Alexander Granin / Functional Design and Architecture 1

Chapter 1
What is software design?

This chapter covers
» An introduction to software design
= Principles and patterns of software design

= Software design and the functional paradigm

Our world is a complex, strange place that can be described using physical math,
at least to some degree. The deeper we look into space, time, and matter, the
more complex such mathematical formulas become — formulas we must use in
order to explain the facts we observe. Finding better abstractions for natural
phenomena lets us predict the behavior of the systems involved. We can build
wiser and more intelligent things, thus changing everything around us, from
quality of life, culture, and technology to the way we think. Homo sapiens have
come a long way to the present time by climbing the ladder of progress.

If you think about it, you’ll see that this ability to describe the Universe using
mathematical language isn’t an obvious one. There’s no intrinsic reason why our
world should obey laws developed by physicists and verified by natural
experiments. However, it’s true: given the same conditions, you can expect the
same results. The determinism of physical laws seems to be an unavoidable
property of the Universe. Math is a suitable way to explain this determinism.

You may wonder why I’'m talking about the Universe in a programming book.
Besides the fact that it is an intriguing start for any text, it’s also a good

Alexander Granin / Functional Design and Architecture 2

metaphor for the central theme of this book: functional programming from the
software design point of view. Functional Design and Architecture presents the
most interesting ideas about software design and architecture we’ve discovered
thus far in functional programming. You may be asking, why break the status
quo — why stray from plain old techniques the imperative world elaborated for
us years ago? Good question. I could answer that functional programming
techniques can make your code safer, shorter, and better in general. I could also
say that some problems are much easier to approach within the functional
paradigm. Moreover, I could argue that the functional paradigm is no doubt just
as deserving as others. But these are just words — not that convincing and
lacking strong facts.

I’ll present facts later on in the book. For now, there is a simple, excellent
motivation to read this book. Perhaps the main reason I argue for functional
programming is that it brings a lot of fun to all aspects of development,
including the hardest ones. You’ve probably heard that parallel and concurrent
code is where functional approaches shine. This is true, but it’s not the only
benefit. In fact, the real power of functional programming is in its ability to
make complicated things much simpler and more enjoyable because functional
tools are highly consistent and elaborated thanks to their mathematical nature.
Considering this, many problems you might face in imperative programming are
made more simple or even eliminated in functional programming. Certainly,
functional programming has its own problems and drawbacks, but learning new
ideas is always profitable because it gives you more opportunity to find better
techniques or ways of reasoning.

You’re probably looking for new insights into what you already know about
software design. The book has three parts:

» Introduction to Functional Declarative Design (chapters 1-2),
» Domain Driven Design (chapters 3-5),

» Designing real world software (chapters 6-9).

You can start from either of the parts, but I recommend reading the chapters in
order because they complement each other and help you to build a complete
picture of Software Design in Haskell. The first part introduces the discipline of
Software Engineering and prepares a ground for a deep discussion on how we do
things in functional languages. Two other parts are project-based. The two
projects have a slightly different architecture but share some common ideas.

Alexander Granin / Functional Design and Architecture 3

This will help to look onto the same concepts from many points of view and get
a better understanding when to apply them and how.

The first project is a software to control simple spaceships.This field is known as
supervisory control and data acquisition software (SCADA), and it's a rather big
and rich one. We certainly can’t build a real SCADA application, but we’ll try to
create a kind of simulator in order to demonstrate the ideas of DDD. We’ll track
all the stages of software design from requirements gathering to a possibly
incomplete but working application. In other words, we’ll follow a whole cycle
of software creation processes. You don't have to be proficient in SCADA,
because I'll be giving you all the information necessary to solve this task.
Writing such software requires utilizing many concepts, so it’s a good example
for showing different sides of functional programming.

The second project represents a framework for building web services, backends,
console applications. We’ll talk about design patterns, design approaches and
practices which help to structure our code properly, to make it less risky and
more simple. We’ll see how to build layered applications and how to write a
testable, maintainable and well-organized code. While building a framework and
some demo applications, you’ll deal with many challenges that you might expect
to meet in the real world: relational and key-value database access, logging, state
handling, multithreading and concurrency. What’s else important, the ideas
presented in this part, are not only theoretical reasoning. They have been
successfully tested in production.

In this chapter, you’ll find a definition of software design, a description of
software complexity, and an overview of known practices. The terms I introduce
in this chapter will show that you may already be using some common
approaches, and, if not, you’ll get a bird's-eye view of how to approach design
thinking in three main paradigms: imperative, object-oriented, and functional. It
is important to understand when functional programming (sometimes called FP)
is better than object-oriented programming (OOP) and when it's not. We’ll look
at the pros and cons of traditional design methodologies and then see how to
build our own.

1.1 Software design

When constructing programs, we want to obey certain requirements in order to
make the program’s behavior correct. But every time we deal with our complex

Alexander Granin / Functional Design and Architecture 4

world, we experience the difficulties of describing the world in terms of code.
We can just continue developing, but at some point, we will suddenly realize
that we can't go further because of overcomplicated code. Sooner or later, we’ll
get stuck and fail to meet the requirements. There seems to be a general law of
code complexity that symmetrically reflects the phenomenon of entropy:

Any big, complex system tends to become bigger and more complex.

But if we try to change some parts of such a system, we'll encounter another
problem that is very similar to mass in physics:

Any big, complex system resists our attempts to change it.

Software complexity is the main problem developers deal with. Fortunately,
we’ve found many techniques that help decrease this problem’s acuteness. To
keep a big program maintainable, correct, and clear, we have to structure it in a
particular way. First, the system’s behavior should be deterministic because we
can't manage chaos. Second, the code should be as simple and clear as possible
because we can't maintain Klingon manuscripts.

You might say that many successful systems have an unjustifiably complex
structure. True, but would you be happy to support code like that? How much
time can you endure working on complex code that you know could be designed
better? You can try: the “FizzBuzzEnterpriseEdition” project has an enormous
number of Java classes to solve the classic problem FizzBuzz.

LINK Fizz Buzz Enterprise Edition
https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition

A small portion of these classes, interfaces, and dependencies is presented in the
following figure 1.1. Imagine how much weird code there is!

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition

Alexander Granin / Functional Design and Architecture 5

4{ StandardFizzBuzz]7

[FizzBuzzSolutionStrategy } [FizzBuzzSolutionStrategyFactory]

{ EnterpriseGradeFizzBuzzSolutionStrategy H LoopPayloadExecution H LoopContextStateRetrieval]

[FizzBuzzStrategyFactory J

T

[SingleStepOutputGenerationStrategy]—[OutputGenerationStrategy]—{ SingleStepPayload]

[FizzStrategyFactory] [SingleStepOutputGenerationParameter]

Figure 1.1 FizzBuzz Enterprise Edition class diagram (an excerpt)

So does going functional mean you're guaranteed to write simple and
maintainable code? No — like many tools, functional programming can be
dangerous when used incorrectly. Consider as evidence: in the following paper,
the same FizzBuzz problem is solved in a functional yet mind-blowing manner:
“FizzBuzz in Haskell by Embedding a Domain-Specific Language.”

LINK FizzBuzz in Haskell by Embedding a Domain-Specific Language
https://themonadreader.files.wordpress.com/2014/04/fizzbuzz.pdf

That's why software design is important even in Haskell or Scala. But before
you design something, you need to understand your goals, limitations, and
requirements. Let's examine this now.

1.1.1 Requirements, goals, and simplicity

Imagine you are a budding software architect with a small but ambitious team.
One day, a man knocks at your office door and comes in. He introduces himself
as a director of Space Z Corporation. He says that they have started a big space
project recently and need some spaceship management software. What a
wonderful career opportunity for you! You decide to contribute to this project.
After discussing some details, you sign an agreement, and now your team is an
official contractor of Space Z Corporation. You agree to develop a prototype for
date one, to release version 1.0 by date two, and to deliver major update 1.5 by

https://themonadreader.files.wordpress.com/2014/04/fizzbuzz.pdf

Alexander Granin / Functional Design and Architecture 6

date three. The director gives you a thick stack of technical documents and
contact details for his engineers and other responsible people, so you can explore
the construction of the spaceship. You say goodbye, and he leaves. You quickly
form a roadmap to understand your future plans. The roadmap — a path of what
to do and when — is presented in figure 1.2.

[Start of development J [Product (version 1.0) J

/ Date 1 / Date 3

Now / Date 2 /

[Prototype (version 0.9)] [Update (version 1.5) J

Figure 1.2 Roadmap of the development process

To cut a long story short, you read the documentation inside and out and gather a
bunch of requirements for how the spaceship software should work. At this
point, you are able to enter the software design phase.

As the space domain dictates, you have to create a robust, fault-tolerant program
that works correctly all the time, around the clock. The program should be easy
to operate, secure, and compatible with a wide component spectrum. These
software property expectations are known as nonfunctional requirements. Also,
the program should do what it is supposed to do: allow an astronaut to control
the ship’s systems in manual mode in addition to the fully automatic mode.
These expectations are known as functional requirements.

DEFINITION Functional requirements are the application’s
requirements for functionality. In other words, functional requirements
describe a full set of things the application should do to allow its users
to complete their tasks.

DEFINITION Nonfunctional requirements are requirements for the
application’s general properties: performance, stability, extensibility,
availability, amounts of data it should be able to process, latency, and so
on.

Alexander Granin / Functional Design and Architecture 7

You have to create a program that will meet the requirements and will not
necessitate rewriting from scratch — a quite challenging task, with deadlines
approaching. Fortunately, you understand the risks. One of them is
overcomplicated code, and you would like to avoid this problem. Your goal is
not only to create the software on time, but to update it on time too; therefore,
you should still be comfortable with the code after a few months.

Designing simple yet powerful code takes time, and it often involves
compromises. You will have to maneuver between these three success factors
(there are other approaches to this classic problem, but let's consider this one):

* Goals accomplished. Your main goal is to deliver the system when it's
needed, and it must meet your customer’s expectations: quality, budget,
deadlines, support, and so on. There is also a goal to keep risks low, and to
be able to handle problems when they arise.

» Compliant with requirements. The system must have all the agreed-on
functions and properties. It should work correctly.

= Constant simplicity. A simple system is maintainable and understandable;
simple code allows you to find and fix bugs easily. Newcomers can
quickly drop into the project and start modifying the code.

Although fully satisfying each factor is your primary meta-goal, it is often an
unattainable ideal in our imperfect world. This might sound fatalistic, but it
actually gives you additional possibilities to explore, like factor execution gaps.
For example, you might want to focus on some aspects of fault tolerance, even if
it means exceeding a deadline by a little. Or you may decide to ignore some
spaceship equipment that you know will be out of production soon. The
compromises themselves can be represented by a radar chart (see figure 1.3).

Alexander Granin / Functional Design and Architecture 8

Requirements axis

Ideal Current
situation situation

Goals axis £ ... Simplicity axis

Figure 1.3 Compromising between simplicity, goals, and requirements

Software design is a risk management process. Risks affect our design decisions
and may force us to use tools and practices we don't like. We say risk is low
when the cost of solving problems is low. We can list the typical risks that any
software architect deals with:

= Low budget. If we can't hire a good software architect, we can't expect the
software to be of production quality.

» Changing requirements. Suppose we’ve finished a system that can serve a
thousand clients. For some reason, our system becomes popular, and more
and more clients are coming. If our requirement was to serve a thousand
clients, we’ll face problems when there are millions of clients.

» Misunderstood requirements. The feature we have been building over the
last six months was described poorly. As a result, we’ve created a kind of
fifth wheel and lost time. When the requirements were clarified, we were
forced to start over again.

» New requirements. We created a wonderful hammer with nice features like
a nail puller, a ruler, pliers, and electrical insulation. What a drama it will
be someday to redesign our hammer in order to give it a striking surface.

= Lack of time. Lack of time can force us to write quick and dirty code with
no thought for design or for the future. It leads to code we’re likely to
throw in the trash soon.

= Overcomplicated code. With code that’s difficult to read and maintain, we

Alexander Granin / Functional Design and Architecture 9

lose time trying to understand how it works and how to avoid breaking
everything with a small change.

» Invalid tools and approaches. We thought using our favorite dynamic
language would boost the development significantly, but when we needed
to increase performance, we realized it has insuperable disadvantages
compared to static languages.

At the beginning of a project, it’s important to choose the right tools and
approaches for your program’s design and architecture. Carefully evaluated and
chosen technologies and techniques can make you confident of success later.
Making the right decisions now leads to good code in the future. Why should
you care? Why not just use mainstream technologies like C++ or Java? Why pay
attention to the new fashion today for learning strange things like functional
programming? The answer is simple: parallelism, correctness, determinism, and
simplicity. Note that I didn't say easiness, but simplicity. With the functional
paradigm comes simplicity of reasoning about parallelism and correctness.
That's a significant mental shift.

NOTE To better understand the difference between easiness and
simplicity, I recommend watching the talk “Simple Made Easy” (or
“Simplicity Matters”) by Rich Hickey, the creator of the functional
language Clojure and a great functional developer. In his presentation,
he speaks about the difference between “simple” and “easy” and how
this affects whether we write good or bad code. He shows that we all
need to seek simplicity, which can be hard, but is definitely much more
beneficial than the easy paths we usually like to follow. This talk is
useful not only for functional developers; it is a mind-expanding speech
of value to every professional developer, without exception. Sometimes
we don't understand how bad we are at making programming decisions.

You'll be dealing with these challenges every day, but what tools do you have to
make these risks lower? In general, software design is that tool: you want to
create an application, but you also want to decrease any potential problems in
the future. Let's continue walking in the mythical architect's shoes and see what
software design is.

Alexander Granin / Functional Design and Architecture 10

1.1.2 Defining software design

You are meditating over the documentation. After a while, you end up with a set
of diagrams. These diagrams show actors, actions, and the context of those
actions. Actors — stick figures in the pictures — evaluate actions. For example,
an astronaut starts and stops the engine in the context of the control subsystem.
These kinds of diagrams — use case diagrams — come from the Unified
Modeling Language (UML), and you’ve decided to use them to organize your
requirements in a traditional way. One of the use case diagrams is presented in
figure 1.4.

Engine control

. Check engine .

Figure 1.4 Use case diagram for the engine control subsystem

NOTE Use case diagrams are a part of UML, which is primarily used
for object-oriented design. But looking at the diagram, can you say how
they are related to OOP? In fact, use case diagrams are
paradigm-agnostic, so they can be used to express requirements
regardless of the implementation stack. However, we will see how some
UML diagrams lead to imperative thinking and can't be used directly in
functional declarative design.

Thinking about the program’s architecture, you notice that the diagrams are
complex, dense, and highly detailed. The list of subsystems the astronaut will
work with is huge, and there are two or three instances of many of those
subsystems. Duplication of critical units should prevent the ship’s loss in case of

Alexander Granin / Functional Design and Architecture 11

disaster or technical failure. Communication protocols between subsystems are
developed in the same vein of fault tolerance, and every command carries a
recovery code. The whole scheme looks very sophisticated, and there is no way
to simplify it or ignore any of these issues. You must support all of the required
features because this complexity is an inherent property of the spaceship control
software. This type of unavoidable complexity has a special name: essential
complexity. The integral properties every big system has make our solutions big
and heavy too.

The technical documentation contains a long list of subsystem commands. An
excerpt is shown in table 1.1.

Table 1.1 A small portion of the imaginary reference of subsystem
commands

Command Native API function
Start boosters int send(BOOSTERS, START, @)
Stop boosters int send(BOOSTERS, STOP, 0)

Start rotary engine |core::request::result

request_start(core::RotaryEngine)

Stop rotary engine [core::request::result

request_stop(core: :RotaryEngine)

Mixing components’ manufacturers makes the API too messy. This is your
reality, and you can do nothing to change it. These functions have to be called
somewhere in your program. Your task is to hide native calls behind an
abstraction, which will keep your program concise, clean, and testable. After
meditating over the list of commands, you write down some possible solutions
that come to mind:

* No abstractions. Native calls only.

= Create a runtime mapping between native functions and higher-level
functions.

Alexander Granin / Functional Design and Architecture 12

= Create a compile-time mapping (side note: how should this work?).
» Wrap every native command in a polymorphic object (Command pattern).

» Wrap the native API with a higher-level API with the interfaces and
syntax unified.

» Create a unified embedded domain-specific language (DSL).

= Create a unified external DSL.

Without going into detail, it's easy to see that all the solutions are very different.
Aside from architectural advantages and disadvantages, every solution has its
own complexity depending on many factors. Thanks to your position, you can
weigh the pros and cons and choose the best one. Your decisions affect a type of
complexity known as accidental complexity. Accidental complexity is not a
property of the system; it didn’t exist before you created the code itself. When
you write unreasonably tricky code, you increase the accidental complexity.

We reject the idea of abstracting the native calls — that would decrease the
code’s maintainability and increase the accidental complexity. We don't think
about overdesigning while making new levels of abstractions — that would have
extremely bad effects on accidental complexity too.

Figure 1.5 compares the factors in two solutions that affect accidental and
essential complexity.

|

Block diagrams

[Graphical language

[LUA scripting]—>
Accidental
[XML representation]—» «—[Control scenarios]
[Domain model]—» <—[External scenarios DSL }
[Hardware abstraction layer J—’ <—[Hardware embedded DSL J
\

@

[Native calls Essential Native calls J

Solution A Complexity Solution B

Figure 1.5 Accidental and essential complexity of two solutions

Alexander Granin / Functional Design and Architecture 13

Software design is a creative activity in the sense that there is no general path to
the perfect solution. Maybe the perfect solution doesn't even exist. All the time
we’re designing, we will have to balance controversial options. That's why we
want to know software design best practices and patterns: our predecessors have
already encountered such problems and invented handy solutions that we can
use too.

Now we are able to formulate what software design is and the main task of this
activity.

DEFINITION Software design is the process of implementing the
domain model and requirements in high-level code composition. It's
aimed at accomplishing goals. The result of software design can be
represented as software design documents, high-level code structures,
diagrams, or other software artifacts. The main task of software design
is to keep the accidental complexity as low as possible, but not at the
expense of other factors.

An example of object-oriented design (OOD) is presented in figure 1.6.

«interface» «enumeration»
ISubsystem Status
+ GetName() : String Ok
+ GetStatus() : Status Fail
Offline
’ Engine ControlPanel
+ GetName() : String - _subsystems: List[ISubsystem]
+ GetStatus() : Status]]
+ Start() : int + RegisterSubsystem(ISubsystem) : Option[GUID]
+ Stop() : int + UnregisterSubsys_tem(GUID) : void
+ ShowsStatus() : void

Figure 1.6 OOD class diagram for the engine control subsystem

Here, you can see a class diagram that describes the high-level organization of a
small part of the domain model. Class diagrams may be the best-known part of
UML, which has been widely used in OOD recently. Class diagrams help
object-oriented developers communicate with each other and express their ideas

Alexander Granin / Functional Design and Architecture 14

before coding. An interesting question here is how applicable UML is to
functional programming. We traditionally don’t have objects and state in
functional programming — does that really mean we can't use UML diagrams?
I’ll answer this question in the following chapters.

Someone could ask: why not skip object-oriented concepts? We are functional
developers, after all. The answer is quite simple: many object-oriented practices
lead to functional code! How so? See the next chapter — we'll discuss why
classic design patterns try to overcome the lack of functional programming in
languages. Here, we will take only a brief tour of some major design principles
(not patterns!): low coupling and high cohesion. This is all about keeping
complexity manageable in OOD and, in fact, in other methodologies.

1.1.3 Low coupling, high cohesion

As team leader, you want the code your team produces to be of good quality,
suitable for the space field. You’ve just finished reviewing some of your
developers’ code and you are in a bad mood. The task was extremely simple:
read data from a thermometer, transform it into an internal representation, and
send it to the remote server. But you’ve seen some unsatisfactory code in one
class. The following listing in Scala shows the relevant part of it.

Listing 1.1 Highly coupled object-oriented code

object Observer {
def readAndSendTemperature() {
def toCelsius(data: native.core.Temperature) : Float =
data match {
case native.core.Kelvin(v) => 273.15f - v
case native.core.Celsius(v) => v

}

val received = native.core.thermometer.getData()
val inCelsius = toCelsius(received)
val corrected = inCelsius - 12.5f #A
server.connection
.send("temperature"”, "T-201A", corrected)

}
}

#A Defective device!

Alexander Granin / Functional Design and Architecture 15

Look at the code. The transformation algorithm hasn’t been tested at all! Why?
Because there is no way to test this code in laboratory conditions. You need a
real thermometer connected and a real server online to evaluate all the
commands. You can't do this in tests. As a result, the code contains an error in
converting from Kelvin to Celsius that might have gone undetected. The right
formula should be v - 273.15f. Also, this code has magic constants and
secret knowledge about a manufacturing defect in the thermometer.

The class is highly coupled with the outer systems, which makes it
unpredictable. It would not be an exaggeration to say we don't know if this code
will even work. Also, the code violates the Single Responsibility Principle
(SRP): it does too much, so it has low cohesion. Finally, it's bad because the
logic we embedded into this class is untestable because we can’t access these
subsystems in tests.

Solving these problems requires introducing new levels of abstraction. You need
interfaces to hide native functions and side effects to have these responsibilities
separated from each other. You probably want an interface for the transformation
algorithm itself. After refactoring, your code could look like this.

Listing 1.2 Loosely coupled object-oriented code

trait ISensor {
def getData() : Float
def getName() : String
def getDataType() : String

}

trait IConnection {
def send(name: String, dataType: String, v: Float)

}

final class Observer (val sensor: ISensor,
val connection: IConnection) {
def readAndSendData() {
val data = sensor.getData()
val sensorName = sensor.getName()
val dataType = sensor.getDataType()
connection.send(sensorName, dataType, data)

1}

Alexander Granin / Functional Design and Architecture 16

Here, the ISensor interface represents a general sensor device, and you don't
need to know too much about that device. It may be defective, but your code
isn't responsible for fixing defects; that should be done in the concrete
implementations of ISensor. IConnection has a small method to send
data to a destination: it can be a remote server, a database, or something else. It
doesn’t matter to your code what implementation is used behind the interface. A
class diagram of this simple code is shown in figure 1.7.

«interface» «interface»
IConnection ISensor

+ send(String, String, Float)
+ getName() : String
+ getDataType() : String

T |

Observer

+ getData() : Float |

- sensor : ISensor
- connection : IConnection

+ readAndSendData()

Figure 1.7. Class diagram of listing 1.2

Achieving low coupling and high cohesion is a general principle of software
design. Do you think this principle is applicable to functional programming?
Can functional code be highly coupled or loosely coupled? Both answers are
“yes.” Consider the code in listing 1.3: it's functional (because of Haskell!) but
has exactly the same issues as the code in listing 1.1.

Listing 1.3 Highly coupled functional code

import qualified Native.Core.Thermometer as T
import qualified ServerContext.Connection as C

readThermometer :: String -> IO T.Temperature #A
readThermometer name = T.read name

sendTemperature :: String -> Float -> IO () #B
sendTemperature name t = C.send "temperature" name t

Alexander Granin / Functional Design and Architecture 17

readTemperature :: IO Float #C
readTemperature = do
t1l <- readThermometer "T-201A"
return $ case t1 of
T.Kelvin v -> 273.15 - v
T.Celsius v -> v

readAndSend :: I0 () #D
readAndSend = do
t1l <- readTemperature
let t2 = t1 - 12.5 -- defect device!
sendTemperature "T-201A" t2

#A Native impure call to thermometer

#B Server impure call

#C Impure function that depends on native call

#D Highly coupled impure function with a lot of dependencies

NOTE We’ll be discussing this code more closely in chapters 3 and 4.

We call the functions read and send impure. These are functions that work
with the native device and remote server. The problem here is finding a
straightforward approach to dealing with side effects. There are good solutions
in the object-oriented world that help to keep code loosely coupled. The
functional paradigm tries to handle this problem in another way. For example,
the code in listing 1.3 can be made less tightly coupled by introducing a DSL for
native calls. We can build a scenario using this DSL, so the client code will only
work with the DSL, and its dependency on native calls will be eliminated. We
then have two options: first, we can use a native translator for the DSL that
converts high-level commands to native functions; second, we can test our
scenario separately by inventing some testing interpreter. Listing 1.4 shows an
example of how this can be done. The DSL. ActionDsl shown here is not
ideal and has some disadvantages, but we’ll ignore those details for now.

Alexander Granin / Functional Design and Architecture

Listing 1.4 Loosely coupled functional code

type DeviceName = String
type DataType = String
type TransformF a = Float -> ActionDsl a

data ActionDsl a #A
= ReadDevice DeviceName (a -> ActionDsl a)
| Transform (a -> Float) a (TransformF a)
| Correct (Float -> Float) Float (TransformF a)
| Send DataType DeviceName Float

transform (T.Kelvin v) = v - 273.15 #B
transform (T.Celsius v) = v

correction v = v - 12.5

therm = Thermometer "T-800" #C
scenario :: ActionDsl T.Temperature #D

scenario =
ReadDevice therm (\v ->
Transform transform v (\vl ->
Correct correction vl (\v2 ->
Send temp therm v2)))

interpret :: ActionDsl T.Temperature -> I0 () #E
interpret (ReadDevice n a) = do

v <- T.read n

interpret (a v)
interpret (Transform f v a)
interpret (Correct f v a)
interpret (Send t n v)

interpret (a (f v))
interpret (a (f v))
C.send t n v

readAndSend :: I0 ()
readAndSend = interpret scenario

#A Embedded DSL for observing scenarios

#B Pure auxiliary functions

#C Some hardcoded thermometer identifier

#D Straightforward pure scenario of reading and sending data
#E Impure scenario interpreter that uses native functions

NOTE We’ll be discussing this code more closely in chapters 3 and 4.

18

Alexander Granin / Functional Design and Architecture 19

By having the DSL in between the native calls and our program code, we
achieve loose coupling and less dependency from a low level. The idea of DSLs
in functional programming is so common and natural that we can find it
everywhere. Most functional programs are built of many small internal DSLs
addressing different domain parts. We will construct many DSLs for different
tasks in this book.

There are other brilliant patterns and idioms in functional programming. I've
said that no one concept gives you a silver bullet, but the functional paradigm
seems to be a really, really, really good try. I’ll discuss it more in the following
chapters.

1.1.4 Interfaces, Inversion of Control, and Modularity

Functional programming provides new methods of software design, but does it
invent any design principles? Let's deal with this. Look at the solutions in
listings 1.1 and 1.2. We separate interface from implementation. Separating parts
from each other to make them easy to maintain rises to a well-known general
principle, “divide and conquer.” Its realization may vary depending on the
paradigm and concrete language features. As we know, this idea has come to us
from ancient times, where politicians used it to rule disunited nations, and it
works very well today — no matter what area of engineering you have chosen.

Interfaces in object-oriented languages like Scala, C#, or Java are a form of this
principle too. An object-oriented interface declares an abstract way of
communicating with the underlying subsystem without knowing much about its
internal structure. Client code depends on abstraction and sees no more than it
should: a little set of methods and properties. The client code knows nothing
about the concrete implementation it works with. It's also possible to substitute
one implementation for another, and the client code will stay the same. A set of
such interfaces forms an application programming interface (API).

DEFINITION “In computer programming, an application programming
interface (API) is a set of routines, protocols, and tools for building
software and applications. An API expresses a software component in
terms of its operations, inputs, outputs, and underlying types, defining
functionalities that are independent of their respective implementations,
which allows definitions and implementations to vary without
compromising the interface. A good API makes it easier to develop a

Alexander Granin / Functional Design and Architecture 20

program by providing all the building blocks, which are then put
together by the programmer” (see Wikipedia: “Application
Programming Interface”).

LINK Wikipedia: Application Programming Interface
https://en.wikipedia.org/wiki/Application programming interface

Passing the implementation behind the interface to the client code is known as
Inversion of Control (IoC). With IoC, we make our code depend on the
abstraction, not on the implementation, which leads to loosely coupled code. An
example of this is shown in listing 1.5. This code complements the code in
listing 1.2.

Listing 1.5 Interfaces and inversion of control

final class Receiver extends IConnection {
def send(name: String, dataType: String, v: Float) =
server.connection.send(name, dataType, V)

}

final class Thermometer extends ISensor {
val correction = -12.5f
def transform(data: native.core.Temperature) : Float =
toCelsius(data) + correction

def getName() : String = "T-201A"

def getDataType() : String = "temperature"

def getData() : Float = {
val data = native.core.thermometer.getData()
transform(data)

}
}

object Worker {
def observeThermometerData() {
val t = new Thermometer()
val r = new Receiver()
val observer = new Observer(t, r)
observer.readAndSendData()

https://en.wikipedia.org/wiki/Application_programming_interface

Alexander Granin / Functional Design and Architecture 21

The full class diagram of listings 1.2 and 1.5 is presented in figure 1.8.

«interface» «interface»
IConnection ISensor
+ send(String, String, Float) + getData() : Float

+ getName() : String
+ getDataType() : String

/ use use \

Receiver ’ Observer I Thermometer

- connection : IConnection + getName() : String
+ getDataType() : String

+ readAndSendData()

instantiate
instantiate instantiate

Worker ‘

+ send(String, String, Float) - sensor : ISensor + getData() : Float

+ observeThermometerData() ‘

Figure 1.8 Full class diagram of listings 1.2 and 1.5

Now, we are going to do one more simple step. Usually, you have a bunch of
object-oriented interfaces related to a few aspects of the domain. To keep your
code well organized and maintainable, you may want to group your functionality
into packages, services, libraries, or subsystems. We say a program has a
modular structure if it's divided into independent parts somehow. We can
conclude that such design principles as Modularity, IoC, and Interfaces help us
to achieve our goal of low software complexity.

Fine. We’ve discussed OOD in short. But what about functional design? Any
time we read articles on OOD, we ask ourselves the following: Is the functional
paradigm good for software design too? What are the principles of functional
design, and how are they related to object-oriented principles? For example, can
we have interfaces in functional code? Yes, we can. Does that mean that we have
IoC out of the box? The answer is “yes” again, although our functional
interfaces are somewhat different because “functional” is not “object-oriented,”
obviously. A functional interface for communication between two subsystems
can be implemented as an algebraic data type and an interpreter. Or it can be
encoded as a state machine. Or it can be monadic. Or it could be built on top of

Alexander Granin / Functional Design and Architecture 22

lenses In functional programming, there are many interesting possibilities
that are much better and wiser than what an object-oriented paradigm provides.
OOP is good, but has to do a lot to keep complexity low. As we will see in the
following chapters, functional programming does this much more elegantly.

There is another argument for why the functional paradigm is better: we do have
one new principle of software design. This principle can be formulated like this:
“The nature of the domain model is often something mathematical. We define
what the concept is in the essence, and we get the correct behavior of the model
as a consequence.”

When designing a program in the functional paradigm, we must investigate our
domain model, its properties, and its nature. This allows us to generalize the
properties to functional idioms (for example, functor, monad, or zipper). The
right generalization gives us additional tools specific to those concrete
functional idioms and already defined in base libraries. This dramatically
increases the power of code. For example, if any functional list is a functor, an
applicative functor, and a monad, then we can use monadic list comprehensions
and automatic parallel computations for free. Wow! We just came to parallelism
by knowing a simple fact about the nature of a list. It sounds so amazing — and
maybe unclear — and we have to learn more. We will do so in the next chapters.
For now, you can just accept that functional programming really comes with
new design principles.

Our brief tour of software design has been a bit abstract and general so far. In the
rest of this chapter, I’ll discuss software design from three points of view:
imperative, object-oriented, and, finally, functional. We want to understand the
relations between these paradigms better so that we can operate by the terms
consciously.

1.2 Imperative design

In the early computer era (roughly 1950-1990), imperative programming was a
dominant paradigm. Almost all big programs were written in C, FORTRAN,
COBOL, Ada, or another well-used language. Imperative programming is still
the most popular paradigm today, for two reasons: first, many complex systems
(like operating system kernels) are idiomatically imperative; second, the widely
spread object-oriented paradigm is imperative under the hood. The term
imperative programming denotes a program control flow in which any data

Alexander Granin / Functional Design and Architecture 23

mutations can happen, and any side effects are allowed. Code usually contains
instructions on how to change a variable step-by-step. We can freely use
imperative techniques such as loops, mutable plain old data structures, pointers,
procedures, and eager computations. So, imperative programming here means
procedural or structured programming.

On the other hand, the term imperative design can be understood as a way of
program structuring that applies methods like unsafe type casting, variable
destructive mutation, or using side effects to get desired low-level properties of
the code (for example, maximal CPU cache utilization and avoiding cache
misses).

Has the long history of the imperative paradigm produced any design practices
and patterns? Definitely. Have we seen these patterns described as much as the
object-oriented patterns? It seems we haven't. Despite the fact that OOD is much
younger than bare imperative design, it has been much better described. But if
you ask system-level developers about the design of imperative code, they will
probably name techniques like modularity, polymorphism, and opaque pointers.
These terms may sound strange, but there’s nothing new here. In fact, we
already discussed these concepts earlier:

* Modularity is what allows us to divide a large program into small parts.
We use modules to group behavioral meaning in one place. In imperative
design, it is a common thing to divide a program into separate parts.

* Opaque data types are what allow a subsystem to be divided into two
parts: an unstable private implementation and a stable public interface.
Hiding the implementation behind the interface is a common idea of good
design. Client code can safely use the interface, and it never breaks, even
if the implementation changes someday.

» Polymorphism is the way to vary implementations under the unifying
interface. Polymorphism in an imperative language often simulates an ad
hoc polymorphism from OOP.

For example, in the imperative language C, an interface is represented by a
public opaque type and the procedures it is used in. The following code is taken
from the Linux kernel file as an example of an opaque type.

Alexander Granin / Functional Design and Architecture 24

Listing 1.6 Opaque data type from Linux kernel source code

/* These are opaque structures to users.
* Fields are declared only in the implementation .c files.
*/

typedef struct MYPROCOBJECT_Tag MYPROCOBJECT;

typedef struct MYPROCTYPE_Tag MYPROCTYPE;

MYPROCOBJECT *visor_proc_CreateObject(MYPROCTYPE *type,
const char *name,
void *context);

void visor_proc_DestroyObject(MYPROCOBJECT *obj);

Low-level imperative language C provides full control over the computer.
High-level dynamic imperative language PHP provides full control over the data
and types. But having full control over the system can be risky. Developers have
less motivation to express their ideas in design because they always have a short
path to their goal. It's possible to hack something in code — reinterpret the type
of a value, cast a pointer even though there is no information about the needed
type, use some language-specific tricks, and so on. Sometimes it's fine,
sometimes it's not, but it's definitely not safe and robust. This freedom requires
good developers to be disciplined and pushes them to write tests. Limiting the
ways a developer could occasionally break something may produce new
problems in software design. Despite this, the benefits you gain, such as low risk
and good quality of code, can be much more important than any inconveniences
that emerge. Let's see how OOD deals with lowering the risks.

1.3 Object-oriented design

In this section, I’'ll discuss what object-oriented concepts exist, how functional
programming reflects them, and why functional programming is gaining huge
popularity nowadays.

1.3.1 Object-oriented design patterns

What is OOD? In short, it is software design using object-oriented languages,
concepts, patterns, and ideas. Also, OOD is a well-investigated field of
knowledge on how to construct big applications with low risk. OOD is focused
on the idea of “divide and conquer” in different forms. OOD patterns are

Alexander Granin / Functional Design and Architecture 25

intended to solve common problems in a general, language-agnostic manner.
This means you can take a formal, language-agnostic definition of the pattern
and translate it into your favorite object-oriented language. For example, the
Adapter pattern shown here allows you to adapt a mismatched interface to the
interface you need in your code.

Listing 1.7 Adapter pattern

final class HighAccuracyThermometer {
def name() : String = "HAT-53-2"
def getKelvin() : Float = {
native.core.highAccuracyThermometer.getData()
}
}

final class HAThermometerAdapter (
thermometer: HighAccuracyThermometer)
extends ISensor {
val t = thermometer

def getData() : Float = {
val data = t.getKelvin()
native.core.utils.toCelsius(data)

}
def getName() : String = t.name()

def getDataType() : String = "temperature"
}

The de facto standard for general description of patterns is UML. We are
familiar with the case diagrams and class diagrams already, so let's see one more
usage of the latter. Figure 1.9 shows the Adapter design pattern structure as it is
presented in the classic “Gang of Four” book.

Alexander Granin / Functional Design and Architecture 26

Client Adapter Adaptee
+ adapter : Adapter + adaptee : Adaptee + methodB()
+ doWork() + methodA()

adapter.methodA() adaptee.methodB()

Figure 1.9 The Adapter design pattern

NOTE You can find hundreds of books describing patterns that apply to
almost any object-oriented language we have. The largest and most
influential work is the book Design Patterns by Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1994),
which is informally called the “Gang of Four” or just “GoF” book. The
two dozen general patterns it introduces have detailed descriptions and
explanations of how and when to use them. This book has a systematic
approach to solving common design problems in object-oriented
languages.

The knowledge of object-oriented patterns is a must for any good developer
today. But it seems the features coming to object-oriented languages from a
functional paradigm can solve problems better than particular object-oriented
patterns. Some patterns (such as Command or Strategy) have a synthetic
structure with complex hierarchies involving tons of classes; however, you can
replicate the functionality of the patterns with only high-order functions,
lambdas, and closures. Functional solutions will be less wordy and will have
better maintainability and readability because their parts are very small functions
that compose well. I can even say that many object-oriented patterns bypass the
limitations of object-oriented languages no matter these patterns’ actual purpose.

NOTE As proof of these words, consider some external resources. The
article “Design Patterns in Haskell” by Edward Z. Yang will tell you
how some design patterns can be rethought using functional concepts.
Also, there is notable discussion in StackOverflow in the question “Does
Functional Programming Replace GoF Design Patterns?” You can also

Alexander Granin / Functional Design and Architecture 27

find many different articles that try to comprehend object-oriented
patterns from a functional perspective. This is a really hot topic today.

So, we can define object-oriented patterns as well-known solutions to common
design problems. But what if you encounter a problem no one pattern can solve?
In real development, this dark situation dominates over the light one. The
patterns themselves are not the key thing in software design, as you might be
thinking. Note that all the patterns use Interfaces and IoC. These are the key
things: IoC, Modularity, and Interfaces. And, of course, design principles.

1.3.2 Object-oriented design principles

Let's consider an example. Our spaceship is equipped with smart lamps with
program switchers. Every cabin has two daylight lamps on the ceiling and one
utility lamp over the table. Both kinds of lamps have a unified API to switch
them on and off. The manufacturer of the ship provided sample code for how to
use the lamps’ API, and we created one general program switcher for convenient
electricity management. Our code is very simple:

trait ILampSwitcher {
def switch(onOff: bool)

}

class DaylightLamp extends ILampSwitcher
class TableLamp extends ILampSwitcher

def turnAlloff(lamps: List[ILampSwitcher]) {
lamps.foreach(_.switch(false))

}

What do we see in this listing? Client code can switch off any lamps with the
interface ILampSwitcher. The interface has a switch() method for
this. Let's test it! We turn our general switcher off, passing all the existing lamps
to it ... and a strange thing happens: only one lamp goes dark, and the other
lamps stay on. We try again, and the same thing happens. We are facing a
problem somewhere in the code — in the native code, to be precise, because our
code is extremely simple and clearly has no bugs. The only option we have to
solve the problem is to understand what the native code does. Consider the
following listing.

Alexander Granin / Functional Design and Architecture 28

Listing 1.8 Concrete lamp code

class DaylightLamp (n: String, v: Int, onOff: Boolean)
extends ILampSwitcher {
var isOn: Boolean = onOff

var value: Int =V

val name: String = n

def switch(onOff: Boolean) = {
isOn = onOff

}

}

class TableLamp (n: String, onOff: Boolean)
extends ILampSwitcher {
var isOn: Boolean = onOff
val name: String =n
def switch(onOff: Boolean) = {
isOn = onOff
// Debug: will remove it later!
throw new Exception("switched")

}
}

Stop! There are some circumstances here we have to take into consideration.
The manufacturer's programmer forgot to remove the debug code from the
method TableLamp.switch(). In our code, we assume that the native
code will not throw any exceptions or do any other strange things. Why should
we be ready for unspecified behavior when the interface ILampSwitcher
tells us the lamps will be switched on or off and nothing more?

The guarantees that the ILampSwitcher interface provides are called a
behavior contract. We use this contract when we design our code. In this
particular situation, we see the violation of the contract by the class
TableLamp. That's why our client code can be easily broken by any instance
of ILampSwitcher. This doesn’t only happen with the assistance of
exceptions. Mutating of global state, reading of an absent file, working with
memory — all these things can potentially fail, but the contract doesn't define
this behavior explicitly. Violation of an established contract of the subsystem we
try to use always makes us think that something is badly implemented. The
contracts have to be followed by implementation, otherwise it becomes really
hard to predict our program’s behavior. This is why so-called contract

Alexander Granin / Functional Design and Architecture 29

programming was introduced. It brings some special tools into software design.
These tools allow to express the contracts explicitly and to check whether the
implementation code violates these contracts or is fine.

Let's show how the contract violation occurs in a class diagram (figure 1.10).

use «interface»
Client code ILampSwitcher
+ turnAllOff(List[ILampSwitcher]) + switch(Boolean) [NoThrow] ‘
Violates ILampSwitcher contract /\
7\ TableLamp ‘ DaylightLamp

+ switch(Boolean) ‘

+ switch(Boolean)

Figure 1.10 Class diagram for listing 1.8 illustrating contract violation by
TableLamp

When you use a language that is unable to prevent undesirable things, the only
option you have is to establish special rules that all developers must comply
with. And once someone has violated a rule, they must fix the mistake.
Object-oriented languages are impure and imperative by nature, so developers
have invented a few rules, called “object-oriented principles” that should always
be followed in order to improve the maintainability and reusability of
object-oriented code. You may know them as the SOLID principles.

NOTE Robert C. Martin first described the SOLID principles in the
early 2000s. SOLID principles allow programmers to create code that is
easy to understand and maintain because every part of it has one
responsibility, hidden by abstractions, and respects the contracts.

In SOLID, the “L” stands for the Liskov Substitution Principle (LSP). This rule
prohibits situations like the one described here. LSP states that if you use
ILampSwitcher, then the substitution of ILampSwitcher by the
concrete object TableLamp or DaylightLamp must be transparent to
your code (in other words, your code correctness shouldn’t be specially updated
for this substitution), and it shouldn't affect the program’s correctness.

Alexander Granin / Functional Design and Architecture 30

TableLamp obviously violates this principle because it throws an unexpected
exception and breaks the client code.

Besides the LSP, SOLID contains four more principles of OOP. The components
of the acronym are presented in table 1.2.

Table 1.2 SOLID principles

Initial Stands for Concept

S SRP Single Responsibility Principle
O OCP Open/Closed Principle

L LSP Liskov Substitution Principle

I ISP Interface Segregation Principle
D DIP Dependency Inversion Principle

We will return to SOLID principles in the next chapters. For now, I note only
that DIP, ISP, and SRP correspond to the ideas mentioned in section 1.1.4:
Modularity, Interfaces, and IoC, respectively. That's why SOLID principles are
applicable to imperative and functional design, too, and why we should be
comfortable with them.

NOTE We also know another design principle set, called GRASP
(General Responsibility Assignment Software Patterns). We talked
about low coupling, high cohesion, and polymorphism earlier, and those
are among the GRASP patterns. GRASP incorporates other OOD
patterns too, but they aren’t so interesting to us from a functional
programming point of view. If you want to learn more about OOD, you
can read a comprehensive guide by Craig Larman, Applying UML and
Patterns, (3rd edition, Prentice Hall, 2004).

Alexander Granin / Functional Design and Architecture 31

1.3.3 Shifting to functional programming

We finished our discussion of imperative design by talking about freedom.
Although OOP introduces new ways to express ideas in design (classes,
object-oriented interfaces, encapsulation, and so on), it also tries to restrict the
absolute freedom of the imperative approach. Have you used a global mutable
state, which is considered harmful in most cases? Do you prefer a static cast
checked in compile-time or a hard unmanaged cast, the validity of which is
unpredictable for the compiler? Then you certainly know how hard it is
sometimes to understand why the program crashes and where the bug is. In
imperative and object-oriented programming, it’s common to debug a program
step-by-step with a debugger. Sometimes this is the only debugging technique
that can give you an answer about what's happening in the program.

But lowering the need of a debugger (and thus limiting ourselves to other debug
techniques) has positive consequences for program design. Instead of
investigating its behavior, you are encoding the behavior explicitly, with
guarantees of correctness. In fact, step-by-step debugging can be avoided
completely. Step-by-step debugging makes a developer lazy in his intentions. He
tends to not think about the code behavior and relies on the results of its
investigation. And while the developer doesn’t need to plan the behavior (he can
adjust it while debugging), he will most likely ignore the idea of software
design. Unfortunately, it’s rather hard to maintain the code without a design. It
often looks like a developer’s mind dump, and has a significantly increased
accidental complexity.

So how could we replace step-by-step debugging?

A greater help to a developer in this will be a compiler, which we can teach to
handle many classes of errors; the more we go into the type level, the more
errors can be eliminated at the design phase. To make this possible, the type
system should be static (compile-time-checkable) and strong (with the minimum
of imperative freedom).

Classes and interfaces in an object-oriented language are the elements of its type
system. Using the information about the types of objects, the compiler verifies
the casting correctness and ensures that you work with objects correctly, in
contrast to the ability to cast any pointer to any type freely in imperative
programming. This is a good shift from bare imperative freedom to

Alexander Granin / Functional Design and Architecture 32

object-oriented shackles. However, object-oriented languages are still
imperative, and consequently have a relatively weak type system. Consider the
following code: it does something really bad while it converts temperature
values to Celsius:

def toCelsius(data: native.core.Temperature) : Float = {
launchMissile()
data match {
case native.core.Kelvin(v) => toCelsius(v)
case native.core.Celsius(v) => v

}
}

Do you want to know a curious fact? OOP is used to reduce complexity, but it
does nothing about determinism! The compiler can't punish us for this trick
because there are no restrictions on the imperative code inside. We are free to do
any madness we want, to create any side effects and surprise data mutations. It
seems that OOP is stuck in its evolution, and that's why functional programming
is waiting for us. Functional programming offers promising ideas for how to
handle side effects; how to express a domain model in a wise, composable way;
and even how to write parallel code painlessly.

Let's go on to functional programming now.

1.4 Functional declarative design

The first functional language was born in 1958, when John McCarthy invented
Lisp. For 50 years, functional programming lived in academia, with functional
languages primarily used in scientific research and small niches of business.
With Haskell, functional programming was significantly rethought. Haskell
(created in 1990) was intended to research the idea of laziness and issues of
strong type systems in programming languages. But it also introduced functional
idioms and highly mathematical and abstract concepts in the '90s and early
2000s that became a calling card of the whole functional paradigm. I mean, of
course, monads. No one imagined that pure functional programming would
arouse interest in mainstream programming. But programmers were beginning
to realize that the imperative approach is quite deficient in controlling side
effects and handling state, and so makes parallel and distributed programming
painful.

Alexander Granin / Functional Design and Architecture 33

The time of the functional paradigm had come. Immutability, purity, and
wrapping side effects into a safe representation opened doors to parallel
programming heaven. Functional programming began to conquer the
programming world. You can see a growing number of books on functional
programming, and all the mainstream languages have adopted functional
programming techniques such as lambdas, closures, first-class functions,
immutability, and purity. At a higher level, functional programming has brilliant
ideas for software design. Let me give you some quick examples:

= Functional reactive programming (FRP) has been used successfully in
web development in the form of reactive libraries. FRP is not an easy
topic, and adopting it incorrectly may send a project into chaos. Still, FRP
shows good potential and attracts more interest nowadays.

= LINQ in C#, streams in Java, and even ranges in C++ are examples of
functional approach to data processing.

* Monads. This concept deserves its own mention because it can reduce the
complexity of some code — for instance, eliminate callback hell or make
parsers quite handy.

» Lenses. This is an idea in which data structures are handled in a
combinatorial way without knowing much about their internals.

= Functional (monadic) Software Transactional Memory (STM). This
approach to concurrency is based on a small set of concepts that are being
used to handle a concurrent state and do not produce extra accidental
complexity. In contrast, raw threads and manual synchronization with
mutexes, semaphores, and so on usually turn the code into an
unmanageable, mind-blowing puzzle.

Functional developers have researched these and other techniques a lot. They’ve
also found analogues to Interfaces and IoC in the functional world. They did all
that was necessary to launch the functional paradigm into the mainstream. But
there is still one obstacle remaining. We lack the answer to one important
question: how can we tie together all the concepts from the functional
programming world to design our software? Is it possible to have an entire
application built in a functional language and not sacrifice maintainability,
testability, simplicity, and other important characteristics of the code?

This book provides the answer. It’s here to create a new field of knowledge.
Let's call it functional declarative design (FDD). Functional programming is a

Alexander Granin / Functional Design and Architecture 34

subset of the declarative approach, but it is possible to write imperatively in any
functional language. Lisp, Scala, and even pure functional Haskell — all these
languages have syntactic or conceptual features for true imperative
programming. That's why I say “declarative” in my definition of FDD: we will
put imperative and object-oriented paradigms away and will strive to achieve
declarative thinking. One might wonder if functional programming is really so
peculiar in its new way of thinking. Yes, definitely. Functional programming is
not just about lambdas, higher-order functions, and closures. It's also about
composition, declarative design, and functional idioms. In learning FDD, we
will dive into genuine idiomatic functional code.

Let's sow the seeds of FDD.

1.4.1 Immutability, purity, and determinism in FDD

In functional programming, we love immutability. We create bindings of
variables, not assignments. When we bind a variable to an expression, it's
immutable and just a declaration of the fact that the expression and the variable
are equal, interchangeable. We can use either the short name of the variable or
the expression itself with no difference.

Assignment operation is destructive by nature: we destroy an old value and
replace it with a new one. It is a fact that shared mutable state is the main cause
of bugs in parallel or concurrent code. In functional programming, we restrict
our freedom by prohibiting data mutations and shared state, so we don't have
this class of parallel bugs at all. Of course, we can do destructive assignments if
we want: Scala has the var keyword, Haskell has the IO type and the
IORef type — but using these imperatively is considered bad practice. It's not
functional programming; it's the tempting path to nondeterminism. Sometimes
it’s necessary, but more often the mutable state should be avoided.

In functional programming, we love pure functions. A pure function doesn't
have side effects. It uses arguments to produce the result and doesn't mutate any
state or data. A pure function represents deterministic computation: every time
we call a pure function with the same arguments, we get the same result. The
combination of two pure functions gives a pure function again. If we have a
“pyramid” made of such functions, we have a guarantee that the pyramid
behaves predictably on each level. We can illustrate this by code:

Alexander Granin / Functional Design and Architecture 35

def max(a: Float, b: Float) = {
math.max(a, b)

}

def calc(a: Int, b: Int, c: Float) : Float = {
val sum = a + b
val average = sum / 2
max(average, c)

}

Also, it is convenient to support a pyramidal functional code: it always has a
clear evaluation flow, as in the diagram in figure 1.11.

{pure}
calc(Int, Int, Float) : Float

{pure} {pure} {pure}
(#)(Int, Int) : Int (H(Int, Int) : Float max(Float, Float) : Float

{pure} J

Pure layer, deterministic behavior (math.max(Float, Float) : Float

Figure 1.11 Pure pyramidal functional code

We give arguments @, b, and C, and the top function returns the maXx of
average and C. If a year later, we give the same arguments to the function,
we will receive the same result.

Unfortunately, only a few languages provide the concept of pure computations.
Most languages lack this feature and allow a developer to perform any side
effects anywhere in the program. Namely, the maXx function can suddenly write
into a file or do something else, and the compiler will be humbly silent about
this, as follows:

def max(a: Float, b: Float) = {
launchMissile()
math.max(a, b)

}

Alexander Granin / Functional Design and Architecture 36

And that's the problem. We have to be careful and self-disciplined with our own
and third-party code. Code designed to be pure is still vulnerable to
nondeterminism if someone breaks its idea of purity. Writing supposedly pure
code that can produce side effects is definitely not functional programming.

A modified picture of the impure code is shown in figure 1.12.

Pure layer, deterministic behavior

{pure} {pure} {pure}
(#)(Int, Int) : Int (N(Int, Int) : Float math.max(Float, Float) : Float

{impure} {impure} {impure}
calc(Int, Int, Float) : Float max(Float, Float) : Float launchMissile()

Impure layer, possibly non-deterministic behavior

Figure 1.12 Impure pyramidal functional code

Note that there is no way to call impure layer functions from the pure layer: any
impure call pollutes our function and moves it into the impure layer. Functional
programming forces us to focus on pure functions and decrease the impure layer
to the minimum.

Calculation logic like math can be made pure easily. But most data comes from
the unsafe, impure world. How to deal with it? Should we stay in that impure
layer? The general advice from functional programming says that we still need
to separate the two layers. Obviously, we can do this by collecting the data in the
impure layer and then calling pure functions. But you might ask what the
difference is. Simple: in the impure layer, you are allowed to use destructive
assignments and mutable variables. So, you might want to collect the data into a
mutable array. After that, you’d better pass this data to the pure layer. There are
very few reasons in which you’d like to stay on the impure layer. Maybe, the
performance reasons. Anyway, being pure is good!

Alexander Granin / Functional Design and Architecture 37

Let’s consider an example. Suppose we need to calculate the average from a
thermometer for one hour with one-minute discretization. We can't avoid using
an impure function to get the thermometer readings, but we can pass the math
calculations into the pure layer. (Another option would be to use a pure DSL and
then interpret it somehow; we did this already in listing 1.4.) Consider the
following code in Haskell, which does so:

calculateAverage :: [Float] -> Float #A
calculateAverage values = ...

observeTemperatureDuring :: Seconds -> IO [Float] #B
observeTemperatureDuring secs = ...

getAverageTemperature :: IO Float
getAverageTemperature = do
values <- observeTemperatureDuring 60
return $ calculateAverage values

#A Pure calculations
#B Impure data collecting

This design technique — dividing logic into pure and impure parts — is very
natural in functional programming. But sometimes it’s hard to design the code so
that these two layers don’t interleave occasionally.

NOTE What languages support the purity mechanism? The D
programming language has the special declaration pure, and Haskell
and Clean are pure by default. Rust has some separation of the safe and
unsafe worlds. C++ supports pure logic using templates and
constexpr. The compiler should be able to distinguish side effects
in code from pure computations. It does so by analyzing types and code.
When the compiler sees a pure function, it then checks whether all
internal expressions are pure too. If not, a compile-time error occurs: we
must fix the problem.

At the end of this discussion, we will be very demanding. Previously,
determinism was denoted implicitly through purity and immutability. Let us
demand it from a language compiler explicitly. We need a declaration of
determinism in order to make the code self-explanatory. You are reading the
code, and you are sure it works as you want it to. With a declaration of

Alexander Granin / Functional Design and Architecture 38

determinism, nothing unpredictable can happen; otherwise, the compilation
should fail. With this feature, designing programs with separation of
deterministic parts (which always work) and nondeterministic parts (where the
side effects can break everything) is extremely desirable. There is no reason to
disallow side effects completely; after all, we need to operate databases,
filesystems, network, memory, and so on. But isolating this type of
nondeterminism sounds promising. Is it possible, or are we asking too much?
It’s time to talk about strong static type systems.

1.4.2 Strong static type systems in FDD

We have come to the end of our path of self-restraint. I said that expressing
determinism can help in reasoning about code. But what exactly does this mean?
In FDD, it means that we define deterministic behavior through the type of
function. We describe what a function is permitted to do in its type declaration.
In doing so, we don't need to know how the function works — what happens in
its body. We have the type, and it says enough for us to reason about the code.

Let's write some code. Here, we will use Haskell because its type system has the
notion to express impurity; also, it's very mathematical. The following code
shows the simplest case: an explicit type cast. Our intention to convert data from
one type to another is declared by the function's body. Its type says that we do a
conversion from Int to Float:

toFloat :: Int -> Float
toFloat value = fromIntegral value

In Haskell, we can't create any side effects here because the return type of the
function doesn't support such declarations. This function is pure and
deterministic. But what if we want to use some side effects? In Haskell, we
should declare it in the return type explicitly. For example, suppose we want to
write data into a file; that's a side effect that can fail if something goes wrong
with the filesystem. We use a special type to clarify our intent: the return type
I0 (). Because we only want to write data and don't expect any information
back, we use the “unit” type (()) after the effect (I0). The code may look like
the following:

Alexander Granin / Functional Design and Architecture 39

writeFloat :: Float -> IO ()
writeFloat value = writeFile "value.txt" (show value)

toFloatAndWrite :: Int -> IO ()
toFloatAndWrite value = let
value = toFloat 42
in writeFloat value

In Haskell, every function with return type I0 may do impure calls; as a result,
this function isn't pure,’ and all the applications of this function give impure
code. Impurity infects all code, layer by layer. The opposite is also true: all
functions without the return type IO are pure, and it's impossible to call, for
example, writeFile or getDate from such a function. Why is this
important? Let's return to the code in listing 1.4. Function definitions give us all
the necessary background on what's going on in the code:

scenario :: ActionDsl Temperature
interpret :: ActionDsl Temperature -> IO ()

We see a pure function that returns the scenario in ActionDs1, and the
interpreter takes that scenario to evaluate the impure actions the scenario
describes. We get all this information just from the types. Actually, we just
implemented the “divide and conquer” rule for a strong static type system. We
separate code with side effects from pure code with the help of type declarations.
This leads us to a technique of designing software against the types. We define
the types of top-level functions and reflect the behavior in them. If we want the
code to be extremely safe, we can lift our behavior to the types, which forces the
compiler to check the correctness of the logic. This approach, known as
type-level design, uses such concepts as type-level calculations, advanced types,
and dependent types. You may want to use this interesting (but not so easy)
design technique if your domain requires absolute correctness of the code. In
this book, I’1l discuss a bit of type-level design too.

1.4.3 Functional patterns, idioms, and thinking

While software design is an expensive business, we would like to cut corners
where we can by adjusting ready-to-use solutions for our tasks and adopting
some design principles to lower risks. Functional programming isn’t something

! That’s not entirely true. In Haskell, every function with return type IO () can be considered pure because it only declares

the effect and does not evaluate it. Evaluation will happen when the main function is called.

Alexander Granin / Functional Design and Architecture 40

special, and we already know that interesting functional solutions exist. Monads
are an example. In Haskell, monads are everywhere. You can do many things
with monads: layering, separating side effects, mutating state, handling errors,
and so on. Obviously, any book about functional programming must contain a
chapter on monads. Monads are so amazing that we must equate them to
functional programming! But that’s not the goal of this section. We will discuss
monads in upcoming chapters, but for now, let's focus on terminology and the
place of monads in FDD, irrespective of what they actually do and how they can
be used.

What is a monad? A design pattern or a functional idiom? Or both? Can we say
patterns and idioms are the same things? To answer these questions, we need to
define these terms.

DEFINITION A design pattern is the “external” solution to certain
types of problems. A pattern is an auxiliary compound mechanism that
helps to solve a problem in an abstract, generic way. Design patterns
describe how the system should work. In particular, OOD patterns
address objects and mutable interactions between them. An OOD
pattern is constructed by using classes, interfaces, inheritance, and
encapsulation.

DEFINITION A functional idiom is the internal solution to certain
types of problems. It addresses the natural properties of the domain and
immutable transformations of those properties. The idiom describes
what the domain is and what inseparable mathematical properties it has.
Functional idioms introduce new meanings and operations for domain
data types.

In the definition of “functional idiom,” what properties are we talking about?
For example, if you have a functional list, then it is a monad, whether you know
this fact or not. Monadic is a mathematical property of the functional list. This is
an argument in favor of “monad” being a functional idiom. But from another
perspective, it's a design pattern too, because the monadic mechanism is built
somewhere “outside” the problem (in monadic libraries, to be precise).

If you feel this introduction to FDD is a bit abstract and lacking in detail, you're
completely right. I’'m discussing terms and attempting to reveal meaning just by
looking at the logical shape of the statements. Do you feel like a scientist? That's

Alexander Granin / Functional Design and Architecture 41

the point! Why? I'll maintain the intrigue but explain it soon. For now, let’s
consider some code:

getUserInitials :: Int -> Maybe Char
getUserInitials key =
case getUser key users of
Nothing -> Nothing
Just user -> case getUserName user of
Nothing -> Nothing
Just name -> Just (head name)

Here, we can see boilerplate for checking the return values in case .. of
blocks. Let’s see if we can write this better using the monadic property of the
Maybe type:

getUserInitials' u = do
user <- getUser u users
name <- getUserName user
Just (head name)

Here, we refactored in terms of the results’ mathematical meaning. We don’t
care what the functions getUser, getUserName, and head do, or how
they do it; it's not important at all. But we see these functions return a value of
the Maybe type (because the two alternatives are Nothing and Just),
which is a monadic thing. In the do-block, we’ve used the generic properties of
these monadic functions to bind them monadically and get rid of long
if-then-else cascades.

The whole process of functional design looks like this. We are researching the
properties of the domain model in order to relate them to functional idioms.
When we succeed, we have all the machinery written for the concrete idiom in
our toolbox. Functors, applicative functors, monads, monoids, comonads,
zippers ... that’s a lot of tools! This activity turns us into software development
scientists, and is what can be called “functional thinking.”

Throughout this book, you will learn how to use patterns and idioms in
functional programming. Returning to the general principles (Modularity, IoC,
and Interfaces), you will see how functional idioms help you to design
good-quality functional code.

Alexander Granin / Functional Design and Architecture 42

1.5 Summary

We learned a lot in this chapter. We talked about software design, but only
briefly — it is a huge field of knowledge. In addition to OOD, we introduced
FDD, denoting the key ideas it exposes. Let's revise the foundations of software
design.

Software design is the process of composing application structure. It begins
when the requirements are complete; our goal is to implement these
requirements in high-level code structures. The result of design can be
represented as diagrams (in OOD, usually UML diagrams), high-level function
declarations, or even an informal description of application parts. The code we
write can be considered a design artifact too.

In software design, we apply object-oriented patterns or reveal functional
idioms. Any well-described solution helps us to represent behavior in a better,
shorter, clearer way, and thus keep the code maintainable.

FDD is a new field of knowledge. The growing interest in functional
programming has generated a lot of research into how to build big applications
using functional ideas. We are about to consolidate this knowledge in FDD.
FDD will be useful to functional developers, but not only to them: the ideas of
functional programming can offer many insights to object-oriented developers in
their work.

We also learned about general design principles:

» Modularity
= JoC

= Interfaces

The implementation of these principles may vary in OOP and functional
programming, but the ideas are the same. We use software design principles to
separate big, complex domains into smaller, less complex parts. We also want to
achieve low coupling between the parts and high cohesion within each part. This
helps us to pursue the main goal of software design, which is to keep accidental
software complexity at a low level.

We are now ready to design something using FDD.

