project using IntelliJ community edition.................euvvvveeieriiieinnnnn. 27
G T = o Y = R SPUOPPPPSRRR 28

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

PUrpose

This book is aiming to present the basics of functional programming in Java using the
Vavr.io library. We will try to exhibit the usage of the basic Functional types: Option, Either,
Future and Validation.

Resources

The online fiddle list used throughout the book:

e https://repl.it/@dimitrispapadim

github repos:

e Spring-Boot-WebAppExample
e functional-java-vavr
e Distributed-SpringBoot-CleanArchitecture

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://www.vavr.io/
https://repl.it/@dimitrispapadim
https://github.com/dimitris-papadimitriou-chr/Spring-Boot-WebAppExample-Mediator
https://github.com/dimitris-papadimitriou-chr/functional-java-vavr
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture

Java Functional Features

“1996 - James Gosling invents Java. Java is a relatively verbose,
garbage collected, class based, statically typed, single dispatch,
object oriented language with single

implementation inheritance and multiple interface inheritance.
Sun loudly heralds Java's novelty.

-Brief Incomplete and Mostly Wrong History of Programming Languages,

1 Java Functional features

1.1 Functional Interfaces

The most prominent language feature that facilitates functional programming is the
existence of First-Class functions. This means the language needs to support the ability to
treat functions as you would any variable and pass them around to other functions as you
see fit. Lambda functions extend this concept, allowing the creation of an anonymous
function, in a compressed and easy to read syntax.

Here we are going to display in rapid succession in just a section the evolution of the Java
features related to lambdas.

Functional Interfaces

Any interface with a SAM(Single Abstract Method) can be a functional interface. All
functional interfaces should be decorated with an informative @Functionallnterface
annotation

For example, we can declare this functional interface

@FunctionalInterface
public interface DiscountStrategy {
double getDiscounted(double discount, double price);

this says that anything that looks like the following :
double (double price, double discount)
can be assign on a variable of type DiscountStrategy

Method reference

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/Anonymous_function
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

Thus, if we have the following function

public class Discounts {
public static double discountedPrice(double discount, double price) {
return price - discount * price;

The following is a valid declaration
DiscountStrategy discountStrategy = Discounts::discountedPrice;
The Discounts::discountedPrice is a method reference. This means if we try to use

the discountStrategy variable the method discountedPrice inside the Discounts class
will be used.

var finalPrice = discountStrategy.getDiscounted(0.1,100);

Anonymous class

We can also use anonymous class to create an implementation for the interface

DiscountStrategy discountStrategy = new DiscountStrategy() {
@Override
public double getDiscounted(double discount, double price) {
return price - discount * price;

};

Thisis justaninline initialization of the functional interface new DiscountStrategy() {..} and
inside the body we override the single method of the functional interface

@Override
public double getDiscounted(double discount, double price) {
return price - discount * price;

Lambda expression
Or instead of we can use a lambda expression to inhabit the variable

DiscountStrategy discountStrategy =
(double discount, double price) -> price - discount * price;

Or we can let java type inference figure out the argument types :

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#approach4

DiscountStrategy discountStrategy (discount, price) -> price - discount * price;

Also using var is valid

DiscountStrategy discountStrategy
(var discount, var price) -> price - discount * price

In this way method references, anonymous classes and lambda expression have been
homogenized. This is one step closer to the functional paradigm where functions are first
class citizens.

Function Signature = Lambda expression Example
R () f=()-> R; f=()->5;

f=()-> { return R;}; f=()->{return 5;} ;

R £(T1 a) f=(a)-> R f=a->a+5;
f=(Double a)->5;
f=(Double a)->{return a+5;} ;
f=(a)->{return a+5;} ;

R £f(T1 a, T2 b) f=(a,b)-> R f=(Double a, Double b)-> a+b;
f=(Double a, Double b)-> a+b;

f=(Double a, Double b)
->{return a+b;} ;

f=(Double a, Double b)
->{return a+b;} ;

void f() f=()->R f=0)->{ }

void f(T1 a) f=(T1 a)-> R f=(Double a)->{ }

Built-in Functional Interfaces in Java

Java contains a set of functional interfaces designed for commonly occurring use
cases, so we do not have to create our own functional interfaces for every single use case.
Those are residing in the Package java.util.function. Here are the most important and most

used :

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/package-summary.html

Function<T, R> (docs.oracle)

The most common by far will be the Function<T, R>, the declaration of which you can see
using the decompiler:

@FunctionalInterface
public interface Function<T, R> {

R apply(T t);

Function<T, R> represents functions and methods that look like this R £(T t), taking one
argument and returning one result. We cannot use this for our discountStrategy because
discountStrategy hastwo arguments.

Visually this could be represented by just an arrow: T — R

BiFunction<T, U, R> (docs.oracle)

Luckily, java provides another build in functional interface for our case called BiFunction
with the following declaration

@FunctionallInterface

public interface BiFunction<T, U, R> {
R apply(T t, U u);

}

Using this we can define a local function using lambda expression and assign it to a
BiFunction like this:

BiFunction<Double, Double, Double> discountStrategy =
(discount, price) -> price - discount * price;

The BiFunction<Double, Double, Double> represents a function Type that has the
following signature R (T t1, U t2).

First argument The return Type
/ g yp

BiFunction<Double, Double, Double>

Second argument Type

And we can assign a lambda expression directly to a BiFunction <>

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/BiFunction.html

T f
If you wanted to visualize this could be a join: >——> R

U

Consumer<T> (docs.oracle)

The Consumer<T> Functional interface represents functions that have this signature
void f(T t). Infunctional programming we usually do not like the void because itis nota
Type like all the others and this forces us to treat it differently. Consumer<T> is just
Function<T, void> but because void is not a Type we have to invent Consumer<T>. As an
example of usage look at the following, in which we “consume” a string returning nothing:

Consumer<String> print = (String x)-> System.out.println(x);
When you return void is an indication that you create a side effect of some sort. Using
the method reference we can shorten the declaration :

Consumer<String> print = System.out::println;

f uf This represents the void
If you wanted to visualize this: T —>@

Supplier<T> (docs.oracle)

The supplier<T> Functional interface represents functions that have this
signature T () that don't take any arguments. A simple example would be:

Supplier<String> getName =()->"jim";
f
visualize this as a value coming out of nothing: o—>T

Supplier is the dual of Consumer and in this way we can compose them and annihilate them
into a void.

Consumer<String> printl = System.out::println;
Supplier<String> getName =()->"jim";

print.accept(getName.get());// prints Jim

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Consumer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Predicate.html

println
o———0

"jim"

Predicate<T> (docs.oracle)

The Predicate<T> Functional interface represents functions that have this signature
boolean f(T t1) thatreturns a boolean. Predicates are perfect for Filtering items in various
data structures with Arrays probably the most common case. For example, filtering

products based on price:

Predicate<Product> highPriced = product -> product.getBasePrice() > 1000;

var premiumProducts = Stream

.of (new Product(1090),

new Product(1100))

.filter(highPriced);
Summury Table
Consumer<T1> void £(T1 a){..}
BiConsumer<T1,T2> void f(T1 a, T2 b){..}
Supplier<TResult> TResult f(){..}
Function<T1,TResult> TResult f(T1 a){..}
BiFunction<T1,T2, TResult> TResult £(T1 a, T2 b){..}
Predicate<T> boolean f(T1 a){..}
Remember:

1. The Consumer<> only have inputs.

2. The Functiong,> isthe general case.

3. Ifyou only want to return a result: TResult you must use a Supplier<TResult>.

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Supplier.html

10

Functors

« Thinking is necessary in order to understand the empirically given,

and concepts and “categories” are necessary as indispensable elements of thinking »
A. Einstein

The Idea:

In Java the most famous functional programming idea is to use Stream.map to replace
iterations instead of for loops in order to transform the values of the array. That is because
an array is a Functor, which is a more abstract idea that we will explore in this section.

"Practically a Functor is anything that has a valid .nap() method”

Functors can be considered the core concept of category theory.

Categories

Category Theory is a mathematical discipline with a wide range of applications in
theoretical computer science. Concepts like Category, Functor, Monad, and others, which
were originally defined in Category Theory, have become pivotal for the understanding of
modern Functional Programming (FP) languages and paradigms. The fundamental
concept of category theory is unsurprisingly the concept of a Category.

A Category C consists of the following mathematical entities:

1. A collection of objects. Any object-oriented programmer would find this as a great
way to start a definition.

categgﬁy,@ - category of Types

/ ey O~ _—
‘ X Z‘ /// int boo\|\
\\\)’7 i J/ . string - /

Our favourite category in programming is the category of Types : int, bool, char, etc.
There are many interesting categories in programming and in this book, we will explore
some of them.

2. A collection of arrows between objects (also called morphisms).

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Morphism

11

category C
X 7
[\ A single arrow connecting
|\ objects is called 2 morphism or arrow
AV Y
Yy

For our Type category, any arrow from int — bool for example represents functions
that take an integer and return a Boolean. Some Java lambda expression examples

of arrows might be the following:
var isEven =a->a%2;
Or this one:

var islLessThanl@ =a->a<109;

The basic focus of category theory is the relations between objects and not the objects
per se, in contrast with the Set theory that primarily focuses on sets of objects. Functional
programmers quickly endorsed this unique perspective of category theory. Now let us

move to the core idea of this chapter. Functors.

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

2 Functors

In mathematics, a functor is a map between categories.

category C category D
X F(x)

This Functor F must fulfil two requirements.

1. Should map each object x in C with an object F(x) in D,
2. Should map each arrow fin C with an arrow F(f) in D

12

For object-oriented programming, the best metaphor for functors is a container, together
with a mapping function. The Java Stream as a data structure, together with its map

method is a Functor.

2.1 The Identity Functor

We will start by looking at the minimum structure that qualifies as a functor in Java:

public class Id<T>

{
T value;
public Id(T v) { this.value = v; }
public <R> Id<R> map(Function<T,R> f) {
return new Id<R>(f.apply(this.value));
}
}

Run This:_Fiddle

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Category_%28mathematics%29
https://repl.it/@dimitrispapadim/21-The-Identity-Functor-Commuting#Id.java

13

This is the minimum construction that we could call a functor because it has exactly two
things

1. A “constructor” that maps a value T v to an object 1d<T>
2. and it has a mapping method map<T1>(Function<T, T1> f) that lifts (maps)functions f

public class Id<T>

{ This is requirement 1
T value;

public Id(T v) { this.value = v; }

This is requirement 2

public <R> Id<R> map(Function<T,R> f) {
return new Id<R>(f.apply(this.value));

Because it's the minimal functor structure it goes by the name Identity functor.

Let us see a simple example where we have two integers 2 and 4 (here we take for simplicity
the category of integers as our initial category C) also in this category there is the function

square = x->x*x that maps 2 to 4.
category of Int category of Id[int]
F
2 Id(2)
\LX‘>X*X \Lx—>><*><
F
4 Id(4)

If we apply the Id(_) constructor we can map each integers to the Id[int] category. For
example 2 will be mapped to Id(2) and 4 maps to Id(4), the only part missing is the correct
lifting (mapping) of the function f Id[f] to this new category. It's easy to see that the correct

mapping is:

public <R> Id<R> map(Function<T,R> pattern) {
return new Id<R>(pattern.apply(this.value));

Because intuitively preserves the structure of the numbers (we will discuss this more next):

Function<Integer,Integer> square =x->x*X;

Id.of(value).map(square).getObject() == Id.of(square.apply(value)).getObject();

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://ncatlab.org/nlab/show/identity+functor

14

Run This:_Fiddle

The 1d<T> is very simple and doesn’t do many things, but allows us for example to chain
computations using sequential .map() computations :

var nameUpperCase=new Id<>(new Client(1,"jake"))
.map(x->x.getName())
.map(x->x.toUpperCase())
.getObject();

Run This:_Fiddle

2.1.1 Maybe Functor Example with java Optional

The core example case upon which we are going to build the various ideas in this
book is a simple retrieval of some Client from a Repository that matches a specific Id. The
mock repository with an in-memory storage of the Clients in a simple Array might look like
this:

public class MockClientRepository {
private Client[] clients;

public MockClientRepository() {
this.clients = new Client[]{
new Client(1, "jim",1),
new Client(2, "john",1)};

public Optional<Client> getClientById(int id) {
return Stream.of(clients)
.filter(client -> id == client.getId())
.findAny();

} &’— Optional<T> findAny () ;

Run This: Fiddle

The getClientById use the filter of the stream which has an Optional<> return type.If
there is no client for a specific id, this should return optional.empty.

Now we can use this repository in some Spring MVC controller:

public class ClientController {
MockClientRepository ClientRepository = new MockClientRepository();
public String getClientNameById(int Id) {

return ClientRepository
.getClientById(Id)

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://repl.it/@dimitrispapadim/21-The-Identity-Functor-Commuting
https://repl.it/@dimitrispapadim/21-The-Identity-Functor-Fluid-chaining#Main.java
https://repl.it/@dimitrispapadim/265-Maybe-Functor-Example-with-java-Optional#MockClientRepository.java

15

.map(client -> client.getName())
.orElse("no client found");

Run This: Fiddle

2.1.2 Optional in Vavr.io aka Option

The usual name for this functor F=1+X (disjoint union with a base point) in most
functional languages is called Maybe, in java Optional and in Vavr.io is called Option which
is another common naming for Maybe that comes closer to the OOP paradigm. Let us agree
that Maybe is the name of the concept and Option an implementation of Maybe. It is the
same thing. For the rest of this book we will mostly use vavr.io Option monad in our code
examples.

we can get a Vavr Option by a java Optional, using the Option.ofOptional
The .ofOptional converts

. . } . . - an Optional to an Option
Option<Client> optionClient = Option.ofOptional(

Optional.of(new Client(1, "jim", 1))
)s

The converse transformation from Option to Optional is also available :

Optional<Client> optionalClient = optionClient.toJavaOptional();

this pair of functions allows you to jump between the two types at will.

.ofOptional(
Optional<T> Option<T>
W 2

......

‘.toJavaOptional()

With no surprise there is the standard map method now there is a match method that is
called fold:

Option<Client> maybeClient = Option.some(new Client(1, "jim", 1));
Option<String> maybeName = maybeClient.map(Client::getName);

var clientName = maybeName.fold(&— Pattern match

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://repl.it/@dimitrispapadim/265-Maybe-Functor-Example-with-java-Optional#ClientController.java
https://ncatlab.org/nlab/show/pointed+object#forgetting_and_adjoining_basepoints
https://ncatlab.org/nlab/show/pointed+object#forgetting_and_adjoining_basepoints
https://en.wikipedia.org/wiki/Monad_(functional_programming)#An_example:_Maybe
https://louthy.github.io/language-ext/LanguageExt.Core/LanguageExt/Option_A.htm

16

() -> "no client ",
(name) -> name

)s
Also, you can use the getOrElse methods like the Java Optional
String nameOrAlternativeMessage = maybeName.getOrElse(() -> "no client ");
String nameOrAlternativeMessage = maybeName.getOrElse("no client ");

String nameOrAlternativeMessage = maybeName.get();
Run This: Fiddle

2.1.3 Maybe Functor Example with Vavr.io Option

We can refactor now the Client repository example from the previous section by having
the repository return an Option<Client>

public class MockOptionClientRepository {
private Client[] clients;

public MockOptionClientRepository() {
this.clients = new Client[]{
new Client(1, "jim",1),
new Client(2, "john",1)};

k{/////’__““ We now return an Option<Client>

public Option<Client> getClientById(int id) {

var t = Stream.of(clients)
.filter(client -> id == client.getId())
.findAny();

return Option.ofOptional(t);

Run This: Fiddle

Now in order to fold this into a string that contains either the name of the client or a static
error we will use the .map () and .fold () methods of Option:

public class ClientOptionController {
MockOptionClientRepository ClientRepository = new MockOptionClientRepository();
public String getClientNameById(int Id) {

return ClientRepository
.getClientById(Id)

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://repl.it/@dimitrispapadim/266-Maybe-in-Vavr-aka-Option
https://repl.it/@dimitrispapadim/267-Maybe-Functor-Example-with-Vavr-Option#MockClientRepository.java

17

.map(client -> client.getName())
.fold(

() -> "no client ",
(name) -> name

);

Run This: Fiddle

2.2 Combining Future and Option - Future<Option<T>>

If we rewrite the case of the previous section using the Vavr's Option<> instead of java's
Optional<> we have the following computation inside the controller:

public class ClientFutureOptionController {

public CompletableFuture<String> getClientNameByIdAsync(int Id) {
return ClientRepository
.getClientByIdAsync(Id)
.thenApply(clientOption -> clientOptional.map(client -> client.getName()))
.thenApply(clientOption -> clientOptional.fold(
() -> "no client ",
(name) -> name

));

Run This: Fiddle

We can also use some static functional extensions (that move the expressions one level
deeper, mapT, foldT)

public class OptionExtensions {

public static <T, T1> Function<Option<T>, Option<T1>> mapT(Function<T, T1> fn) {
return optional -> optional.map(fn);

public static <T, T1> Function<Option<T>, T1> foldT(Supplier<? extends T1> leftMap
per, Function<? super T, ? extends T1> rightMapper) {
return optional -> optional.fold(leftMapper, rightMapper);

Run This: Fiddle
These static methods can shorten the expressions :

public CompletableFuture<String> getClientNameByIdAsync(int Id) {

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://repl.it/@dimitrispapadim/267-Maybe-Functor-Example-with-Vavr-Option#ClientController.java
https://repl.it/@dimitrispapadim/211-Combining-Future-and-Option-FuturelessOptionlessTgreatergreater#MockClientRepository.java
https://repl.it/@dimitrispapadim/211-Combining-Future-and-Option-Extensions#extensions/OptionExtensions.java

18

return ClientRepository
.getClientByIdAsync(Id)
.thenApply(mapT(Client: :getName))
.thenApply (foldT(
() -> "no client ",
(name) -> name

))s

Run This: Fiddle

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://repl.it/@dimitrispapadim/211-Combining-Future-and-Option-Extensions

19

Monads

«Wadler tries to appease critics by explaining that "a monad is a
monoid in the category of endofunctors, what's the problem? »
-Brief, Incomplete and Mostly Wrong History of Programming Languages,

3 Monads

3.1 Validation Monad

In this this section we are going to take a brief look at the validation type. The
Validation behaves like the Either but also has an operation to accumulate validation
errors. Firstly, we could rewrite the validation example to use vValidations instead of Either.
In the place of Left we use the va invalid 1lid and in the place of a Right we use a valid:

Function<String, Validation<TestError, String>> isValidName = (name) ->
CharSeq.of(name).replaceAll(VALID_NAME_CHARS, "")
.transform(seq -> seq.isEmpty()
? Validation.valid(name)
: Validation.invalid(
new TestError("Name contains invalid characters"))

)s

Function<Integer, Function<String, Validation<TestError, String>>>
isValidMaxLenght = maxLenght -> str ->

str.length() <= maxLenght ?

Validation.valid(str) :

Validation.invalid(new TestError("failed max length")

)5

String nameIfBothValidOrElseError = isValidMaxLenght.apply(3).apply("Nick")
.flatMap(name -> isValidName.apply(name))
.fold(

(error) -> "error: + error.getMessage(),

(name) -> name

)5

Run This: Fiddle

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://louthy.github.io/language-ext/LanguageExt.Core/LanguageExt/Validation_FAIL_SUCCESS.htm
https://repl.it/@dimitrispapadim/35-Validation-Monad

20

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

21

Clean Architecture in
Java

In this Section we are going to take a brief look at the possibility of a Functional
Software Architecture and how can be integrated with the latest trends in modern
software architectures. This is not a deep dive in Architectural Design but a discussion
behind the architecture of the sample spring boot web Application.

4 A Clean Functional Architecture Example

4.1.1 Clean Architecture with Spring Boot

The architecture of web applications depends on the scale and scope of the application.
The Previous decade the dominant architecture for small and medium web applications
was the Layered Architecture. A Layered Architecture, organize the project structure into
four main categories:

Presentation-Ul
application
domain

i 5 B 5

and infrastructure Presentation

Application

Cross cutting

—
Domain Model m

Data Access Layer

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules
https://en.wikipedia.org/wiki/Multitier_architecture

22

Under the weight of ideas such as Domain -Driven Design from Eric Evans and Clean Code
from “Uncle Bob” - Robert C. Martin the focus of the Architecture became the separation of
concerns of the Domain from all the technicalities such as technologies, tools and
implementation details.

The domain and its Use Cases now has been placed in the centre of the architecture
design with minimal dependencies. This led to a series of evolutionary transformations of
the Layered structure (Hexagonal Architecture, Pipes and adapters , DDD etc) leading at
to the concept of Clean architecture.

Application Layer

v,v”"ﬁDomain Model

With Clean Architecture, the Domain and Application layers are at the centre of the design.
This is known as the Core of the system.

The Domain layer contains enterprise logic and types and the Application layer contains
business logic and types. The difference is that enterprise logic could be shared across
many systems, whereas the business logic will typically only be used within this system.

Core should not be dependent on data access and other infrastructure concerns, so those
dependencies are inverted. This is achieved by adding interfaces or abstractions within
Core that are implemented by layers outside of Core. For example, if you wanted to
implement the Repository pattern you would do so by adding an interface within Core and
adding the implementation within Infrastructure.

All dependencies flow inwards, and Core has no dependency on any other layer.
Infrastructure and Presentation depend on Core, but not on one another.

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://deviq.com/repository-pattern/

23

4.2 A Functional Applications Architecture

Where does Functional Programming fit in the larger Architectural view? In the article
form Scott Wlaschin “A primer on functional architecture” he recognizes three principles of
functional programming that can be applied to the architectural level:

1. The first is that functions are standalone values. In a functional architecture, the
basic unit is also a function, but a much larger business-oriented one that he calls a
workflow.

2. Second, composition is the primary way to build systems. Two simple functions can
be composed just by connecting the output of one to the input of another.

3. functional programmers try to use pure functions as much as possible.

The general idea is that you write as much of your application as possible in an FP style
chain computation using the Task, Option, Either, Validation Monads or their combinations
and avoiding side effects and coupling. This would lead to the usual pipeline computation
style:

input output

Instead of the chaotic object oriented:
request
—> T
- <« —
response

The idea for a functional architecture as laid out by Wlaschin is a pipeline that goes through
the layers of the Architecture with minimal coupling and side effects.

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://increment.com/software-architecture/primer-on-functional-architecture/

Domain Model

Application Layer

24

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

25

4.3 Download and Setup the Project

All projects target openjdk-14.0.2 and most of them import vavr.io library through
maven io.vavr:vavr:1.0.0-alpha-3. You can open and run the projects using IntelliJ
community edition. There are 3 different versions:

e A Sample monolith application Spring Boot WebAppExample where everything is
in a single Spring boot project (ui, application, infrastructure, core)
communicating through a Pipeline design pattern implementation (PipelinR)

Ul (spring boot)

Pipeline

application (spring boot)

infrastructure

co relf_l.i;]

/

e A Distributed Project that consists of two sub-systems (ui) and (application,
infrastructure, core) communicating through RabbitMQ

e And a Distributed Project that consists of two sub-systems as before, but now
(application, infrastructure, core) are all in different modules.

Ul (spring boot)

RabbitMQ-Queue
RabbitMQ server

application (spring boot

infrastructure

S

client-service

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://github.com/dimitris-papadimitriou-chr/Spring-Boot-WebAppExample-Mediator
https://java-design-patterns.com/patterns/pipeline/
https://github.com/sizovs/PipelinR
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules

26

Here we will focus mainly on the last Distributed Project example of the architectural
evolution. Nonetheless, we will also briefly explore the Mediator and a Pipeline design
pattern.

The Functional styles and implementations are kept intact in all the above implementations.
The point we try to make is that the Functional style can be used in any stage of the
architectural design of a project.

4.4 Clean Architecture with Spring Boot and Vavr.io

The Distributed-SpringBoot-CleanArchitecture application approximates a Functional
architecture Style embedded in a Clean architecture.

The application consists of four projects the three of them are libraries targeting the .NET
standard 2.0 framework (application, core, infrastructure) and the “Ul” Project named web-
api is a Boot Spring MVC Web application Maven project generated by Spring Initializr.
that is completely independent.

Ul (spring boot)

RabbitMQ-Queue
RabbitMQ server

application (spring boot)

infrastructure

client-service

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules
https://java-design-patterns.com/patterns/pipeline/
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://spring.io/guides/gs/serving-web-content/
https://start.spring.io/

27

4.5 How to Run the project using Intelli) community edition

This section is intended to guide you through the process of debugging the full sample. If
you do not want to run the application, then you can just skip this section.

The system is consisted of two parts the web-api application and the clients-service
application. You can open and run each one separately using the IntelliJ community
edition.

€ CreateChentRequest E
) q (path = "/clients")
€ CreateClientResponse
viewmodels
€ GetClientViewModel
€ DemoApplication
I private static final boolean NON_DURABLE

E| public class DemoApplication {

o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat started on port(s): 8080 (http) with context
path "

RabbitMQ server

In order to be able to use the sample you must have installed the RabbitMQ server to the
machine you plan to run the sample .There are various downloads on the RabbitMQ site.
Unfortunately, you should also have installed Erlang. The RabbitMQ installation will ask you
to install erlang if you have not.

If the RabbitMQ server is not running you will get an error log from the web-api project
when you try to run it.

Ul (spring boot)

l

RabbitMQ-Queue

RabbitMQ
server

application (spring boot)

infrastructure

ot

client-service

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://www.rabbitmq.com/download.html
https://www.erlang.org/downloads

28

4.6 Web API

This web-api projectis a single Spring MVC boot project. The project has a single
@RestController. The web-api project have a single responsibility, to handle the HTTP
requests received from the web browser and to return the HTTP responses.

Ul-Web Application

v g web-api [demo] C\Users\dimit\Desktop\n
> Jidea
> lib
b out
A src
hd main
A java
hd com.example.demo
> clients.messages

> viewmodels

' - -
< DemoApplication « @SpringBootApplication
> resources

b test
> target

We will handle exceptions and errors that have occurred in the Domain or Data projects to
effectively communicate with the consumer of APIs. This communication will use HTTP
response codes and any data to be returned located in the HTTP response body.

When you run the application and you try to browse the http://localhost:8080/ from any
browser the Spring Application will serve the default index.html.

Ul (spring boot)

:8080/
@RestController -~

A

This looks like this. A very simple unstilled html| page index.html

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/tree/master/web-api
https://spring.io/guides/tutorials/rest/
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/tree/master/web-api
http://localhost:8080/
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/blob/master/web-api/src/main/resources/static/index.html
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/blob/master/web-api/src/main/resources/static/index.html
http://localhost:8080/

29

Create Client Service

Client Name:

Assigned Employee Id:

create

Created new Client with id:

In this SpringBootApplication, the routing is configured by Attribute Routings and more
specific with the decorating @RequestMapping Attribute.

@SpringBootApplication
@RestController
@RequestMapping(path = "/clients")
public class DemoApplication {

@GetMapping("/get/{clientId}")

public ResponseEntity<SearchViewModel> get(@PathVariable Integer clientId)
{

}

@PostMapping("/create")
public ResponseEntity<CreateClientResponse> create(@RequestBody CreateRequest

createRequest)
{
}

}

Github: source

The above REST controller covers the /clients URL paths and we can call them from the
front-end side. For example we can call the /clients/get/1 using the Fetch-API :

fetch(" /clients/get/${clientId} , { method: 'GET' })

Github: source

This will reach the @RestController atthe get method directed by the @GetMapping

@GetMapping("/get/{clientId}")
public ResponseEntity<SearchViewModel> get(@PathVariable Integer clientId)

{

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/blob/master/web-api/src/main/java/com/example/demo/DemoApplication.java#L24
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/blob/master/web-api/src/main/resources/static/index.html#L70

30

Similarly for making a POST http request at /clients/create/ using the Fetch-APl we can
write :

HESEC JEI NS/ EREERES/ The data are send in the http

{ .
method: 'POST', body as a Json String
headers: {

'Content-Type': 'application/json'
¥
body: JSON.stringify({name: '' , employeeId: 1})
})

Github: source

This will reach the @RestController at the create method where the Json will be
deserialized as CreateRequest instance thanks to the @RequestBody attribute

@PostMapping("/create")
public ResponseEntity<CreateClientResponse> create(@RequestBody CreateRequest crea
teRequest)

{
The http body json string will be

} deserialized into a CreateRequest

Of course, we could use alternatively jQuery, Angular, or any other JavaScript framework
to make those http calls to the @RestControllers.

© Dimitris papadimitriou 2020 - Functional Programming in Java with Vavr.io

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/blob/master/web-api/src/main/resources/static/index.html#L86
https://en.wikipedia.org/wiki/JSON

