

Frontend System Design Essentials
A practical guide to designing scalable, reliable, and
maintainable frontend systems.

Juntao Qiu

This book is available at
https://leanpub.com/frontend-system-design-essentials

This version was published on 2025-12-23

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2025 Juntao Qiu

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Contents

Preface . 1
A High-Level View of Frontend Work . 1
Book Structure and Outline . 2
How to Make the Most of This Book . 3
Summary . 4

Chapter 1 — Evolving from Components to Systems 5
Analyzing how simple requests turn complex 5
Part I — How a small component grows . 5
Zooming out to the system perspective 10
Developing system design thinking . 11
A note on CCDAO and the interview lens 12
Summary — The invisible work . 13

Chapter 2 — Introducing the CCDAO Framework 14
Collecting information for requirement clarity 14
Designing modular component structures 15
Modeling data for predictability and efficiency 15
Designing stable API contracts . 16
Implementing optimization strategies early 16
Applying CCDAO in an Interview . 17
Why It Matters Beyond Interviews . 17

Chapter 3 — Applying CCDAO: Designing a Typeahead Search Box 19
1. Collect Information . 19
2. Component Structure . 19
3. Data Modeling . 19
4. API Design . 19
5. Optimization Strategies . 19
Closing . 19

CONTENTS

Chapter 4 — Applying CCDAO: Designing a Scalable Feed List 21
1. Collect Information . 21
2. Component Structure . 21
3. Data Modeling . 21
4. API Design . 21
5. Optimization Strategies . 21
Closing . 21

Chapter 5 — Data Modeling: Understanding the Domain and the UI . . . 23
Defining the domain clearly through business rules 23
Designing models for specific UI consumption patterns 23
From Domain to Design . 23

Chapter 6 — Case Study: Implementing Sidebar Entitlements 25
Step 1 — The Starting Point: Logic in the UI 25
Step 2 — When the Rules Multiply . 25
Step 3 — Moving Business Logic to the Backend 25
Step 4 — Where Frontend Logic Still Belongs 25
Step 5 — Tailoring APIs with GraphQL or a BFF 25
Lessons from the Sidebar . 25

Chapter 7 — Setting Up the Project Environment 27
Why We Use a Starter Project . 27
Prerequisites . 27
Getting the Project Running . 27
Useful Scripts . 27
Configuring the Mock API with MSW . 27
Mock Endpoints Provided . 28
Data Shapes You’ll Work With . 28
Project Structure (High-Level) . 29
Troubleshooting . 29
What Comes Next . 29

Chapter 8 — Implementing Data Normalization 30
Why Normalisation Matters . 30
A Real Example: Inconsistent User Data 30
Establishing a consistent source of truth 30
Transforming nested board payloads into flat tables 30
Holding the normalized store in React Context 31
Hydrating data during the rendering process 31

CONTENTS

Summary . 31

Chapter 9 — Drawing Inspiration from Backend Databases 32
A Familiar Pattern From Databases . 32
How Databases Reconstruct Data . 32
The Frontend Equivalent . 32
Why This Matters . 32
A Good Place to Pause . 32

Chapter 10 — Managing Requests and Data Fetching 33
Showing Real Assignees in the UI . 33
Extending the Backend API . 33
Updating the Board on Selection . 33
Understanding Race Conditions in Search 33
Fixing Race Conditions with Request Cancellation 33
Reducing Request Volume with Debouncing and Throttling 33
Summary . 34

Chapter 11 — Implementing Pagination Strategies 35
Demonstrating Pagination in UserSelect 35
The Pagination Strategies . 35
A Simple Users Table . 35
Offset Pagination . 35
Cursor Pagination . 35
Choosing the Right Strategy for UserSelect 35
UI Patterns for Pagination . 36
Summary . 36

Chapter 12 — Migrating to an Express Backend 37
A Brief Introduction to Express . 37
Setting up a standalone mock API server 37
Proxying Frontend Requests to The Express Server 37
Summary . 37

Chapter 13 — Implementing Server-Side Rendering 38
Rendering strategies . 38
How SSR works . 38
Coordinating hydration between server and client 38
Creating the client entry (hydration) . 38
Creating the server entry (rendering on the server) 38

CONTENTS

Creating separate entry points . 38
Configuring Vite to build dual entries . 39
Generating HTML on the server . 39
Bringing it together in the Express SSR route 39
Why consistency matters . 40
From SSR to SPA behaviour . 40
Summary . 40

Case Study — Understanding Bundlers Through Code Splitting 41
What Problem Are We Solving? . 41
What a Bundler Actually Does . 41
Tree Shaking: Removing Unused Exports 41
Code Splitting: Deferring Code Until It’s Needed 41
A Subtle Caveat: Tree Shaking Stops at Dynamic Boundaries 41
What This Case Study Teaches Us . 42
Summary . 42

Chapter 14 – Implementing Code Splitting and Lazy Loading 43
Why Lazy Loading Helps . 43
The Building Blocks of Lazy Loading . 43
Implementing Lazy Loading in Our Board Application 43
Another Example: Lazy Loading the List View 44
Understanding the Build Output After Code Splitting 45
What Happens at Runtime . 45
How Code Splitting Changes the Bundle 45
Summary . 45

Chapter 15 – Implementing Data Prefetching 46
How Prefetch Works Conceptually . 46
The Prefetch Function Inside QueryProvider 46
Exposing Prefetch Through a Hook . 46
Prefetching Users in Card.tsx . 46
How Prefetch and useQuery Work Together 47
The Full Runtime Experience . 47
When Prefetch Helps . 47
When Prefetch Doesn’t Help . 47
Summary . 47

Chapter 16 – Implementing Optimistic Updates 48
Creating a New Card (Server-First) . 48

CONTENTS

Introducing Optimistic Updates . 48
Adding a Card Optimistically . 48
Deleting a Card Optimistically . 48
Things to Keep in Mind . 48
Summary . 49

Chapter 17 – Exploring Real-time Update Strategies 50
Polling . 50
Server-Sent Events (SSE) . 50
WebSockets . 50
Scaling Considerations . 50
Summary . 50

Chapter 18 – Implementing Real-time Updates with SSE 51
The pub-sub pattern . 51
Using the pub-sub pattern on the server 51
Using the event emitter with SSE . 51
Emitting events from the update API . 51
Frontend: consuming SSE with EventSource 51
Demonstration and behaviour . 51
Summary . 52

Case Study — Implementing WebSockets for Real-time Updates 53
Server Side — Setting Up WebSockets . 53
Client Side — Receiving WebSocket Events 54
A Real-World Bug: Duplicate Cards . 54
Making the State Update Idempotent . 54
Summary . 55

Chapter 19 — Optimizing Performance with HTTP Caching 56
Why caching matters . 56
Cache-Control — how long a response stays fresh 56
ETag — detecting whether content changed 56
Last-Modified — timestamp-based validation 57
Vary — preventing incorrect caching . 58
Putting it all together: a realistic request flow 59
Summary . 59

Chapter 20 — Handling Runtime Errors in React 60
A quick comparison to try/catch . 60

Understanding Error Boundaries . 60
Wrapping a fragile component . 60
Cascading error boundaries in a column 60
Application-level fallback . 60
Summary . 60

Chapter 21 — Designing for Accessibility . 62
Why we need to consider accessibility at all 62
Accessibility-first system design principles 62
Accessibility checks as part of the testing architecture 62
Semantic HTML in real components . 63
Keyboard navigation as a system concern 63
A more complex example: accessible drag and drop 64
My typical accessibility workflow . 64
Summary . 65

Chapter 22 — Implementing Performance Monitoring 66
Why performance monitoring matters . 66
Understanding bundle size in practice . 66
Making performance limits explicit with budgets 66
Measuring real user experience with Web Vitals 67
Performance as a continuous system concern 67
Summary . 67

The Architectural Roadmap: From Components to Systems 68
Module 1: The System Design Mindset (Chapters 1–4) 68
Module 2: Building the Data Foundation (Chapters 5–9) 68
Module 3: Managing Data Flow and Connectivity (Chapters 10–12) . . . 68
Module 4: Rendering and Performance (Chapters 13–15) 68
Module 5: Mutations, Real-Time Sync, and Resilience (Chapters 16–22) 68
Designing System Step By Step . 68

Preface
I’ve always enjoyed learning new concepts, and more importantly, I want to see
abstract ideas in action, in a tangible and practical way. Concise and beautiful
abstractions only make sense to me after I’ve seen the details and understood
them clearly in my head.

Before I graduated from university, I had the chance to work as an intern at
a company. During that internship, my mentor Dong gave me a few tasks, and
one of them was to implement a thread pool in Java.

Until that moment, thread pools were still a mystery to me—something I
only knew from textbooks. I recognised the diagrams, had a rough idea of how
they behaved, and had seen some pseudo-code. But watching Dong implement
a thread pool using a simple List in Java completely changed how I understood
programming concepts. It was one of those moments that reshaped how I
learn.

Later, while preparing for system design interviews, I realised how difficult
it is to find practical, hands-on explanations—especially in the frontend space.
Many tutorials and whiteboard explanations make sense on the surface, but I
often walked away feeling unsure, sometimes with even more questions than
before. If I couldn’t see how something worked in a real environment, I knew I
didn’t fully understand it.

That’s the gap I want to fill with this book (or course, or series—whatever
this eventually becomes). I want to teach these concepts through concrete
examples: runnable, interactive code you can play with. Examples where
you can add a console.log, change a line, observe a network request, and
immediately understand what’s happening.

I truly believe this kind of tangible experience is what helps you internalise
concepts, explain them confidently in a system design interview, apply them
correctly in your projects, and contribute to complex systems at scale.

Preface 2

A High‐Level View of Frontend Work

If we simplify everything, most frontendwork falls into two categories: reading
data and writing data. Frontend and backend systems must stay in sync. You
might change some data and need to see your updates reflected, or you might
need to react to changes made by someone else.

To deliver a smooth user experience around these two tasks, we have
several opportunities. Some improvements happen at build time, some at the
infrastructure level, and others directly at runtime in our application code.

At build time, for example, we can minify JavaScript and CSS into smaller
bundles to reduce transfer time. On top of that, we can configure the server
to use gzip or other compression methods, add ETags to improve caching, and
keep assets on the client for longer so we don’t fetch them on every page load.

At the code level, we can optimise rendering. In React, that might mean
memoising componentswith useCallback or useMemo to prevent unnecessary
re-renders. Or we can preload data when the user hovers over an important
element, like a user avatar.

All of this contributes to a smoother, less janky experience. But building
applications like this isn’t easy. It requires understanding many subtle but
important concepts. Even in the AI era, where LLMs can write code or tests
for us, knowing what to ask for still matters. The quality of your prompt—or
even the request you send to an API—makes a huge difference. Models can
only help you when you understand what you’re doing. Otherwise, the best
you’ll produce is something mediocre.

Book Structure and Outline

This book is designed as a practical journey—from high-level architectural
thinking to concrete, production-ready implementation. Each section builds
on the previous one, using the same running example to show how real
frontend systems evolve over time.

The content is organized into several modules, each with a clear focus:

• The CCDAO Framework (Chapters 2–4) This module introduces a
lightweight thinking framework—Collect information, Component

Preface 3

structure, Data modeling, API design, Optimization strategies. You
can treat it as a “fast-start mode” for frontend system design: a way
to organize your thoughts quickly under pressure, whether you’re in
a design discussion, debugging a complex feature, or preparing for an
interview.

• Data Modeling (Chapters 5–9) Here we focus on the foundation of most
frontend complexity: data. You’ll explore domain-driven thinking and
why normalization matters on the client side. By treating your frontend
storemore like a relational database, you establish a single source of truth
that makes updates predictable and scalable.

• Data Fetching and Requests (Chapters 10–11) This module addresses
the realities of asynchronous systems. You’ll look at request lifecycles,
cancellation, debouncing, and pagination strategies, including the trade-
offs between offset-based and cursor-based pagination.

• Performance Optimization (Chapters 12–15)With a real Express backend
in place, we move beyond component-level optimizations. You’ll intro-
duce Server-Side Rendering (SSR) to improve initial load performance,
then layer in code splitting and prefetching to reduce perceived latency
and keep interactions fast.

• Mutation and Real-Time Sync (Chapters 16–18) This section focuses
on keeping the UI responsive while data changes. You’ll implement
optimistic updates to eliminate unnecessary waiting, and explore real-
time synchronization using Server-Sent Events (SSE) andWebSockets.

• Productionization (Chapters 19–22) The final module shifts attention to
long-term reliability. Topics include HTTP caching, error boundaries,
accessibility-first design, and performance monitoring with Core Web
Vitals—concerns that often determine whether a system holds up in
production.

How to Make the Most of This Book

This book is most effective when approached with a hands-on mindset. The
goal is not just to understand the ideas, but tomake them part of how you think
and work.

1. Work with the Running Project The entire book is built around a Trello-
style board application. Don’t treat it as a static example—clone the starter
repository, run it locally, and use it as your playground.

Preface 4

2. Use the Git Checkpoints Each major step in the book is captured as a
Git tag. You can jump to any checkpoint to compare implementations,
recover from mistakes, or inspect a complete solution for a specific
chapter.

3. Break Things on Purpose Because the project uses Mock Service Worker
(MSW) or a local Express server, it’s safe to experiment. Add con-
sole.logs, tweak request logic, introduce bugs, and observe how the
system responds. This is where many of the insights become concrete.

4. Apply the Mindset Beyond the Book Treat the CCDAO framework as a
reusable mental checklist. Use it when designing new features at work,
reviewing pull requests, or reasoning about unfamiliar code—not just
when following the examples here.

Summary

Frontend system design may sound abstract, but every concept in this book
maps directly to your day-to-daywork. Whether you’re fetching data, updating
state, handling errors, or improving performance, the ideas we cover will help
you build smoother, more reliable experiences.

My goal is simple: to help you truly see these concepts by applying them,
experimenting with them, and making them part of your toolkit. Once you
understand how they work in practice, you can use them confidently—whether
you’re building complex features, reviewing designs, or explaining your deci-
sions in an interview.

Chapter 1 — Evolving from
Components to Systems
Modern frontend development isn’t just about rendering pixels. It’s about co-
ordinating data, state, and behaviour across components that interact almost
like small services. In this chapter, we’ll start from something deceptively
simple — a user selector dropdown — and use it to show why system design
thinkingmatterswhen youwant to build reliable applications (and explain your
decisions clearly in interviews).

System design thinking Looking beyond a single component to con-
sider data flow, state, constraints, and trade-offs across the whole
application.

Analyzing how simple requests turn complex

You get a ticket:

“We need a dropdown to select a user when assigning a task.”

It feels straightforward. You give it a two-hour estimate. But when you
finally ship it, two days have passed. What happened? Let’s unpack it.

Part I — How a small component grows

Chapter 1 — Evolving from Components to Systems 6

Figure 1. UserSelect component

Version 1 — The happy‐path implementation

You might begin with the bare minimum: fetch some data and pass it into the
dropdown.

1 const UserSelect = () => {
2 const [users, setUsers] = useState<User[]>([]);
3
4 useEffect(() => {
5 fetch("/api/users")
6 .then((r) => r.json())
7 .then((data) => setUsers(data));
8 }, []);
9
10 return <Select options={users} defaultValue="Unassigned" />;
11 };

This version works when everything goes right: the network is fast, the API
behaves, and the data set is small. It’s the version you might write in a coding
exercise, or as a first pass.

Real production environments rarely stay that perfect for long.

Chapter 1 — Evolving from Components to Systems 7

Version 2 — Handling loading and errors

On a slower connection, the gaps start to show. When you open the dropdown,
nothing happens for a moment. If the network fails, the whole component
breaks. To make it robust, you add loading and error state:

1 const [isLoading, setLoading] = useState(false);
2 const [error, setError] = useState<Error | null>(null);

You show a spinner when isLoading is true, and a friendly message when
error is not null. The code isn’t complicated, but the component now has
more states to manage. Your “simple dropdown” is already tracking several
transitions instead of just “data or no data”.

Version 3 — Scaling to large datasets

Everything seems fine until a customer with 2,000 employees reports that
opening the dropdown freezes the UI. Rendering large lists and filtering them
on the client side becomes noticeably expensive.

To make it scale, you introduce pagination and adjust the API:

1 const [page, setPage] = useState(0);
2 fetch(`/api/users?page=${page}`);

This isn’t just a local tweak anymore. You’ve changed the backend contract.
A problem that started inside one React component now affects the API and
possibly multiple teams.

Version 4 — Adding search

Next, customers ask for a search box so they can quickly find users.

Chapter 1 — Evolving from Components to Systems 8

Figure 2. UserSelect component searchable

You add a controlled input and use its value in your request:

1 const [query, setQuery] = useState("");
2 fetch(`/api/users?query=${query}&page=${page}`);

Typing “Alice” now sends a request on every keypress. That’s unnecessary
load and can slow both the client and the server.

To fix it, you add debouncing.

Debounce Debouncing delays a function call until a certain time has
passed without new input. It’s commonly used to avoid sending too
many requests while the user is typing.

1 const debouncedQuery = useDebounce(query, 300);
2 fetch(`/api/users?query=${debouncedQuery}&page=${page}`);

Now the request only fires after the user pauses typing for 300ms.

Chapter 1 — Evolving from Components to Systems 9

Version 5 — Avoiding race conditions

As the component becomes more dynamic, timing issues appear. QA finds a
bug: they type “Alice”, then quickly change it to “Bob”. If the “Bob” request
returns last, the UI is correct. But if the “Alice” response arrives later, it
overwrites the results with stale data.

To avoid this, you cancel previous requests using AbortController:

1 useEffect(() => {
2 const controller = new AbortController();
3 const url = `/api/users?query=${debouncedQuery}&page=${page}`;
4
5 fetch(url, { signal: controller.signal })
6 .then((r) => r.json())
7 .then((data) => setUsers(data))
8 .catch((error) => {
9 if (error.name !== "AbortError") {
10 setError(error);
11 }
12 });
13
14 return () => controller.abort();
15 }, [debouncedQuery, page]);

AbortController A browser API that lets you cancel in-flight fetch
requests, which is essential for avoiding race conditions in dynamic
UIs.

This ensures only the latest request is allowed to update the UI. You’ve
introduced another moving part, but it’s necessary to handle real-world user
behaviour.

Version 6 — Accessibility considerations

An accessibility review reveals another gap. Keyboard users can’t reliably
navigate the dropdown, and screen readers don’t announce options correctly.
Fixing it means:

• Adding appropriate ARIA attributes
• Handling focus and blur events

Chapter 1 — Evolving from Components to Systems 10

• Supporting keyboard navigation (ArrowUp, ArrowDown, Enter, Escape)

Accessibility rarely means “just add a few attributes”. It often reshapes how
the component is structured and how events are handled.

Version 7 — Internationalization

As the app expands to new regions, translations come into play. Labels need
to be pulled from a translation system. Text might become longer, affecting
layouts. Some languages require right-to-left layout support.

The same dropdown now has to respect locale, formatting, and text direc-
tion, on top of everything you’ve already added.

The real shape of the “simple dropdown”

If we pause here, the picture is clear. Our dropdown now deals with:

• Loading and error states
• Pagination and performance
• Search and debouncing
• Race condition prevention
• Accessibility
• Internationalization

What looked like a two-hour task quietly turned into something much
larger. This isn’t over-engineering. It’s the natural shape of real-world
requirements.

Zooming out to the system perspective

So far, we’ve only looked at one piece of UI. But in a real application, this user
selector is only part of a bigger flow.

Changing the assignee of a task might:

• Update a card on a board and change its avatar
• Re-sort a list of tasks

Chapter 1 — Evolving from Components to Systems 11

• Append an entry to an activity log
• Trigger a notification
• Update a “My tasks” view on the assignee’s dashboard
• Push a real-time update to other connected clients

One tiny interaction ripples across many components and screens.

As soon as you zoom out, new questions appear:

• Should we update the UI immediately for responsiveness, or wait for
server confirmation to avoid inconsistencies?

• If the request fails, do we roll back the UI or ask the user to retry?
• Where should we keep shared state: in a global store, React context, or
local component state?

• Howdowehandle two usersmaking conflicting updates at the same time?

These are not rare edge cases. They’re everyday concerns once you
treat the frontend as a system with multiple sources of truth, asynchronous
operations, and interconnected components.

Frontend as a system Once you zoom out, the frontend behaves like
a distributed system: multiple views, shared state, network latency,
partial failures, and concurrent updates.

This is where system design begins.

Developing system design thinking

Frontend has evolved from inline scripts to reusable components, and now to
coordinated systems that must stay reliable under real pressure.

We deal with:

• Data modelling and shared state
• Data fetching and caching
• Data mutation and optimistic UI
• Performance and bundling strategies
• Accessibility and internationalization

Chapter 1 — Evolving from Components to Systems 12

• Error handling and resilience

None of these topics live in isolation. They shape each other and create
trade-offs you need to reason about.

To make this easier to learn, this book is organised around a few core
building blocks of frontend architecture:

• Data modelling and state management
• Data fetching
• Data mutation
• Performance optimisation
• Productionalisation (making things robust in real environments)

Optimisation strategies In this book, “optimisation” is not just about
speed. It includes reducing complexity, improving reliability, and
designing APIs and data flows that scale.

As you work through the chapters, you’ll build a mental model for how
modern frontends are structured and how data moves through them. The goal
is to help you reason about design decisions clearly — both in real projects and
in interviews.

A note on CCDAO and the interview lens

Before we dive deep into each building block, the next two chapters take a
slightly different angle.

If you’re preparing for system design interviews and don’t have time to
absorb everything at once, it’s helpful to have a simple structure you can lean
on under pressure. For that, we’ll use a lightweight framework called CCDAO.

CCDAOApractical framework for structuring frontend systemdesign
answers: Collect information, Component structure, Data modeling,
API design, Optimisation strategies.

CCDAO is not the structure of this book, but it’s a useful lens for walking
through open-ended questions. We’ll use two concrete examples and apply

Chapter 1 — Evolving from Components to Systems 13

CCDAO step by step, so you can see how to turn vague requirements into a
clear, structured explanation.

Think of those chapters as a fast-start mode: a way to speak about frontend
systems confidently, even before you’ve internalised all the details that follow.

Summary — The invisible work

Frontend complexity doesn’t come from over-engineering. It comes from real-
world conditions: slow and unreliable networks, large datasets, many users
updating the same data, and the need to support different devices, languages,
and accessibility requirements.

System design thinking gives you tools to understand these challenges,
communicate your choices, and build software that holds up under pressure.
When you learn to think in systems, you design more reliable products and
explain your decisions more clearly.

In the rest of this book, we’ll work from components up to systems, focusing
on the key building blocks: modelling data, fetching it, mutating it, keeping it
fast, and making it robust in production. Step by step, you’ll see how all the
pieces connect — and how to reason about them with confidence.

Chapter 2 — Introducing the CCDAO
Framework
Preparing for a systemdesign interview can feel daunting, even for experienced
frontend engineers. Many developers spend most of their time refining
features within a single product, not architecting systems from the ground
up. That’s why interview questions about designing scalable, maintainable, and
performant applications can feel unfamiliar. But the gap isn’t about intelligence
or experience—it’s about structure.

A structured framework gives you a way to reason through complex prob-
lems and communicate your thinking clearly. It ensures that you don’t overlook
key areaswhile also helping interviewers follow your logic. More importantly, it
mirrors the way real frontend systems should be designed—methodically, with
awareness of both technical trade-offs and user experience. That’s where the
CCDAO framework comes in.

CCDAO stands for Collect Information, Component Structure, Data Mod-
eling, API Design, and Optimization Strategies. It’s a practical, five-step
framework you can use to approach any frontend system design challenge—
whether in an interview or in your day-to-day work.

Collecting information for requirement clarity

Every strong design begins with understanding the problem. Before drawing
diagrams or naming components, take a few minutes to clarify what you’re
building. Ask questions that reveal both the functional and cross-functional
requirements.

Start with the core functionality. What exactly should the system do?
What’s the minimal set of features—often called the steel thread—that defines
the essential user journey? Then move to cross-functional needs: perfor-
mance goals, accessibility standards, security constraints, and expected scale.
Will it handle thousands of concurrent users? Does it need to support real-time
updates or offline access?

Chapter 2 — Introducing the CCDAO Framework 15

These clarifications shape every decision that follows. They help you
focus on what matters most and demonstrate to interviewers that you’re
thinking beyond the happy path. In practice, developers who start by collecting
information tend to make better architectural trade-offs later on.

When collecting information, focus first on the language of the domain, not
the shape of the UI.

A “board app” that only talks about columns and cards is usually an over-
simplification. Real systems quickly introduce richer concepts: users, filters,
sprints, priorities, blockers, risk levels, tags, and more.

Your goal at this stage is not to design everything, but to extract enough
domain vocabulary to have meaningful conversations. These terms will later
influence your data model, APIs, and component boundaries.

This is where a Domain-Driven Design mindset helps: listen carefully to
how the problem is described, reuse the same words in your design, and let
the domain—not the UI—drive your structure.

Designing modular component structures

Once you understand the requirements, it’s time to structure the interface.
Imagine how the user interacts with the system and translate that into compo-
nents. Even if you don’t have amockup, a quick sketch—on paper ormentally—is
enough to identify the main building blocks.

Break the UI into logical parts: what belongs together, what can be reused,
and how data should flow between components. Consider state ownership
carefully—should a component manage its own state, or should it rely on a
shared store or context? In interviews, describing these choices out loud helps
the interviewer see how you reason about modularity and scalability.

In real projects, this step connects to architecture patterns like container-
presentational separation or headless component design. Structuring compo-
nents thoughtfully ensures flexibility as the system grows.

Modeling data for predictability and efficiency

After defining your component structure, you need to understand the data that
powers it. What entities exist in your system, and how do they relate to each

Chapter 2 — Introducing the CCDAO Framework 16

other? For example, in a task management app, you might have users, tasks,
and boards, each with relationships such as “a user owns many tasks.”

Good data modeling makes state management predictable and efficient.
Decide whether to normalize or denormalize your data. Normalized struc-
tures avoid duplication and simplify updates, while denormalized ones can be
faster to render but harder to maintain. Explain the trade-offs clearly if you’re
in an interview.

Think about how the data flows: where it’s fetched, cached, and updated.
Does your system support pagination for large datasets? Should it work
offline with local storage or IndexedDB? These details not only show depth
of understanding but also reflect real-world challenges frontend systems face
daily.

Designing stable API contracts

Data modeling naturally leads to how your frontend communicates with the
backend. This is where API Design comes into play. Define how the client
retrieves, updates, and synchronizes data.

Consider whether the application would benefit more from REST or
GraphQL. REST is simple and well-understood, but GraphQL allows for more
flexibility in querying exactly what the UI needs. If the product requires
real-time updates, discuss technologies like WebSockets or Server-Sent
Events and how they integrate into your architecture.

Security is another critical aspect. Mention how you’ll handle authentica-
tion and authorization—using tokens like JWT or OAuth—and how you’ll protect
the frontend from common vulnerabilities such as XSS or CSRF. Even brief
comments on these areas showmaturity and awareness of full-stack concerns.

Implementing optimization strategies early

Finally, you reach the stagewhere performance, resilience, and user experience
come together. Optimization isn’t an afterthought—it’s an ongoingmindset that
runs through the entire design process.

Think about performance at multiple levels. On the client side, techniques
like code splitting, lazy loading, and server-side rendering can drastically

Chapter 2 — Introducing the CCDAO Framework 17

improve load times. On the network level, caching strategies—both client-side
and server-side—reduce unnecessary requests. For large datasets, consider
pagination or virtualization to keep the UI responsive.

Beyond raw performance, focus on resilience and user experience. How
does your system handle network errors or server downtime? Are there
loading states, skeleton screens, or retries in place? Accessibility and inter-
nationalization should also be treated as optimization problems: they expand
your system’s reach and usability.

In interviews, this is often where you can differentiate yourself by showing
you’ve thought beyond functionality—considering how real users experience
the application.

Applying CCDAO in an Interview

In a 45-minute system design interview, you won’t have time to cover ev-
ery detail. The goal is to demonstrate clarity of thought. Spend the first
few minutes collecting information and clarifying requirements. Then move
through component structure and data modeling, explaining how your design
scales with complexity. Use the remaining time to discuss API design and
optimization, showing awareness of performance and failure handling.

The exact time distribution doesn’t matter as much as the flow. A good
interview feels like a conversation guided by this framework, where you and the
interviewer explore trade-offs naturally rather than following a rigid checklist.

Why It Matters Beyond Interviews

The CCDAO framework isn’t just for interviews—it’s a way of thinking that
mirrors how robust frontend systems are built in practice. Each step rep-
resents a discipline that teams grapple with daily: gathering requirements,
designingmodular components, modeling data efficiently, defining stable APIs,
and optimizing for performance and reliability.

If you invest time to study the concepts in this book—the patterns, trade-
offs, and real-world examples—you’ll go far beyond interview preparation.
You’ll develop the instincts of a true frontend architect: someone who can
reason about complexity, communicate clearly, and design systems that stand
the test of scale and time.

Chapter 2 — Introducing the CCDAO Framework 18

Before we move on, the next two chapters will show CCDAO in action.
We’ll walk through two concrete component designs step by step, applying the
framework in real scenarios so you can see how each part translates into actual
decisions in code.

Chapter 3 — Applying CCDAO:
Designing a Typeahead Search Box
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

1. Collect Information

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

2. Component Structure

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

3. Data Modeling

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

4. API Design

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

5. Optimization Strategies

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 3 — Applying CCDAO: Designing a Typeahead Search Box 20

Closing

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials

Chapter 4 — Applying CCDAO:
Designing a Scalable Feed List
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

1. Collect Information

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

2. Component Structure

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

3. Data Modeling

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

4. API Design

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

5. Optimization Strategies

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 4 — Applying CCDAO: Designing a Scalable Feed List 22

Closing

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials

Chapter 5 — Data Modeling:
Understanding the Domain and the UI
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Defining the domain clearly through business rules

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Example 1 — Chat Application

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Example 2 — Online Course Platform

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Example 3 — Board Application

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Designing models for specific UI consumption patterns

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 5 — Data Modeling: Understanding the Domain and the UI 24

From Domain to Design

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials

Chapter 6 — Case Study: Implementing
Sidebar Entitlements
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step 1 — The Starting Point: Logic in the UI

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step 2 —When the Rules Multiply

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step 3 —Moving Business Logic to the Backend

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step 4 —Where Frontend Logic Still Belongs

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step 5 — Tailoring APIs with GraphQL or a BFF

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 6 — Case Study: Implementing Sidebar Entitlements 26

Lessons from the Sidebar

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials

Chapter 7 — Setting Up the Project
Environment
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

WhyWe Use a Starter Project

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Prerequisites

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Getting the Project Running

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Useful Scripts

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Configuring the Mock API with MSW

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 7 — Setting Up the Project Environment 28

The service worker

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Mock Endpoints Provided

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

GET /api/users

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

GET /api/board/:id?q=<text>

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

GET /api/cards/:id

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Data Shapes You’ll Work With

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Board Payload

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 7 — Setting Up the Project Environment 29

Users

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Project Structure (High‐Level)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Troubleshooting

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

1. “unsupported MIME type ‘text/html’ for mockServiceWorker.js”

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

2. 404 errors for /api/* during development

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

3. Port conflicts

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

What Comes Next

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 8 — Implementing Data
Normalization
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Why Normalisation Matters

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

A Real Example: Inconsistent User Data

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Establishing a consistent source of truth

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Transforming nested board payloads into flat tables

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

What this function achieves

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 8 — Implementing Data Normalization 31

Example output

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Holding the normalized store in React Context

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

The provider

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Ingesting data on load

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Updating a user

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Hydrating data during the rendering process

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 9 — Drawing Inspiration from
Backend Databases
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

A Familiar Pattern From Databases

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

How Databases Reconstruct Data

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

The Frontend Equivalent

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Why This Matters

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

A Good Place to Pause

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 10 — Managing Requests and
Data Fetching
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Showing Real Assignees in the UI

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Extending the Backend API

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Updating the Board on Selection

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Understanding Race Conditions in Search

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Fixing Race Conditions with Request Cancellation

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 10 — Managing Requests and Data Fetching 34

Reducing Request Volume with Debouncing and
Throttling

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 11 — Implementing Pagination
Strategies
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Demonstrating Pagination in UserSelect

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

The Pagination Strategies

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

A Simple Users Table

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Offset Pagination

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Cursor Pagination

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 11 — Implementing Pagination Strategies 36

Choosing the Right Strategy for UserSelect

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

UI Patterns for Pagination

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

1. Numbered Pagination

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

2. Infinite Scroll

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

3. Infinite Loading

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 12 — Migrating to an Express
Backend
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

A Brief Introduction to Express

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Setting up a standalone mock API server

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Proxying Frontend Requests to The Express Server

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 13 — Implementing
Server‐Side Rendering
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Rendering strategies

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

How SSR works

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Coordinating hydration between server and client

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Creating the client entry (hydration)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Creating the server entry (rendering on the server)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 13 — Implementing Server-Side Rendering 39

Creating separate entry points

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Configuring Vite to build dual entries

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Generating HTML on the server

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Bringing it together in the Express SSR route

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

1. Fetch initial data

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

2. Begin streaming HTML

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

3. Send the HTML shell immediately

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 13 — Implementing Server-Side Rendering 40

4. Pipe the stream into the response

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

5. When rendering completes, inject data and scripts

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Why consistency matters

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

From SSR to SPA behaviour

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Case Study — Understanding Bundlers
Through Code Splitting
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

What Problem Are We Solving?

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

What a Bundler Actually Does

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Tree Shaking: Removing Unused Exports

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Where We Are Now

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Code Splitting: Deferring Code Until It’s Needed

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Case Study — Understanding Bundlers Through Code Splitting 42

A Subtle Caveat: Tree Shaking Stops at Dynamic
Boundaries

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

What This Case Study Teaches Us

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 14 – Implementing Code
Splitting and Lazy Loading
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Why Lazy Loading Helps

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

The Building Blocks of Lazy Loading

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Dynamic import

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

React.lazy

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Suspense

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 14 – Implementing Code Splitting and Lazy Loading 44

Implementing Lazy Loading in Our Board Application

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step 1: Extract the component

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step 2: Lazy load the component

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step 3: Wrap with Suspense

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step 4: Coordinate SSR and hydration using useHydrated

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Another Example: Lazy Loading the List View

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step 1: Move ListView into its own file

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 14 – Implementing Code Splitting and Lazy Loading 45

Step 2: Convert the import to React.lazy

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step 3: Wrap the lazy component with Suspense

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Understanding the Build Output After Code Splitting

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

What Happens at Runtime

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

How Code Splitting Changes the Bundle

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 15 – Implementing Data
Prefetching
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

How Prefetch Works Conceptually

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

The Prefetch Function Inside QueryProvider

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Exposing Prefetch Through a Hook

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Prefetching Users in Card.tsx

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Explaining the Cache Key

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 15 – Implementing Data Prefetching 47

The Fetch Function

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Triggering Prefetch on Hover

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

How Prefetch and useQuery Work Together

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

The Full Runtime Experience

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

When Prefetch Helps

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

When Prefetch Doesn’t Help

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 16 – Implementing Optimistic
Updates
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Creating a New Card (Server‐First)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Introducing Optimistic Updates

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Adding a Card Optimistically

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Step‐by‐step

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Deleting a Card Optimistically

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 16 – Implementing Optimistic Updates 49

Things to Keep in Mind

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 17 – Exploring Real‐time
Update Strategies
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Polling

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Server‐Sent Events (SSE)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

WebSockets

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Scaling Considerations

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 18 – Implementing Real‐time
Updates with SSE
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

The pub‐sub pattern

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Using the pub‐sub pattern on the server

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Using the event emitter with SSE

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Emitting events from the update API

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Frontend: consuming SSE with EventSource

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 18 – Implementing Real-time Updates with SSE 52

Demonstration and behaviour

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Case Study — Implementing
WebSockets for Real‐time Updates
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Server Side — Setting UpWebSockets

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Installing the WebSocket Library

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Tracking Connections per Board

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Attaching the WebSocket Server

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Handling WebSocket Connections

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Case Study — Implementing WebSockets for Real-time Updates 54

Emitting a Domain Event

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Broadcasting to WebSocket Clients

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Client Side — Receiving WebSocket Events

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Encapsulating WebSocket Logic in a Hook

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Wiring It into the Board

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Observing the Behaviour

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

A Real‐World Bug: Duplicate Cards

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Case Study — Implementing WebSockets for Real-time Updates 55

Making the State Update Idempotent

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 19 — Optimizing Performance
with HTTP Caching
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Why caching matters

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Cache‐Control — how long a response stays fresh

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Detailed breakdown: What does Cache‐Control actually include?

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Using stale‐while‐revalidate

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

ETag — detecting whether content changed

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 19 — Optimizing Performance with HTTP Caching 57

Server‐side: Returning an ETag with your response

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Browser’s next request:

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Server logic: respond quickly if no change

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Why ETag matters

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Last‐Modified — timestamp‐based validation

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Server‐side example

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Browser request:

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 19 — Optimizing Performance with HTTP Caching 58

Server‐side validation:

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

When Last‐Modified works well

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

ETag vs Last‐Modified

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Vary — preventing incorrect caching

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Real‐world problem: search queries

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Correct implementation with Express:

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Real‐world scenario: user‐specific data

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 19 — Optimizing Performance with HTTP Caching 59

Benefits of Vary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Putting it all together: a realistic request flow

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Initial board load

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Subsequent load within the cache window

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Load after the cache expires

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

A write operation changes the resource

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

The next read reflects the change

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 20 — Handling Runtime Errors
in React
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

A quick comparison to try/catch

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Understanding Error Boundaries

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Wrapping a fragile component

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Cascading error boundaries in a column

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Application‐level fallback

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 20 — Handling Runtime Errors in React 61

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials

Chapter 21 — Designing for
Accessibility
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Why we need to consider accessibility at all

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Accessibility‐first system design principles

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Semantic HTML as a foundation

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Progressive enhancement

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Keyboard‐first interaction

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 21 — Designing for Accessibility 63

Accessibility checks as part of the testing architecture

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Why test accessibility in unit tests

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Setting up axe‐jest

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Writing accessibility assertions

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Semantic HTML in real components

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Refactoring the Card component

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Managing focus after destructive actions

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 21 — Designing for Accessibility 64

Keyboard navigation as a system concern

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

A more complex example: accessible drag and drop

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Exposing the action through the context menu

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Announcing the new position

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

My typical accessibility workflow

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Quick feedback with Lighthouse and Chrome DevTools

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Enforcing guarantees with axe‐based unit tests

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 21 — Designing for Accessibility 65

Preventing regressions with ESLint rules

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Validating real interactions manually

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Why this layered approach works

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 22 — Implementing
Performance Monitoring
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Why performance monitoring matters

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Understanding bundle size in practice

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Visualising the bundle

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Making performance limits explicit with budgets

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Defining a performance budget

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

Chapter 22 — Implementing Performance Monitoring 67

Enforcing the budget after build

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Measuring real user experience with Web Vitals

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Collecting Web Vitals

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Performance as a continuous system concern

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Summary

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

The Architectural Roadmap: From
Components to Systems
This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Module 1: The System Design Mindset (Chapters 1–4)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Module 2: Building the Data Foundation (Chapters 5–9)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Module 3: Managing Data Flow and Connectivity
(Chapters 10–12)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Module 4: Rendering and Performance (Chapters 13–15)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

Module 5: Mutations, Real‐Time Sync, and Resilience
(Chapters 16–22)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials
https://leanpub.com/frontend-system-design-essentials

The Architectural Roadmap: From Components to Systems 69

Designing System Step By Step

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com/frontend-system-design-essentials.

https://leanpub.com/frontend-system-design-essentials

	Table of Contents
	Preface
	A High-Level View of Frontend Work
	Book Structure and Outline
	How to Make the Most of This Book
	Summary

	Chapter 1 — Evolving from Components to Systems
	Analyzing how simple requests turn complex
	Part I — How a small component grows
	Zooming out to the system perspective
	Developing system design thinking
	A note on CCDAO and the interview lens
	Summary — The invisible work

	Chapter 2 — Introducing the CCDAO Framework
	Collecting information for requirement clarity
	Designing modular component structures
	Modeling data for predictability and efficiency
	Designing stable API contracts
	Implementing optimization strategies early
	Applying CCDAO in an Interview
	Why It Matters Beyond Interviews

	Chapter 3 — Applying CCDAO: Designing a Typeahead Search Box
	1. Collect Information
	2. Component Structure
	3. Data Modeling
	4. API Design
	5. Optimization Strategies
	Closing

	Chapter 4 — Applying CCDAO: Designing a Scalable Feed List
	1. Collect Information
	2. Component Structure
	3. Data Modeling
	4. API Design
	5. Optimization Strategies
	Closing

	Chapter 5 — Data Modeling: Understanding the Domain and the UI
	Defining the domain clearly through business rules
	Designing models for specific UI consumption patterns
	From Domain to Design

	Chapter 6 — Case Study: Implementing Sidebar Entitlements
	Step 1 — The Starting Point: Logic in the UI
	Step 2 — When the Rules Multiply
	Step 3 — Moving Business Logic to the Backend
	Step 4 — Where Frontend Logic Still Belongs
	Step 5 — Tailoring APIs with GraphQL or a BFF
	Lessons from the Sidebar

	Chapter 7 — Setting Up the Project Environment
	Why We Use a Starter Project
	Prerequisites
	Getting the Project Running
	Useful Scripts
	Configuring the Mock API with MSW
	Mock Endpoints Provided
	Data Shapes You'll Work With
	Project Structure (High-Level)
	Troubleshooting
	What Comes Next

	Chapter 8 — Implementing Data Normalization
	Why Normalisation Matters
	A Real Example: Inconsistent User Data
	Establishing a consistent source of truth
	Transforming nested board payloads into flat tables
	Holding the normalized store in React Context
	Hydrating data during the rendering process
	Summary

	Chapter 9 — Drawing Inspiration from Backend Databases
	A Familiar Pattern From Databases
	How Databases Reconstruct Data
	The Frontend Equivalent
	Why This Matters
	A Good Place to Pause

	Chapter 10 — Managing Requests and Data Fetching
	Showing Real Assignees in the UI
	Extending the Backend API
	Updating the Board on Selection
	Understanding Race Conditions in Search
	Fixing Race Conditions with Request Cancellation
	Reducing Request Volume with Debouncing and Throttling
	Summary

	Chapter 11 — Implementing Pagination Strategies
	Demonstrating Pagination in UserSelect
	The Pagination Strategies
	A Simple Users Table
	Offset Pagination
	Cursor Pagination
	Choosing the Right Strategy for UserSelect
	UI Patterns for Pagination
	Summary

	Chapter 12 — Migrating to an Express Backend
	A Brief Introduction to Express
	Setting up a standalone mock API server
	Proxying Frontend Requests to The Express Server
	Summary

	Chapter 13 — Implementing Server-Side Rendering
	Rendering strategies
	How SSR works
	Coordinating hydration between server and client
	Creating the client entry (hydration)
	Creating the server entry (rendering on the server)
	Creating separate entry points
	Configuring Vite to build dual entries
	Generating HTML on the server
	Bringing it together in the Express SSR route
	Why consistency matters
	From SSR to SPA behaviour
	Summary

	Case Study — Understanding Bundlers Through Code Splitting
	What Problem Are We Solving?
	What a Bundler Actually Does
	Tree Shaking: Removing Unused Exports
	Code Splitting: Deferring Code Until It's Needed
	A Subtle Caveat: Tree Shaking Stops at Dynamic Boundaries
	What This Case Study Teaches Us
	Summary

	Chapter 14 – Implementing Code Splitting and Lazy Loading
	Why Lazy Loading Helps
	The Building Blocks of Lazy Loading
	Implementing Lazy Loading in Our Board Application
	Another Example: Lazy Loading the List View
	Understanding the Build Output After Code Splitting
	What Happens at Runtime
	How Code Splitting Changes the Bundle
	Summary

	Chapter 15 – Implementing Data Prefetching
	How Prefetch Works Conceptually
	The Prefetch Function Inside QueryProvider
	Exposing Prefetch Through a Hook
	Prefetching Users in Card.tsx
	How Prefetch and useQuery Work Together
	The Full Runtime Experience
	When Prefetch Helps
	When Prefetch Doesn't Help
	Summary

	Chapter 16 – Implementing Optimistic Updates
	Creating a New Card (Server-First)
	Introducing Optimistic Updates
	Adding a Card Optimistically
	Deleting a Card Optimistically
	Things to Keep in Mind
	Summary

	Chapter 17 – Exploring Real-time Update Strategies
	Polling
	Server-Sent Events (SSE)
	WebSockets
	Scaling Considerations
	Summary

	Chapter 18 – Implementing Real-time Updates with SSE
	The pub-sub pattern
	Using the pub-sub pattern on the server
	Using the event emitter with SSE
	Emitting events from the update API
	Frontend: consuming SSE with EventSource
	Demonstration and behaviour
	Summary

	Case Study — Implementing WebSockets for Real-time Updates
	Server Side — Setting Up WebSockets
	Client Side — Receiving WebSocket Events
	A Real-World Bug: Duplicate Cards
	Making the State Update Idempotent
	Summary

	Chapter 19 — Optimizing Performance with HTTP Caching
	Why caching matters
	Cache-Control — how long a response stays fresh
	ETag — detecting whether content changed
	Last-Modified — timestamp-based validation
	Vary — preventing incorrect caching
	Putting it all together: a realistic request flow
	Summary

	Chapter 20 — Handling Runtime Errors in React
	A quick comparison to try/catch
	Understanding Error Boundaries
	Wrapping a fragile component
	Cascading error boundaries in a column
	Application-level fallback
	Summary

	Chapter 21 — Designing for Accessibility
	Why we need to consider accessibility at all
	Accessibility-first system design principles
	Accessibility checks as part of the testing architecture
	Semantic HTML in real components
	Keyboard navigation as a system concern
	A more complex example: accessible drag and drop
	My typical accessibility workflow
	Summary

	Chapter 22 — Implementing Performance Monitoring
	Why performance monitoring matters
	Understanding bundle size in practice
	Making performance limits explicit with budgets
	Measuring real user experience with Web Vitals
	Performance as a continuous system concern
	Summary

	The Architectural Roadmap: From Components to Systems
	Module 1: The System Design Mindset (Chapters 1–4)
	Module 2: Building the Data Foundation (Chapters 5–9)
	Module 3: Managing Data Flow and Connectivity (Chapters 10–12)
	Module 4: Rendering and Performance (Chapters 13–15)
	Module 5: Mutations, Real-Time Sync, and Resilience (Chapters 16–22)
	Designing System Step By Step

