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Chapter   1  
What   is   software   design?  

 
This   chapter   covers  

▪ An   introduction   to   software   design  
▪ Principles   and   patterns   of   software   design  
▪ Software   design   and   the   functional   paradigm  

Our  world  is  a  complex,  strange  place  that  can  be  described  using  physical  math,                            
at  least  to  some  degree.  The  deeper  we  look  into  space,  time,  and  matter,  the                              
more  complex  such  mathematical  formulas  become  —  formulas  we  must  use  in                        
order  to  explain  the  facts  we  observe.  Finding  better  abstractions  for  natural                        
phenomena  lets  us  predict  the  behavior  of  the  systems  involved.  We  can  build                          
wiser  and  more  intelligent  things,  thus  changing  everything  around  us,  from                      
quality  of  life,  culture,  and  technology  to  the  way  we  think. Homo  sapiens  have                            
come   a   long   way   to   the   present   time   by   climbing   the   ladder   of   progress.  

If  you  think  about  it,  you’ll  see  that  this  ability  to  describe  the  Universe  using                              
mathematical  language  isn’t  an  obvious  one.  There’s  no  intrinsic  reason  why  our                        
world  should  obey  laws  developed  by  physicists  and  verified  by  natural                      
experiments.  However,  it’s  true:  given  the  same  conditions,  you  can  expect  the                        
same  results.  The  determinism  of  physical  laws  seems  to  be  an  unavoidable                        
property   of   the   Universe.   Math   is   a   suitable   way   to   explain   this   determinism.  

You  may  wonder  why  I’m  talking  about  the  Universe  in  a  programming  book.                          
Besides  the  fact  that  it  is  an  intriguing  start  for  any  text,  it’s  also  a  good                                

 



Alexander   Granin    /    Functional   Design   and   Architecture 2  

metaphor  for  the  central  theme  of  this  book:  functional  programming  from  the                        
software  design  point  of  view. Functional  Design  and  Architecture  presents  the                      
most  interesting  ideas  about  software  design  and  architecture  we’ve  discovered                    
thus  far  in  functional  programming.  You  may  be  asking,  why  break  the  status                          
quo  —  why  stray  from  plain  old  techniques  the  imperative  world  elaborated  for                          
us  years  ago?  Good  question.  I  could  answer  that  functional  programming                      
techniques  can  make  your  code  safer,  shorter,  and  better  in  general.  I  could  also                            
say  that  some  problems  are  much  easier  to  approach  within  the  functional                        
paradigm.  Moreover,  I  could  argue  that  the  functional  paradigm  is  no  doubt  just                          
as  deserving  as  others.  But  these  are  just  words  —  not  that  convincing  and                            
lacking   strong   facts.  

I’ll  present  facts  later  on  in  the  book.  For  now,  there  is  a  simple,  excellent                              
motivation  to  read  this  book.  Perhaps  the  main  reason  I  argue  for  functional                          
programming  is  that  it  brings  a  lot  of  fun  to  all  aspects  of  development,                            
including  the  hardest  ones.  You’ve  probably  heard  that  parallel  and  concurrent                      
code  is  where  functional  approaches  shine.  This  is  true,  but  it’s  not  the  only                            
benefit.  In  fact,  the  real  power  of  functional  programming  is  in  its  ability  to                            
make  complicated  things  much  simpler  and  more  enjoyable  because  functional                    
tools  are  highly  consistent  and  elaborated  thanks  to  their  mathematical  nature.                      
Considering  this,  many  problems  you  might  face  in  imperative  programming  are                      
made  more  simple  or  even  eliminated  in  functional  programming.  Certainly,                    
functional  programming  has  its  own  problems  and  drawbacks,  but  learning  new                      
ideas  is  always  profitable  because  it  gives  you  more  opportunity  to  find  better                          
techniques   or   ways   of   reasoning.  

You’re  probably  looking  for  new  insights  into  what  you  already  know  about                        
software   design.   The   book   has   three   parts:  

▪ Introduction   to   Functional   Declarative   Design   (chapters   1-2),  
▪ Domain   Driven   Design   (chapters   3-5),  
▪ Designing   real   world   software   (chapters   6-9).  

You  can  start  from  either  of  the  parts,  but  I  recommend  reading  the  chapters  in                              
order  because  they  complement  each  other  and  help  you  to  build  a  complete                          
picture  of  Software  Design  in  Haskell.  The  first  part  introduces  the  discipline  of                          
Software  Engineering  and  prepares  a  ground  for  a  deep  discussion  on  how  we  do                            
things  in  functional  languages.  Two  other  parts  are  project-based.  The  two                      
projects  have  a  slightly  different  architecture  but  share  some  common  ideas.                      

 



Alexander   Granin    /    Functional   Design   and   Architecture 3  

This  will  help  to  look  onto  the  same  concepts  from  many  points  of  view  and  get                                
a   better   understanding   when   to   apply   them   and   how.  

The  first  project  is  a  software  to  control  simple  spaceships.This  field  is  known  as                            
supervisory  control  and  data  acquisition  software  (SCADA),  and  it's  a  rather  big                        
and  rich  one.  We  certainly  can’t  build  a  real  SCADA  application,  but  we’ll  try  to                              
create  a  kind  of  simulator  in  order  to  demonstrate  the  ideas  of  DDD.  We’ll  track                              
all  the  stages  of  software  design  from  requirements  gathering  to  a  possibly                        
incomplete  but  working  application.  In  other  words,  we’ll  follow  a  whole  cycle                        
of  software  creation  processes.  You  don't  have  to  be  proficient  in  SCADA,                        
because  I'll  be  giving  you  all  the  information  necessary  to  solve  this  task.                          
Writing  such  software  requires  utilizing  many  concepts,  so  it’s  a  good  example                        
for   showing   different   sides   of   functional   programming.  

The  second  project  represents  a  framework  for  building  web  services,  backends,                      
console  applications.  We’ll  talk  about  design  patterns,  design  approaches  and                    
practices  which  help  to  structure  our  code  properly,  to  make  it  less  risky  and                            
more  simple.  We’ll  see  how  to  build  layered  applications  and  how  to  write  a                            
testable,  maintainable  and  well-organized  code.  While  building  a  framework  and                    
some  demo  applications,  you’ll  deal  with  many  challenges  that  you  might  expect                        
to  meet  in  the  real  world:  relational  and  key-value  database  access,  logging,  state                          
handling,  multithreading  and  concurrency.  What’s  else  important,  the  ideas                  
presented  in  this  part,  are  not  only  theoretical  reasoning.  They  have  been                        
successfully   tested   in   production.  

In  this  chapter,  you’ll  find  a  definition  of  software  design,  a  description  of                          
software  complexity,  and  an  overview  of  known  practices.  The  terms  I  introduce                        
in  this  chapter  will  show that  you  may  already  be  using  some  common                          
approaches,  and,  if  not,  you’ll  get  a  bird's-eye  view  of  how  to  approach  design                            
thinking  in  three  main  paradigms:  imperative,  object-oriented,  and  functional.  It                    
is  important  to  understand  when  functional  programming  (sometimes  called  FP)                    
is  better  than  object-oriented  programming  (OOP)  and  when  it's  not.  We’ll  look                        
at  the  pros  and  cons  of  traditional  design  methodologies  and  then  see  how  to                            
build   our   own.  

1.1    Software   design  
When  constructing  programs,  we  want  to  obey  certain  requirements  in  order  to                        
make  the  program’s  behavior  correct.  But  every  time  we  deal  with  our  complex                          
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world,  we  experience  the  difficulties  of  describing  the  world  in  terms  of  code.                          
We  can  just  continue  developing,  but  at  some  point,  we  will  suddenly  realize                          
that  we  can't  go  further  because  of  overcomplicated  code.  Sooner  or  later,  we’ll                          
get  stuck  and  fail  to  meet  the  requirements.  There  seems  to  be  a  general  law  of                                
code   complexity   that   symmetrically   reflects   the   phenomenon   of   entropy:  

Any   big,   complex   system   tends   to   become   bigger   and   more   complex.  

But  if  we  try  to  change  some  parts  of  such  a  system,  we'll  encounter  another                              
problem   that   is   very   similar   to   mass   in   physics:  

Any   big,   complex   system   resists   our   attempts   to   change   it.  

Software  complexity  is  the  main  problem  developers  deal  with.  Fortunately,                    
we’ve  found  many  techniques  that  help  decrease  this  problem’s  acuteness.  To                      
keep  a  big  program  maintainable,  correct,  and  clear,  we  have  to  structure  it  in  a                              
particular  way.  First,  the  system’s  behavior  should  be  deterministic  because  we                      
can't  manage  chaos.  Second,  the  code  should  be  as  simple  and  clear  as  possible                            
because   we   can't   maintain   Klingon   manuscripts.  

You  might  say  that  many  successful  systems  have  an  unjustifiably  complex                      
structure.  True,  but  would  you  be  happy  to  support  code  like  that?  How  much                            
time  can  you  endure  working  on  complex  code  that  you  know  could  be  designed                            
better?  You  can  try:  the  “FizzBuzzEnterpriseEdition”  project  has  an  enormous                    
number   of   Java   classes   to   solve   the   classic   problem   FizzBuzz.  

LINK     Fizz   Buzz   Enterprise   Edition  
https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition  

A  small  portion  of  these  classes,  interfaces,  and  dependencies  is  presented  in  the                          
following   figure   1.1.   Imagine   how   much   weird   code   there   is!  

 

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition
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Figure   1.1   FizzBuzz   Enterprise   Edition   class   diagram   (an   excerpt)  

So  does  going  functional  mean  you're  guaranteed  to  write  simple  and                      
maintainable  code?  No  —  like  many  tools,  functional  programming  can  be                      
dangerous  when  used  incorrectly.  Consider  as  evidence:  in  the  following  paper,                      
the  same  FizzBuzz  problem  is  solved  in  a  functional  yet  mind-blowing  manner:                        
“FizzBuzz   in   Haskell   by   Embedding   a   Domain-Specific   Language.”  

LINK     FizzBuzz   in   Haskell   by   Embedding   a   Domain-Specific   Language  
https://themonadreader.files.wordpress.com/2014/04/fizzbuzz.pdf  

That's  why  software  design  is  important  even  in  Haskell  or  Scala.  But  before                          
you  design  something,  you  need  to  understand  your  goals,  limitations,  and                      
requirements.   Let's   examine   this   now.  

1.1.1    Requirements,   goals,   and   simplicity  

Imagine  you  are  a  budding  software  architect  with  a  small  but  ambitious  team.                          
One  day,  a  man  knocks  at  your  office  door  and  comes  in.  He  introduces  himself                              
as  a  director  of  Space  Z  Corporation.  He  says  that  they  have  started  a  big  space                                
project  recently  and  need  some  spaceship  management  software.  What  a                    
wonderful  career  opportunity  for  you!  You  decide  to  contribute  to  this  project.                        
After  discussing  some  details,  you  sign  an  agreement,  and  now  your  team  is  an                            
official  contractor  of  Space  Z  Corporation.  You  agree  to  develop  a  prototype  for                          
date  one,  to  release  version  1.0  by  date  two,  and  to  deliver  major  update  1.5  by                                
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date  three.  The  director  gives  you  a  thick  stack  of  technical  documents  and                          
contact  details  for  his  engineers  and  other  responsible  people,  so  you  can  explore                          
the  construction  of  the  spaceship.  You  say  goodbye,  and  he  leaves.  You  quickly                          
form  a  roadmap  to  understand  your  future  plans.  The  roadmap  —  a  path  of  what                              
to   do   and   when   —   is   presented   in   figure   1.2.  

Figure   1.2   Roadmap   of   the   development   process  

To  cut  a  long  story  short,  you  read  the  documentation  inside  and  out  and  gather  a                                
bunch  of  requirements  for  how  the  spaceship  software  should  work.  At  this                        
point,   you   are   able   to   enter   the   software   design   phase.  

As  the  space  domain  dictates,  you  have  to  create  a  robust,  fault-tolerant  program                          
that  works  correctly  all  the  time,  around  the  clock.  The  program  should  be  easy                            
to  operate,  secure,  and  compatible  with  a  wide  component  spectrum.  These                      
software  property  expectations  are  known  as nonfunctional  requirements .  Also,                  
the  program  should  do  what  it  is  supposed  to  do:  allow  an  astronaut  to  control                              
the  ship’s  systems  in  manual  mode  in  addition  to  the  fully  automatic  mode.                          
These   expectations   are   known   as    functional   requirements .  

DEFINITION Functional  requirements  are  the  application’s            
requirements  for  functionality.  In  other  words,  functional  requirements                
describe  a  full  set  of  things  the  application  should  do  to  allow  its  users                            
to   complete   their   tasks.  

DEFINITION Nonfunctional  requirements  are  requirements  for  the              
application’s  general  properties:  performance,  stability,  extensibility,            
availability,  amounts  of  data  it  should  be  able  to  process,  latency,  and  so                          
on.  
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You  have  to  create  a  program  that  will  meet  the  requirements  and  will  not                            
necessitate  rewriting  from  scratch  —  a  quite  challenging  task,  with  deadlines                      
approaching.  Fortunately,  you  understand  the  risks.  One  of  them  is                    
overcomplicated  code,  and  you  would  like  to  avoid  this  problem.  Your  goal  is                          
not  only  to  create  the  software  on  time,  but  to  update  it  on  time  too;  therefore,                                
you   should   still   be   comfortable   with   the   code   after   a   few   months.  

Designing  simple  yet  powerful  code  takes  time,  and  it  often  involves                      
compromises.  You  will  have  to  maneuver  between  these  three  success  factors                      
(there   are   other   approaches   to   this   classic   problem,   but   let's   consider   this   one):  

▪ Goals  accomplished .  Your  main  goal  is  to  deliver  the  system  when  it's                        
needed,  and  it  must  meet  your  customer’s  expectations:  quality,  budget,                    
deadlines,  support,  and  so  on.  There  is  also  a  goal  to  keep  risks  low,  and  to                                
be   able   to   handle   problems   when   they   arise.  

▪ Compliant  with  requirements .  The  system  must  have  all  the  agreed-on                    
functions   and   properties.     It   should   work   correctly.  

▪ Constant  simplicity .  A  simple  system  is  maintainable  and  understandable;                  
simple  code  allows  you  to  find  and  fix  bugs  easily.  Newcomers  can                        
quickly   drop   into   the   project   and   start   modifying   the   code.  

Although  fully  satisfying  each  factor  is  your  primary  meta-goal,  it  is  often  an                          
unattainable  ideal  in  our  imperfect  world.  This  might  sound  fatalistic,  but  it                        
actually  gives  you  additional  possibilities  to  explore,  like  factor  execution  gaps.                      
For  example,  you  might  want  to  focus  on  some  aspects  of  fault  tolerance,  even  if                              
it  means  exceeding  a  deadline  by  a  little.  Or  you  may  decide  to  ignore  some                              
spaceship  equipment  that  you  know  will  be  out  of  production  soon.  The                        
compromises   themselves   can   be   represented   by   a   radar   chart   (see   figure   1.3).  
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Figure   1.3   Compromising   between   simplicity,   goals,   and   requirements  

Software  design  is  a  risk  management  process.  Risks  affect  our  design  decisions                        
and  may  force  us  to  use  tools  and  practices  we  don't  like.  We  say  risk  is  low                                  
when  the  cost  of  solving  problems  is  low.  We  can  list  the  typical  risks  that  any                                
software   architect   deals   with:  

▪ Low  budget.  If  we  can't  hire  a  good  software  architect,  we  can't  expect  the                            
software   to   be   of   production   quality.  

▪ Changing  requirements.  Suppose  we’ve  finished  a  system  that  can  serve  a                      
thousand  clients.  For  some  reason,  our  system  becomes  popular,  and  more                      
and  more  clients  are  coming.  If  our  requirement  was  to  serve  a  thousand                          
clients,   we’ll   face   problems   when   there   are   millions   of   clients.  

▪ Misunderstood  requirements.  The  feature  we  have  been  building  over  the                    
last  six  months  was  described  poorly.  As  a  result,  we’ve  created  a  kind  of                            
fifth  wheel  and  lost  time.  When  the  requirements  were  clarified,  we  were                        
forced   to   start   over   again.  

▪ New  requirements.  We  created  a  wonderful  hammer  with  nice  features  like                      
a  nail  puller,  a  ruler,  pliers,  and  electrical  insulation.  What  a  drama  it  will                            
be   someday   to   redesign   our   hammer   in   order   to   give   it   a   striking   surface.  

▪ Lack  of  time.  Lack  of  time  can  force  us  to  write  quick  and  dirty  code  with                                
no  thought  for  design  or  for  the  future.  It  leads  to  code  we’re  likely  to                              
throw   in   the   trash   soon.  

▪ Overcomplicated  code.  With  code  that’s  difficult  to  read  and  maintain,  we                      
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lose  time  trying  to  understand  how  it  works  and  how  to  avoid  breaking                          
everything   with   a   small   change.  

▪ Invalid  tools  and  approaches.  We  thought  using  our  favorite  dynamic                    
language  would  boost  the  development  significantly,  but  when  we  needed                    
to  increase  performance,  we  realized  it  has  insuperable  disadvantages                  
compared   to   static   languages.  

At  the  beginning  of  a  project,  it’s  important  to  choose  the  right  tools  and                            
approaches  for  your  program’s  design  and  architecture.  Carefully  evaluated  and                    
chosen  technologies  and  techniques  can  make  you  confident  of  success  later.                      
Making  the  right  decisions  now  leads  to  good  code  in  the  future.  Why  should                            
you  care?  Why  not  just  use  mainstream  technologies  like  C++  or  Java?  Why  pay                            
attention  to  the  new  fashion  today  for  learning strange  things  like  functional                        
programming?  The  answer  is  simple:  parallelism,  correctness,  determinism,  and                  
simplicity.  Note  that  I  didn't  say easiness ,  but simplicity .  With  the  functional                        
paradigm  comes  simplicity  of  reasoning  about  parallelism  and  correctness.                  
That's   a   significant   mental   shift.  

NOTE To  better  understand  the  difference  between  easiness  and                  
simplicity,  I  recommend  watching  the  talk  “Simple  Made  Easy”  (or                    
“Simplicity  Matters”)  by  Rich  Hickey,  the  creator  of  the  functional                    
language  Clojure  and  a  great  functional  developer.  In  his  presentation,                    
he  speaks  about  the  difference  between  “simple”  and  “easy”  and  how                      
this  affects  whether  we  write  good  or  bad  code.  He  shows  that  we  all                            
need  to  seek  simplicity,  which  can  be  hard,  but  is  definitely  much  more                          
beneficial  than  the  easy  paths  we  usually  like  to  follow.  This  talk  is                          
useful  not  only  for  functional  developers;  it  is  a  mind-expanding  speech                      
of  value  to  every  professional  developer,  without  exception.  Sometimes                  
we   don't   understand   how   bad   we   are   at   making   programming   decisions.  

You'll  be  dealing  with  these  challenges  every  day,  but  what  tools  do  you  have  to                              
make  these  risks  lower?  In  general,  software  design  is  that  tool:  you  want  to                            
create  an  application,  but  you  also  want  to  decrease  any  potential  problems  in                          
the  future.  Let's  continue  walking  in  the  mythical  architect's  shoes  and  see  what                          
software   design   is.  
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1.1.2    Defining   software   design  

You  are  meditating  over  the  documentation.  After  a  while,  you  end  up  with  a  set                              
of  diagrams.  These  diagrams  show  actors,  actions,  and  the  context  of  those                        
actions.  Actors  —  stick  figures  in  the  pictures  —  evaluate  actions.  For  example,                          
an  astronaut  starts  and  stops  the  engine  in  the  context  of  the  control  subsystem.                            
These  kinds  of  diagrams  — use  case  diagrams —  come  from  the  Unified                          
Modeling  Language  (UML),  and  you’ve  decided  to  use  them  to  organize  your                        
requirements  in  a  traditional  way.  One  of  the  use  case  diagrams  is  presented  in                            
figure   1.4.  

Figure   1.4   Use   case   diagram   for   the   engine   control   subsystem  

NOTE Use  case  diagrams  are  a  part  of  UML,  which  is  primarily  used                          
for  object-oriented  design.  But  looking  at  the  diagram,  can  you  say  how                        
they  are  related  to  OOP?  In  fact,  use  case  diagrams  are                      
paradigm-agnostic,  so  they  can  be  used  to  express  requirements                  
regardless  of  the  implementation  stack.  However,  we  will  see  how  some                      
UML  diagrams  lead  to  imperative  thinking  and  can't  be  used  directly  in                        
functional   declarative   design.  

Thinking  about  the  program’s  architecture,  you  notice  that  the  diagrams  are                      
complex,  dense,  and  highly  detailed.  The  list  of  subsystems  the  astronaut  will                        
work  with  is  huge,  and  there  are  two  or  three  instances  of  many  of  those                              
subsystems.  Duplication  of  critical  units  should  prevent  the  ship’s  loss  in  case  of                          

 



Alexander   Granin    /    Functional   Design   and   Architecture 11  

disaster  or  technical  failure.  Communication  protocols  between  subsystems  are                  
developed  in  the  same  vein  of  fault  tolerance,  and  every  command  carries  a                          
recovery  code.  The  whole  scheme  looks  very  sophisticated,  and  there  is  no  way                          
to  simplify  it  or  ignore  any  of  these  issues.  You  must  support  all  of  the  required                                
features  because  this  complexity  is  an  inherent  property  of  the  spaceship  control                        
software.  This  type  of  unavoidable  complexity  has  a  special  name: essential                      
complexity .  The  integral properties  every  big  system  has  make  our  solutions  big                        
and   heavy   too.  

The  technical  documentation  contains  a  long  list  of  subsystem  commands.  An                      
excerpt   is   shown   in   table   1.1.  

Table  1.1  A  small  portion  of  the  imaginary  reference  of  subsystem                      
commands  

Command   Native   API   function  

Start   boosters   int   send(BOOSTERS,   START,   0)  

Stop   boosters   int   send(BOOSTERS,   STOP,   0)  

Start   rotary   engine   core::request::result  

    request_start(core::RotaryEngine)  

Stop   rotary   engine   core::request::result  

    request_stop(core::RotaryEngine)  

 

Mixing  components'  manufacturers  makes  the  API  too  messy.  This  is  your                      
reality,  and  you  can  do  nothing  to  change  it.  These  functions  have  to  be  called                              
somewhere  in  your  program.  Your  task  is  to  hide  native  calls  behind  an                          
abstraction,  which  will  keep  your  program  concise,  clean,  and  testable.  After                      
meditating  over  the  list  of  commands,  you  write  down  some  possible  solutions                        
that   come   to   mind:  

▪ No   abstractions.   Native   calls   only.  
▪ Create  a  runtime  mapping  between  native  functions  and  higher-level                  

functions.  
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▪ Create   a   compile-time   mapping   (side   note:   how   should   this   work?).  
▪ Wrap   every   native   command   in   a   polymorphic   object   (Command   pattern).  
▪ Wrap  the  native  API  with  a  higher-level  API  with  the  interfaces  and                        

syntax   unified.  
▪ Create   a   unified   embedded   domain-specific   language   (DSL).  
▪ Create   a   unified   external   DSL.  

Without  going  into  detail,  it's  easy  to  see  that  all  the  solutions  are  very  different.                              
Aside  from  architectural  advantages  and  disadvantages,  every  solution  has  its                    
own  complexity  depending  on  many  factors.  Thanks  to  your  position,  you  can                        
weigh  the  pros  and  cons  and  choose  the  best  one.  Your  decisions  affect  a  type  of                                
complexity  known  as accidental  complexity .  Accidental  complexity  is  not  a                    
property  of  the  system;  it  didn’t  exist  before  you  created  the  code  itself.  When                            
you   write   unreasonably   tricky   code,   you   increase   the   accidental   complexity.  

We  reject  the  idea  of  abstracting  the  native  calls  —  that  would  decrease  the                            
code’s  maintainability  and  increase  the  accidental  complexity.  We  don't  think                    
about  overdesigning  while  making  new  levels  of  abstractions  —  that  would  have                        
extremely   bad   effects   on   accidental   complexity   too.  

Figure  1.5  compares  the  factors  in  two  solutions  that  affect  accidental  and                        
essential   complexity.  

Figure   1.5     Accidental   and   essential   complexity   of   two   solutions  
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Software  design  is  a  creative  activity  in  the  sense  that  there  is  no  general  path  to                                
the  perfect  solution.  Maybe  the  perfect  solution  doesn't  even  exist.  All  the  time                          
we’re  designing,  we  will  have  to  balance  controversial  options.  That's  why  we                        
want  to  know  software  design  best  practices  and  patterns:  our  predecessors  have                        
already  encountered  such  problems  and  invented  handy  solutions  that  we  can                      
use   too.  

Now  we  are  able  to  formulate  what  software  design  is  and  the  main  task  of  this                                
activity.  

DEFINITION Software  design  is  the  process  of  implementing  the                  
domain  model  and  requirements  in  high-level  code  composition.  It's                  
aimed  at  accomplishing  goals.  The  result  of  software  design  can  be                      
represented  as  software  design  documents,  high-level  code  structures,                
diagrams,  or  other  software  artifacts.  The  main  task  of  software  design                      
is  to  keep  the  accidental  complexity  as  low  as  possible,  but  not  at  the                            
expense   of   other   factors.   

An   example   of   object-oriented   design   (OOD)   is   presented   in   figure   1.6.  

Figure   1.6   OOD   class   diagram   for   the   engine   control   subsystem  

Here,  you  can  see  a  class  diagram  that  describes  the  high-level  organization  of  a                            
small  part  of  the  domain  model.  Class  diagrams  may  be  the  best-known  part  of                            
UML,  which  has  been  widely  used  in  OOD  recently.  Class  diagrams  help                        
object-oriented  developers  communicate  with  each  other  and  express  their  ideas                    
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before  coding.  An  interesting  question  here  is  how  applicable  UML  is  to                        
functional  programming.  We  traditionally  don’t  have  objects  and  state  in                    
functional  programming  —  does  that  really  mean  we  can't  use  UML  diagrams?                        
I’ll   answer   this   question   in   the   following   chapters.  

Someone  could  ask:  why  not  skip  object-oriented  concepts?  We  are  functional                      
developers,  after  all.  The  answer  is  quite  simple:  many  object-oriented  practices                      
lead  to  functional  code!  How  so?  See  the  next  chapter  —  we'll  discuss  why                            
classic  design  patterns  try  to  overcome  the  lack  of  functional  programming  in                        
languages.  Here,  we  will  take  only  a  brief  tour  of  some  major  design  principles                            
(not  patterns!):  low  coupling  and  high  cohesion.  This  is  all  about  keeping                        
complexity   manageable   in   OOD   and,   in   fact,   in   other   methodologies.  

1.1.3    Low   coupling,   high   cohesion  

As  team  leader,  you  want  the  code  your  team  produces  to  be  of  good  quality,                              
suitable  for  the  space  field.  You’ve  just  finished  reviewing  some  of  your                        
developers’  code  and  you  are  in  a  bad  mood.  The  task  was  extremely  simple:                            
read  data  from  a  thermometer,  transform  it  into  an  internal  representation,  and                        
send  it  to  the  remote  server.  But  you’ve  seen  some  unsatisfactory  code  in  one                            
class.   The   following   listing   in   Scala   shows   the   relevant   part   of   it.  

Listing   1.1   Highly   coupled   object-oriented   code  

object   Observer   {  
   def   readAndSendTemperature()   {  
     def   toCelsius(data:   native.core.Temperature)   :   Float   =  
       data   match   {  
         case   native.core.Kelvin(v)    =>   273.15f   -   v  
         case   native.core.Celsius(v)   =>   v  
       }  

 
       val   received   =   native.core.thermometer.getData()  
       val   inCelsius   =   toCelsius(received)  
       val   corrected   =   inCelsius   -   12.5f                       #A  
       server.connection  
             .send("temperature",   "T-201A",   corrected)  
   }  
}  
 
#A   Defective   device!  
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Look  at  the  code.  The  transformation  algorithm  hasn’t  been  tested  at  all!  Why?                          
Because  there  is  no  way  to  test  this  code  in  laboratory  conditions.  You  need  a                              
real  thermometer  connected  and  a  real  server  online  to  evaluate  all  the                        
commands.  You  can't  do  this  in  tests.  As  a  result,  the  code  contains  an  error  in                                
converting  from  Kelvin  to  Celsius  that  might  have  gone  undetected.  The  right                        
formula  should  be v  –  273.15f.  Also,  this  code  has  magic  constants  and                          
secret   knowledge   about   a   manufacturing   defect   in   the   thermometer.  

The  class  is  highly  coupled  with  the  outer  systems,  which  makes  it                        
unpredictable.  It  would  not  be  an  exaggeration  to  say  we  don't  know  if  this  code                              
will  even  work.  Also,  the  code  violates  the  Single  Responsibility  Principle                      
(SRP):  it  does  too  much,  so  it  has  low  cohesion.  Finally,  it's  bad  because  the                              
logic  we  embedded  into  this  class  is  untestable  because  we  can’t  access  these                          
subsystems   in   tests.  

Solving  these  problems  requires  introducing  new  levels  of  abstraction.  You  need                      
interfaces  to  hide  native  functions  and  side  effects  to  have  these  responsibilities                        
separated  from  each  other.  You  probably  want  an  interface  for  the  transformation                        
algorithm   itself.   After   refactoring,   your   code   could   look   like   this.  

Listing   1.2   Loosely   coupled   object-oriented   code  

trait   ISensor   {  
   def   getData()   :   Float  
   def   getName()   :   String  
   def   getDataType()   :   String  
}  
 
trait   IConnection   {  
   def   send(name:   String,   dataType:   String,   v:   Float)  
}  
 
final   class   Observer   (val   sensor:   ISensor,  
                       val   connection:   IConnection)   {  
   def   readAndSendData()   {  
     val   data   =   sensor.getData()  
     val   sensorName   =   sensor.getName()  
     val   dataType   =   sensor.getDataType()  
     connection.send(sensorName,   dataType,   data)  
}}  
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Here,  the ISensor  interface  represents  a  general  sensor  device,  and  you  don't                        
need  to  know  too  much  about  that  device.  It  may  be  defective,  but  your  code                              
isn't  responsible  for  fixing  defects;  that  should  be  done  in  the  concrete                        
implementations  of ISensor . IConnection  has  a  small  method  to  send                    
data  to  a  destination:  it  can  be  a  remote  server,  a  database,  or  something  else.  It                                
doesn’t  matter  to  your  code  what  implementation  is  used  behind  the  interface.  A                          
class   diagram   of   this   simple   code   is   shown   in   figure   1.7.  

Figure   1.7.   Class   diagram   of   listing   1.2  

Achieving  low  coupling  and  high  cohesion  is  a  general  principle  of  software                        
design.  Do  you  think  this  principle  is  applicable  to  functional  programming?                      
Can  functional  code  be  highly  coupled  or  loosely  coupled?  Both  answers  are                        
“yes.”  Consider  the  code  in  listing  1.3:  it's  functional  (because  of  Haskell!)  but                          
has   exactly   the   same   issues   as   the   code   in   listing   1.1.  

Listing   1.3   Highly   coupled   functional   code  

import   qualified   Native.Core.Thermometer   as   T  
import   qualified   ServerContext.Connection   as   C  
 
readThermometer   ::   String   ->   IO   T.Temperature               #A  
readThermometer   name   =   T.read   name   
 
sendTemperature   ::   String   ->   Float   ->   IO   ()                 #B  
sendTemperature   name   t   =   C.send   "temperature"   name   t   
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readTemperature   ::   IO   Float                                 #C  
readTemperature   =   do   
   t1   <-   readThermometer   "T-201A"  
   return   $   case   t1   of   
     T.Kelvin    v   ->   273.15   –   v   
     T.Celsius   v   ->   v   
 
readAndSend   ::   IO   ()                                        #D  
readAndSend   =   do   
   t1   <-   readTemperature  
   let   t2   =   t1   -   12.5               --   defect   device!   
   sendTemperature   "T-201A"   t2  
 
#A   Native   impure   call   to   thermometer  
#B   Server   impure   call  
#C   Impure   function   that   depends   on   native   call  
#D   Highly   coupled   impure   function   with   a   lot   of   dependencies  

NOTE     We’ll   be   discussing   this   code   more   closely   in   chapters   3   and   4.  

We  call  the  functions read  and send impure .  These  are  functions  that  work                          
with  the  native  device  and  remote  server.  The  problem  here  is  finding  a                          
straightforward  approach  to  dealing  with  side  effects.  There  are  good  solutions                      
in  the  object-oriented  world  that  help  to  keep  code  loosely  coupled.  The                        
functional  paradigm  tries  to  handle  this  problem  in  another  way.  For  example,                        
the  code  in  listing  1.3  can  be  made  less  tightly  coupled  by  introducing  a  DSL  for                                
native  calls.  We  can  build  a  scenario  using  this  DSL,  so  the  client  code  will  only                                
work  with  the  DSL,  and  its  dependency  on  native  calls  will  be  eliminated.  We                            
then  have  two  options:  first,  we  can  use  a  native  translator  for  the  DSL  that                              
converts  high-level  commands  to  native  functions;  second,  we  can  test  our                      
scenario  separately  by  inventing  some  testing  interpreter. Listing  1.4  shows  an                      
example  of  how  this  can  be  done.  The  DSL ActionDsl  shown  here  is  not                            
ideal   and   has   some   disadvantages,   but   we’ll   ignore   those   details   for   now.  
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Listing   1.4   Loosely   coupled   functional   code  

type   DeviceName   =   String  
type   DataType   =   String  
type   TransformF   a   =   Float   ->   ActionDsl   a  
 
data   ActionDsl   a                                          #A  
   =   ReadDevice   DeviceName   (a   ->   ActionDsl   a)  
   |   Transform   (a   ->   Float)   a   (TransformF   a)  
   |   Correct   (Float   ->   Float)   Float   (TransformF   a)  
   |   Send   DataType   DeviceName   Float  
 
transform   (T.Kelvin    v)   =   v   –   273.15                      #B  
transform   (T.Celsius   v)   =   v  
correction   v   =   v   –   12.5  
therm   =   Thermometer   "T-800"                               #C  
 
scenario   ::   ActionDsl   T.Temperature                       #D  
scenario   =  
   ReadDevice   therm   (\v   ->  
   Transform   transform   v   (\v1   ->  
   Correct   correction   v1   (\v2   ->  
   Send   temp   therm   v2)))  
 
interpret   ::   ActionDsl   T.Temperature   ->   IO   ()             #E  
interpret   (ReadDevice   n   a)   =   do  
   v   <-   T.read   n  
   interpret   (a   v)  
interpret   (Transform   f   v   a)   =   interpret   (a   (f   v))  
interpret   (Correct   f   v   a)     =   interpret   (a   (f   v))  
interpret   (Send   t   n   v)        =   C.send   t   n   v  
 
readAndSend   ::   IO   ()  
readAndSend   =   interpret   scenario  
 
#A   Embedded   DSL   for   observing   scenarios  
#B   Pure   auxiliary   functions  
#C   Some   hardcoded   thermometer   identifier  
#D   Straightforward   pure   scenario   of   reading   and   sending   data  
#E   Impure   scenario   interpreter   that   uses   native   functions  

NOTE     We’ll   be   discussing   this   code   more   closely   in   chapters   3   and   4.  
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By  having  the  DSL  in  between  the  native  calls  and  our  program  code,  we                            
achieve  loose  coupling  and  less  dependency  from  a  low  level.  The  idea  of  DSLs                            
in  functional  programming  is  so  common  and  natural  that  we  can  find  it                          
everywhere.  Most  functional  programs  are  built  of  many  small  internal  DSLs                      
addressing  different  domain  parts.  We  will  construct  many  DSLs  for  different                      
tasks   in   this   book.  

There  are  other  brilliant  patterns  and  idioms  in  functional  programming.  I’ve                      
said  that  no  one  concept  gives  you  a  silver  bullet,  but  the  functional  paradigm                            
seems  to  be  a  really,  really,  really  good  try.  I’ll  discuss  it  more  in  the  following                                
chapters.  

1.1.4    Interfaces ,   Inversion   of   Control,   and   Modularity  

Functional  programming  provides  new  methods  of  software  design,  but  does  it                      
invent  any  design  principles?  Let's  deal  with  this.  Look  at  the  solutions  in                          
listings  1.1  and  1.2.  We  separate  interface  from  implementation.  Separating  parts                      
from  each  other  to  make  them  easy  to  maintain  rises  to  a  well-known  general                            
principle,  “divide  and  conquer.”  Its  realization  may  vary  depending  on  the                      
paradigm  and  concrete  language  features.  As  we  know,  this  idea  has  come  to  us                            
from  ancient  times,  where  politicians  used  it  to  rule  disunited  nations,  and  it                          
works   very   well   today   —   no   matter   what   area   of   engineering   you   have   chosen.  

Interfaces  in  object-oriented  languages  like  Scala,  C#,  or  Java  are  a  form  of  this                            
principle  too.  An  object-oriented  interface  declares  an  abstract  way  of                    
communicating  with  the  underlying  subsystem  without  knowing  much  about  its                    
internal  structure.  Client  code  depends  on  abstraction  and  sees  no  more  than  it                          
should:  a  little  set  of  methods  and  properties.  The  client  code  knows  nothing                          
about  the  concrete  implementation  it  works  with.  It's  also  possible  to  substitute                        
one  implementation  for  another,  and  the  client  code  will  stay  the  same.  A  set  of                              
such   interfaces   forms   an    application   programming   interface    (API).  

DEFINITION “In  computer  programming,  an  application  programming              
interface  (API)  is  a  set  of  routines,  protocols,  and  tools  for  building                        
software  and  applications.  An  API  expresses  a  software  component  in                    
terms  of  its  operations,  inputs,  outputs,  and  underlying  types,  defining                    
functionalities  that  are  independent  of  their  respective  implementations,                
which  allows  definitions  and  implementations  to  vary  without                
compromising  the  interface.  A  good  API  makes  it  easier  to  develop  a                        
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program  by  providing  all  the  building  blocks,  which  are  then  put                      
together  by  the  programmer”  (see  Wikipedia:  “Application              
Programming   Interface”).  

LINK     Wikipedia:    Application   Programming   Interface  
https://en.wikipedia.org/wiki/Application_programming_interface  

Passing  the  implementation  behind  the  interface  to  the  client  code  is  known  as                          
Inversion  of  Control  (IoC) .  With  IoC,  we  make  our  code  depend  on  the                          
abstraction,  not  on  the  implementation,  which  leads  to  loosely  coupled  code.  An                        
example  of  this  is  shown  in  listing  1.5.  This  code  complements  the  code  in                            
listing   1.2.  

Listing   1.5   Interfaces   and   inversion   of   control  

final   class   Receiver   extends   IConnection   {  
   def   send(name:   String,   dataType:   String,   v:   Float)   =  
     server.connection.send(name,   dataType,   v)  
}  
 
final   class   Thermometer   extends   ISensor   {  
   val   correction   =   -12.5f  
   def   transform(data:   native.core.Temperature)   :   Float   =  
     toCelsius(data)   +   correction  
 
   def   getName()   :   String   =   "T-201A"  
   def   getDataType()   :   String   =   "temperature"  
   def   getData()   :   Float   =   {  
     val   data   =   native.core.thermometer.getData()  
     transform(data)  
   }  
}  
 
object   Worker   {  
   def   observeThermometerData()   {  
     val   t   =   new   Thermometer()  
     val   r   =   new   Receiver()  
     val   observer   =   new   Observer(t,   r)  
     observer.readAndSendData()  
   }  
}  
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The   full   class   diagram   of   listings   1.2   and   1.5   is   presented   in   figure   1.8.  

Figure   1.8   Full   class   diagram   of   listings   1.2   and   1.5  

Now,  we  are  going  to  do  one  more  simple  step.  Usually,  you  have  a  bunch  of                                
object-oriented interfaces  related  to  a  few  aspects  of  the  domain.  To  keep  your                        
code  well  organized  and  maintainable,  you  may  want  to  group  your  functionality                        
into  packages,  services,  libraries,  or  subsystems.  We  say  a  program  has  a                        
modular  structure  if  it's  divided  into  independent  parts  somehow.  We  can                      
conclude  that  such  design  principles  as  Modularity,  IoC,  and  Interfaces  help  us                        
to   achieve   our   goal   of   low   software   complexity.  

Fine.  We’ve  discussed  OOD  in  short.  But  what  about  functional  design?  Any                        
time  we  read  articles  on  OOD,  we  ask  ourselves  the  following:  Is  the  functional                            
paradigm  good  for  software  design  too?  What  are  the  principles  of  functional                        
design,  and  how  are  they  related  to  object-oriented  principles?  For  example,  can                        
we  have  interfaces  in  functional  code?  Yes,  we  can.  Does  that  mean  that  we  have                              
IoC  out  of  the  box?  The  answer  is  “yes”  again,  although  our  functional                          
interfaces  are  somewhat  different  because  “functional”  is  not  “object-oriented,”                  
obviously.  A  functional  interface  for  communication  between  two  subsystems                  
can  be  implemented  as  an  algebraic  data  type  and  an  interpreter.  Or  it  can  be                              
encoded  as  a  state  machine.  Or  it  can  be  monadic.  Or  it  could  be  built  on  top  of                                    
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lenses  ….  In  functional  programming,  there  are  many  interesting  possibilities                    
that  are  much  better  and  wiser  than  what  an  object-oriented  paradigm  provides.                        
OOP  is  good,  but  has  to  do  a  lot  to  keep  complexity  low.  As  we  will  see  in  the                                      
following   chapters,   functional   programming   does   this   much   more   elegantly.  

There  is  another  argument  for  why  the  functional  paradigm  is  better:  we  do  have                            
one  new  principle  of  software  design.  This  principle  can  be  formulated  like  this:                          
“The  nature  of  the  domain  model  is  often  something  mathematical.  We  define                        
what  the  concept  is  in  the  essence,  and  we  get  the  correct  behavior  of  the  model                                
as   a   consequence.”  

When  designing  a  program  in  the  functional  paradigm,  we  must  investigate  our                        
domain  model,  its  properties,  and  its  nature.  This  allows  us  to  generalize  the                          
properties  to  functional  idioms  (for  example,  functor,  monad,  or  zipper).  The                      
right  generalization  gives  us  additional  tools  specific  to  those  concrete                    
functional  idioms  and  already  defined  in  base  libraries.  This  dramatically                    
increases  the  power  of  code.  For  example,  if  any  functional  list  is  a  functor,  an                              
applicative  functor,  and  a  monad,  then  we  can  use  monadic  list  comprehensions                        
and  automatic  parallel  computations  for  free.  Wow!  We  just  came  to  parallelism                        
by  knowing  a  simple  fact  about  the  nature  of  a  list.  It  sounds  so  amazing  —  and                                  
maybe  unclear  —  and  we  have  to  learn  more.  We  will  do  so  in  the  next  chapters.                                  
For  now,  you  can  just  accept  that  functional  programming  really  comes  with                        
new   design   principles.  

Our  brief  tour  of  software  design  has  been  a  bit  abstract  and  general  so  far.  In  the                                  
rest  of  this  chapter,  I’ll  discuss  software  design  from  three  points  of  view:                          
imperative,  object-oriented,  and,  finally,  functional.  We  want  to  understand  the                    
relations  between  these  paradigms  better  so  that  we  can  operate  by  the  terms                          
consciously.  

1.2    Imperative   design  
In  the  early  computer  era  (roughly  1950–1990),  imperative  programming  was  a                      
dominant  paradigm.  Almost  all  big  programs  were  written  in  C,  FORTRAN,                      
COBOL,  Ada,  or  another  well-used  language.  Imperative  programming  is  still                    
the  most  popular  paradigm  today,  for  two  reasons:  first,  many  complex  systems                        
(like  operating  system  kernels)  are  idiomatically  imperative;  second,  the  widely                    
spread  object-oriented  paradigm  is  imperative  under  the  hood.  The  term                    
imperative  programming  denotes  a  program  control  flow  in  which  any  data                      
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mutations  can  happen,  and  any  side  effects  are  allowed.  Code  usually  contains                        
instructions  on  how  to  change  a  variable  step-by-step.  We  can  freely  use                        
imperative  techniques  such  as  loops,  mutable  plain  old  data  structures,  pointers,                      
procedures,  and  eager  computations.  So,  imperative  programming  here  means                  
procedural    or    structured   programming .  

On  the  other  hand,  the  term imperative  design  can  be  understood  as  a  way  of                              
program  structuring  that  applies  methods  like  unsafe  type  casting,  variable                    
destructive  mutation,  or  using  side  effects  to  get  desired  low-level  properties  of                        
the  code  (for  example,  maximal  CPU  cache  utilization  and  avoiding  cache                      
misses).  

Has  the  long  history  of  the  imperative  paradigm  produced  any  design  practices                        
and  patterns?  Definitely.  Have  we  seen  these  patterns  described  as  much  as  the                          
object-oriented  patterns?  It  seems  we  haven't.  Despite  the  fact  that  OOD  is  much                          
younger  than  bare  imperative  design,  it  has  been  much  better  described.  But  if                          
you  ask  system-level  developers  about  the  design  of  imperative  code,  they  will                        
probably  name  techniques  like  modularity,  polymorphism,  and  opaque  pointers.                  
These  terms  may  sound  strange,  but  there’s  nothing  new  here.  In  fact,  we                          
already   discussed   these   concepts   earlier:  

▪ Modularity  is  what  allows  us  to  divide  a  large  program  into  small  parts.                          
We  use  modules  to  group  behavioral  meaning  in  one  place.  In  imperative                        
design,   it   is   a   common   thing   to   divide   a   program   into   separate   parts.  

▪ Opaque  data  types  are  what  allow  a  subsystem  to  be  divided  into  two                          
parts:  an  unstable  private  implementation  and  a  stable  public  interface.                    
Hiding  the  implementation  behind  the  interface  is  a  common  idea  of  good                        
design.  Client  code  can  safely  use  the  interface,  and  it  never  breaks,  even                          
if   the   implementation   changes   someday.  

▪ Polymorphism  is  the  way  to  vary  implementations  under  the  unifying                    
interface.  Polymorphism  in  an  imperative  language  often  simulates  an  ad                    
hoc   polymorphism   from   OOP.  

For  example,  in  the  imperative  language  C,  an  interface  is  represented  by  a                          
public  opaque  type  and  the  procedures  it  is  used  in.  The  following  code  is  taken                              
from   the   Linux   kernel   file   as   an   example   of   an   opaque   type.  
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Listing   1.6   Opaque   data   type   from   Linux   kernel   source   code  

/*   These   are   opaque   structures   to   users.  
  *   Fields   are   declared   only   in   the   implementation   .c   files.  
  */  
typedef   struct   MYPROCOBJECT_Tag   MYPROCOBJECT;  
typedef   struct   MYPROCTYPE_Tag     MYPROCTYPE;  
 
MYPROCOBJECT   *visor_proc_CreateObject(MYPROCTYPE   *type,  
                                       const   char   *name,  
                                       void   *context);  
void            visor_proc_DestroyObject(MYPROCOBJECT   *obj);  

Low-level  imperative  language  C  provides  full  control  over  the  computer.                    
High-level  dynamic  imperative  language  PHP  provides  full  control  over  the  data                      
and  types.  But  having  full  control  over  the  system  can  be  risky.  Developers  have                            
less  motivation  to  express  their  ideas  in  design  because  they  always  have  a  short                            
path  to  their  goal.  It's  possible  to  hack  something  in  code  —  reinterpret  the  type                              
of  a  value,  cast  a  pointer  even  though  there  is  no  information  about  the  needed                              
type,  use  some  language-specific  tricks,  and  so  on.  Sometimes  it's  fine,                      
sometimes  it's  not,  but  it's  definitely  not  safe  and  robust.  This  freedom  requires                          
good  developers  to  be  disciplined  and  pushes  them  to  write  tests.  Limiting  the                          
ways  a  developer  could  occasionally  break  something  may  produce  new                    
problems  in  software  design.  Despite  this,  the  benefits  you  gain,  such  as  low  risk                            
and  good  quality  of  code,  can  be  much  more  important  than  any  inconveniences                          
that   emerge.   Let's   see   how   OOD   deals   with   lowering   the   risks.  

1.3    Object-oriented   design  
In  this  section,  I’ll  discuss  what  object-oriented  concepts  exist,  how  functional                      
programming  reflects  them,  and  why  functional  programming  is  gaining  huge                    
popularity   nowadays.  

1.3.1    Object-oriented    design   patterns  

What  is  OOD?  In  short,  it  is  software  design  using  object-oriented  languages,                        
concepts,  patterns,  and  ideas.  Also,  OOD  is  a  well-investigated  field  of                      
knowledge  on  how  to  construct  big  applications  with  low  risk.  OOD  is  focused                          
on  the  idea  of  “divide  and  conquer”  in  different  forms.  OOD  patterns  are                          

 



Alexander   Granin    /    Functional   Design   and   Architecture 25  

intended  to  solve  common  problems  in  a  general,  language-agnostic  manner .                    
This  means  you  can  take  a  formal,  language-agnostic  definition  of  the  pattern                        
and  translate  it  into  your  favorite  object-oriented  language.  For  example,  the                      
Adapter  pattern  shown  here  allows  you  to  adapt  a  mismatched  interface  to  the                          
interface   you   need   in   your   code.  

Listing   1.7   Adapter   pattern  

final   class   HighAccuracyThermometer   {  
   def   name()   :   String   =   "HAT-53-2"  
   def   getKelvin()   :   Float   =   {  
       native.core.highAccuracyThermometer.getData()  
   }  
}  
 
final   class   HAThermometerAdapter   (  
     thermometer:   HighAccuracyThermometer)   
   extends   ISensor   {  
     val   t   =   thermometer  
  
     def   getData()   :   Float   =   {  
         val   data   =   t.getKelvin()  
         native.core.utils.toCelsius(data)  
     }  
     def   getName()   :   String   =   t.name()  
     def   getDataType()   :   String   =   "temperature"  
}  

The  de  facto  standard  for  general  description  of  patterns  is  UML.  We  are                          
familiar  with  the  case  diagrams  and  class  diagrams  already,  so  let's  see  one  more                            
usage  of  the  latter.  Figure  1.9  shows  the  Adapter  design  pattern  structure  as  it  is                              
presented   in   the   classic   “Gang   of   Four”   book.  
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Figure   1.9   The   Adapter   design   pattern  

NOTE  You  can  find  hundreds  of  books  describing  patterns  that  apply  to                        
almost  any  object-oriented  language  we  have.  The  largest  and  most                    
influential  work  is  the  book Design  Patterns  by  Erich  Gamma,  Richard                      
Helm,  Ralph  Johnson,  and  John  Vlissides  (Addison-Wesley,  1994),                
which  is  informally  called  the  “Gang  of  Four”  or  just  “GoF”  book.  The                          
two  dozen  general  patterns  it  introduces  have  detailed  descriptions  and                    
explanations  of  how  and  when  to  use  them.  This  book  has  a  systematic                          
approach  to  solving  common  design  problems  in  object-oriented                
languages.  

The  knowledge  of  object-oriented  patterns  is  a  must  for  any  good  developer                        
today.  But  it  seems  the  features  coming  to  object-oriented  languages  from  a                        
functional  paradigm  can  solve  problems  better  than  particular  object-oriented                  
patterns.  Some  patterns  (such  as  Command  or  Strategy)  have  a  synthetic                      
structure  with  complex  hierarchies  involving  tons  of  classes;  however,  you  can                      
replicate  the  functionality  of  the  patterns  with  only  high-order  functions,                    
lambdas,  and  closures.  Functional  solutions  will  be  less  wordy  and  will  have                        
better  maintainability  and  readability  because  their  parts  are  very  small  functions                      
that  compose  well.  I  can  even  say  that  many  object-oriented patterns  bypass  the                        
limitations   of   object-oriented   languages   no   matter   these   patterns’   actual   purpose.  

NOTE As  proof  of  these  words,  consider  some  external  resources.  The                      
article  “Design  Patterns  in  Haskell”  by  Edward  Z.  Yang  will  tell  you                        
how  some  design  patterns  can  be  rethought  using  functional  concepts.                    
Also,  there  is  notable  discussion  in  StackOverflow  in  the  question  “Does                      
Functional  Programming  Replace  GoF  Design  Patterns?”  You  can  also                  
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find  many  different  articles  that  try  to  comprehend  object-oriented                  
patterns   from   a   functional   perspective.   This   is   a   really   hot   topic   today.  

So,  we  can  define  object-oriented  patterns  as  well-known  solutions  to  common                      
design  problems.  But  what  if  you  encounter  a  problem  no  one  pattern  can  solve?                            
In  real  development,  this  dark  situation  dominates  over  the  light  one.  The                        
patterns  themselves  are  not  the  key  thing  in  software  design,  as  you  might  be                            
thinking.  Note  that  all  the  patterns  use  Interfaces  and  IoC.  These  are  the  key                            
things:   IoC,   Modularity,   and   Interfaces.   And,   of   course,   design   principles.  

1.3.2    Object-oriented    design   principles  

Let's  consider  an  example.  Our  spaceship  is  equipped  with  smart  lamps  with                        
program  switchers.  Every  cabin  has  two  daylight  lamps  on  the  ceiling  and  one                          
utility  lamp  over  the  table.  Both  kinds  of  lamps  have  a  unified  API  to  switch                              
them  on  and  off.  The  manufacturer  of  the  ship  provided  sample  code  for  how  to                              
use  the  lamps’  API,  and  we  created  one  general  program  switcher  for  convenient                          
electricity   management.   Our   code   is   very   simple:  

trait   ILampSwitcher   {  
   def   switch(onOff:   bool)  
}  
 
class   DaylightLamp   extends   ILampSwitcher  
class   TableLamp   extends   ILampSwitcher  
 
def   turnAllOff(lamps:   List[ILampSwitcher])   {  
   lamps.foreach(_.switch(false))  
}  

What  do  we  see  in  this  listing?  Client  code  can  switch  off  any  lamps  with  the                                
interface ILampSwitcher .  The  interface  has  a switch()  method  for                  
this.  Let's  test  it!  We  turn  our  general  switcher  off,  passing  all  the  existing  lamps                              
to  it  …  and  a  strange  thing  happens:  only  one  lamp  goes  dark,  and  the  other                                
lamps  stay  on.  We  try  again,  and  the  same  thing  happens.  We  are  facing  a                              
problem  somewhere  in  the  code  —  in  the  native  code,  to  be  precise,  because  our                              
code  is  extremely  simple  and  clearly  has  no  bugs.  The  only  option  we  have  to                              
solve  the  problem  is  to  understand  what  the  native  code  does.  Consider  the                          
following   listing.  
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Listing   1.8   Concrete   lamp   code  

class   DaylightLamp   (n:   String,   v:   Int,   onOff:   Boolean)  
extends   ILampSwitcher   {  
   var   isOn:   Boolean   =   onOff  
   var   value:   Int      =   v  
   val   name:   String    =   n  
   def   switch(onOff:   Boolean)   =   {  
     isOn   =   onOff  
   }  
}  
 
class   TableLamp   (n:   String,   onOff:   Boolean)  
extends   ILampSwitcher   {  
   var   isOn:   Boolean   =   onOff  
   val   name:   String    =   n  
   def   switch(onOff:   Boolean)   =   {  
     isOn   =   onOff  
     //   Debug:   will   remove   it   later!  
     throw   new   Exception("switched")  
   }  
}  

Stop!  There  are  some  circumstances  here  we  have  to  take  into  consideration.                        
The  manufacturer's  programmer  forgot  to  remove  the  debug  code  from  the                      
method  TableLamp.switch() .  In  our  code,  we  assume  that  the  native                    
code  will  not  throw  any  exceptions  or  do  any  other  strange  things.  Why  should                            
we  be  ready  for  unspecified  behavior  when  the  interface ILampSwitcher                    
tells   us   the   lamps   will   be   switched   on   or   off   and   nothing   more?  

The  guarantees  that  the ILampSwitcher  interface  provides  are  called  a                    
behavior  contract .  We  use  this  contract  when  we  design  our  code.  In  this                          
particular  situation,  we  see  the  violation  of  the  contract  by  the  class                        
TableLamp .  That's  why  our  client  code  can  be  easily  broken  by  any  instance                          
of ILampSwitcher .  This  doesn’t  only  happen  with  the  assistance  of                    
exceptions.  Mutating  of  global  state,  reading  of  an  absent  file,  working  with                        
memory  —  all  these  things  can  potentially  fail,  but  the  contract  doesn't  define                          
this  behavior  explicitly.  Violation  of  an  established  contract  of  the  subsystem  we                        
try  to  use  always  makes  us  think  that  something  is  badly  implemented.  The                          
contracts  have  to  be  followed  by  implementation,  otherwise  it  becomes  really                      
hard  to  predict  our  program’s  behavior.  This  is  why  so-called contract                      
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programming  was  introduced.  It  brings  some  special  tools  into  software  design.                      
These  tools  allow  to  express  the  contracts  explicitly  and  to  check  whether  the                          
implementation   code   violates   these   contracts   or   is   fine.  

Let's   show   how   the   contract   violation   occurs   in   a   class   diagram   (figure   1.10).  

Figure   1.10   Class   diagram   for   listing   1.8   illustrating   contract   violation   by  
TableLamp  

When  you  use  a  language  that  is  unable  to  prevent  undesirable  things,  the  only                            
option  you  have  is  to  establish  special  rules  that  all  developers  must  comply                          
with.  And  once  someone  has  violated  a  rule,  they  must  fix  the  mistake.                          
Object-oriented  languages  are  impure  and  imperative  by  nature,  so  developers                    
have  invented  a  few  rules,  called  “object-oriented  principles”  that  should  always                      
be  followed  in  order  to  improve  the  maintainability  and  reusability  of                      
object-oriented   code.     You   may   know   them   as   the    SOLID    principles.  

NOTE Robert  C.  Martin  first  described  the  SOLID  principles  in  the                      
early  2000s.  SOLID  principles  allow  programmers  to  create  code  that  is                      
easy  to  understand  and  maintain  because  every  part  of  it  has  one                        
responsibility,   hidden   by   abstractions,   and   respects   the   contracts.  

In  SOLID,  the  “L”  stands  for  the  Liskov  Substitution  Principle  (LSP).  This  rule                          
prohibits  situations  like  the  one  described  here.  LSP  states  that  if  you  use                          
ILampSwitcher ,  then  the  substitution  of ILampSwitcher  by  the                
concrete  object TableLamp  or DaylightLamp  must  be  transparent  to                  
your  code  (in  other  words,  your  code  correctness  shouldn’t  be  specially  updated                        
for  this  substitution),  and  it  shouldn't  affect  the  program’s  correctness.                    
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TableLamp  obviously  violates  this  principle  because  it  throws  an  unexpected                    
exception   and   breaks   the   client   code.  

Besides  the  LSP,  SOLID  contains  four  more  principles  of  OOP.  The  components                        
of   the   acronym   are   presented   in   table   1.2.  

Table   1.2   SOLID   principles  

Initial   Stands   for   Concept  

S   SRP   Single   Responsibility   Principle  

O   OCP   Open/Closed   Principle  

L   LSP   Liskov   Substitution   Principle  

I   ISP   Interface   Segregation   Principle  

D   DIP   Dependency   Inversion   Principle  
 

We  will  return  to  SOLID  principles  in  the  next  chapters.  For  now,  I  note  only                              
that  DIP,  ISP,  and  SRP  correspond  to  the  ideas  mentioned  in  section  1.1.4:                          
Modularity,  Interfaces,  and  IoC,  respectively.  That's  why  SOLID  principles  are                    
applicable  to  imperative  and  functional  design,  too,  and  why  we  should  be                        
comfortable   with   them.  

NOTE We  also  know  another  design  principle  set,  called  GRASP                    
(General  Responsibility  Assignment  Software  Patterns).  We  talked              
about  low  coupling,  high  cohesion,  and  polymorphism  earlier,  and  those                    
are  among  the  GRASP  patterns.  GRASP  incorporates  other  OOD                  
patterns  too,  but  they  aren’t  so  interesting  to  us  from  a  functional                        
programming  point  of  view.  If  you  want  to  learn  more  about  OOD,  you                          
can  read  a  comprehensive  guide  by  Craig  Larman, Applying  UML  and                      
Patterns ,   (3rd   edition,   Prentice   Hall,   2004).  
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1.3.3     Shifting    to    functional    programming  

We  finished  our  discussion  of  imperative  design  by  talking  about  freedom.                      
Although  OOP  introduces  new  ways  to  express  ideas  in  design  (classes,                      
object-oriented  interfaces,  encapsulation,  and  so  on),  it  also  tries  to  restrict  the                        
absolute  freedom  of  the  imperative  approach.  Have  you  used  a  global  mutable                        
state,  which  is  considered  harmful  in  most  cases?  Do  you  prefer  a  static  cast                            
checked  in  compile-time  or  a  hard  unmanaged  cast,  the  validity  of  which  is                          
unpredictable  for  the  compiler? Then  you  certainly  know  how  hard  it  is                        
sometimes  to  understand  why  the  program  crashes  and  where  the  bug  is.  In                          
imperative  and  object-oriented  programming,  it’s  common  to  debug  a  program                    
step-by-step  with  a  debugger.  Sometimes  this  is  the  only  debugging  technique                      
that   can   give   you   an   answer   about   what's   happening   in   the   program.  

But  lowering  the  need  of  a  debugger  (and  thus  limiting  ourselves  to  other  debug                            
techniques)  has  positive  consequences  for  program  design.  Instead  of                  
investigating  its  behavior,  you  are  encoding  the  behavior  explicitly,  with                    
guarantees  of  correctness.  In  fact,  step-by-step  debugging  can  be  avoided                    
completely.  Step-by-step  debugging  makes  a  developer  lazy  in  his  intentions.  He                      
tends  to  not  think  about  the  code  behavior  and  relies  on  the  results  of  its                              
investigation.  And  while  the  developer  doesn’t  need  to  plan  the  behavior  (he  can                          
adjust  it  while  debugging),  he  will  most  likely  ignore  the  idea  of  software                          
design.  Unfortunately,  it’s  rather  hard  to  maintain  the  code  without  a  design.  It                          
often  looks  like  a  developer’s  mind  dump,  and  has  a  significantly  increased                        
accidental   complexity.  

So   how   could   we   replace   step-by-step   debugging?  

A  greater  help  to  a  developer  in  this  will  be  a  compiler,  which  we  can  teach  to                                  
handle  many  classes  of  errors;  the  more  we  go  into  the  type  level,  the  more                              
errors  can  be  eliminated  at  the  design  phase.  To  make  this  possible,  the  type                            
system  should  be  static  (compile-time-checkable)  and  strong  (with  the  minimum                    
of   imperative   freedom).  

Classes  and  interfaces  in  an  object-oriented  language  are  the  elements  of  its  type                          
system.  Using  the  information  about  the  types  of  objects,  the  compiler  verifies                        
the  casting  correctness  and  ensures  that  you  work  with  objects  correctly,  in                        
contrast  to  the  ability  to  cast  any  pointer  to  any  type  freely  in  imperative                            
programming .  This  is  a  good  shift  from  bare  imperative  freedom  to                      
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object-oriented  shackles.  However,  object-oriented  languages  are  still              
imperative,  and  consequently  have  a  relatively  weak  type  system.  Consider  the                      
following  code:  it  does  something  really  bad  while  it  converts  temperature                      
values   to   Celsius:  

def   toCelsius(data:   native.core.Temperature)   :   Float   =   {  
   launchMissile()  
   data   match   {  
     case   native.core.Kelvin(v)    =>   toCelsius(v)  
     case   native.core.Celsius(v)   =>   v  
   }  
}  

Do  you  want  to  know  a  curious  fact?  OOP  is  used  to  reduce  complexity,  but  it                                
does  nothing  about  determinism!  The  compiler  can't  punish  us  for  this  trick                        
because  there  are  no  restrictions  on  the  imperative  code  inside.  We  are  free  to  do                              
any  madness  we  want,  to  create  any  side  effects  and  surprise  data  mutations.  It                            
seems  that  OOP  is  stuck  in  its  evolution,  and  that's  why  functional  programming                          
is  waiting  for  us.  Functional  programming  offers  promising  ideas  for  how  to                        
handle  side  effects;  how  to  express  a  domain  model  in  a  wise,  composable  way;                            
and   even   how   to   write   parallel   code   painlessly.  

Let's   go   on   to   functional   programming   now.  

1.4    Functional   declarative   design  
The  first  functional  language  was  born  in  1958,  when  John  McCarthy  invented                        
Lisp.  For  50  years,  functional  programming  lived  in  academia,  with  functional                      
languages  primarily  used  in  scientific  research  and  small  niches  of  business.                      
With  Haskell,  functional  programming  was  significantly  rethought.  Haskell                
(created  in  1990)  was  intended  to  research  the  idea  of  laziness  and  issues  of                            
strong  type  systems  in  programming  languages.  But  it  also  introduced  functional                      
idioms  and  highly  mathematical  and  abstract  concepts  in  the  '90s  and  early                        
2000s  that  became  a  calling  card  of  the  whole  functional  paradigm.  I  mean,  of                            
course,  monads.  No  one  imagined  that  pure  functional  programming  would                    
arouse  interest  in  mainstream  programming.  But  programmers  were  beginning                  
to  realize  that  the  imperative  approach  is  quite  deficient  in  controlling  side                        
effects  and  handling  state,  and  so  makes  parallel  and  distributed  programming                      
painful.  
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The  time  of  the  functional  paradigm  had  come.  Immutability,  purity,  and                      
wrapping  side  effects  into  a  safe  representation  opened  doors  to  parallel                      
programming  heaven.  Functional  programming  began  to  conquer  the                
programming  world.  You  can  see  a  growing  number  of  books  on  functional                        
programming,  and  all  the  mainstream  languages  have  adopted  functional                  
programming  techniques  such  as  lambdas,  closures,  first-class  functions,                
immutability,  and  purity.  At  a  higher  level,  functional  programming  has  brilliant                      
ideas   for   software   design.   Let   me   give   you   some   quick   examples:  

▪ Functional  reactive  programming (FRP)  has  been  used  successfully  in                  
web  development  in  the  form  of  reactive  libraries.  FRP  is  not  an  easy                          
topic,  and  adopting  it  incorrectly  may  send  a  project  into  chaos.  Still,  FRP                          
shows   good   potential   and   attracts   more   interest   nowadays.  

▪ LINQ  in  C#, streams  in  Java,  and  even ranges  in  C++  are  examples  of                            
functional   approach   to   data   processing.  

▪ Monads .  This  concept  deserves  its  own  mention  because  it  can  reduce  the                        
complexity  of  some  code  —  for  instance,  eliminate  callback  hell  or  make                        
parsers   quite   handy.  

▪ Lenses .  This  is  an  idea  in  which  data  structures  are  handled  in  a                          
combinatorial   way   without   knowing   much   about   their   internals.  

▪ Functional  (monadic)  Software  Transactional  Memory  (STM) .  This              
approach  to  concurrency  is  based  on  a  small  set  of  concepts  that  are  being                            
used  to  handle  a  concurrent  state  and  do  not  produce  extra  accidental                        
complexity.  In  contrast,  raw  threads  and  manual  synchronization  with                  
mutexes,  semaphores,  and  so  on  usually  turn  the  code  into  an                      
unmanageable,   mind-blowing   puzzle.   

Functional  developers  have  researched  these  and  other  techniques  a  lot.  They’ve                      
also  found  analogues  to  Interfaces  and  IoC  in  the  functional  world.  They  did  all                            
that  was  necessary  to  launch  the  functional  paradigm  into  the  mainstream.  But                        
there  is  still  one  obstacle  remaining.  We  lack  the  answer  to  one  important                          
question:  how  can  we  tie  together  all  the  concepts  from  the  functional                        
programming  world  to  design  our  software?  Is  it  possible  to  have  an  entire                          
application  built  in  a  functional  language  and  not  sacrifice  maintainability,                    
testability,   simplicity,   and   other   important   characteristics   of   the   code?  

This  book  provides  the  answer.  It’s  here  to  create  a  new  field  of  knowledge.                            
Let's  call  it functional  declarative  design  (FDD).  Functional  programming  is  a                      
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subset  of  the  declarative  approach,  but  it  is  possible  to  write  imperatively  in  any                            
functional  language.  Lisp,  Scala,  and  even  pure  functional  Haskell  —  all  these                        
languages  have  syntactic  or  conceptual  features  for  true  imperative                  
programming.  That's  why  I  say  “declarative”  in  my  definition  of  FDD:  we  will                          
put  imperative  and  object-oriented  paradigms  away  and  will  strive  to  achieve                      
declarative  thinking.  One  might  wonder  if  functional  programming  is  really  so                      
peculiar  in  its  new  way  of  thinking.  Yes,  definitely.  Functional  programming  is                        
not  just  about  lambdas,  higher-order  functions,  and  closures.  It's  also  about                      
composition,  declarative  design,  and  functional  idioms.  In  learning  FDD,  we                    
will   dive   into   genuine   idiomatic   functional   code.  

Let's   sow   the   seeds   of   FDD.  

1.4.1    Immutability ,   purity,   and   determinism   in   FDD  

In  functional  programming,  we  love  immutability.  We  create  bindings  of                    
variables,  not  assignments.  When  we  bind  a  variable  to  an  expression,  it's                        
immutable  and  just  a  declaration  of  the  fact  that  the  expression  and  the  variable                            
are  equal,  interchangeable.  We  can  use  either  the  short  name  of  the  variable  or                            
the   expression   itself   with   no   difference.  

Assignment  operation  is  destructive  by  nature:  we  destroy  an  old  value  and                        
replace  it  with  a  new  one.  It  is  a  fact  that  shared  mutable  state  is  the  main  cause                                    
of  bugs  in  parallel  or  concurrent  code.  In  functional  programming,  we  restrict                        
our  freedom  by  prohibiting  data  mutations  and  shared  state,  so  we  don't  have                          
this  class  of  parallel  bugs  at  all.  Of  course,  we  can  do  destructive  assignments  if                              
we  want:  Scala  has  the var  keyword,  Haskell  has  the  IO type  and  the                            
IORef  type — but  using  these  imperatively  is  considered  bad  practice.  It's  not                          
functional  programming;  it's  the  tempting  path  to  nondeterminism.  Sometimes                  
it’s   necessary,   but   more   often   the   mutable   state   should   be   avoided.  

In  functional  programming,  we  love  pure  functions.  A  pure  function  doesn't                      
have  side  effects.  It  uses  arguments  to  produce  the  result  and  doesn't  mutate  any                            
state  or  data.  A  pure  function  represents  deterministic  computation:  every  time                      
we  call  a  pure  function  with  the  same  arguments,  we  get  the  same  result.  The                              
combination  of  two  pure  functions  gives  a  pure  function  again.  If  we  have  a                            
“pyramid”  made  of  such  functions,  we  have  a  guarantee  that  the  pyramid                        
behaves   predictably   on   each   level.   We   can   illustrate   this   by   code:  
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def   max(a:   Float,   b:   Float)   =   {  
   math.max(a,   b)  
}  
 
def   calc(a:   Int,   b:   Int,   c:   Float)   :   Float   =   {  
   val   sum   =   a   +   b  
   val   average   =   sum   /   2  
   max(average,   c)  
}  

Also,  it  is  convenient  to  support  a  pyramidal  functional  code:  it  always  has  a                            
clear   evaluation   flow,   as   in   the   diagram   in   figure   1.11.  

Figure   1.11   Pure   pyramidal   functional   code  

We  give  arguments a , b ,  and c ,  and  the  top  function  returns  the max  of                              
average  and c .  If  a  year  later,  we  give  the  same  arguments  to  the  function,                              
we   will   receive   the   same   result.  

Unfortunately,  only  a  few  languages  provide  the  concept  of  pure  computations.                      
Most  languages  lack  this  feature  and  allow  a  developer  to  perform  any  side                          
effects  anywhere  in  the  program.  Namely,  the max  function  can  suddenly  write                        
into  a  file  or  do  something  else,  and  the  compiler  will  be  humbly  silent  about                              
this,   as   follows:  

def   max(a:   Float,   b:   Float)   =   {  
   launchMissile()  
   math.max(a,   b)  
}  
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And  that's  the  problem.  We  have  to  be  careful  and  self-disciplined  with  our  own                            
and  third-party  code.  Code  designed  to  be  pure  is  still  vulnerable  to                        
nondeterminism  if  someone  breaks  its  idea  of  purity.  Writing  supposedly  pure                      
code   that   can   produce   side   effects   is   definitely   not   functional   programming.  

A   modified   picture   of   the   impure   code   is   shown   in   figure   1.12.  

Figure   1.12   Impure   pyramidal   functional   code  

Note  that  there  is  no  way  to  call  impure  layer  functions  from  the  pure  layer:  any                                
impure  call  pollutes  our  function  and  moves  it  into  the  impure  layer.  Functional                          
programming  forces  us  to  focus  on  pure  functions  and  decrease  the  impure  layer                          
to   the   minimum.   

Calculation  logic  like  math  can  be  made  pure  easily.  But  most  data  comes  from                            
the  unsafe,  impure  world.  How  to  deal  with  it?  Should  we  stay  in  that  impure                              
layer?  The  general  advice  from  functional  programming  says  that  we  still  need                        
to  separate  the  two  layers.  Obviously,  we  can  do  this  by  collecting  the  data  in  the                                
impure  layer  and  then  calling  pure  functions.  But  you  might  ask  what  the                          
difference  is.  Simple:  in  the  impure  layer,  you  are  allowed  to  use  destructive                          
assignments  and  mutable  variables.  So,  you  might  want  to  collect  the  data  into  a                            
mutable  array.  After  that,  you’d  better  pass  this  data  to  the  pure  layer.  There  are                              
very  few  reasons  in  which  you’d  like  to  stay  on  the  impure  layer.  Maybe,  the                              
performance   reasons.   Anyway,   being   pure   is   good!  

 



Alexander   Granin    /    Functional   Design   and   Architecture 37  

Let’s  consider  an  example.  Suppose  we  need  to  calculate  the  average  from  a                          
thermometer  for  one  hour  with  one-minute  discretization.  We  can't  avoid  using                      
an  impure  function  to  get  the  thermometer  readings,  but  we  can  pass  the  math                            
calculations  into  the  pure  layer.  (Another  option  would  be  to  use  a  pure  DSL  and                              
then  interpret  it  somehow;  we  did  this  already  in  listing  1.4.)  Consider  the                          
following   code   in   Haskell,   which   does   so:  

calculateAverage   ::   [Float]   ->   Float                       #A  
calculateAverage   values   =   ...   
 
observeTemperatureDuring   ::   Seconds   ->   IO   [Float]          #B  
observeTemperatureDuring   secs   =   …   
 
getAverageTemperature   ::   IO   Float  
getAverageTemperature   =   do  
   values   <-   observeTemperatureDuring   60  
   return   $   calculateAverage   values  
 
#A   Pure   calculations  
#B   Impure   data   collecting  

This  design  technique  —  dividing  logic  into  pure  and  impure  parts  —  is  very                            
natural  in  functional  programming.  But  sometimes  it’s  hard  to  design  the  code  so                          
that   these   two   layers   don’t   interleave   occasionally.  

NOTE What  languages  support  the  purity  mechanism?  The  D                  
programming  language  has  the  special  declaration pure ,  and  Haskell                  
and  Clean  are  pure  by  default.  Rust  has  some  separation  of  the  safe  and                            
unsafe  worlds.  C++  supports  pure  logic  using  templates  and                  
constexpr .  The  compiler  should  be  able  to  distinguish  side  effects                    
in  code  from  pure  computations.  It  does  so  by  analyzing  types  and  code.                          
When  the  compiler  sees  a  pure  function,  it  then  checks  whether  all                        
internal  expressions  are  pure  too.  If  not,  a  compile-time  error  occurs:  we                        
must   fix   the   problem.  

At  the  end  of  this  discussion,  we  will  be  very  demanding.  Previously,                        
determinism  was  denoted  implicitly  through  purity  and  immutability.  Let  us                    
demand  it  from  a  language  compiler  explicitly.  We  need  a  declaration  of                        
determinism  in  order  to  make  the  code  self-explanatory.  You  are  reading  the                        
code,  and  you  are  sure  it  works  as  you  want  it  to.  With  a  declaration  of                                
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determinism,  nothing  unpredictable  can  happen;  otherwise,  the  compilation                
should  fail.  With  this  feature,  designing  programs  with  separation  of                    
deterministic  parts  (which  always  work)  and  nondeterministic  parts  (where  the                    
side  effects  can  break  everything)  is  extremely  desirable.  There  is  no  reason  to                          
disallow  side  effects  completely;  after  all,  we  need  to  operate  databases,                      
filesystems,  network,  memory,  and  so  on.  But  isolating  this  type  of                      
nondeterminism  sounds  promising.  Is  it  possible,  or  are  we  asking  too  much?                        
It’s   time   to   talk   about   strong   static   type   systems.  

1.4.2    Strong    static   type   systems   in   FDD  

We  have  come  to  the  end  of  our  path  of  self-restraint.  I  said  that  expressing                              
determinism  can  help  in  reasoning  about  code.  But  what  exactly  does  this  mean?                          
In  FDD,  it  means  that  we  define  deterministic  behavior  through  the  type  of                          
function.  We  describe  what  a  function  is  permitted  to  do  in  its  type  declaration.                            
In  doing  so,  we  don't  need  to  know  how  the  function  works  —  what  happens  in                                
its   body.   We   have   the   type,   and   it   says   enough   for   us   to   reason   about   the   code.  

Let's  write  some  code.  Here,  we  will  use  Haskell  because  its  type  system  has  the                              
notion  to  express  impurity;  also,  it's  very  mathematica l .  The  following  code                      
shows  the  simplest  case:  an  explicit  type  cast.  Our  intention  to  convert  data  from                            
one  type  to  another  is  declared  by  the  function's  body.  Its  type  says  that  we  do  a                                  
conversion   from    Int    to    Float :  

toFloat   ::   Int   ->   Float  
toFloat   value   =   fromIntegral   value  

In  Haskell,  we  can't  create  any  side  effects  here  because  the  return  type  of  the                              
function  doesn't  support such  declarations.  This  function  is  pure  and                    
deterministic.  But  what  if  we  want  to  use  some  side  effects?  In  Haskell,  we                            
should  declare  it  in  the  return  type  explicitly.  For  example,  suppose  we  want  to                            
write  data  into  a  file;  that's  a  side  effect  that  can  fail  if  something  goes  wrong                                
with  the  filesystem.  We  use  a  special  type  to  clarify  our  intent:  the  return  type                              
IO  () .  Because  we  only  want  to  write  data  and  don't  expect  any  information                            
back,  we  use  the  “unit”  type  ( () )  after  the  effect  ( IO ).  The  code  may  look  like                                
the   following:  
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writeFloat   ::   Float   ->   IO   ()  
writeFloat   value   =   writeFile   "value.txt"   (show   value)  
 
toFloatAndWrite   ::   Int   ->   IO   ()  
toFloatAndWrite   value   =   let  
   value   =   toFloat   42  
   in   writeFloat   value  

In  Haskell,  every  function  with  return  type IO  may  do  impure  calls;  as  a  result,                              
this  function  isn't  pure,  and  all  the  applications  of  this  function  give  impure                          1

code.  Impurity  infects  all  code,  layer  by  layer.  The  opposite  is  also  true:  all                            
functions  without  the  return  type IO  are  pure,  and  it's  impossible  to  call,  for                            
example, writeFile  or getDate  from  such  a  function.  Why  is  this                      
important?  Let's  return  to  the  code  in  listing  1.4.  Function  definitions  give  us  all                            
the   necessary   background   on   what's   going   on   in   the   code:  

scenario   ::   ActionDsl   Temperature  
interpret   ::   ActionDsl   Temperature   ->   IO   ()  

We  see  a  pure  function  that  returns  the  scenario  in ActionDsl ,  and  the                          
interpreter  takes  that  scenario  to  evaluate  the  impure  actions  the  scenario                      
describes.  We  get  all  this  information  just  from  the  types.  Actually,  we  just                          
implemented  the  “divide  and  conquer”  rule  for  a  strong  static  type  system.  We                          
separate  code  with  side  effects  from  pure  code  with  the  help  of  type  declarations.                            
This  leads  us  to  a  technique  of  designing  software  against  the  types.  We  define                            
the  types  of  top-level  functions  and  reflect  the  behavior  in  them.  If  we  want  the                              
code  to  be  extremely  safe,  we  can  lift  our  behavior  to  the  types,  which  forces  the                                
compiler  to  check  the  correctness  of  the  logic.  This  approach,  known  as                        
type-level  design ,  uses  such  concepts  as type-level  calculations , advanced  types ,                    
and dependent  types .  You  may  want  to  use  this  interesting  (but  not  so  easy)                            
design  technique  if  your  domain  requires  absolute  correctness  of  the  code.  In                        
this   book,   I’ll   discuss   a   bit   of   type-level   design   too.  

1.4.3    Functional    patterns,   idioms,   and   thinking  

While  software  design  is  an  expensive  business,  we  would  like  to  cut  corners                          
where  we  can  by  adjusting  ready-to-use  solutions  for  our  tasks  and  adopting                        
some  design  principles  to  lower  risks.  Functional  programming  isn’t  something                    

1 That’s   not   entirely   true.   In   Haskell,   every   function   with   return   type   IO   ()   can   be   considered   pure   because   it   only   declares  
the   effect   and   does   not   evaluate   it.   Evaluation   will   happen   when   the   main   function   is   called.  
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special,  and  we  already  know  that  interesting  functional  solutions  exist.  Monads                      
are  an  example.  In  Haskell,  monads  are  everywhere.  You  can  do  many  things                          
with  monads:  layering,  separating  side  effects,  mutating  state,  handling  errors,                    
and  so  on.  Obviously,  any  book  about  functional  programming  must  contain  a                        
chapter  on  monads.  Monads  are  so  amazing  that  we  must  equate  them  to                          
functional  programming!  But  that’s  not  the  goal  of  this  section.  We  will  discuss                          
monads  in  upcoming  chapters,  but  for  now,  let's  focus  on  terminology  and  the                          
place  of  monads  in  FDD,  irrespective  of  what  they  actually  do  and  how  they  can                              
be   used.  

What  is  a  monad?  A  design  pattern  or  a  functional  idiom?  Or  both?  Can  we  say                                
patterns  and  idioms  are  the  same  things?  To  answer  these  questions,  we  need  to                            
define   these   terms.  

DEFINITION A design  pattern  is  the  “external”  solution  to  certain                    
types  of  problems. A  pattern  is  an  auxiliary  compound  mechanism  that                      
helps  to  solve  a  problem  in  an  abstract,  generic  way.  Design  patterns                        
describe  how  the  system should  work.  In  particular,  OOD  patterns                    
address  objects  and  mutable  interactions  between  them.  An  OOD                  
pattern  is  constructed  by  using  classes,  interfaces,  inheritance,  and                  
encapsulation.  

DEFINITION A functional  idiom  is  the  internal  solution  to  certain                    
types  of  problems.  It  addresses  the  natural  properties  of  the  domain  and                        
immutable  transformations  of  those  properties.  The  idiom  describes                
what  the  domain  is  and  what  inseparable  mathematical  properties  it  has.                      
Functional  idioms  introduce  new  meanings  and  operations  for  domain                  
data   types.  

In  the  definition  of  “functional  idiom,”  what  properties  are  we  talking  about?                        
For  example,  if  you  have  a  functional  list,  then  it  is  a  monad,  whether  you  know                                
this  fact  or  not.  Monadic  is  a  mathematical  property  of  the  functional  list.  This  is                              
an  argument  in  favor  of  “monad”  being  a  functional  idiom.  But  from  another                          
perspective,  it's  a  design  pattern  too,  because  the  monadic  mechanism  is  built                        
somewhere   “outside”   the   problem   (in   monadic   libraries,   to   be   precise).  

If  you  feel  this  introduction  to  FDD  is  a  bit  abstract  and  lacking  in  detail,  you're                                
completely  right.  I’m  discussing  terms  and  attempting  to  reveal  meaning  just  by                        
looking  at  the  logical  shape  of  the  statements.  Do  you  feel  like  a  scientist?  That's                              
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the  point!  Why?  I'll  maintain  the  intrigue  but  explain  it  soon.  For  now,  let’s                            
consider   some   code:  

getUserInitials   ::   Int   ->   Maybe   Char  
getUserInitials   key   =  
   case   getUser   key   users   of  
     Nothing   ->   Nothing  
     Just   user   ->   case   getUserName   user   of  
       Nothing   ->   Nothing  
       Just   name   ->   Just   (head   name)  

Here,  we  can  see  boilerplate  for  checking  the  return  values  in case  …  of                            
blocks.  Let’s  see  if  we  can  write  this  better  using  the  monadic  property  of  the                              
Maybe    type:  

getUserInitials'   u   =   do  
   user   <-   getUser   u   users  
   name   <-   getUserName   user  
   Just   (head   name)  

Here,  we  refactored  in  terms  of  the  results’  mathematical  meaning.  We  don’t                        
care  what  the  functions getUser , getUserName ,  and head  do,  or  how                      
they  do  it;  it's  not  important  at  all.  But  we  see  these  functions  return  a  value  of                                  
the Maybe  type  (because  the  two  alternatives  are Nothing  and Just ),                      
which  is  a  monadic  thing.  In  the  do-block,  we’ve  used  the  generic  properties  of                            
these  monadic  functions  to  bind  them  monadically  and  get  rid  of  long                        
if-then-else   cascades.  

The  whole  process  of  functional  design  looks  like  this.  We  are  researching  the                          
properties  of  the  domain  model  in  order  to  relate  them  to  functional  idioms.                          
When  we  succeed,  we  have  all  the  machinery  written  for  the  concrete  idiom  in                            
our  toolbox.  Functors,  applicative  functors,  monads,  monoids,  comonads,                
zippers  …  that’s  a  lot  of  tools!  This  activity  turns  us  into  software  development                            
scientists,   and   is   what   can   be   called   “functional   thinking.”  

Throughout  this  book,  you  will  learn  how  to  use  patterns  and  idioms  in                          
functional  programming.  Returning  to  the  general  principles  (Modularity,  IoC,                  
and  Interfaces),  you  will  see  how  functional  idioms  help  you  to  design                        
good-quality   functional   code.  
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1.5    Summary  
We  learned  a  lot  in  this  chapter.  We  talked  about  software  design,  but  only                            
briefly  —  it  is  a  huge  field  of  knowledge.  In  addition  to  OOD,  we  introduced                              
FDD,  denoting  the  key  ideas  it  exposes.  Let's  revise  the  foundations  of  software                          
design.  

Software  design  is  the  process  of  composing  application  structure.  It  begins                      
when  the  requirements  are  complete;  our  goal  is  to  implement  these                      
requirements  in  high-level  code  structures.  The  result  of  design  can  be                      
represented  as  diagrams  (in  OOD,  usually  UML  diagrams),  high-level  function                    
declarations,  or  even  an  informal  description  of  application  parts.  The  code  we                        
write   can   be   considered   a   design   artifact   too.  

In  software  design,  we  apply  object-oriented  patterns  or  reveal  functional                    
idioms.  Any  well-described  solution  helps  us  to  represent  behavior  in  a  better,                        
shorter,   clearer   way,   and   thus   keep   the   code   maintainable.  

FDD  is  a  new  field  of  knowledge.  The  growing  interest  in  functional                        
programming  has  generated  a  lot  of  research  into  how  to  build  big  applications                          
using  functional  ideas.  We  are  about  to  consolidate  this  knowledge  in  FDD.                        
FDD  will  be  useful  to  functional  developers,  but  not  only  to  them:  the  ideas  of                              
functional  programming  can  offer  many  insights  to  object-oriented  developers  in                    
their   work.  

We   also   learned   about   general   design   principles:  

▪ Modularity  
▪ IoC  
▪ Interfaces  

The  implementation  of  these  principles  may  vary  in  OOP  and  functional                      
programming,  but  the  ideas  are  the  same.  We  use  software  design  principles  to                          
separate  big,  complex  domains  into  smaller,  less  complex  parts.  We  also  want  to                          
achieve  low  coupling  between  the  parts  and  high  cohesion  within  each  part.  This                          
helps  us  to  pursue  the  main  goal  of  software  design,  which  is  to  keep  accidental                              
software   complexity   at   a   low   level.  

We   are   now   ready   to   design   something   using   FDD.  

 


