
 

 

Functional 

  In Java 
{with: Vavr.io} 
Practical functional programming in Java using Vavr.io functional library  

 

Programming 

dimitris papadimitriou 



1 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

FUNCTIONAL PROGRAMMING IN JAVA  WITH VAVR 

Practical functional programming in Java using Vavr.io functional library  

 

 
Dimitris Papadimitriou 
 

This version was published on 03/09/2020 

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean 

Publishing process. Lean Publishing is the act of publishing an in-progress ebook using 

lightweight tools and many iterations to get reader feedback, pivot until you have the right 

book and build traction once you do. 

Feel free to contact me at: 

https://www.linkedin.com/in/dimitrispapadimitriou/ 

https://leanpub.com/u/dimitrispapadim 

https://medium.com/@dimpapadim3 

https://github.com/dimitris-papadimitriou-chr 

dimitrispapadim@live.com 

 

 
 
 
 

 
 
Acknowledgments :  
 
https://pixabay.com/photos/volcano-java-indonesia-mount-seremu-16912/ 

 
 
 
 
© 2020 Dimitris Papadimitriou  

https://www.linkedin.com/in/dimitrispapadimitriou/
https://leanpub.com/u/dimitrispapadim
https://medium.com/@dimpapadim3
https://github.com/dimitris-papadimitriou-chr
mailto:dimitrispapadim@live.com
https://pixabay.com/photos/volcano-java-indonesia-mount-seremu-16912/


2 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

Contents 
1 Java Functional features ................................................................................................ 4 

 Functional Interfaces ............................................................................................... 4 

Categories .......................................................................................................................... 10 

2 Functors ....................................................................................................................... 12 

 The Identity Functor .............................................................................................. 12 

 Maybe Functor Example with java Optional ................................................... 14 

 Optional in Vavr.io aka Option ....................................................................... 15 

 Maybe Functor Example with Vavr.io Option.................................................. 16 

 Combining Future and Option - Future<Option<T>> ........................................ 17 

3 Monads ........................................................................................................................ 19 

 Validation Monad .................................................................................................. 19 

4 A Clean Functional Architecture Example .................................................................... 21 

 Clean Architecture with Spring Boot ............................................................... 21 

 A Functional Applications Architecture .................................................................. 23 

 Download and Setup the Project ........................................................................... 25 

 Clean Architecture with Spring Boot and Vavr.io ................................................... 26 

 How to Run the project using IntelliJ community edition ........................................ 27 

 Web API ............................................................................................................... 28 

 

 

 

 

 

 



3 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

Purpose  
 

This book is aiming to present the basics of functional programming in Java using the 

Vavr.io library. We will try to exhibit the usage of the basic Functional types: Option, Either, 

Future and Validation. 

Resources 
 

The online fiddle list used throughout the book: 

• https://repl.it/@dimitrispapadim  

github repos:  

• Spring-Boot-WebAppExample 
• functional-java-vavr 
• Distributed-SpringBoot-CleanArchitecture 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

https://www.vavr.io/
https://repl.it/@dimitrispapadim
https://github.com/dimitris-papadimitriou-chr/Spring-Boot-WebAppExample-Mediator
https://github.com/dimitris-papadimitriou-chr/functional-java-vavr
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture


4 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

Java Functional Features 
 

 

“1996 - James Gosling invents Java. Java is a relatively verbose, 
garbage collected, class based, statically typed, single dispatch, 

object oriented language with single 
implementation inheritance and multiple interface inheritance. 

Sun loudly heralds Java's novelty. 
 

                                                                  -Brief, Incomplete and Mostly Wrong History of Programming Languages, 
 

1 Java Functional features 
  

 

 Functional Interfaces 
 

The most prominent language feature that facilitates functional programming is the 

existence of First-Class functions. This means the language needs to support the ability to 

treat functions as you would any variable and pass them around to other functions as you 

see fit. Lambda functions extend this concept, allowing the creation of an anonymous 

function, in a compressed and easy to read syntax. 

Here we are going to display in rapid succession in just a section the evolution of the Java 

features related to lambdas. 

Functional Interfaces  

Any interface with a SAM(Single Abstract Method) can be a functional interface. All 

functional interfaces should be decorated with an informative @FunctionalInterface 

annotation 

For example, we can declare this functional interface   

@FunctionalInterface 

public interface DiscountStrategy { 

    double getDiscounted(double discount, double price); 

} 

 

this says that anything that looks like the following : 

double ___(double price, double discount)  

can be assign on a variable of type DiscountStrategy   

Method reference  

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/Anonymous_function
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html


5 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

Thus, if we have the following function 

public class Discounts { 

    public static double discountedPrice(double discount, double price) { 

        return price - discount * price; 

    } 

} 

 

The following is a valid declaration 

DiscountStrategy discountStrategy = Discounts::discountedPrice; 

 

The Discounts::discountedPrice is a method reference. This means if we try to use 

the discountStrategy variable the method discountedPrice inside the Discounts  class 

will be used.  

 

var finalPrice  = discountStrategy.getDiscounted(0.1,100); 

 

 

Anonymous class  

We can also use anonymous class to create an implementation for the interface  

DiscountStrategy discountStrategy = new DiscountStrategy() { 

     @Override 

     public double getDiscounted(double discount, double price) { 

        return price - discount * price; 

   } 

}; 

 

This is just an inline initialization of the functional interface new DiscountStrategy() {…} and 

inside the body we override the single method of the functional interface   

 

@Override 

public double getDiscounted(double discount, double price) { 

        return price - discount * price; 

} 

 

 

 

Lambda expression 

Or instead of we can use a lambda expression to inhabit the variable  

DiscountStrategy discountStrategy =  

          (double discount, double price) -> price - discount * price; 

 

Or we can let java type inference figure out the argument types  :  

https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#approach4


6 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

DiscountStrategy discountStrategy = (discount, price) -> price - discount * price; 

 

Also using var is valid  

DiscountStrategy discountStrategy =  

    (var discount, var price) -> price - discount * price 

 

In this way method references, anonymous classes  and lambda expression have been 

homogenized. This is one step closer to the functional paradigm where functions are first 

class citizens.    

Function Signature  Lambda expression 
 

Example 

R f() 

  

f=()-> R; 

 

f=()-> { return R;}; 

 

f=()->5; 

 

f=()->{return  5;} ; 

 

R f(T1 a)  f=(a)-> R f=a->a+5; 

 

f=(Double a)->5; 

 

f=(Double a)->{return a+5;} ; 

 

f=(a)->{return a+5;} ; 

 

R f(T1 a, T2 b)  f=(a,b)-> R 

 

f=(Double a, Double b)-> a+b; 

 

f=(Double a, Double b)-> a+b; 

 

f=(Double a, Double b) 

           ->{return a+b;} ; 

 

f=(Double a, Double b) 

           ->{return a+b;} ; 

 

void  f() f=( )-> R f=()->{   } 

 

void  f(T1 a) f=(T1 a)-> R 

 

f=(Double a)->{   } 

 

 

Built-in Functional Interfaces in Java  

Java contains a set of functional interfaces designed for commonly occurring use 

cases, so we do not have to create our own functional interfaces for every single use case. 

Those are residing in the  Package java.util.function. Here are the most important and most 

used :  

 

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/package-summary.html


7 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

Function<T, R> (docs.oracle) 
The most common by far will be the Function<T, R>, the declaration of which you can see 

using the decompiler :  

@FunctionalInterface 

public interface Function<T, R> { 

    R apply(T t); 

} 

 

Function<T, R> represents functions and methods that look like this R f(T t), taking one 

argument and returning one result. We cannot use this for our discountStrategy because 

discountStrategy has two arguments. 

Visually this could be represented by just an arrow: 

 

 

 

BiFunction<T, U, R>  (docs.oracle) 

Luckily, java provides another build in functional interface for our case called BiFunction 

with the following declaration  

@FunctionalInterface 

public interface BiFunction<T, U, R> {  

    R apply(T t, U u); 

} 

 
Using this we can define a local function using lambda expression and assign it to a 

BiFunction like this:  

BiFunction<Double, Double, Double> discountStrategy =  

                      (discount, price) -> price - discount * price; 

  
The BiFunction<Double, Double, Double> represents a function Type that has the 

following signature R f(T t1, U t2).  

 

 

 BiFunction<Double, Double, Double>   

 

And we can assign a lambda expression directly to a BiFunction <>  

First argument 

Second argument Type 

The return Type 

f  
T R 

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/BiFunction.html


8 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

 

If you wanted to visualize this could be a join: 

 

 

 

Consumer<T> (docs.oracle) 

The Consumer<T> Functional interface represents functions that have this signature 

void f(T t). In functional programming we usually do not like the void because it is not a 

Type like all the others and this forces us to treat it differently. Consumer<T> is just 

Function<T, void> but because void is not a Type we have to invent Consumer<T>. As an 

example of usage look at the following, in which we “consume” a string returning nothing: 

Consumer<String> print = (String x)-> System.out.println(x); 
 

When you return void is an indication that you create a side effect of some sort. Using 

the method reference we can shorten the declaration :  

Consumer<String> print = System.out::println; 

 

 

If you wanted to visualize this: 

 

 

 

Supplier<T> (docs.oracle) 

The Supplier<T> Functional interface represents   functions that have this 

signature T f() that don’t take any arguments. A simple example would be: 

Supplier<String> getName =()->"jim"; 

 

visualize this as a value coming out of nothing: 

Supplier is the dual of Consumer and in this way we can compose them and annihilate them 

into a void.  

Consumer<String> print1 = System.out::println; 

Supplier<String> getName =()->"jim"; 

             

print.accept(getName.get());// prints Jim 

f  
T 

This represents the void  

 

f  
T 

f  T 

R 

U 

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Consumer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Predicate.html


9 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

 

 

 

Predicate<T> (docs.oracle) 

The Predicate<T> Functional interface represents   functions that have this signature 

boolean f(T t1) that returns a boolean. Predicates are perfect for Filtering items in various 

data structures with Arrays probably the most common case. For example, filtering 

products based on price:  

Predicate<Product> highPriced = product -> product.getBasePrice() > 1000; 

 

var premiumProducts = Stream 

                    .of(new Product(100), new Product(1100)) 

                    .filter(highPriced); 

 
 

 

Summury Table 

Consumer<T1> void    f(T1 a){…} 

BiConsumer<T1,T2> void    f(T1 a, T2 b){…} 

Supplier<TResult> TResult f(){…} 

Function<T1,TResult> TResult f(T1 a){…} 

BiFunction<T1,T2,TResult> TResult f(T1 a, T2 b){…} 

Predicate<T> boolean f(T1 a){…} 

 
Remember : 

1. The Consumer<> only have inputs. 

2. The Function<,> is the general case.  

3. If you only want to return a result:TResult you must use a Supplier<TResult>. 

 

  

  

 

 

"jim" 

println 

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Supplier.html


10 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

 

Functors 
 

« Thinking is necessary in order to understand the empirically given, 
and concepts and “categories” are necessary as indispensable elements of thinking » 

A. Einstein 

 

 The Idea:  

In Java the most famous functional programming idea is to use Stream.map to replace 

iterations instead of for loops in order to transform the values of the array. That is because 

an array is a Functor, which is a more abstract idea that we will explore in this section.  

“Practically a Functor is anything that has a valid .map() method” 

Functors can be considered the core concept of category theory. 

Categories 
 

Category Theory is a mathematical discipline with a wide range of applications in 

theoretical computer science. Concepts like Category, Functor, Monad, and others, which 

were originally defined in Category Theory, have become pivotal for the understanding of 

modern Functional Programming (FP) languages and paradigms. The fundamental 

concept of category theory is unsurprisingly the concept of a Category. 

A Category C consists of the following mathematical entities:  

1. A collection of objects. Any object-oriented programmer would find this as a great 
way to start a definition.  

Our favourite category in programming is the category of Types : int, bool, char, etc. 

There are many interesting categories in programming and in this book, we will explore 

some of them.  

2. A collection of arrows between objects (also called morphisms). 

x 

y 

category C  

z 
int 

string 

category of Types  

bool 

https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Category_theory
https://en.wikipedia.org/wiki/Morphism


11 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

 

For our Type category, any arrow from int → bool for example represents functions 
that take an integer and return a Boolean. Some Java lambda expression examples 
of arrows might be the following: 

var isEven =a->a%2; 

Or this one: 

var isLessThan10 =a->a<10; 

 

The basic focus of category theory is the relations between objects and not the objects 

per se, in contrast with the Set theory that primarily focuses on sets of objects. Functional 

programmers quickly endorsed this unique perspective of category theory. Now let us 

move to the core idea of this chapter. Functors. 

 

 

 

 

 

 

 

 

x 

y 

category C  

z 

A single arrow connecting  

objects is called a morphism or arrow 



12 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

2 Functors 
In mathematics, a functor is a map between categories.   

   

This Functor F must fulfil two requirements.  

1.   Should map each object x in C  with an object F(x) in D,  

2.   Should map each arrow f in C  with an arrow F(f) in D  

For object-oriented programming, the best metaphor for functors is a container, together 

with a mapping function. The Java Stream as a data structure, together with its map 

method is a Functor.  

 

 

 

 The Identity Functor 
 

We will start by looking at the minimum structure that qualifies as a functor in Java: 

 

public class Id<T> 

{ 

    T value; 

    public Id(T v) {  this.value = v;  }  

 

    public <R> Id<R> map(Function<T,R> f)  { 

        return new Id<R>(f.apply(this.value)); 

     } 

} 

Run This: Fiddle 

 

x 

y 

 

F(x) 

F(y) 

F  

category C  category D  

f  F(f)  

https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Functor
https://en.wikipedia.org/wiki/Category_%28mathematics%29
https://repl.it/@dimitrispapadim/21-The-Identity-Functor-Commuting#Id.java


13 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

This is the minimum construction that we could call a functor because it has exactly two 

things   

1. A “constructor” that maps a value T v to an object  Id<T> 

2. and it has a mapping method  map<T1>(Function<T, T1> f) that lifts (maps)functions f 

 

public class Id<T> 

{ 

    T value; 

    public Id(T v) {  this.value = v;  }  

 

    public <R> Id<R> map(Function<T,R> f)  { 

        return new Id<R>(f.apply(this.value)); 

     } 

} 

 

Because it’s the minimal functor structure it goes by the name Identity functor.  

Let us see a simple example where we have two integers 2 and 4 (here we take for simplicity 

the category of integers as our initial category C) also in this category there is the function 

square  = x->x*x that maps 2 to 4.  

 

If we apply the Id(_) constructor we can map each integers to the Id[int] category. For 

example 2 will be mapped to Id(2) and 4 maps to Id(4), the only part missing is the correct 

lifting (mapping) of the function f Id[f] to this new category. It’s easy to see that the correct 

mapping is: 

public <R> Id<R> map(Function<T,R> pattern)  { 

        return new Id<R>(pattern.apply(this.value)); 

} 

 

Because intuitively preserves the structure of the numbers (we will discuss this more next): 

Function<Integer,Integer> square =x->x*x; 

 

Id.of(value).map(square).getObject() == Id.of(square.apply(value)).getObject();   

2 

4 

 

Id(2) 

Id(4) 

F  

category of Int category of Id[int] 

F  

x->x*x  x->x*x  

 This is requirement 1 

This is requirement 2 

https://ncatlab.org/nlab/show/identity+functor


14 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

Run This: Fiddle 

 

The Id<T> is very simple and doesn’t do many things, but allows us for example to chain 

computations using sequential .map() computations : 

var nameUpperCase=new Id<>(new Client(1,"jake")) 

                    .map(x->x.getName()) 

                    .map(x->x.toUpperCase()) 

                    .getObject(); 

Run This: Fiddle 

 

 Maybe Functor Example with java Optional 
 

The core example case upon which we are going to build the various ideas in this 

book is a simple retrieval of some Client from a Repository that matches a specific Id. The 

mock repository with an in-memory storage of the Clients in a simple Array might look like 

this: 

public class MockClientRepository   { 

 

    private Client[] clients; 

 

    public MockClientRepository() { 

        this.clients = new Client[]{ 

                new Client(1, "jim",1), 

                new Client(2, "john",1)}; 

    } 

 

    public Optional<Client> getClientById(int id) { 

        return Stream.of(clients) 

                .filter(client -> id == client.getId()) 

                .findAny(); 

    } 

} 
Run This: Fiddle 

The getClientById use the filter of the stream which has an Optional<> return type.If 

there is no client for a specific id, this should return Optional.empty.   

Now we can use this repository in some Spring MVC controller: 

public class ClientController { 

 

    MockClientRepository ClientRepository = new MockClientRepository(); 

 

    public String getClientNameById(int Id) { 

        return ClientRepository 

                .getClientById(Id) 

Optional<T> findAny(); 

 

https://repl.it/@dimitrispapadim/21-The-Identity-Functor-Commuting
https://repl.it/@dimitrispapadim/21-The-Identity-Functor-Fluid-chaining#Main.java
https://repl.it/@dimitrispapadim/265-Maybe-Functor-Example-with-java-Optional#MockClientRepository.java


15 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

                .map(client -> client.getName()) 

                .orElse("no client found"); 

    } 

} 
Run This: Fiddle 

 

 

 

 

 

 Optional in Vavr.io aka Option 
 

The usual name for this functor F=1+X (disjoint union with a base point) in most 

functional languages is called Maybe, in java Optional and in Vavr.io is called Option which 

is another common naming for Maybe that comes closer to the OOP paradigm. Let us agree 

that Maybe is the name of the concept and Option an implementation of Maybe. It is the 

same thing. For the rest of this book we will mostly use vavr.io Option monad in our code 

examples. 

we can get a Vavr Option by a java Optional, using the Option.ofOptional 

 
 

Option<Client> optionClient = Option.ofOptional( 

   Optional.of(new Client(1, "jim", 1)) 

); 

 

The converse transformation from Option to Optional is also available : 

Optional<Client> optionalClient = optionClient.toJavaOptional(); 

 

this pair of functions allows you to jump between the two types at will.  

With no surprise there is the standard map method now there is a match method that is 

called fold: 

Option<Client> maybeClient = Option.some(new Client(1, "jim", 1)); 

Option<String> maybeName = maybeClient.map(Client::getName); 

 

var clientName = maybeName.fold( 

The .ofOptional converts 

an Optional to an Option 

Optional<T>  Option<T>  

 .ofOptional() 

 .toJavaOptional() 

Pattern match 

https://repl.it/@dimitrispapadim/265-Maybe-Functor-Example-with-java-Optional#ClientController.java
https://ncatlab.org/nlab/show/pointed+object#forgetting_and_adjoining_basepoints
https://ncatlab.org/nlab/show/pointed+object#forgetting_and_adjoining_basepoints
https://en.wikipedia.org/wiki/Monad_(functional_programming)#An_example:_Maybe
https://louthy.github.io/language-ext/LanguageExt.Core/LanguageExt/Option_A.htm


16 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

                    () -> "no client ", 

                    (name) -> name 

            ); 

 

Also, you can use the getOrElse methods like the Java Optional 

 

String nameOrAlternativeMessage = maybeName.getOrElse(() -> "no client "); 

 

String nameOrAlternativeMessage = maybeName.getOrElse("no client "); 

 

String nameOrAlternativeMessage = maybeName.get();   
Run This: Fiddle 

 

 Maybe Functor Example with Vavr.io Option 
 

We can refactor now the Client repository example from the previous section by having 

the repository return an Option<Client>   

 

public class MockOptionClientRepository { 
 
    private Client[] clients;  
 
    public MockOptionClientRepository() { 
        this.clients = new Client[]{ 
                new Client(1, "jim",1), 
                new Client(2, "john",1)}; 
    } 
 
 
    public Option<Client> getClientById(int id) { 
 
        var t = Stream.of(clients) 
                .filter(client -> id == client.getId()) 
                .findAny(); 
 
        return Option.ofOptional(t); 
    } 
} 

 
Run This: Fiddle 

Now  in order to fold this into a string that contains either the name of the client or a static 

error we will use the .map () and .fold () methods of Option: 

 public class ClientOptionController { 

 

   MockOptionClientRepository ClientRepository = new MockOptionClientRepository(); 

 

    public String getClientNameById(int Id) { 

        return ClientRepository 

                .getClientById(Id) 

We now return an  Option<Client> 

https://repl.it/@dimitrispapadim/266-Maybe-in-Vavr-aka-Option
https://repl.it/@dimitrispapadim/267-Maybe-Functor-Example-with-Vavr-Option#MockClientRepository.java


17 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

                .map(client -> client.getName()) 

                .fold( 

                        () -> "no client ", 

                        (name) -> name 

                ); 

    } 

} 

 

Run This:  Fiddle 

  

 Combining Future and Option - Future<Option<T>> 
 

If we rewrite the case of the previous section using the Vavr’s Option<> instead of java’s 

Optional<> we have the following computation inside the controller:  

public class ClientFutureOptionController { 

 

public CompletableFuture<String> getClientNameByIdAsync(int Id) { 

 return ClientRepository 

     .getClientByIdAsync(Id) 

     .thenApply(clientOption -> clientOptional.map(client -> client.getName())) 

     .thenApply(clientOption -> clientOptional.fold( 

                        () -> "no client ", 

                        (name) -> name 

                )); 

    } 

 } 

Run This:  Fiddle 

 

We can also use some static functional extensions (that move the expressions one level 

deeper,  mapT, foldT) 

public class OptionExtensions { 

 

public static <T, T1> Function<Option<T>, Option<T1>> mapT(Function<T, T1> fn) { 

        return optional -> optional.map(fn); 

    } 

  

public static <T, T1> Function<Option<T>, T1> foldT(Supplier<? extends T1> leftMap

per, Function<? super T, ? extends T1> rightMapper) { 

        return optional -> optional.fold(leftMapper, rightMapper); 

    } 

} 

Run This:  Fiddle 

 These static methods can shorten the expressions :   

public CompletableFuture<String> getClientNameByIdAsync(int Id) { 

https://repl.it/@dimitrispapadim/267-Maybe-Functor-Example-with-Vavr-Option#ClientController.java
https://repl.it/@dimitrispapadim/211-Combining-Future-and-Option-FuturelessOptionlessTgreatergreater#MockClientRepository.java
https://repl.it/@dimitrispapadim/211-Combining-Future-and-Option-Extensions#extensions/OptionExtensions.java


18 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

        return ClientRepository 

                .getClientByIdAsync(Id) 

                .thenApply(mapT(Client::getName)) 

                .thenApply(foldT( 

                        () -> "no client ", 

                        (name) -> name 

                    )); 

    } 

 Run This:  Fiddle 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://repl.it/@dimitrispapadim/211-Combining-Future-and-Option-Extensions


19 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

Monads 
 

                                                                 «Wadler tries to appease critics by explaining that "a monad is a    
                                                                            monoid in the category of endofunctors, what's the problem? »   

                                                                  -Brief, Incomplete and Mostly Wrong History of Programming Languages, 
 

 

3 Monads 
 

 Validation Monad  
 

In this this section we are going to take a brief look at the validation type. The 

Validation behaves like the Either but also has an operation to accumulate validation 

errors. Firstly, we could rewrite the validation example to use Validations instead of Either. 

In the place of Left we use the va invalid lid and in the place of a Right we use a valid: 

Function<String, Validation<TestError, String>> isValidName = (name) -> 

              CharSeq.of(name).replaceAll(VALID_NAME_CHARS, "") 

                  .transform(seq -> seq.isEmpty() 

                      ? Validation.valid(name) 

                      : Validation.invalid( 

                           new TestError("Name contains invalid characters")) 

                   ); 

 

Function<Integer, Function<String, Validation<TestError, String>>>  

 isValidMaxLenght = maxLenght -> str -> 

                           str.length() <= maxLenght ? 

                            Validation.valid(str) : 

                            Validation.invalid(new TestError("failed max length") 

                       ); 

 

 

String nameIfBothValidOrElseError = isValidMaxLenght.apply(3).apply("Nick") 

                            .flatMap(name -> isValidName.apply(name)) 

                            .fold( 

                                    (error) -> "error: " + error.getMessage(), 

                                    (name) -> name 

                            ); 

 

Run This:  Fiddle 

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://louthy.github.io/language-ext/LanguageExt.Core/LanguageExt/Validation_FAIL_SUCCESS.htm
https://repl.it/@dimitrispapadim/35-Validation-Monad


20 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

Clean Architecture in 
Java 
 

 

In this Section we are going to take a brief look at the possibility of a Functional 

Software Architecture and how can be integrated with the latest trends in modern 

software architectures. This is not a deep dive in Architectural Design but a discussion 

behind the architecture of the sample spring boot web Application. 

4 A Clean Functional Architecture Example 
 

 Clean Architecture with Spring Boot  
 

The architecture of web applications depends on the scale and scope of the application. 

The Previous decade the dominant architecture for small and medium web applications 

was the Layered Architecture. A Layered Architecture, organize the project structure into 

four main categories:  

 

1. Presentation-UI 

2. application 

3. domain 

4. and infrastructure 

 

 

 

 

 

 

 

 

 

UI 

Presentation 

Application 

Domain Model 

Data Access Layer 

C
ro

ss
 c

u
tt

in
g

  

https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules
https://en.wikipedia.org/wiki/Multitier_architecture


22 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

Under the weight of ideas such as Domain -Driven Design from Eric Evans and Clean Code 

from “Uncle Bob” - Robert C. Martin the focus of the Architecture became the separation of 

concerns of the Domain from all the technicalities such as technologies, tools and 

implementation details.  

The domain and its Use Cases now has been placed in the centre of the architecture 

design with minimal dependencies. This led to a series of evolutionary transformations of 

the Layered structure ( Hexagonal Architecture, Pipes and adapters , DDD  etc) leading at 

to the concept of Clean architecture. 

 

With Clean Architecture, the Domain and Application layers are at the centre of the design. 

This is known as the Core of the system. 

The Domain layer contains enterprise logic and types and the Application layer contains 

business logic and types. The difference is that enterprise logic could be shared across 

many systems, whereas the business logic will typically only be used within this system. 

Core should not be dependent on data access and other infrastructure concerns, so those 

dependencies are inverted. This is achieved by adding interfaces or abstractions within 

Core that are implemented by layers outside of Core. For example, if you wanted to 

implement the Repository pattern you would do so by adding an interface within Core and 

adding the implementation within Infrastructure.  

All dependencies flow inwards, and Core has no dependency on any other layer. 

Infrastructure and Presentation depend on Core, but not on one another. 

 

 

 

Domain Model 

UI 

Db 

Application Layer 

 

https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://deviq.com/repository-pattern/


23 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

 A Functional Applications Architecture  
 

Where does Functional Programming fit in the larger Architectural view? In the article 

form Scott Wlaschin “A primer on functional architecture” he recognizes three principles of 

functional programming that can be applied to the architectural level: 

1. The first is that functions are standalone values. In a functional architecture, the 

basic unit is also a function, but a much larger business-oriented one that he calls a 

workflow. 

 

2. Second, composition is the primary way to build systems. Two simple functions can 

be composed just by connecting the output of one to the input of another. 

 

3. functional programmers try to use pure functions as much as possible. 

The general idea is that you write as much of your application as possible in an FP style 

chain computation using the Task, Option, Either, Validation Monads or their combinations 

and avoiding side effects and coupling. This would lead to the usual pipeline computation 

style: 

 

 

 

Instead of the chaotic object oriented: 

 

 

 

 

 

The idea for a functional architecture as laid out by Wlaschin is a pipeline that goes through 

the layers of the Architecture with minimal coupling and side effects.  

input output 

request 

response 

https://increment.com/software-architecture/primer-on-functional-architecture/


24 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Domain Model 

UI 

Application Layer 

 

UI 



25 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

 Download and Setup the Project 
 

All projects target openjdk-14.0.2 and most of them import vavr.io library through 

maven io.vavr:vavr:1.0.0-alpha-3. You can open and run the projects using IntelliJ 

community edition. There are 3 different versions: 

• A Sample monolith application Spring Boot WebAppExample where everything is 

in a single Spring boot project  (ui, application, infrastructure, core) 

communicating through a Pipeline design pattern implementation (PipelinR) 

 

• A Distributed Project that consists of two sub-systems (ui) and (application, 

infrastructure, core) communicating through RabbitMQ  

• And a Distributed Project that consists of two sub-systems as before, but now 

(application, infrastructure, core) are all in different modules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

UI (spring boot) 

  
  

  

application (spring boot) 

core 

infrastructure 

Pipeline 

  

  

  
UI (spring boot) 

RabbitMQ-Queue 

  
  

  

application (spring boot) 

core 

infrastructure 

cl
ie

n
t-

se
rv

ic
e

 
w

e
b

-a
p

i 

RabbitMQ server 

https://github.com/dimitris-papadimitriou-chr/Spring-Boot-WebAppExample-Mediator
https://java-design-patterns.com/patterns/pipeline/
https://github.com/sizovs/PipelinR
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules


26 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

Here we will focus mainly on the last Distributed Project example of the architectural 

evolution. Nonetheless, we will also briefly explore the Mediator and a Pipeline design 

pattern.  

The Functional styles and implementations are kept intact in all the above implementations. 

The point we try to make is that the Functional style can be used in any stage of the 

architectural design of a project. 

 

 Clean Architecture with Spring Boot and Vavr.io 
 

The Distributed-SpringBoot-CleanArchitecture application approximates  a Functional 

architecture Style embedded in a Clean architecture.  

The application consists of four projects the three of them are libraries targeting the .NET 

standard 2.0 framework (application, core, infrastructure) and the “UI” Project named web-

api  is a Boot Spring MVC Web application  Maven project generated by Spring Initializr. 

that is completely independent. 

 

 

 

 

  

  

  UI (spring boot) 

RabbitMQ-Queue 

  
  

  

application (spring boot) 

core 

infrastructure 

c
li

e
n

t-
se

rv
ic

e
 

w
e

b
-a

p
i 

RabbitMQ server 

https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules
https://java-design-patterns.com/patterns/pipeline/
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://spring.io/guides/gs/serving-web-content/
https://start.spring.io/


27 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

 How to Run the project using IntelliJ community edition  
 

This section is intended to guide you through the process of debugging the full sample. If 

you do not want to run the application, then you can just skip this section.  

The system is consisted of two parts the web-api application and the clients-service 

application. You can open and run each one separately using the IntelliJ community 

edition.  

 

 

o.s.b.w.embedded.tomcat.TomcatWebServer  : Tomcat started on port(s): 8080 (http) with context 

path '' 

 

RabbitMQ server  

In order to be able to use the sample you must have installed the RabbitMQ server to the 

machine you plan to run the sample .There are various downloads on the RabbitMQ site. 

Unfortunately, you should also have installed Erlang. The RabbitMQ installation will ask you 

to install erlang if you have not. 

If the RabbitMQ server is not running you will get an error log from the web-api project 

when you try to run it. 

 

  

 

  

  UI (spring boot) 

RabbitMQ-Queue 

  
  

  

application (spring boot) 

core 

infrastructure 

c
li

e
n

t-
se

rv
ic

e
 

w
e

b
-a

p
i 

R
a

b
b

it
M

Q
 

se
rv

e
r 

T
o

m
ca

t 
se

rv
e

r 
 

https://www.rabbitmq.com/download.html
https://www.erlang.org/downloads


28 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

 Web API 
 

 This web-api  project is a single Spring MVC boot project. The project has a single  
@RestController. The web-api project have a single responsibility, to handle the HTTP 
requests received from the web browser and to return the HTTP responses. 

 

We will handle exceptions and errors that have occurred in the Domain or Data projects to 

effectively communicate with the consumer of APIs. This communication will use HTTP 

response codes and any data to be returned located in the HTTP response body. 

When you run the application and you try to browse the http://localhost:8080/ from any 

browser the Spring Application will serve the default index.html.  

 

 

  

This looks like this. A very simple unstilled html page index.html 

 
@SpringBootApplication 

 

UI-Web Application 

    UI (spring boot) 

 w
e

b
-a

p
i 

T
o

m
ca

t 
se

rv
e

r 
 @RestController 

  

:8080/  

https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/tree/master/web-api
https://spring.io/guides/tutorials/rest/
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/tree/master/web-api
http://localhost:8080/
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/blob/master/web-api/src/main/resources/static/index.html
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/blob/master/web-api/src/main/resources/static/index.html
http://localhost:8080/


29 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

 

 

In this SpringBootApplication, the routing is configured by Attribute Routings and more 

specific with the decorating @RequestMapping Attribute. 

@SpringBootApplication 
@RestController 
@RequestMapping(path = "/clients") 
public class DemoApplication {  
 
    @GetMapping("/get/{clientId}") 
    public ResponseEntity<SearchViewModel> get(@PathVariable Integer clientId)   
    { 
       ... 
    } 
 

    @PostMapping("/create") 
    public ResponseEntity<CreateClientResponse> create(@RequestBody CreateRequest 
createRequest)  
    { 
       ... 
    } 
} 

Github: source 

 

The above REST controller covers the /clients URL paths and we can call them from the 

front-end side. For example we can call the /clients/get/1 using the Fetch-API : 

fetch(`/clients/get/${clientId}`, { method: 'GET' }) 

Github: source 

 
This will reach the @RestController at the get method directed by the @GetMapping 

 
@GetMapping("/get/{clientId}") 

public ResponseEntity<SearchViewModel> get(@PathVariable Integer clientId)   

{ 

       ... 

https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/blob/master/web-api/src/main/java/com/example/demo/DemoApplication.java#L24
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/blob/master/web-api/src/main/resources/static/index.html#L70


30 

 

© Dimitris papadimitriou 2020   - Functional Programming in Java with Vavr.io  

} 

 

Similarly for making a POST http request at /clients/create/ using the Fetch-API we can 

write : 
 
fetch(`/clients/create/`, 
                { 
                    method: 'POST', 
                    headers: { 
                        'Content-Type': 'application/json' 
                    }, 
                    body: JSON.stringify({name: '' , employeeId: 1}) 
                }) 

Github: source 

 
This will reach the @RestController at the create method  where the Json will be 

deserialized as CreateRequest instance thanks to the @RequestBody attribute 

 

@PostMapping("/create") 

public ResponseEntity<CreateClientResponse> create(@RequestBody CreateRequest crea

teRequest)  

{ 

   ...  

} 

 

Of course, we could use alternatively jQuery, Angular, or any other JavaScript framework 

to make those http calls to the @RestControllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data are send in the http 

body as a Json String  

The http body json string will be 

deserialized into a CreateRequest  

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://github.com/dimitris-papadimitriou-chr/Distributed-SpringBoot-CleanArchitecture-modules/blob/master/web-api/src/main/resources/static/index.html#L86
https://en.wikipedia.org/wiki/JSON

