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Preface
I’ve always enjoyed learning new concepts, and more importantly, I want to see
abstract ideas in action, in a tangible and practical way. Concise and beautiful
abstractions only make sense to me after I’ve seen the details and understood
them clearly in my head.

Before I graduated from university, I had the chance to work as an intern at
a company. During that internship, my mentor Dong gave me a few tasks, and
one of them was to implement a thread pool in Java.

Until that moment, thread pools were still a mystery to me—something I
only knew from textbooks. I recognised the diagrams, had a rough idea of how
they behaved, and had seen some pseudo-code. But watching Dong implement
a thread pool using a simple List in Java completely changed how I understood
programming concepts. It was one of those moments that reshaped how I
learn.

Later, while preparing for system design interviews, I realised how difficult
it is to find practical, hands-on explanations—especially in the frontend space.
Many tutorials and whiteboard explanations make sense on the surface, but I
often walked away feeling unsure, sometimes with even more questions than
before. If I couldn’t see how something worked in a real environment, I knew I
didn’t fully understand it.

That’s the gap I want to fill with this book (or course, or series—whatever
this eventually becomes). I want to teach these concepts through concrete
examples: runnable, interactive code you can play with. Examples where
you can add a console.log, change a line, observe a network request, and
immediately understand what’s happening.

I truly believe this kind of tangible experience is what helps you internalise
concepts, explain them confidently in a system design interview, apply them
correctly in your projects, and contribute to complex systems at scale.
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A High‐Level View of Frontend Work

If we simplify everything, most frontendwork falls into two categories: reading
data and writing data. Frontend and backend systems must stay in sync. You
might change some data and need to see your updates reflected, or you might
need to react to changes made by someone else.

To deliver a smooth user experience around these two tasks, we have
several opportunities. Some improvements happen at build time, some at the
infrastructure level, and others directly at runtime in our application code.

At build time, for example, we can minify JavaScript and CSS into smaller
bundles to reduce transfer time. On top of that, we can configure the server
to use gzip or other compression methods, add ETags to improve caching, and
keep assets on the client for longer so we don’t fetch them on every page load.

At the code level, we can optimise rendering. In React, that might mean
memoising componentswith useCallback or useMemo to prevent unnecessary
re-renders. Or we can preload data when the user hovers over an important
element, like a user avatar.

All of this contributes to a smoother, less janky experience. But building
applications like this isn’t easy. It requires understanding many subtle but
important concepts. Even in the AI era, where LLMs can write code or tests
for us, knowing what to ask for still matters. The quality of your prompt—or
even the request you send to an API—makes a huge difference. Models can
only help you when you understand what you’re doing. Otherwise, the best
you’ll produce is something mediocre.

Book Structure and Outline

This book is designed as a practical journey—from high-level architectural
thinking to concrete, production-ready implementation. Each section builds
on the previous one, using the same running example to show how real
frontend systems evolve over time.

The content is organized into several modules, each with a clear focus:

• The CCDAO Framework (Chapters 2–4) This module introduces a
lightweight thinking framework—Collect information, Component
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structure, Data modeling, API design, Optimization strategies. You
can treat it as a “fast-start mode” for frontend system design: a way
to organize your thoughts quickly under pressure, whether you’re in
a design discussion, debugging a complex feature, or preparing for an
interview.

• Data Modeling (Chapters 5–9) Here we focus on the foundation of most
frontend complexity: data. You’ll explore domain-driven thinking and
why normalization matters on the client side. By treating your frontend
storemore like a relational database, you establish a single source of truth
that makes updates predictable and scalable.

• Data Fetching and Requests (Chapters 10–11) This module addresses
the realities of asynchronous systems. You’ll look at request lifecycles,
cancellation, debouncing, and pagination strategies, including the trade-
offs between offset-based and cursor-based pagination.

• Performance Optimization (Chapters 12–15)With a real Express backend
in place, we move beyond component-level optimizations. You’ll intro-
duce Server-Side Rendering (SSR) to improve initial load performance,
then layer in code splitting and prefetching to reduce perceived latency
and keep interactions fast.

• Mutation and Real-Time Sync (Chapters 16–18) This section focuses
on keeping the UI responsive while data changes. You’ll implement
optimistic updates to eliminate unnecessary waiting, and explore real-
time synchronization using Server-Sent Events (SSE) andWebSockets.

• Productionization (Chapters 19–22) The final module shifts attention to
long-term reliability. Topics include HTTP caching, error boundaries,
accessibility-first design, and performance monitoring with Core Web
Vitals—concerns that often determine whether a system holds up in
production.

How to Make the Most of This Book

This book is most effective when approached with a hands-on mindset. The
goal is not just to understand the ideas, but tomake them part of how you think
and work.

1. Work with the Running Project The entire book is built around a Trello-
style board application. Don’t treat it as a static example—clone the starter
repository, run it locally, and use it as your playground.
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2. Use the Git Checkpoints Each major step in the book is captured as a
Git tag. You can jump to any checkpoint to compare implementations,
recover from mistakes, or inspect a complete solution for a specific
chapter.

3. Break Things on Purpose Because the project uses Mock Service Worker
(MSW) or a local Express server, it’s safe to experiment. Add con-
sole.logs, tweak request logic, introduce bugs, and observe how the
system responds. This is where many of the insights become concrete.

4. Apply the Mindset Beyond the Book Treat the CCDAO framework as a
reusable mental checklist. Use it when designing new features at work,
reviewing pull requests, or reasoning about unfamiliar code—not just
when following the examples here.

Summary

Frontend system design may sound abstract, but every concept in this book
maps directly to your day-to-daywork. Whether you’re fetching data, updating
state, handling errors, or improving performance, the ideas we cover will help
you build smoother, more reliable experiences.

My goal is simple: to help you truly see these concepts by applying them,
experimenting with them, and making them part of your toolkit. Once you
understand how they work in practice, you can use them confidently—whether
you’re building complex features, reviewing designs, or explaining your deci-
sions in an interview.



Chapter 1 — Evolving from
Components to Systems
Modern frontend development isn’t just about rendering pixels. It’s about co-
ordinating data, state, and behaviour across components that interact almost
like small services. In this chapter, we’ll start from something deceptively
simple — a user selector dropdown — and use it to show why system design
thinkingmatterswhen youwant to build reliable applications (and explain your
decisions clearly in interviews).

System design thinking Looking beyond a single component to con-
sider data flow, state, constraints, and trade-offs across the whole
application.

Analyzing how simple requests turn complex

You get a ticket:

“We need a dropdown to select a user when assigning a task.”

It feels straightforward. You give it a two-hour estimate. But when you
finally ship it, two days have passed. What happened? Let’s unpack it.

Part I — How a small component grows
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Figure 1. UserSelect component

Version 1 — The happy‐path implementation

You might begin with the bare minimum: fetch some data and pass it into the
dropdown.

1 const UserSelect = () => {
2 const [users, setUsers] = useState<User[]>([]);
3
4 useEffect(() => {
5 fetch("/api/users")
6 .then((r) => r.json())
7 .then((data) => setUsers(data));
8 }, []);
9
10 return <Select options={users} defaultValue="Unassigned" />;
11 };

This version works when everything goes right: the network is fast, the API
behaves, and the data set is small. It’s the version you might write in a coding
exercise, or as a first pass.

Real production environments rarely stay that perfect for long.
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Version 2 — Handling loading and errors

On a slower connection, the gaps start to show. When you open the dropdown,
nothing happens for a moment. If the network fails, the whole component
breaks. To make it robust, you add loading and error state:

1 const [isLoading, setLoading] = useState(false);
2 const [error, setError] = useState<Error | null>(null);

You show a spinner when isLoading is true, and a friendly message when
error is not null. The code isn’t complicated, but the component now has
more states to manage. Your “simple dropdown” is already tracking several
transitions instead of just “data or no data”.

Version 3 — Scaling to large datasets

Everything seems fine until a customer with 2,000 employees reports that
opening the dropdown freezes the UI. Rendering large lists and filtering them
on the client side becomes noticeably expensive.

To make it scale, you introduce pagination and adjust the API:

1 const [page, setPage] = useState(0);
2 fetch(`/api/users?page=${page}`);

This isn’t just a local tweak anymore. You’ve changed the backend contract.
A problem that started inside one React component now affects the API and
possibly multiple teams.

Version 4 — Adding search

Next, customers ask for a search box so they can quickly find users.
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Figure 2. UserSelect component searchable

You add a controlled input and use its value in your request:

1 const [query, setQuery] = useState("");
2 fetch(`/api/users?query=${query}&page=${page}`);

Typing “Alice” now sends a request on every keypress. That’s unnecessary
load and can slow both the client and the server.

To fix it, you add debouncing.

Debounce Debouncing delays a function call until a certain time has
passed without new input. It’s commonly used to avoid sending too
many requests while the user is typing.

1 const debouncedQuery = useDebounce(query, 300);
2 fetch(`/api/users?query=${debouncedQuery}&page=${page}`);

Now the request only fires after the user pauses typing for 300ms.
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Version 5 — Avoiding race conditions

As the component becomes more dynamic, timing issues appear. QA finds a
bug: they type “Alice”, then quickly change it to “Bob”. If the “Bob” request
returns last, the UI is correct. But if the “Alice” response arrives later, it
overwrites the results with stale data.

To avoid this, you cancel previous requests using AbortController:

1 useEffect(() => {
2 const controller = new AbortController();
3 const url = `/api/users?query=${debouncedQuery}&page=${page}`;
4
5 fetch(url, { signal: controller.signal })
6 .then((r) => r.json())
7 .then((data) => setUsers(data))
8 .catch((error) => {
9 if (error.name !== "AbortError") {
10 setError(error);
11 }
12 });
13
14 return () => controller.abort();
15 }, [debouncedQuery, page]);

AbortController A browser API that lets you cancel in-flight fetch
requests, which is essential for avoiding race conditions in dynamic
UIs.

This ensures only the latest request is allowed to update the UI. You’ve
introduced another moving part, but it’s necessary to handle real-world user
behaviour.

Version 6 — Accessibility considerations

An accessibility review reveals another gap. Keyboard users can’t reliably
navigate the dropdown, and screen readers don’t announce options correctly.
Fixing it means:

• Adding appropriate ARIA attributes
• Handling focus and blur events
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• Supporting keyboard navigation (ArrowUp, ArrowDown, Enter, Escape)

Accessibility rarely means “just add a few attributes”. It often reshapes how
the component is structured and how events are handled.

Version 7 — Internationalization

As the app expands to new regions, translations come into play. Labels need
to be pulled from a translation system. Text might become longer, affecting
layouts. Some languages require right-to-left layout support.

The same dropdown now has to respect locale, formatting, and text direc-
tion, on top of everything you’ve already added.

The real shape of the “simple dropdown”

If we pause here, the picture is clear. Our dropdown now deals with:

• Loading and error states
• Pagination and performance
• Search and debouncing
• Race condition prevention
• Accessibility
• Internationalization

What looked like a two-hour task quietly turned into something much
larger. This isn’t over-engineering. It’s the natural shape of real-world
requirements.

Zooming out to the system perspective

So far, we’ve only looked at one piece of UI. But in a real application, this user
selector is only part of a bigger flow.

Changing the assignee of a task might:

• Update a card on a board and change its avatar
• Re-sort a list of tasks



Chapter 1 — Evolving from Components to Systems 11

• Append an entry to an activity log
• Trigger a notification
• Update a “My tasks” view on the assignee’s dashboard
• Push a real-time update to other connected clients

One tiny interaction ripples across many components and screens.

As soon as you zoom out, new questions appear:

• Should we update the UI immediately for responsiveness, or wait for
server confirmation to avoid inconsistencies?

• If the request fails, do we roll back the UI or ask the user to retry?
• Where should we keep shared state: in a global store, React context, or
local component state?

• Howdowehandle two usersmaking conflicting updates at the same time?

These are not rare edge cases. They’re everyday concerns once you
treat the frontend as a system with multiple sources of truth, asynchronous
operations, and interconnected components.

Frontend as a system Once you zoom out, the frontend behaves like
a distributed system: multiple views, shared state, network latency,
partial failures, and concurrent updates.

This is where system design begins.

Developing system design thinking

Frontend has evolved from inline scripts to reusable components, and now to
coordinated systems that must stay reliable under real pressure.

We deal with:

• Data modelling and shared state
• Data fetching and caching
• Data mutation and optimistic UI
• Performance and bundling strategies
• Accessibility and internationalization
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• Error handling and resilience

None of these topics live in isolation. They shape each other and create
trade-offs you need to reason about.

To make this easier to learn, this book is organised around a few core
building blocks of frontend architecture:

• Data modelling and state management
• Data fetching
• Data mutation
• Performance optimisation
• Productionalisation (making things robust in real environments)

Optimisation strategies In this book, “optimisation” is not just about
speed. It includes reducing complexity, improving reliability, and
designing APIs and data flows that scale.

As you work through the chapters, you’ll build a mental model for how
modern frontends are structured and how data moves through them. The goal
is to help you reason about design decisions clearly — both in real projects and
in interviews.

A note on CCDAO and the interview lens

Before we dive deep into each building block, the next two chapters take a
slightly different angle.

If you’re preparing for system design interviews and don’t have time to
absorb everything at once, it’s helpful to have a simple structure you can lean
on under pressure. For that, we’ll use a lightweight framework called CCDAO.

CCDAOApractical framework for structuring frontend systemdesign
answers: Collect information, Component structure, Data modeling,
API design, Optimisation strategies.

CCDAO is not the structure of this book, but it’s a useful lens for walking
through open-ended questions. We’ll use two concrete examples and apply
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CCDAO step by step, so you can see how to turn vague requirements into a
clear, structured explanation.

Think of those chapters as a fast-start mode: a way to speak about frontend
systems confidently, even before you’ve internalised all the details that follow.

Summary — The invisible work

Frontend complexity doesn’t come from over-engineering. It comes from real-
world conditions: slow and unreliable networks, large datasets, many users
updating the same data, and the need to support different devices, languages,
and accessibility requirements.

System design thinking gives you tools to understand these challenges,
communicate your choices, and build software that holds up under pressure.
When you learn to think in systems, you design more reliable products and
explain your decisions more clearly.

In the rest of this book, we’ll work from components up to systems, focusing
on the key building blocks: modelling data, fetching it, mutating it, keeping it
fast, and making it robust in production. Step by step, you’ll see how all the
pieces connect — and how to reason about them with confidence.



Chapter 2 — Introducing the CCDAO
Framework
Preparing for a systemdesign interview can feel daunting, even for experienced
frontend engineers. Many developers spend most of their time refining
features within a single product, not architecting systems from the ground
up. That’s why interview questions about designing scalable, maintainable, and
performant applications can feel unfamiliar. But the gap isn’t about intelligence
or experience—it’s about structure.

A structured framework gives you a way to reason through complex prob-
lems and communicate your thinking clearly. It ensures that you don’t overlook
key areaswhile also helping interviewers follow your logic. More importantly, it
mirrors the way real frontend systems should be designed—methodically, with
awareness of both technical trade-offs and user experience. That’s where the
CCDAO framework comes in.

CCDAO stands for Collect Information, Component Structure, Data Mod-
eling, API Design, and Optimization Strategies. It’s a practical, five-step
framework you can use to approach any frontend system design challenge—
whether in an interview or in your day-to-day work.

Collecting information for requirement clarity

Every strong design begins with understanding the problem. Before drawing
diagrams or naming components, take a few minutes to clarify what you’re
building. Ask questions that reveal both the functional and cross-functional
requirements.

Start with the core functionality. What exactly should the system do?
What’s the minimal set of features—often called the steel thread—that defines
the essential user journey? Then move to cross-functional needs: perfor-
mance goals, accessibility standards, security constraints, and expected scale.
Will it handle thousands of concurrent users? Does it need to support real-time
updates or offline access?
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These clarifications shape every decision that follows. They help you
focus on what matters most and demonstrate to interviewers that you’re
thinking beyond the happy path. In practice, developers who start by collecting
information tend to make better architectural trade-offs later on.

When collecting information, focus first on the language of the domain, not
the shape of the UI.

A “board app” that only talks about columns and cards is usually an over-
simplification. Real systems quickly introduce richer concepts: users, filters,
sprints, priorities, blockers, risk levels, tags, and more.

Your goal at this stage is not to design everything, but to extract enough
domain vocabulary to have meaningful conversations. These terms will later
influence your data model, APIs, and component boundaries.

This is where a Domain-Driven Design mindset helps: listen carefully to
how the problem is described, reuse the same words in your design, and let
the domain—not the UI—drive your structure.

Designing modular component structures

Once you understand the requirements, it’s time to structure the interface.
Imagine how the user interacts with the system and translate that into compo-
nents. Even if you don’t have amockup, a quick sketch—on paper ormentally—is
enough to identify the main building blocks.

Break the UI into logical parts: what belongs together, what can be reused,
and how data should flow between components. Consider state ownership
carefully—should a component manage its own state, or should it rely on a
shared store or context? In interviews, describing these choices out loud helps
the interviewer see how you reason about modularity and scalability.

In real projects, this step connects to architecture patterns like container-
presentational separation or headless component design. Structuring compo-
nents thoughtfully ensures flexibility as the system grows.

Modeling data for predictability and efficiency

After defining your component structure, you need to understand the data that
powers it. What entities exist in your system, and how do they relate to each
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other? For example, in a task management app, you might have users, tasks,
and boards, each with relationships such as “a user owns many tasks.”

Good data modeling makes state management predictable and efficient.
Decide whether to normalize or denormalize your data. Normalized struc-
tures avoid duplication and simplify updates, while denormalized ones can be
faster to render but harder to maintain. Explain the trade-offs clearly if you’re
in an interview.

Think about how the data flows: where it’s fetched, cached, and updated.
Does your system support pagination for large datasets? Should it work
offline with local storage or IndexedDB? These details not only show depth
of understanding but also reflect real-world challenges frontend systems face
daily.

Designing stable API contracts

Data modeling naturally leads to how your frontend communicates with the
backend. This is where API Design comes into play. Define how the client
retrieves, updates, and synchronizes data.

Consider whether the application would benefit more from REST or
GraphQL. REST is simple and well-understood, but GraphQL allows for more
flexibility in querying exactly what the UI needs. If the product requires
real-time updates, discuss technologies like WebSockets or Server-Sent
Events and how they integrate into your architecture.

Security is another critical aspect. Mention how you’ll handle authentica-
tion and authorization—using tokens like JWT or OAuth—and how you’ll protect
the frontend from common vulnerabilities such as XSS or CSRF. Even brief
comments on these areas showmaturity and awareness of full-stack concerns.

Implementing optimization strategies early

Finally, you reach the stagewhere performance, resilience, and user experience
come together. Optimization isn’t an afterthought—it’s an ongoingmindset that
runs through the entire design process.

Think about performance at multiple levels. On the client side, techniques
like code splitting, lazy loading, and server-side rendering can drastically
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improve load times. On the network level, caching strategies—both client-side
and server-side—reduce unnecessary requests. For large datasets, consider
pagination or virtualization to keep the UI responsive.

Beyond raw performance, focus on resilience and user experience. How
does your system handle network errors or server downtime? Are there
loading states, skeleton screens, or retries in place? Accessibility and inter-
nationalization should also be treated as optimization problems: they expand
your system’s reach and usability.

In interviews, this is often where you can differentiate yourself by showing
you’ve thought beyond functionality—considering how real users experience
the application.

Applying CCDAO in an Interview

In a 45-minute system design interview, you won’t have time to cover ev-
ery detail. The goal is to demonstrate clarity of thought. Spend the first
few minutes collecting information and clarifying requirements. Then move
through component structure and data modeling, explaining how your design
scales with complexity. Use the remaining time to discuss API design and
optimization, showing awareness of performance and failure handling.

The exact time distribution doesn’t matter as much as the flow. A good
interview feels like a conversation guided by this framework, where you and the
interviewer explore trade-offs naturally rather than following a rigid checklist.

Why It Matters Beyond Interviews

The CCDAO framework isn’t just for interviews—it’s a way of thinking that
mirrors how robust frontend systems are built in practice. Each step rep-
resents a discipline that teams grapple with daily: gathering requirements,
designingmodular components, modeling data efficiently, defining stable APIs,
and optimizing for performance and reliability.

If you invest time to study the concepts in this book—the patterns, trade-
offs, and real-world examples—you’ll go far beyond interview preparation.
You’ll develop the instincts of a true frontend architect: someone who can
reason about complexity, communicate clearly, and design systems that stand
the test of scale and time.
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Before we move on, the next two chapters will show CCDAO in action.
We’ll walk through two concrete component designs step by step, applying the
framework in real scenarios so you can see how each part translates into actual
decisions in code.
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