L

-~

INTEGRATING
FRONT END
COMPONENTS

with

WEB APPLICATIONS

by Maksim Surguy

H#frontendweb

Integrating Front end Components with Web
Applications

Learn how to implement Bootstrap, tagging, autosuggest, spinners,
date pickers, AJAX file uploaders and more in web applications

Maksim Surguy
This book is for sale at http://leanpub.com/frontend

This version was published on 2014-07-21

Leanpub

i

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

©2013 - 2014 Maksim Surguy

http://leanpub.com/frontend
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!

Please help Maksim Surguy by spreading the word about this book on Twitter!
The suggested tweet for this book is:

If you want to be good at making cool web apps make sure you read this book by @msurguy :
https://leanpub.com/frontend #frontendweb

The suggested hashtag for this book is #frontendweb.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on
Twitter:

https://twitter.com/search?q=#frontendweb

http://twitter.com
https://twitter.com/search?q=%23frontendweb
https://twitter.com/search?q=%23frontendweb

Contents

Introduction i
Abouttheauthor L i
Prerequisites. ii
Conventions for the terms used inthebook oo ii
Back end framework of choice for the examples in thebook ii
Design patterns and purpose of thebook o oo L iv
Source Code oL iv

1 Using Bootstrap 3 HTML/CSS/JS Framework 1
1.1 Usinga CDN to serve Bootstrap CSS/JS. o L 2
1.2 Using self-hosted Bootstrap CSS/JS with a back end framework 3
1.3 Creating HTML for the registration and loginpage 5
1.4 Converting the registration and login forms to Laravel Blade templates 13
1.5 Helpful Resources and Packages L L. 20
1.6 SUMMATY e e e e e e e 23

2 Integrating Date Pickers 24
2.1 Theory behind date pickers 25
2.2 Integrating Pickadate library L 27
2.3 Changing the date format 31
2.4 Modifying input fields 32
2.5 Setting default value of the date picker L o 33
2.6 Changing the language used in the date picker 34
2.7 Building the back end foradatepicker oL 36

2.8 SUMMATY o o e e e e e e e e e e e 44

Introduction

Creating beautiful web applications when you are not a designer could be challenging. That is why frontend
frameworks like Bootstrap' and Foundation® are so popular today. Responsive and user-friendly web design
requires a lot of work and often we as developers are just too busy building the backends and don’t have the
time or necessary skills to create great web design from scratch.

The field of web development moves very quickly, no doubt about that. Technologies for both the frontend
and the backend have progressed a lot in the past two/three years. At the same time there are many web
developers who are generously dedicating their energy and time to move the web development industry
forward by releasing multitude of open source frameworks, plugins and tools. Thanks to them there are now
plenty of good solutions to common web development problems.

This book will introduce you to some of the greatest open source front end components that will greatly
improve usability of your applications. Some of the components discussed in the book are:

Date Pickers Avatar cropping Tagging Ajax Pagination

Su Mo Tu We Th Fr
Prev Page 2 ~

AJAX
“ Spinners Predictive Search Notifications

Thanks for usin,

Form submission faile

master (1).zip
\ Fifth product Awesome Job!
& Third product
- Fourth prociuct

29 MiB

Suceess! Request has

Error Processin.

&2 Second prog

Components discussed in this book

About the author

My name is Maksim Surguy. I am a full time web developer, part time writer and former breakdancer®. If you
use Laravel PHP framework or Bootstrap, you might have seen some of the things I created:

*http://getbootstrap.com
*http://foundation.zurb.com
*https://www.youtube.com/watch?v=wEF_RHL1NFU

http://getbootstrap.com
http://foundation.zurb.com
https://www.youtube.com/watch?v=wEF_RHL1NFU
http://getbootstrap.com
http://foundation.zurb.com
https://www.youtube.com/watch?v=wEF_RHL1NFU

Introduction ii

+ Bootsnipp*

« Laravel-tricks, open source®
« Built With Laravel®

+ Bookpag.es’

» Panopanda®

« MyMapList’

+ Cheatsheetr®

I love creating new products and in the process I try to share as much as I possibly can. You can read free
web development tutorials on my blog at http://maxoffsky.com and you can follow me on Twitter for various
web development tips and tricks at http://twitter.com/msurguy

Prerequisites

+ Knowing what HTML/JS/CSS terms mean and knowing some basics about them
« Having experience of building at least one web application of any size
« Willingness to learn and be challenged

Conventions for the terms used in the book

This books uses terms “front end” and “back end” extensively. In the context of this book they have the
following meaning:

+ The term “Front end” usually talks about client’s browser or HTML/CSS/JS that the browser operates
with.

+ The term “Back end” talks about a web application that resides on a server and potentially works with
a database. The web application could be anything that processes and responds to HTTP requests, for
example applications using the following technologies/languages could be called “back end”: Node,
PHP, Java, Ruby, Python, .NET, etc.

Back end framework of choice for the examples in the book

While a lot of the content in this book could be adapted to applications using any backend framework, all
server-side examples in this book will be done using Laravel framework. Laravel is a modern PHP full stack
framework that allows you to build web applications using PHP quickly and efficiently. Some key assumptions
about the server side code in this book:

“http://bootsnipp.com
*http://laravel-tricks.com
“http://builtwithlaravel.com
"http://bookpag.es
*http://panopanda.co
*http://mymaplist.com
'%http://cheatsheetr.com

http://bootsnipp.com
http://laravel-tricks.com
http://builtwithlaravel.com
http://bookpag.es
http://panopanda.co
http://mymaplist.com
http://cheatsheetr.com
http://maxoffsky.com
http://twitter.com/msurguy
http://bootsnipp.com
http://laravel-tricks.com
http://builtwithlaravel.com
http://bookpag.es
http://panopanda.co
http://mymaplist.com
http://cheatsheetr.com

g b W N =

O O B W N

Introduction iii

+ The server-side example in this book assume that you already know how to use an MVC framework
or similar. You are familiar with the framework’s syntax, routing, ORM and a backend template engine
(like Blade in Laravel or Mustache in JS frameworks). If you are not familiar with those concepts I
highly encourage you to get up to speed on those topics.

+ The tone of this book is geared towards developers that have built at least one application with a backend
framework already. If you feel like you are not there yet, don’t get discouraged and try codecademy™*!
or a similar resource.

« The provided back end code examples in this book assume that you know how to create and populate
a database (for example through Ul-based tool like PHPMyAdmin or Sequel PRO).

o PHP Version used in this book for working examples

The PHP version used in this book is 5.4 with Composer*? installed.

Let’s go over some back end conventions that this book is using.

Conventions used in the book for back end code

Scripts and Styles

In the server side examples where there is more than one front end library used, Javascript and Stylesheets
of third-party libraries will be put in ‘public/js/vendor’ and ‘public/css/vendor’ folders respectively. Then the
scripts and styles will be inserted into the view templates using the syntax in code listings below:

Using HTML::script helper to link to JS file in Laravel

// Generate a tag for javascript inside a Blade file
{{ HTML: :script('js/vendor/script.js') }}

// Results in:
<script src="http://localhost:8000/js/vendor/script. js"></script>

Using HTML::style helper to link to CSS file in Laravel

// Generate a tag for javascript inside a Blade file
{{ HTML: :style('css/vendor/style.css') }}

// Results in:
<link media="all" type="text/css"
rel="stylesheet" href="http://localhost:8000/css/vendor/style.css">

Uhttp://www.codecademy.com/
*https://getcomposer.org/doc/00-intro.md#installation-nix

http://www.codecademy.com/
https://getcomposer.org/doc/00-intro.md#installation-nix
http://www.codecademy.com/
https://getcomposer.org/doc/00-intro.md#installation-nix

Introduction iv

Design patterns and purpose of the book

While there are many great design patterns in existence for back end application architecture, this book will
try to remain unbiased and provide the functionality without pushing any specific back end best-practices.
This way you can adapt the functionality to your projects using whatever design pattern you prefer.

Also, there will be no Unit Tests provided because that is a topic for a separate book and there is at least
one already about that: Laravel Testing Decoded® by Jeffrey Way.

The purpose of this book is to expose you to some of the greatest front end components, explain how
they work and provide you with easy to understand guides on integrating these libraries with your web
applications. Enjoy the journey and prepare to make some cool-looking, jaw-dropping, award-winning web
applications!

Source Code

The source code for this book is available for each chapter and is located on Github at https://github.com/msurguy/frontend-
book™. Feel free to explore it, comment on it and improve it on Github.

Phttps://leanpub.com/laravel-testing-decoded
**https://github.com/msurguy/frontend-book

https://leanpub.com/laravel-testing-decoded
https://github.com/msurguy/frontend-book
https://github.com/msurguy/frontend-book
https://leanpub.com/laravel-testing-decoded
https://github.com/msurguy/frontend-book

1 Using Bootstrap 3 HTML/CSS/JS Framework

Almost any web developer that has made a website or two has heard of Bootstrap framework. Bootstrap is
a frontend framework that provides the necessary CSS and Javascript to make your websites responsive and
nice looking. A clear advantage of using Bootstrap is that it accelerates web development process by letting
you focus on building the application’s functionality instead of tinkering with (hopefully) cross-browser load
of styling rules and media queries.

Designed for everyone, everywhere.

Bootstrap makes front-end web development faster and easier. It's made for folks of all skill levels,
devices of all shapes, and projects of all sizes.

les [[o===

Preprocessors One framework, every device. Comprehensive docs
In addition to vanilla CSS, Bootstrap includes Bootstrap easily and efficiently scales your With Bootstrap, you get extensive and beautiful
support for the two most popular GSS project with one code base, from phones to documentation with hundreds of live examples,
preprocessors, Less and Sass. tablets to desktops. code snippets, and more.

Bootstrap is open source. It's hosted, developed, and maintained on GitHub.

Bootstrap framework
Bootstrap has been gaining a lot of popularity in the last two years which at the same time results in many
websites looking alike. While it is a great framework to quickly build a prototype of a website or an admin
panel for a website, it is highly encouraged to customize Bootstrap. You can do that by either using themes
from Bootswatch', using a template from Creative Market® or using other tools from this list®.

0 Bootstrap theme used in this book

The examples in this book will be using a Bootstrap scheme from Bootswatch called “Superhero”.
You can preview it here: http://bootswatch.com/superhero/*.

To get started with using Bootstrap in your web application (not necessarily Laravel specific) you need to
either:

« Use a CDN (Content Delivery Network) like Bootstrap CDN® to serve the Bootstrap CSS/JS files

*http://bootswatch.com
*http://bit.ly/creativemarketBS
*http://bootsnipp.com/resources#8
*http://bootswatch.com/superhero/
*http://www.bootstrapcdn.com/

http://bootswatch.com
http://bit.ly/creativemarketBS
http://bootsnipp.com/resources#8
http://bootswatch.com/superhero/
http://www.bootstrapcdn.com/
http://bootswatch.com
http://bit.ly/creativemarketBS
http://bootsnipp.com/resources#8
http://bootswatch.com/superhero/
http://www.bootstrapcdn.com/

Using Bootstrap 3 HTML/CSS/JS Framework 2

+ Download Bootstrap CSS/JS and serve it from your application’s public folder

We will use Bootstrap to build some nice looking login/registration forms a bit later in this chapter, but
first let’s take a look at using the two methods of serving Bootstrap CSS and Javascript.

1.1 Using a CDN to serve Bootstrap CSS/JS

Serving Bootstrap from a Content Delivery Network (CDN) could make your website perform faster. It is a
good practice to serve static assets (CSS/JS files) from a CDN when you have a lot of users all over the world.
Modern CDNs have servers in multipler locations around the world and so that cuts down the time that it
takes to serve the CSS and Javascripts assets to the user’s browser. With Bootstrap’s growing popularity there
are now a few CDNs that serve Bootstrap CSS and]S for free. The most prominent and dependable of these
is Bootstrap CDN located at http://www.bootstrapcdn.com from the generous folks at MaxCDN®.

You can use BootstrapCDN to easily add Bootstrap stylesheets and javascript into your project. By adding
just two lines of code from listing 1.1 you can take advantage of using a CDN to serve Bootstrap CSS and JS
to your users:

Listing 1.1 Using Bootstrap CSS and JS from CDN

<link href="http://netdna.bootstrapcdn.com/bootstrap/3.1.0/css/bootstrap.min.css"

rel="stylesheet">

<script src="http://netdna.bootstrapcdn.com/bootstrap/3.1.0/js/bootstrap.min. js"></script>

QQ Using a specific version of Bootstrap

Bootstrap CDN allows you to choose a specific version of Bootstrap. For the newest version be
sure to go to the homepage: http://www.bootstrapcdn.com/. For the older versions check out the
“legacy” tab on the Bootstrap CDN website: http://www.bootstrapcdn.com/#legacy_tab

Qt‘ Using a different theme for Bootstrap

Bootstrap CDN also allows you to choose a specific theme of Bootstrap from Bootswatch instead
of default Bootstrap. To see the list of all themes available for use on Bootstrap CDN, check the
Bootswatch tab: http://www.bootstrapcdn.com/#bootswatch_tab

Please note, Bootstrap’s Javascript requires jQuery to be loaded first so if you want to use any of
Bootstrap’s features like modal windows, dropdowns, etc. you would have to make sure to provide jQuery
before loading bootstrap.min.js file.

A page that incorporates the Bootstrap framework served from BootstrapCDN is provided in Listing 1.2
below:

Shttp://www.maxcdn.com

http://www.bootstrapcdn.com
http://www.maxcdn.com
http://www.bootstrapcdn.com/
http://www.bootstrapcdn.com/#legacy_tab
http://www.bootstrapcdn.com/#bootswatch_tab
http://www.maxcdn.com

Using Bootstrap 3 HTML/CSS/JS Framework 3

Listing 1.2 HTML page that uses Bootstrap from a CDN
<IDOCTYPE html>
<html lang="en">

<head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>View Template that use Bootstrap</title>

<!-- Bootstrap CSS served from a CDN -->
<link href="http://netdna.bootstrapcdn.com/bootstrap/3.1.0/css/bootstrap.min.css"
rel="stylesheet">

</head>

<body>
<div class="container">
<div class="row">
<h2>This template is using Bootstrap from a CDN!</h2>
</div>

</div>

<script src="http://code. jquery.com/jquery-1.10.2.min. js"></script>
<seript src="http://netdna.bootstrapcdn.com/bootstrap/3.1.0/js/bootstrap.min. js">
</script>
</body>
</html>

Another option to serve Bootstrap to the user’s browser instead of using a CDN is to store its stylesheets
and javascript in the application’s “public” directory. The public directory is the root directory that is accessible
to users when they go to your website.

1.2 Using self-hosted Bootstrap CSS/JS with a back end framework

The concepts explained below could be adapted to other frameworks and not only limited to Laravel. The
particular methods of each backend framework (Laravel, Symfony, Node.js, etc) are different but the concepts
below apply to all MVC frameworks. To serve Bootstrap from your web application instead of using CDN
you first need to download Bootstrap CSS, icon fonts and]S files, place them somewhere in the application’s
“public” folder and reference them in the your view templates.

You can download Bootstrap either from http://getbootstrap.com or by using Bower’. When you download
Bootstrap, you will find these three directories:

« css (compressed and the original css)

"http://bower.io/

http://getbootstrap.com
http://bower.io/
http://bower.io/

Using Bootstrap 3 HTML/CSS/JS Framework 4

+ js (compressed and the original js)
« fonts (glyphicons, the icon font that Bootstrap uses)

Cut and paste these directories into the “public” folder of your application, so that you have the following
directory structure:

¥ [public
¥ [css
& bhootstrap-theme.css

bootstrap-theme.min.css
bootstrap.css
bootstrap.min.css
bootstrap-theme.css.map
| bootstrap.css.map
¥ [fonts

~ glyphicons-halflings-regular.eot

~ glyphicons-halflings-regular.woff

= glyphicons-halflings-regular.svg

= glyphicons-halflings-regular.ttf
Y @ js

& bhootstrap.js

& bootstrap.min.js

| | |

Using self-hosted Bootstrap css/js/fonts

Then after you have the necessary CSS, JS and the Fonts in your application’s “public” folder, you can use
Bootstrap just like you would if you used a CDN. The only change that you would need would be the location
of the assets. For example if you are using Laravel you’d link to the CSS and]S files by using Laravel’s HTML
generators in a way shown in listing 1.3 below:

Listing 1.3 Using Laravel HTML helpers to link to Bootstrap CSS and JS files
{{ HTML: :style('css/bootstrap.min.css"') }}

{{ HTML: :script('js/bootstrap.min.js') }}

You can use these two lines of code in listing 1.3 to add Bootstrap to your Blade layouts or Blade views.
For example, a complete Blade view that uses this self-hosted method of referencing to Bootstrap is provided
below in listing 1.4:

Listing 1.4 Blade view that uses Bootstrap located locally.
<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>View Template that use Bootstrap</title>

<!-- Referencing Bootstrap CSS that is hosted locally -->

Using Bootstrap 3 HTML/CSS/JS Framework 5

{{ HTML: :style('css/bootstrap.min.css') }}
</head>

<body>

<div class="container">
<div class="row">
<h2>This template is using locally hosted Bootstrap!</h2>
</div>

</div>
<script src="http://code. jquery.com/jquery-1.10.2.min. js"></script>

<!-- Referencing Bootstrap JS that is hosted locally -->
{{ HTML: :script('js/bootstrap.min.js') }}
</body>
</html>

These two easy methods of referencing Bootstrap’s assets (CDN and self-hosted) in Laravel allow you to
use all the nifty features that come with Bootstrap: responsive layouts, good looking forms, buttons, button
groups, modal windows and many many more. Let’s build upon the concept you have learned so far and use
Bootstrap to create some nice looking registration and login forms for our applications!

1.3 Creating HTML for the registration and login page

Every web application that asks user to register needs a nice registration page and login page. Using Bootstrap
building out the pages with responsive forms is not complicated. Over the course of the next few pages you
will build a registration and login forms that you then will convert to Blade templates for usage in your
applications.

You will get excited when you see what you will build. Here is the resulting look of the registration page
that uses Bootstrap with this book’s default Bootstrap theme called “Superhero™:

Please sign up isfree!

Last Name

Registration form that you’ll build

Using Bootstrap 3 HTML/CSS/JS Framework 6

Looks good, don’t you think? Let’s build this registration using Bootstrap that we will serve from the
Bootstrap CDN.

1.3.1 Building a registration form

First of all, we will use a nice background pattern for the login form. You can find hundreds of great looking
backgrounds on Subtle Patterns® website. For the forms that match our “Superhero” theme the pattern called
“Stardust” works very well. Download and extract that pattern from http://subtlepatterns.com/stardust/ and
put the main (not @2x) file in the “img” folder inside of the “public” folder.

o Getting patterns from Subtle Patterns

Subtle patterns website’ can be incredibly helpful when you need to find a great looking repeating
(seamless) pattern for your web design projects in normal and high resolution. Make sure to check
out the full range of patterns that they offer and check with the site’s license about using them in
commercial projects.

Let’s define what elements the form will be composed of. The registration form will consists of a few
input fields wrapped inside Bootstrap’s panel element:

« First Name (of type “text”)

« Last Name (“text”)

« Email (“text”)

« Password (type “password”)

« Password Confirmation (“password”)
+ Submit button (full length)

As far as sizing, the responsive registration form will be 4 columns wide on medium to large screen,
8 columns on extra small to small and 12 columns on anything less than extra small screen size. You can
consult with the following Bootstrap Docs page about the different screen sizes and column naming: http:
//getbootstrap.com/css/#grid. To center the form on the screen we can use Bootstrap grid’s offset methods
such as “col-md-offset-4”.

The registration form will use small input field font size (Bootstrap’s “input-sm” class) so that the
placeholders fit nicely inside the form. When put all together, the form’s HTML will look like the listing
1.5 below:

®http://subtlepatterns.com/
*http://subtlepatterns.com/

http://subtlepatterns.com/
http://subtlepatterns.com/stardust/
http://subtlepatterns.com/
http://subtlepatterns.com/
http://getbootstrap.com/css/#grid
http://getbootstrap.com/css/#grid
http://subtlepatterns.com/
http://subtlepatterns.com/

Using Bootstrap 3 HTML/CSS/JS Framework

Listing 1.5

<div class="row">
<div class="col-xs-12 col-sm-8 col-md-4 col-sm-offset-2 col-md-offset-4">
<div class="panel panel-default">
<div class="panel-heading">
<h8 class="panel-title">Please sign up <small>It's free!</small></h3>
</div>
<div class="panel-body">
<form role="form">
<div class="row">
<div class="col-xs-6 col-sm-6 col-md-6">
<div class="form-group">
<input type="text" name="first_name" class="form-control input-sm" placeho\
lder="First Name">
</div>
</div>
<div class="col-xs-6 col-sm-6 col-md-6">

<div class="form-group">

<input type="text" name="last_name" class="form-control input-sm" placehol\
der="Last Name">

</div>
</div>
</div>

<div class="form-group">

<input type="email" name="email" class="form-control input-sm" placeholder="Em\
ail Address">

</div>

<div class="row">
<div class="col-xs-6 col-sm-6 col-md-6">
<div class="form-group">
<input type="password" name="password" class="form-control input-sm" place\
holder="Password">
</div>
</div>
<div class="col-xs-6 col-sm-6 col-md-6">
<div class="form-group">
<input type="password" name="password_confirmation" class="form-control in\
put-sm" placeholder="Confirm Password">
</div>
</div>
</div>

<input type="submit" value="Register" class="btn btn-info btn-block">

Using Bootstrap 3 HTML/CSS/JS Framework 8

</form>
</div>
</div>
</div>
</div>

To make the form even prettier and make it stand out, let’s use CSS to add some transparency to the panel
and a shadow on the right side of it. Also we would need a bit of a margin between the top of the form and
top of the page. We will create a new CSS class called “centered-form” and append it to the DIV enclosing the
whole form:

Listing 1.6 Addition of ‘centered-form’ class to the DIV enclosing the form

<div class="row centered-form">
<div class="col-xs-12 col-sm-8 col-md-4 col-sm-offset-2 col-md-offset-4">
<div class="panel panel-default">

Finally, create the CSS for transparency and top margin (listing 1.7):

Listing 1.7 CSS that adds top margin, transparency & shadow to the registration form

<style>

.centered-form .panel{
background: rgba(255, 255, 255, 0.8);
box-shadow: rgba(@, 0, 0, 0.3) 20px 20px 20px;

.centered- form{
margin-top: 6Opx;

}

</style>

Now with this CSS in place, the full contents of the HEAD tag that enable the use of Bootstrap, add a
pattern to the page and make our form a bit more better looking, is in the listing 1.8 below:

Listing 1.8 Full CSS for the registration form

<link href="http://netdna.bootstrapcdn.com/bootswatch/3.1.0/superhero/bootstrap.min.css"
rel="stylesheet">
<style>
body {
background: url("img/stardust.png");
}
.centered-form .panel{
background: rgba(255, 255, 255, 0.8);
box-shadow: rgba(@, 9, 0, 0.3) 20px 20px 20px;

Using Bootstrap 3 HTML/CSS/JS Framework 9

.centered- form{
margin-top: 60px;

}

</style>

When the HTML from listing 1.5 and CSS from listing 1.8 are put together, the registration form should
look like the the one in the picture below:

Please sign up isfree!

Last Name

Resulting registration form

Now that we have the registration form complete, let’s build a login form in a similar fashion.

1.3.2 Building a login form

The login form will now be a breeze to build, with the existing registration form HTML and CSS from the
previous section. With a few minor changes in the markup of the registration form, you will have a beautiful
Login form that looks like this:

Please Login
Email Address

Password

J Remember Me

Login Form that you’ll build

To create this nice looking responsive form, let’s define what input fields we want to have:

+ Email (or username)
« Password

Using Bootstrap 3 HTML/CSS/JS Framework 10

« Checkbox for “Remember me” feature
 Submit button

Also, we would like the user to be able to go to the registration form if they don’t have an account and a
link to “Forgot password” feature if they don’t remember their password. With these input fields in mind, the
complete HTML for the login form will look like the code in listing 1.9:

Listing 1.9 HTML of the login form

<div class="row centered-form">
<div class="col-xs-12 col-sm-8 col-md-4 col-sm-offset-2 col-md-offset-4">
<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title">Please Login</h3>
</div>
<div class="panel-body">

<form role="form">»

<div class="form-group">
<input type="email" name="
ail Address">

</div>

email"” class="form-control input-sm" placeholder="Em\

<div class="form-group">
<input type="password" name="password" class="form-control input-sm" placehold\
er="Password">
</div>

<div class="checkbox">
<label>
<input name="remember" type="checkbox" value="Remember Me"> Remember Me
Forgot Password?
</label>
</div>

<input type="submit" value="Login" class="btn btn-info btn-block">

</form>
</div>
</div>
<div class="text-center">
<a href="/register" »Don't have an account? Register»
</div>
</div>
</div>

When this HTML markup is rendered in the browser, the login form will look like the following image:

Using Bootstrap 3 HTML/CSS/JS Framework 11

Please Login

Email Address

Password

The look of the Login Form based on HTML from listing 1.9

Notice that the “Remember me” text is not clearly visible. Let’s fix that by adding a line of “color” CSS for
“.centered-form .panel” that will change the color of the text and the labels on the login form:

.centered-form .panel{
background: rgba(255, 255, 255, 0.8);
box-shadow: rgba(@, 0, 0, 0.3) 20px 20px 20px;
color: #4ebd6c;

When the css is updated with that extra line, the HEAD tag of the page where this form resides will look
like the listing 1.10 below:

Listing 1.10 Full CSS for the login form

<link href="http://netdna.bootstrapcdn.com/bootswatch/3.1.0/superhero/bootstrap.min.css"
rel="stylesheet">

<style>

body {
background: url("img/stardust.png");

}

.centered-form .panel{
background: rgba(255, 255, 255, 0.8);
box-shadow: rgba(@, 0, 0, 0.3) 20px 20px 20px;
color: #4ebdbc;

}

.centered- form{
margin-top: 60px;

}

</style>

With that CSS in place, the login form is now complete and will render with the label text colored correctly,
producing this beautiful screen that invites the user to log in into your awesome application:

Using Bootstrap 3 HTML/CSS/JS Framework 12

Please Login

Email Address

Password

U Remember Me

Login Form resulting from HTML in listing 1.9 and CSS in listing 1.10

Later in this chapter we will convert the registration form and the login form into Blade templates that
you could easily reuse in Laravel. What if you don’t like the color scheme that we are using for the projects
in the book (“Superhero” theme)? Don’t fear, there are so many other cool Bootstrap schemes available on
Bootstrap CDN that you can use to change the look of the interface. For example, here is the same login form
using Cerulean, Cosmo or Yeti styles:

Cerulean Cosmo Yeti

Please Login Please Login Please Login

- - ?
(J Remember Me Forgot Password? () Remember Me Forgot Password? (JjRememberMe B Rassword?

And the same login form again, but using Readable, Journal or Flatly scheme:

Readable Journal Flatly

PLEASE LOGIN Please Login Please Login

(] Remember Me Forgot Password? (0 Remember Me Forgot Password? (J Remember Me Forgot Password?

BT e

If you wanted to use any of those different schemes for Bootstrap, all you would have to do is replace
a single line in your HEAD tag requesting a different Bootstrap scheme from Bootstrap CDN (in this case,
“Yeti” scheme that looks a bit like Foundation framework):

Using Bootstrap 3 HTML/CSS/JS Framework 13

Using a different Bootstrap scheme for the whole page

<link href="http://netdna.bootstrapcdn.com/bootswatch/3.1.0/yeti/bootstrap.min.css"

rel="stylesheet">

Again, as mentioned before, you can take a look at different schemes provided by Bootstrap CDN at
http://www.bootstrapcdn.com/#bootswatch_tab. There are plenty of choices but if you still don’t like what
you see there, it is encouraged to customize Bootstrap to your own liking.

1.4 Converting the registration and login forms to Laravel Blade
templates

What do you need to do in order to convert the registration and login forms to templates compatible with
Laravel or other backend framework? First, you will want to create a layout, like Blade layout™ to store the
HTML that is common to more than one page of your application. Then you will convert the form input
elements to your framework’s form methods. Laravel has “Form” methods (http://laravel.com/docs/html)
that make that process simple. Last step is to add some highlighting for the errors that might arise when
the validation of the forms doesn’t pass after submittal.

If you are using any backend framework, creating HTML layout template helps you separate the code
that is common to two or more pages of your application. Laravel’s Blade templating makes it easy to then
use that layout in other pages that will apply the layout as their “skin”. Using a common layout is incredibly
beneficial when you want to make updates to all pages without going through all of the view files.

Let’s start the form conversion process by creating a layout template that will store the common
HTML/CSS of both, registration and login forms. From the two HTML pages we can identify that the following
areas of both forms have the same code:

Listing 1.11 Layout template starter
<!DOCTYPE html>
<html lang="en">

<head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Using a Blade layout</title>

<!-- Bootstrap CSS served from a CDN -->

<link
href="http://netdna.bootstrapcdn.com/bootswatch/3.1.0/superhero/bootstrap.min.css"
rel="stylesheet">

<style>
body {
background: url("img/stardust.png");

}

"°http://laravel.com/docs/templates#blade-templating

http://www.bootstrapcdn.com/#bootswatch_tab
http://laravel.com/docs/templates#blade-templating
http://laravel.com/docs/html
http://laravel.com/docs/templates#blade-templating

Using Bootstrap 3 HTML/CSS/JS Framework 14

.centered-form .panel({
background: rgba(255, 255, 255, 0.8);
box-shadow: rgba(0, 9, 0, 0.3) 20px 20px 20px;
color: #4eb5d6ec;

}

.centered- form{
margin-top: 60px;

}

</style>

</head>

<body>
<div class="container">
</div>
<seript src="http://code. jquery.com/jquery-1.10.2.min. js"></script>
<script src="http://netdna.bootstrapcdn.com/bootstrap/3.1.0/js/bootstrap.min. js">
</script>

</body>
</html>

The section of the code with “...” shows a placeholder for the forms themselves. In Laravel, to use a layout
placeholder you use “@yield(‘someSection’)” to specify a part of the layout that will be injected with content
placed in a Blade template that is rendered. Let’s put a placeholder for “content” section and save the code
listed below in a file “layout.blade.php” in the “app/views” folder:

Listing 1.12 Contents of app/views/layout.blade.php
<IDOCTYPE html>
<html lang="en">

<head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Using a Blade layout</title>

<!-- Bootstrap CSS served from a CDN -->
<link
href="http://netdna.bootstrapcdn.com/bootswatch/3.1.0/superhero/bootstrap.min.css"
rel="stylesheet">
<style>
body {
background: url("img/stardust.png");

}

.centered-form .panel({

Using Bootstrap 3 HTML/CSS/JS Framework

background: rgba(255, 255, 255, 0.8);
box-shadow: rgba(@, 0, 0, 0.3) 20px 20px 20px;
color: #4eb5d6e;

}

.centered- form{
margin-top: 60px;

}

</style>

</head>

<body>
<div class="container">
@yield('content')

</div>

<seript src="http://code. jquery.com/jquery-1.10.2.min. js"></script>

15

<seript src="http://netdna.bootstrapcdn.com/bootstrap/3.1.0/js/bootstrap.min. js">

</script>
</body>
</html>

With this layout template in place, we can easily create the templates for registration and login forms
without repeating this code over and over again. Let’s create a Blade template for the registration form and
save it as “registration.blade.php” file in “app/views” folder. To apply the layout template we created earlier,
we will just use “@extends(‘layout’)” statement and specify which part of the template will be acting as

“content” that will be inserted in place of “@yield(‘content’)”:

Listing 1.13 Contents of app/views/registration.blade.php

@extends('layout')
@section('content')

<div class="row">
<div class="col-xs-12 col-sm-8 col-md-4 col-sm-offset-2 col-md-offset-4">
<div class="panel panel-default">

<div class="panel-heading">

<h8 class="panel-title">Please sign up <small>It's free!</small></h3>
</div>
<div class="panel-body">

<form role="form">

<div class="row">
<div class="col-xs-6 col-sm-6 col-md-6">

<div class="form-group">

<input type="text" name="first_name" class="form-control input-sm"

lder="First Name">

placeho\

Using Bootstrap 3 HTML/CSS/JS Framework 16

</div>
</div>
<div class="col-xs-6 col-sm-6 col-md-6">
<div class="form-group">
<input type="text" name="last_name" class="form-control input-sm" placehol\
der="Last Name">
</div>
</div>
</div>

<div class="form-group">
<input type="email" name="email" class="form-control input-sm" placeholder="Em\
ail Address">
</div>

<div class="row">
<div class="col-xs-6 col-sm-6 col-md-6">
<div class="form-group">
<input type="password" name="password" class="form-control input-sm" place\
holder="Password">
</div>
</div>
<div class="col-xs-6 col-sm-6 col-md-6">
<div class="form-group">
<input type="password" name="password_confirmation" class="form-control in\
put-sm" placeholder="Confirm Password">
</div>
</div>

</div>

<input type="submit" value="Register" class="btn btn-info btn-block">

</form>
</div>
</div>
</div>
</div>

@stop

Great! Now to see this in the browser, you will need to define a route that will render the registration page
template applying the layout. As a basic example, let’s define the following route in the “app/routes.php” file:

Using Bootstrap 3 HTML/CSS/JS Framework 17

Listing 1.14 Route that renders the registration form

Route: :get('register', function()

{

return View: :make('registration');

1),

With this route in place, the registration page will be rendered when the user goes to “/register” URL
relative to the application.

While the form is displaying correctly in the browser, it doesn’t have proper methods that integrate with
Laravel’s Input/Validation. Let’s fix that by converting form elements to Laravel’s Form methods. To begin,
we will first convert the “form” tag to use “Form::open()” / “Form::close()”. Then we will do a replacement of
all input tags with Laravel’s corresponding form methods:

« <input type="text”> tag with “Form::text()”

« <input type="email”> tag with “Form::email()”

« <input type="password”> tag with “Form::password()”
« <input type="checkbox”> tag with “Form::checkbox()”
« <input type="submit”> tag with “Form::submit()”

Listing 1.15 shows the Blade file for the registration form (app/views/registration.blade.php) with the
input methods replaced with Laravel’s form generators:

Listing 1.15 Registration form using Laravel’s form methods

@extends('layout')
@section('content’')

<div class="row centered-form">
<div class="col-xs-12 col-sm-8 col-md-4 col-sm-offset-2 col-md-offset-4">
<div class="panel panel-default">
<div class="panel-heading">
<h8 class="panel-title">Please sign up <small>It's free!</small></h3>
</div>
<div class="panel-body">
{{ Form: :open() }}
<div class="row">
<div class="col-xs-6 col-sm-6 col-md-6">
<div class="form-group">
{{ Form::text('first_name', null, array('class'=>'form-control input-sm','\
placeholder'=>'First Name')) }}
</div>
</div>
<div class="col-xs-6 col-sm-6 col-md-6">
<div class="form-group">
{{ Form::text('last_name', null, array('class'=>'form-control input-sm', 'p\

Using Bootstrap 3 HTML/CSS/JS Framework 18

laceholder '=>'Last Name')) }}
</div>
</div>
</div>

<div class="form-group">
{{ Form::email('email', null, array('class'=>'form-control input-sm', 'placehol\
der'=>'Email Address')) }}

</div>

<div class="row">
<div class="col-xs-6 col-sm-6 col-md-6">
<div class="form-group">
{{ Form: :password('password', array('class'=>'form-control input-sm', 'plac\
eholder'=>"'Password')) }}
</div>
</div>
<div class="col-xs-6 col-sm-6 col-md-6">
<div class="form-group">
{{ Form: :password('password_confirmation', array('class'=>'form-control in\
put-sm', 'placeholder'=>'Confirm Password')) }}
</div>
</div>
</div>

{{ Form: :submit('Register', array('class'=>'btn btn-info btn-block')) }}

{{ Form::close() }}
</div>
</div>
</div>
</div>

@stop

When the plain HTML input methods are replaced with Laravel’s form methods, the rendered form by
default will automatically have it’s submission method assigned to type “POST” and the URL of the action
will match the URL of the currently displayed page (in this case “/register” relative to the application URL).
Also, with this change, the inputs will be working correctly with Laravels Input methods and validation.

Let’s say you had a route that would process the registration form, executed upon POSTing to the
“/register” URL You would have some validation rules defined for each of the form’s fields and you would
use Laravel’s “Validator:make” to check that the input matches the validation rules. If the validation fails,
take the user back to the registration form and pass the validation errors through the session under “errors”
session variable, otherwise tell the user that the form was validated (and create the user in the DB, etc). The
code in listing 1.16 defines such a route with validation:

Using Bootstrap 3 HTML/CSS/JS Framework 19

Listing 1.16 Validation for the registration form

Route: :post('register', function()

{

$rules = |

"first_name' => 'required',
"last_name' => 'required',

'email’ => 'required|email',
'password’ => 'required|confirmed'

1;
$validator = Validator::make(Input::all(), $rules);
if ($validator->fails())

{

return Redirect::to('register')->withInput()->withErrors($validator);

return 'Form passed validation!';

1);

Laravel provides you with full-stack solution for handling rendering of the form, its submittal, remem-
bering the old values and highlighting the fields that are incorrectly filled out by the user. For example if
you wanted to show a list of validation errors when the user submits incorrect form values, you could use
the “errors” variable that Laravel’s validator sets in the session after the form submittal. Insert the following
Blade code right above the form’s opening tag to display a list of all validation errors that occur during form
submission:

Listing 1.17 Outputting validation errors in the registration form

@if(Session::get('errors'))
<div class="alert alert-danger alert-dismissable">
<button type="button" class="close" data-dismiss="alert" aria-hidden="true"> </b\
utton>
<h5>There were errors during registration:</h5>
@foreach($errors->all(':message</1li>') as $message)
{{$message}}
@endforeach
</div>
@endif

{{ Form::open() }}

With this addition to the registration form and the addition from listing 1.17 to the routing file, upon
incorrect input entry and form submittal the registration page would show the validation errors wrapped in

Using Bootstrap 3 HTML/CSS/JS Framework 20

Bootstrap’s “alert” class. Each error that occurred would be listed and previous input values would be persisted

Please sign up i¢sfree!

for the user:

There were errors during registration:

* The last name field is required.
* The password field is required.

Maks Last Mame
ry@email.com

Password Confirm Password

Listing validation errors in the form

This completes the conversion of the registration form HTML to a template compatible with Laravel’s
Blade, with all benefits that Blade brings. This form in not perfect but it is enough to get the user to register
and show what errors occur on registration. The login form needs to be converted in a similar way. Now that
you know the process, you can convert the login form by yourself. In fact it has less fields so the resulting
Blade template would be much shorter.

'

Converting the login form

As an exercise, please try converting the login form to Laravel’s Blade syntax by yourself.

1.5 Helpful Resources and Packages

The community around Bootstrap framework is amazingly big and creative. With framework’s growing
popularity many tools and helpful utilities start to appear on the scene. There are many extensions of
Bootstrap, such as:

+ Websites loaded with Bootstrap snippets (http://bootsnipp.com and http://bootply.com)

« Date pickers

+ Theme builders

+ Drag and drop editors like http://divshot.com

« Button builder/Form Builder (http://bootsnipp.com/buttons and http://bootsnipp.com/forms)
« Ready to go templates, such as the ones on Creative Market"*

"http://bit.ly/creativemarketBS

http://bootsnipp.com
http://bootply.com
http://divshot.com
http://bootsnipp.com/buttons
http://bootsnipp.com/forms
http://bit.ly/creativemarketBS
http://bit.ly/creativemarketBS

Using Bootstrap 3 HTML/CSS/JS Framework 21

Some of these resources will be discussed in this book guiding you through the projects of the Bootstrap
community. Let’s take a look at Bootsnipp and then learn about helpful PHP packages that make creation of
Bootstrap compatible code easier.

1.5.1 Using Bootsnipp to get awesome Bootstrap code

You might have heard of a website called Bootsnipp*®. This website provides web developers with hundreds of
Bootstrap code snippets ready to be copy/pasted to your application. Login forms, lists, panels, navigation and
menu examples, sidebars, Bootstrap plugins, all of these could be found on http://bootsnipp.com and reused
in your projects (featured snippets are MIT license). Here is a small example of what kind of snippets you
might find on Bootsnipp:

http://bootsnipp.com

http://bootsnipp.com
http://bootsnipp.com
http://bootsnipp.com

Using Bootstrap 3 HTML/CSS/JS Framework

Panel With List Group

690 @ 2y 151

Panel Default

Cras justo odio
Dapibus ac facilisis in
Morbi leo risus

Porta ac consectetur ac

Vestibulum at eros

23K® 6w (101

A list of Blog posts

Cool Share Button Effects Styles

2 by Bhaumik | Sept 16th. 2012 |98 3 Comments | 39 Shares |

®|®]®
7| |

Lorem ipsum dolor sit a
salutatus ex eum. Ne mi
propriae quaerendum s

{ READ MORE i

34K ® 17 b (151

Tabbed Slider Carousel

Post Thumbnail List

21K @ 7 vl 1]

Maks 5 mage Blur Effects With

~" CSS3

5 B | Jarary 208, 204

Loram ipsum is simply dummy text of the printing
and typasatiing industry, Lorem (psum has been the
Indusiry's standard dumemy St aver Snce e
1500, when an urinawn printer took 8 galey of
type and scrambied & 1o make & type specmen
ook,

25K ® 9wl (151

Accordion List Group Menu

i Coniert
& Repons
® Repons
List group item heading
Danes i it non

eget mels. Mae
eget risus varkis

s at

group item heading

List group item heading

Danee i £12 non mi porta gravida a1

Support glyph and fa icon insi...

14K @ 3 ol 117

Q, Email

Bootsnipp

Colourful Tabbed Slider Carou... 2.4K @ 16 sl [ETE]

Portfolio

Image Gallery with Fancybox

996 @ Buly (111

Product badges responsive

22K® 16 o [151]

A success offer

And a little description
and so one

22

To use any of the snippets on http://bootsnipp.com just copy and paste snippet’s HTML and CSS into your

template to get the snippet to work the same way as on Bootsnipp preview tab. Simple as that! Enjoy using it
to find some great looking Bootstrap code snippets!

1.5.2 More resources on integrating Bootstrap and Laravel

+ A starter site made with Laravel and Bootstrap : https://github.com/andrew13/Laravel-4-Bootstrap-

http://bootsnipp.com
https://github.com/andrew13/Laravel-4-Bootstrap-Starter-Site

Using Bootstrap 3 HTML/CSS/JS Framework 23

Starter-Site
« Former, a package to make building forms easier (http://anahkiasen.github.io/former/)
+ A blog post™ from Elena Kolevska on using Grunt, Bower, Laravel and Bootstrap together

1.6 Summary

By now you have a good idea on how to download Bootstrap or use Bootstrap CDN to serve Bootstrap
HTML/CSS/]S framework to your users. You learned how to create an awesome looking registration and
login forms by using the CDN, changing the look of those forms in an instant and making them responsive.
Then you have learned the process of converting Bootstrap forms into forms compatible with Laravel’s Blade
templating engine. Finally, you have looked at various resources that introduced you to the growing Bootstrap
community.

In the next chapter you will learn how to implement a component that is necessary to give feedback about
the status of user’s actions, especially for AJAX actions, a spinner! Ready?

Phttp://blog.elenakolevska.com/using- grunt-with-laravel-and-bootstrap/

https://github.com/andrew13/Laravel-4-Bootstrap-Starter-Site
https://github.com/andrew13/Laravel-4-Bootstrap-Starter-Site
http://anahkiasen.github.io/former/
http://blog.elenakolevska.com/using-grunt-with-laravel-and-bootstrap/
http://blog.elenakolevska.com/using-grunt-with-laravel-and-bootstrap/

2 Integrating Date Pickers

This chapter covers:

+ Theory behind date pickers

Practical examples of date pickers in action
« Using Pickadate open source library for a date picker
+ Integrating date pickers with the back end

Date pickers play an important part of many modern web applications. Choosing the period of hotel stay,
booking flights, specifying the length of events, reserving rental cars, selecting the range of admin reports,
all of these are examples of website functionality that requires the user to choose a certain date or a range of
dates.

lanero1s = 4/18/2014 [Apr 25| | Apra7
T b4

.F.m « April 2014 »

‘ g ’ ’ April 2014 May 2014
1 pri ay

I Sun Mon Tue Wed Thu Fri Sat | urow T_ E & 5 i

M Tu W T F £ M u W Th F

1 2 3 4 S 311 2 3 4 5 6 4 5 B 7 ; : :1

7 8 9 10 11 12 13 18 19 11 12 13 14 15 16 17

6 7 8 9 10 11 12 14 15 16 1?19 20 20 21 22 23 24 25 26 18 19 20 21 22 23 24

. 27 28 29 30 25 26 27 28 29 80 31
13 14 15 16 17 18 19 21 22 23 24 25 26 27

20 21 22 23 24 25 26 26 29 30

27 28 29 30

Date pickers used on popular websites

If the website is used by only one person - there is probably no need to integrate a date picker, just let the
user type the date in an input field like this:

10/21/2015 Q

Simplest date picker - text input field

However, usually websites are used by more than one person visiting from more than one country and
a need for a bit more complex in nature yet easy to use solution arises. (drum roll please...) The solution is
to use date pickers. Date pickers make it painless and simple to navigate through a calendar to choose a date
that the user has in mind. When the user is presented with choosing a date on a website, he or she will have
the following questions that a date picker should be able to answer:

« In what format should I enter the date? (taking into account the local preferences of the user)
« Is next Friday the twelfth or the thirteenth? (visual representation of the calendar)
« What is today’s date? (clear hint of current date)

A good date picker front end solution offers compatibility with a wide range of languages, date formats,
screen sizes and browsers. This chapter will focus on integrating one of the best open source plugins solving

Integrating Date Pickers 25

the problem of integrating a date picker, called Pickadate'. When integrated with a web application, it looks
like this, clean and minimal:

21 October, 2015

| October 3
1 2 3
4 5 6 7 8 g 10
11 12 13 14 15 16 17

18 19 20 22 23 24

25 26 27 28 29 30 31

N Today * Clear
Full featured date picker with Pickadate plugin

You’ll gradually learn about date pickers and about integrating them in your applications as you read
through this chapter. First you’ll learn about the basic theory behind date pickers, then you’ll be introduced
to some existing open source projects providing date picker functionality, specifically you’ll meet Pickadate
plugin in its full glory. Finally, you’ll integrate a date picker with a back end framework in a small application.
Let’s get started by understanding the theory behind date pickers.

0~e View application in action

Fully functional demo application that you will build throughout this chapter is available at this
URL: http://books.maxoffsky.com/frontend/ch8

2.1 Theory behind date pickers

Most date pickers store user’s choice in a hidden input field. The reason for that is so that when the form
containing this input is submitted to the server it would send the chosen date in a format that the back end
would be able to understand. Consider asking the user to choose any date of the year. If instead of using a
date picker the user would be required to type the answer in a text input field, some of the possible entries
would be:

« April 18, 2014 (US format)

+ 9 June, 2014 (European format)
 04/18/2014 (US format)

+ 18/04/2014 (European format)

*http://amsul.ca/pickadate.js/index.htm

http://amsul.ca/pickadate.js/index.htm
http://books.maxoffsky.com/frontend/ch8
http://amsul.ca/pickadate.js/index.htm

Integrating Date Pickers 26

+ Next Monday (my favorite, lazy person format)
« A month from now (“'m not Rainman?, I don’t keep a calendar in my head!!!”)
« Today (“T am unemployed and have no idea what date it is”)

As you can see, there are many different formats that users around the world might use to choose a
date. Without using a date picker this inconsistency could be disastrous when the form is submitted and the
back end application tries to process the input. To alleviate this problem, most date pickers usually consist
of two parts, an interface and a hidden input field. When the user interacts with the interface (opens a date
picker, chooses a date, etc.), the hidden input field will contain the choice in a consistent format that could be
understood by the back end. Figure 8.1 illustrates the interaction of the two components of a date picker, the
interface and the hidden input field:

User Front end
Lh]
g [X N]
et
- Clicks fl Choose a date |
inside input
[]
o000
Choose a date
-Sees a I_l_l< -
calendar &
picks a date
(m]
[]
Chosen date is stored
in the hidden input
oee (<input type="hidden" name="date" value:"1@/25/2015”>]
- Confirms choice & | LSciober21,2015 |
submits the form [: E“”E”’”“E“EE :]
v |

Figure 8.1 Interaction of the interface and the hidden input field

It will be important to double check that the value in the hidden input field is indeed a date in the desired
format. When the form containing the hidden input field is submitted to the back end, the date input should

*http://en.wikipedia.org/wiki/Kim_Peek#Rain_Man

http://en.wikipedia.org/wiki/Kim_Peek#Rain_Man
http://en.wikipedia.org/wiki/Kim_Peek#Rain_Man

Integrating Date Pickers 27

be parsed to make sure that the user didn’t enter any malicious input and then the parsed/verified value could
be stored in the database for further operations. Not having this verification could lead to security problems.

9 Canyou make a date picker without hidden input field?

Some date pickers store the value in a text input field instead of using a hidden input field. While
it is possible to do this, it is not as flexible and it is harder to constrain the format of user’s input.

There are many existing open source date picker libraries that make integrating a date picker into a straight
forward process. In this chapter we will look at using just one library called “Pickadate”, but using any other
library will follow similar concepts so you could easily pick up another one if for some reason Pickadate
does not satisfy your requirements. Here is a list of some of the best, well-designed and well-built date picker
libraries:

+ jQuery UI datepicker®

+ Bootstrap datepicker* by Andrew Rowls
 Zebra Datepicker’

« Datepicker® by Stefan Petre

« Pickadate” by Amsul

When choosing a date picker library it is important that it works with many different date formats,
supports many languages, is easy to skin, and works with many screen sizes (responsive). Pickadate library
was chosen for this book because it satisfies all of these requirements while staying very small in size.

'd

Decode date pickers on the web

For the next week try to inspect date pickers on various websites by launching Chrome Developer
Tools and looking at the HTML markup behind the date picker interface. Find the hidden input field
that is affected when you choose different date and check the value it contains after your interaction
with the date picker.

Now that you know the theory behind date pickers and know where to find great libraries providing this
functionality, let’s start integrating a date picker in your web application.

2.2 Integrating Pickadate library

Pickadate is a very compact yet powerful date picker library. It weights only 8Kb in total including one of the
two skins provided and has support for 38 languages. What makes this library different from the rest open
source date pickers is its modern look (adapting to any screen size), great modular architecture and incredible
user experience. It is hard to underestimate the importance of responsive design because so many websites
need to be mobile-friendly and Pickadate gracefully fills this void present in other solutions. Enough talking,
let’s start doing!

*http://jqueryui.com/datepicker/
“https://github.com/eternicode/bootstrap-datepicker
*http://stefangabos.ro/jquery/zebra- datepicker/
°http://www.eyecon.ro/datepicker/#about
"http://amsul.ca/pickadate.js/date.htm

http://jqueryui.com/datepicker/
https://github.com/eternicode/bootstrap-datepicker
http://stefangabos.ro/jquery/zebra-datepicker/
http://www.eyecon.ro/datepicker/#about
http://amsul.ca/pickadate.js/date.htm
http://jqueryui.com/datepicker/
https://github.com/eternicode/bootstrap-datepicker
http://stefangabos.ro/jquery/zebra-datepicker/
http://www.eyecon.ro/datepicker/#about
http://amsul.ca/pickadate.js/date.htm

Integrating Date Pickers 28

Due to its modular design, Pickadate library is broken up in a few Javascript components, a picker core
(picker.js), a date picker (picker.date.js) and a time picker (picker.time.js). To integrate the date picker
functionality of Pickadate library we need to include its core script - picker.js (also called base script in
this library), its date picker script - picker.date.js and one of the provided themes.

The themes are also broken up in a few parts. There is a base CSS file for each theme, a date picker CSS
file and time picker CSS file matching the theme. When the library is loaded on the page we will transform a
simple input field into a great-looking date picker. You can download this library from one of the releases on
Github: https://github.com/amsul/pickadate.js/releases

0 Whoa, time picker too?

While Pickadate library provides both, a time picker and a date picker, we will only use the
date picker functionality in this chapter. When you are comfortable integrating the date picker
integrating its time picker component will be trivial because these components share a lot of similar
concepts.

2.2.1 Including Pickadate and its themes in your page

After the library is downloaded?, let’s include it by loading it’s Javascript and one of the included themes. At
the time of this writing there are two themes provided with the library: default and classic. Default theme
uses a full-screen popup to show the date picker while the classic theme shows the date picker in a drop down
menu that slides from under the input field. We will use the classic theme for this chapter. The image in figure
8.2 shows the visual difference between the two themes:

Classic Default
‘ Try me...
< April >
1 2 3 4 5
8 7 8 L] 10 11 12
13 4 s 18 17 n 19
20 21 22 23 24 25 26

27 28 29 30

 Today * Clear

* Clear

Figure 8.2 Themes included with Pickadate

Let’s include the compressed assets of Pickadate library. Include its CSS in the HEAD tag of your page
and its JS before the closing BODY tag. Code in listing 8.1 shows the library’s assets included on a page and
ready for use.

®https://github.com/amsul/pickadate.js/releases

https://github.com/amsul/pickadate.js/releases
https://github.com/amsul/pickadate.js/releases
https://github.com/amsul/pickadate.js/releases

Integrating Date Pickers 29

Listing 8.1 Including Pickadate library
<IDOCTYPE html>
<html>

<head>

<!-- Include library's base theme and date picker theme files -->

<link href="vendor/pickadate/compressed/themes/classic.css" rel="stylesheet">

<link href="vendor/pickadate/compressed/themes/classic.date.css" rel="stylesheet">
</head>
<body>

<seript src="http://code. jquery.com/jquery-1.10.2.min. js"></script>

<!-- Include library's JS files -->

<seript src="vendor/pickadate/compressed/picker. js"></script>

<script src="vendor/pickadate/compressed/picker.date. js"></script>

</body>
</html>

Q& Dependencies and browser support of Pickadate

Pickadate plugin requires jQuery to be present on your page in order to work. The plugin works
with all modern browsers - and even IE8+. For IE8 support include legacy.js file that comes with
the library.

Now that the library and one of its themes are included, we can use it on an input field and explore the
different options available.

2.2.2 Enabling Pickadate

Let’s enable Pickadate on an input field that will serve as a date picker. Imagine that you have a form
containing many different input fields and one of the necessary fields in the form is a text input field that
should allow the user to choose a date on a calendar. Enabling Pickadate on this text field will do two things:
create the date picker interface (initially hidden) and attach events that control the interface when the user
clicks inside of the input field. Code in listing 8.2 below shows how to enable Pickadate date picker on a text
input field inside of a form:

O 0O N O O b W N =

I = T =Y
O O b W N~

Integrating Date Pickers 30

Listing 8.2 Enabling Pickadate on an input field

<form>

<input id="date" name="date" type="text" placeholder="Choose a date">

<input type="submit" value="Submit" class="btn btn-info btn-block">

</form>

<I-- After including the date picker scripts -->
<script>
$(function() {
// Enable Pickadate on an input field
$('#date').pickadate();
1)

</script>

When Pickadate is enabled on the input field, you can see the date picker in action by clicking inside of
that input field. Screenshot in figure 8.3 below shows the effect of enabling Pickadate on the field:

|18 april, 2014 | | Submit
<4 April | 2
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 n 19
20 21 22 23 24 25 26
27 28 29 aon
" Today ¥ Clear

Figure 8.3 Pickadate enabled on an input field

There’s something interesting about invoking Pickadate this way, without any additional parameters. No
hidden input will be created, but instead the chosen date will be stored as the actual value of the input field.
Because the format of the chosen date (e.g. “18 April, 2014”) is standard enough to be submitted to the server
there is no need to duplicate the input fields. The need for the hidden input field comes when you want the
displayed date format to be different from the format of the value that is submitted to application’s back end.
Let’s take a look at changing the date format of the submitted value.

Integrating Date Pickers 31

2.3 Changing the date format

Most often, the date format of the submitted date picker value will be dictated by the back end requirements
depending on what needs to be done with the chosen date. By default, the format of the date picker is set
to ‘d mmmm, yyyy’, where ‘d’ is the date of the month (1-31), ‘mmmm’ is the full name of the month (e.g.
January) and ‘yyyy’ is the year in full form (e.g. 2014). If you want to change the format of the value that will
be submitted to the server you can pass that as ‘formatSubmit’ option to pickadate(). When this option is
used, a hidden input field is created and it’s name is set to the name of the initial input field plus suffix of
‘_submit’. Code in listing 8.3 shows how instead of default date format you can set a format of ‘yyyy/mm/dd’
on the hidden input field:

Listing 8.3 Setting the date format of hidden input field

$(function() {
// Enable Pickadate on an input field and

// specifying date format for hidden input field
$('#date').pickadate({
formatSubmit : 'yyyy/mm/dd’
1)
3

When the form is submitted, it will now contain two input fields, one named ‘date’ and another one
(hidden): ‘date_submit’. The format of the ‘date’ field will be the same as it was before, ‘d mmmm, yyyy’, but
the format of ‘date_submit” hidden input field will be ‘yyyy/mm/dd’, e.g ‘2014/04/18’. If you want to format
the hidden input field differently, use the table 8.1 below (from Pickadate documentation) to understand how
to format different components of the date: days, months and years:

Table 8.1 Formatting rules of Pickadate

Rule Description Range

d Date of the month 1-31

dd Date of the month with a leading zero 01-31

ddd Day of the week in short form Sun - Sat

dddd Day of the week in full form Sunday - Saturday
m Month of the year 1-12

mm Month of the year with a leading zero 01-12

mmm Month name in short form Jan - Dec

mmmm Month name in full form January - December
vy Year in short form 00 - 99

yyyy Year in full form 2000 - 2999

For example setting ‘formatSubmit’ option to MySQL datetime format would look like this:

// Setting format of the submitted value to conform to MySQL datetime format

formatSubmit : 'yyyy-mm-dd 00:00:00'

Now that you know how to change the date format of the hidden input field submitted to the back end,
let’s take a look at changing the date on the front end.

Integrating Date Pickers 32

2.3.1 Changing the date format of displayed value

To specify the format of the value that is displayed to the user after he or she chooses a date you can set the
‘format’ option to a desired date format. For example if you wanted to say “You chose Oct-25-2015" after the
user chose a date, you would do it by passing “You chose mmm-dd-yyyy’ as the format option as you can see
from code in listing 8.4:

Listing 8.4 Customizing format of displayed date

format : 'You chose mmm-dd-yyyy'

q& Escaping ‘d’,’'m’ and 'y’ characters

If you need to use ‘d’, ‘m’, ‘y’ characters in the format string other than for the date format, you
need to escape them by prepending an exclamation mark like this: “The !date is mm-dd-yyyy’. If
you just put “The date is mm-dd-yyyy’ you will see something like “The 25ate is 10-25-2015" which
is probably not what you intend.

Now that you know how to set formats for both, the visible and the hidden input fields, let’s explore
another area of Pickadate customization, changing the names of the input fields that will be sent to the server
when the form containing the date picker is submitted.

2.4 Modifying input fields

There are a many options that Pickadate provides when it comes to naming the input fields that will be sent
to the server. You can set an option to send only the hidden field (instead of the input field + hidden field),
otherwise you can give the hidden field a custom name using a suffix and a prefix options. Let’s take a look
at submitting just the hidden input first and then let’s learn how to customize hidden input name if it is sent
as an addition to the actual input field.

2.4.1 Making hidden input the only value submitted to the server

To send only the value contained in the hidden input you can set ‘hiddenName’ to true. Doing this will basically
replace the original text input with the hidden input and will give the name of the original input to the hidden
input. Code in listing 8.5 below shows how to enable this option along with custom format for the hidden
field and the effect that it has on the HTML of the date picker:

Listing 8.5 Substituting real input field with the hidden field
$(function() {
$('#date').pickadate({
formatSubmit : 'yyyy-mm-dd ©0:00:00',
hiddenName : true
1);
});

// The HTML of the input fields when the form is submitted will contain:
<input id="date" name="" type="text" placeholder="Choose a date">
<input type="hidden" name="date" id="date_hidden" value="2015-10-25 00:00:00">

Integrating Date Pickers 33

Q& Use this by default

In my opinion, submitting only the formatted value is necessary for a date picker since what is
displayed is not necessarily easy to parse by the server (especially when it comes to localization
issues). Using these two options in listing 8.5 is a good start for integrating Pickadate.

2.4.2 Renaming the hidden input field

In those cases when you need to submit both values, the displayed and the hidden value, you can customize
the name of the hidden input field by using ‘hiddenPrefix’ and ‘hiddenSuffix’ options. The ‘hiddenPrefix’
option sets a text string that will be prepended to the name of the hidden input. The ‘hiddenSuffix’ option
sets a text string that will be appended to the name of the hidden input, as specified above this option is set
to °_submit’ by default. For example if you wanted to have the name of the hidden input be “date_myfield”,
you would name the original input field “date” and add the hiddenSuffix option with a value of °_myfield’,
like it is shown in listing 8.6 below:

Listing 8.6 Changing the name of the hidden input field
$(function() {
$('#date').pickadate({
formatSubmit : 'yyyy-mm-dd 00:00:00',
hiddenSuffix : '_myfield'
1);
1)

// The HTML of the input fields when the form is submitted will contain:
<input id="date" name="" type="text" placeholder="Choose a date">
<input type="hidden" name="date_myfield" id="date_myfield" value="2015-10-25 00:00:00">

Great! You now are able to control the names and formats of the input fields that will be submitted with
your form containing the date picker. We’ll see these concepts in action later on when we build the integration
of a date picker with the back end so keep them as a reference. For now let’s take a look at setting a default
value in the date picker upon page load.

2.5 Setting default value of the date picker

Setting the default value of the date picker could be done in a few ways depending on the formatting of the
submitted date. If the date that will be displayed is the same as the date that will be submitted, nothing special
needs to be done, just set the ‘value’ attribute of the input field, e.g. ‘April 18, 2014’ and you are good to go. In
case when the submitted (hidden) value differs in formatting from the displayed value, you can set a default
value of the input field by adding ‘data-value’ HTML attribute to the original input field and format its value
according to the format of the submitted value (‘formatSubmit’). Code in listing 8.7 shows the latter, most
common case when the default value needs to use the same format as the submitted value:

Integrating Date Pickers 34

Listing 8.7 Setting the default value formatted as the submitted value

<input id="date" name="date" type="text" data-value="2015-10-25 00:00:00"

placeholder="Choose a date">

<script>
$(function() {
// Enable Pickadate on an input field using a custom format for submitted value
$('#date').pickadate({
formatSubmit : 'yyyy-mm-dd ©0:00:00'
1)
1)

</script>

Now when you load the page and click on the date picker you will see that by default it will be set to
October 25, 2015 just like we wanted it to be (figure 8.4):

|25 October, 2015 | [submit
< October [3
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24

“ 26 27 28 29 30 31

" Today ¥ Clear

Figure 8.4 Setting data-value results in the pre-defined calendar setting

2.6 Changing the language used in the date picker

Pickadate comes with an easy way to switch the language and the defaults used to name days, months and
to format dates to accomodate all users of your application. By including one of the provided language files
(get them here’) in the page where you use this date picker you can instantly change the locale used in the
date picker.

As a fun example, let’s change the names of the months used in the calendar to Pirate-themed expressions.
To do that, we’ll extend the defaults of the date picker and set the names of the months as an array passed

°https://github.com/amsul/pickadate.js/tree/dev/lib/translations

https://github.com/amsul/pickadate.js/tree/dev/lib/translations
https://github.com/amsul/pickadate.js/tree/dev/lib/translations

Integrating Date Pickers 35

to ‘monthsFull’ option. Code in listing 8.8 shows how with this simple addition before initializing the date
picker you can instantly change the locale used in the date picker:

Listing 8.8 Changing the language used in the date picker

<form>
<input id="date" name="date" type="text" placeholder="Choose a date, pirate">
<input type="submit" value="Submit" class="btn btn-info btn-block">

</form>

<script>
// Add custom names for the months
jQuery.extend(jQuery.fn.pickadate.defaults, {
monthsFull: ['Januarr!', 'Februahoy', 'Marrl!ch', 'Ayepril', 'Mayday’,

'Jolly June', 'Julaye', 'Arr!gust', 'Septembrum', 'Octobrum', 'Novembrum', 'Decembru\

});

$(function() {
// Enable Pickadate on an input field
$('#date').pickadate();

1)

</script>

With this simple addition, the date picker suddenly has a nice pirate feel to it, as you can see in the figure
8.5 below:

[25 Octabrum, 2015 | [submit |
< Octobrum 2015 [2
Sun Tue Wed Fri Sal
1 2 3
4 5 3] 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24

26 27 28 29 30 31

" Today X Clear

Figure 8.5 Pirate themed datepicker

The full list of options that you can customize in the plugin’s defaults is shown below in listing 8.9:

Integrating Date Pickers

36

Listing 8.9 Localization options of Pickadate

jQuery.extend(jQuery.fn.pickadate.defaults, ({

monthsFull: [],
monthsShort: [],
weekdaysFull: [],

weekdaysShort: []

today: '',

clear: '',

firstDay: 1,

format: '',

formatSubmit: "'
1)

// Array of full month names, like 'January'
// Array of short month names, like 'Jan', 'Feb' ...
// Array of full day names, like 'Monday', 'Tuesday'

,// Array of short day names, like 'Mon', 'Tue'

// String to be used to mark 'Today' button
// String to be used to mark 'Clear' button
// First day of the week

// Default format of the displayed value
// Default format of the submitted value

With this easy way to change localization options, adding your own languages to the plugin should now
be trivial. Have fun creating your own date picker localizations! Now that you know how to set and change
various options, set locale of the plugin and the default values, we can proceed with this chapter and implement
a date picker in a small web application. With the knowledge you have gained up to this point it will not be

a problem.

2.7 Building the back end for a date picker

Let’s build a complete application that will use a date picker to demonstrate the concepts you have learned in
this chapter. The back end of this application will process the submission of a form containing a date picker
and will do the following:

o If the date submitted is a valid date (i.e. the user didn’t put any malicious input), store the entry in the

database

« If the date submitted is not a valid date, show an error message to the user.

0~e Get the full application

Fully functional application source code is available on Github at https://github.com/msurguy/
frontend-book/tree/master/ch8/complete-application. Feel free to install it and see it in action on
your machine.

The algorithm of the whole application is illustrated in the diagram in figure 8.6 below:

https://github.com/msurguy/frontend-book/tree/master/ch8/complete-application
https://github.com/msurguy/frontend-book/tree/master/ch8/complete-application

Integrating Date Pickers

37

Integrating adate picker

Please choose your favorite date

Start 1May, 2014

‘ 23 May, 2014

4
. 4 S
Pick a date RS
18 19
25 26

13
20
27

N Today

15
22
29

* Clear

10
17
24
31

Submit to server

You have chosen: 2014-05-23 00:00:00
Previously chosen dates:

2014-05-22 00:00:00

2014-05-23 00:00:00

2014-05-31 00:00:00

2014-05-01 00:00:00

2014-05-23 00:00:00

Go back to the date picker

Figure 8.6 Diagram of the application

Integrating a date picker

Please choose your favoritedate

1May, 2014

Using this application flow, let’s create simple route definitions, the DB structure of the application, view
templates containing the date picker and finally, connect everything together into an application. Let’s get
started by creating two simple routes that will contain all logic of the application.

2.7.1 Creating the route definitions

Like you’ve seen in other chapters of this book, the application containing a form will have a minimal amount
of routes. Let’s create two routes, one that will show the form to the user and the other will process form

Integrating Date Pickers 38

submission. Code in listing 8.10 shows route definitions for these two application endpoints:

Listing 8.10 Route definitions for the application

// routes.php

// Show a page with a datepicker
Route: :get('/', function()

{

1)

// Process submission of the form containing the date picker
Route: :post('/', function()

{

1)

When the user navigates to the index route (“/”) of the application, we’ll display the date picker using
Pickadate plugin. Submission of the form containing the date picker will execute the POST index route. All
logic for the validation and processing of the form will be placed there. With these route placeholders in place,
let’s now create the DB structure that will store user’s submissions.

2.7.2 Creating the database structure and the model

The DB structure for this application will be incredibly simple. We’ll only store the date that the user chooses
and no other information beside the fields required by the back end framework (Laravel). The database
structure for our table called “dates” will be as follows:

« id (autoincrementing integer, primary key)
« date (datetime)

. created_at (datetime)

« updated_at (datetime)

Let’s create a migration for this simple table. In the terminal run the following command while you are
in the application’s root folder:

php artisan migrate:make create_dates_table

Running this command should create a file in “app/database/migrations” folder with a name “create_-
dates_table” in it. Open up this file and add the following migration definition to it (listing 8.11):

O 0O N O O b W N =

[T S T S T S S S G G NS ¢
N »~» © © 0 9 O O b Ww N =~ O

Integrating Date Pickers 39

Listing 8.11 Migration for the ‘dates’ table
<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateDateTable extends Migration {

public function up()

{
Schema: :create('dates', function($table)
{
$table->increments('id"');
$table->dateTime('date');
$table->timestamps();
1)
}
public function down()
{
Schema: :droplfExists('dates');
}

With this migration in place, let’s run the migration. Running the migration will create the DB structure
for our application. Run the migration with the following command in the Terminal:

php artisan migrate

o Configure DB settings

Before running the migration make sure you configured the DB settings in “app/config/-
database.php” file

Creating a model will allow us to work with the “dates” table as we would with any other objects in
PHP. Let’s go ahead and create “Date” model by placing the contents of code in listing 8.12 into a file called
“Date.php” in “app/models” folder:

Listing 8.12 Model for the ‘dates’ table

// app/models/Date.php
<?php

class Date extends Eloquent{}

With the database configured, the table created and the model defined, we can now create the templates
that will make up the user interface (front end) of the application.

Integrating Date Pickers 40

2.7.3 Creating the front end

There will be two view templates, one that shows a date picker (and an error if there is any) and another one
that shows the results of the form submission. Let’s create the first template by using Pickadate plugin. We’ll
set the format of the submitted value to MySQL datetime-friendly format and will assign a default date to
show in the date picker to be May 1st, 2014. Code in listing 8.13 shows the Blade template for the index page
(store it in “app/views/index.blade.php”):

Listing 8.13 Index page view template
@extends('layout')

@section('styles')

{{ HTML: :style('vendor/pickadate/compressed/themes/classic.css') }}

{{ HTML: :style('vendor/pickadate/compressed/themes/classic.date.css') }}
@endsection

@section('content')
<div class="row centered-form">
<div class="col-xs-12 col-sm-12 col-md-4 col-sm-offset-2 col-md-offset-4">
<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title">Integrating a date picker</h3>
</div>

<div class="panel-body">

{{ Form: :open() }}

<div class="form-group">

<label for="date">Please choose your favorite date</label>

<input id="date" name="date" type="text" data-value="2014-05-01 00:00:00" clas\
s="form-control" placeholder="Pick one...">
</div>

<input type="submit" value="Submit" class="btn btn-info btn-block">

{{ Form::close() }}
</div>
</div>
</div>
</div>
@stop

@section('scripts"')
{{ HTML: :script('vendor/pickadate/compressed/picker.js') }}
{{ HTML: :script('vendor/pickadate/compressed/picker.date.js') }}
<script type="text/javascript">

Integrating Date Pickers 41

$('#date').pickadate({
formatSubmit : 'yyyy-mm-dd ©00:00:00"',
hiddenName: true
1)
</script>
Gstop

0 Layout template used in the application

The layout Blade template for the application (“app/views/layout.blade.php”) can be retrieved from
the source on Github here'’

With the index page complete, let’s switch to the results page. When the form is submitted and validated
properly, we would like to show the value that user has submitted along with a list of all previously submitted
values. Let’s call this template “results.blade.php” and place it in “app/views” folder. We will place a loop
iterating over an array of objects containing previous user submissions along with the value that the user just
chose. Code in listing 8.14 shows the complete Blade template for the results page:

Listing 8.14 Results page view template

@extends('layout')

@section('content')
<div class="row centered-form">
<div class="col-xs-12 col-sm-12 col-md-4 col-sm-offset-2 col-md-offset-4">
<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title">Results</h3>
</div>
<div class="panel-body">
You have chosen: {{ $date }}

Previously chosen entries:

@foreach($dates as $entry)

{{ $entry->date }}</br>
@endforeach

Go back to the date pic\
ker
</div>
</div>
</div>
</div>
ostop

°https://github.com/msurguy/frontend-book/blob/master/ch8/complete-application/app/views/layout.blade.php

https://github.com/msurguy/frontend-book/blob/master/ch8/complete-application/app/views/layout.blade.php
https://github.com/msurguy/frontend-book/blob/master/ch8/complete-application/app/views/layout.blade.php

Integrating Date Pickers 42

With the view templates created we can now focus on adding actual logic in the application. Let’s place
that in the routes that we defined previously.

2.7.4 Adding the logic

The GET index route should just show us the index page. The POST route will retrieve the form submission,
confirm that the date submitted is indeed a date and then store the submission in the database. Let’s complete
the GET index route first. Code in listing 8.15 shows that we only need to render the “index.blade.php”
template when the user navigates to the index page of the application:

Listing 8.15 GET Index route completed

// Show a page with a datepicker
Route: :get('/', function()
{

return View: :make('index');

1),

The POST index route is where the magic of date validation and processing happens. This route will
contain the following logic (listing 8.16):

Listing 8.16 POST Index route

// Process submission of the form containing the date picker
Route: :post('/', function()

{
// Get user's input

// Validate input
if(/* date isn't empty && date is valid */){
// Create a new entry in the DB using Eloquent ORM
// Retrieve all previously submitted dates
// Display the results page, passing the date that the user has submitted
// and all dates previously submitted
} else {
// Redirect to index page with an error notification when input isn't valid
}
1)

Great. The skeleton of the route tells us that we should check if the date is valid but there is no built-in
method in PHP to do that if we provide a string formatted as MySQL datetime field. To validate the date in
PHP and make sure it is in MySQL datetime format let’s use this little function (place it in routes.php for
example):

© 0O N O O B W N =

NN N R R R R | s s oy oy
N » ©®© © 0 < O O b Ww N -~ O

Integrating Date Pickers 43

Listing 8.17 Date validator

// A helper function to determine if date input is valid or not
function validateDate($date, $format = 'Y-m-d H:i:s')
{

$d = DateTime: :createFromFormat($format, $date);

return $d && $d->format($format) == $date;

Now we can use this function to determine if the input that the user provided is indeed a date and not some
malicious SQL injection. Let’s put this all together and complete the POST index route. Code in listing 8.18
shows the POST index route containing the logic to gather and verify user’s input. When the input validates,
the application will create a new entry in the “dates” table, otherwise an error message will be passed to the
index page of the application:

Listing 8.18 Complete route definition for the POST index route

// Process submission of the form containing the date picker
Route: :post('/', function()
{

// Get user's input

$date = Input::get('date');

// Validate input
if($date != '' &R validateDate($date)){
// Create a new entry in the DB using Eloquent ORM
$newDate = new Date;
$newDate->date = $date;
$newDate->save();

// Retrieve all previously submitted dates
$dates = Date::all();

return View: :make('result', ['date' => $date, 'dates' => $dates]);
} else {
// Redirect to index page with an error notification when input isn't valid
return Redirect::to('/')->with('invalid_date', true);
}
3

The last step that is required is to actually show the error message to the user. Let’s add the following
code in the “index.blade.php” file before opening the form tag (listing 8.19):

Integrating Date Pickers 44

Listing 8.19 Showing the error messages to the user

<div class="panel-body">

@if(Session::has('invalid_date'))
<div class="alert alert-warning alert-dismissable">
You have not chosen a date or have entered invalid input. Please try picking a date \
again.
</div>

@endif

{{ Form: :open() }}

That’s it! With this code in place we now have a fully functional application that uses a date picker to
assist the user with choosing a particular date. You can now take advantage of all features of Pickadate plugin
and modify its options to suit your application.

Q& Check out completed application

The complete application is hosted online and is available at this URL: http://books.maxoffsky.com/
frontend/ch8. Enjoy!

2.8 Summary

In this chapter you have learned a great deal about date pickers. You have learned the theory behind using a
date picker to help the user choose a date and store it in a format that your application will understand. In
the process you have met a great responsive library for integrating date pickers called “Pickadate” and have
explored its many options of formatting the date, changing the looks and localizing it to fit your application’s
audience. Finally, you have applied the skills from this chapter to build a fully functional back end application
that integrates a date picker. With the knowledge acquired it will be now easy to use other date pickers and
integrate a time picker that comes with Pickadate.

In the next chapter of the book we will shift the gears a bit and get into more advanced topics such as
AJAX file uploads. You’ll meet one of the greatest libraries providing AJAX file upload functionality and
photo cropping/resizing.

http://books.maxoffsky.com/frontend/ch8
http://books.maxoffsky.com/frontend/ch8

	Table of Contents
	Introduction
	About the author
	Prerequisites
	Conventions for the terms used in the book
	Back end framework of choice for the examples in the book
	Design patterns and purpose of the book
	Source Code

	Using Bootstrap 3 HTML/CSS/JS Framework
	Using a CDN to serve Bootstrap CSS/JS
	Using self-hosted Bootstrap CSS/JS with a back end framework
	Creating HTML for the registration and login page
	Converting the registration and login forms to Laravel Blade templates
	Helpful Resources and Packages
	Summary

	Integrating Date Pickers
	Theory behind date pickers
	Integrating Pickadate library
	Changing the date format
	Modifying input fields
	Setting default value of the date picker
	Changing the language used in the date picker
	Building the back end for a date picker
	Summary

