A DEFINITIVE AND COMPREHENSIVE GUIDE

FRONT-END
ENGINEER’S GUIDE TO

COMPUTER
NETWORKS

WHAT EVERY FRONT-END ENGINEER NEED TO KNOW ABOUT
COMPUTER NETWORKS




Front-End Engineer’s Guide to
Computer Networks

Version 1.0.0

Orkhan Huseynli

November 2024



Introduction
TCP/IP Model
Network access layer
Internet layer
IP address
Subnetting
Routing
Non-routable addresses
Transport layer
Protocols
UDP protocol
TCP protocol
Packet details
Three-way handshake
Closing the connection
Application layer
Custom protocol
Well-known protocols
Hypertext Transfer Protocol
Unified Resource Locators
HTTP request
HTTP response
Headers
Cookies
Security
TLS handshake
WebSocket Protocol
Connection persistance

Real-time communication protocol

Frame format

Domain Name Resolution
Recursive resolution
DNS records

NoRENCIEN BN ) I SN N

10
11
11
12
12
13
13
14
15
15
16
17
17
18

20
21
21

23

23

24
25
25

28

28

29

30



Introduction

Understanding the basics of computer networks is important for front-end engineers
who want to create web applications that are fast, secure, and reliable. Every time a user
visits a website, there is a complex process happening behind the scenes. Data travels
across the internet, passing through different layers and following rules set by protocols
like TCP and UDP. Knowing how this works can help engineers improve the
performance of their applications and solve problems when things go wrong, such as
slow loading times or broken connections.

It’s also important for front-end engineers to understand protocols like HTTP and
WebSocket, which they use every day. These protocols manage how data is sent and
received in web applications. Learning about security features like TLS and
understanding how DNS works to resolve domain names can make front-end engineers
utilize browser’s features to make their website faster. This guide explains these
concepts in a simple way, connecting theory to practical examples that will help
engineers make better choices in their work. Whether it’s optimizing how data is loaded
or ensuring real-time communication features work smoothly, this book provides the
essential knowledge front-end engineers need.

TCP/IP Model

Let’s say we have two computers and in a hypothetical world, we want them to send and
receive data between them. The first thing that we need is a transmission medium; a
channel where data can flow. It can be a copper wire, fiber-optic cable or even air. Each
of the computers need to have a network interface to send and receive signals. In
order to properly communicate both of the interfaces need to agree on a set of rules. We
call those sets of rules a protocol. A very basic protocol would be how each computer
encodes and decodes electrical signals. If they don’t agree on a rule, the same electric
signal might mean different things for each device.

We're going to talk about a handful of protocols, so it might be a good idea to separate
different protocols into abstraction layers and look at each layer independently. Luckily
such abstraction layers already exist and to learn computer networks, all we need to do
is study those layers independently. Introducing the TCP/IP model:



Application lac/er

T ramSPort layer

Internet layer

Network access lou./er

TCP/IP model

You might have heard about the OSI model which has more layers (7 to be specific),
but for the sake of learning TCP/IP model is more than enough for me. As a front-end
engineer you might have heard people saying “layer 7 proxy” or “layer 3 proxy” so this
has something to do with which layer the proxy operates on. If you don’t know what a
proxy is, don’t worry you’ll understand soon enough.

TCP/IP model is simply an abstraction to easily understand what happens on each layer,
without being forced to understand everything at once. Each layer builds on top of the
bottom layer. For example, the network access layer deals with the transmission
medium whether it is an air hosting radio waves or a copper wire, so when we’re on the
application layer we don’t have to worry about it. Talking about the network access
layer, let’s dive into it in the next section.

Network access layer

As we mentioned before, each device has an interface to send and receive data over the
network. This is a small piece of hardware called Network Interface Card (NIC), and
each of them has a unique identifier called a MAC address (Medium Access Control).
MAC addresses are primarily assigned by device manufacturers, and are therefore often
referred to as the burned-in address, or as hardware address, or physical address. MAC
address is simply a 48 bit number represented as six pairs of hexadecimals.



00-BO-DO-63-2-26,

Organiza’tiona“t/ unique indentifier Speci{:ic to Network Interface Card

The first half of the MAC address is unique to each manufacturer and assigned by the
Institute of Electrical and Electronics Engineers, or IEEE. There are some MAC
addresses that do not belong to anyone but are used for special purposes. For example
FF:FF:FF:FF:FF address is called broadcast address. When your phone isn’t connected
to WiFi it broadcasts to FF:FF:FF:FF:FF address that it is looking for a WiFi access
point. WiFi access points that are discoverable will respond to this message so that you
can connect it.

When a device wants to send a message to another device it composes a special packet
called ethernet frame and sends it over the transmission medium. Ethernet frame is a
simple packet that contains sender’s MAC address, receiver’s MAC address, the actual
data and additional information such as checksum calculated to verify integrity of the
package.

8 bytes 6 bytes 6 bytes 2 bytes 46-1500 bytes 4 bytes
Destination Source
Preamble Address Address Type Data Fes

Ethernet frame

Let’s go over the frame’s fields to understand what they are. Preamble is just alternating
os and 1s to allow the receiver's clock to synchronize with the sender. After that we have
6 bytes destination and 6 bytes source MAC addresses which denote who sent the
message and who is the receiver. Type field is not important for our purposes, but
depending on the value it might show the length of the payload. The data field contains
the actual data and at the end we have 4 bytes of Frame Check Sequence which is an
error detection mechanism to see if data is lost or tampered with during transmission.

In a nutshell, if a device wants to send another device a message, it would simply put it
into an ethernet frame and send it. The receiving side would understand how the frame
is structured and interpret it as such.

What happens in the network access layer is basically a Point-to-Point Protocol.
Network switches are devices that usually operate on the network access layer. If you



send a message to your friend who lives in another country, there are a whole lot of
things that happen. One of which is routing a package to the correct location. Let’s look
at routing in the next section.

Internet layer

Let’s suppose that you're sending a message from your phone to your friend who is
living in another country. Clearly, you two are not connected directly, so a
Point-to-Point Protocol is not very much useful here. We want our message to be routed
across the internet to where it needs to go. If you're chatting on WhatsApp, your
message needs to find WhatsApp servers and from there it would go to your friend’s
device. Keep in mind that we’re now one layer above, so we don’t need to worry about
the things that happen at the network access layer. We assume that they just happen to
happen. Let’s look at how a message is routed on the internet.

IP address

When a device is connected to a network, it is assigned a network address, called IP
address. IP has several versions (e.g. v4 and v6), but for simplicity, we’ll talk about IPv4.
In this case the IP address is a 32 bit number and using this number it is easy to route
a message to where it needs to go.

IPv4 addresses are usually written as 4 decimals separated by a dot. Since each number
between dots is 8 bits (8 x 4 = 32), each decimal will be between 0 and 255. For
example, 192.168.1.1 is a private IP address. You've probably seen it when you open
your WiFi Modem’s home page on your browser.

Router

—

=

2 E

Device A4 Device B Device ¢

Devices connected via a router



Keep in mind that if you are not connected to a network, you don’t get an IP address,
that’s why it’s called a network address. If we are connected to a Local Area Network
(LAN) and we get assigned an IP address. If device A wants to send a message to device
B, it needs to compose an IP packet and send it to the router. After that, it’s the
router's job to send it to the recipient. Here is what an IP packet looks like:

E 32 bits >

Version THL TOS Total lengtl«
Identification Flags Fragment offset
TTL . Protocol Header checksum

Source address

Destination address

Options

Data

IP Packet

There’re plenty of fields inside an IP packet, but let’s talk about some of the important
ones. You don’t need to know all of them and you can read detailly about them on the
internet if you're curious. As you might have already guessed, destination and source
addresses are IP addresses of sender and receiver. And the data is the actual data that is
going to be sent. The other important field here is the TTL (Time To Live) field which
is often used as hop count. When a router receives an IP packet, it decrements the hop
count by one and this way avoids the routing loop. Routing loop happens when a
packet’s destination cannot be found, so it keeps looping inside a bunch of routers.



Subnetting

Routers use subnetting to determine where the packet needs to go. Subnetting is simply
dividing the IP address into two parts: network part and host part.

Network part Host part

e Y
waes - 192,168.100.10

wms D55 255 2550

IP subnetting

A router uses a subnet mask to determine which is the network part of and which is the
host part. If the router sees that destination IP address is inside the local network, it will
send the packet to the proper device. If the router sees that the destination IP address is
not inside this network it will send it to a default gateway. The default gateway is
another router who will do the same to determine where the packet needs to go.

Routing

RIPE NCC

AFRINIC

LACNIC ‘ ' o
&

Internet Assigned Numbers Authority (IANA) is an organization who controls
which region takes control of which IP prefixes. You can see these regions in the picture
above. Those regions in itself are also divided into few regions leaving a small number of



bits for host addresses. For example, 192.168.100.10/24 means, the first 24 bits
determine the network address, then the last 8 bits determine the host address. It
means there can be only 2% host machines on this network. You can see an example
hierarchy in the following picture:

12.0.0.0/8 210.0.0.0/7

202.0.0.0/7

12.0.00/8 202.12.128.018

TELSTRA

211.120.0.0M2

211.120.132.0/22

211.120.132.0022

To simplify subnetting and routing let’s look at an example. Let’s say you're a postman
and you received a packet. You know who sent this message and you see the destination
address. Looking at the prefix of destination address (network portion) you decide if the
recipient is in your neighborhood. If not, you give this packet to some other post office
of your current state. looking at the prefix of the address, they determine if this address
is inside this state. If not, they redirect it to the post office of the country. If the address
is inside this country the packet will be sent to the proper state’s post office. If not...
Well, you got the idea.

Non-routable addresses

Since, IPv4 is only 32 bits long and host addresses are limited, there are some special IP
addresses called non-routable addresses used for only inside private networks. If
you wondered why at every house there is 192.168.1.1 address, it’s because this is in
range of non-routable addresses.

There are three main ranges of non-routable IP addresses specified by the Internet
Engineering Task Force (IETF):



10.0.0.0 — 10.255.255.255 (10.0.0.0/%)
172.16.0.0 — 172.31.255.255 (172.16.0.0/12)
192.168.0.0 — 192.168.255.255 (192.168.0.0/16)

Non-routable IP addresses

Routers usually use Network Address Translation (NAT) to convert between
private and public IP addresses. This is out of scope of this book but if you’re curious, I
recommend checking out Hussein Nasser’s video on NAT. Your private IP address is
only visible to your router, and anyone in the public knows you by your public IP
address.

Now let’s say the IP packet found its way to the correct device. Inside a device there’re
lots of applications that send and receive messages over the network. For example, on
your laptop you might chat on WhatsApp desktop, visit Twitter using Google Chrome
and be inside a Zoom meeting. How do we know to which application the data belongs?
The answer is using a port number. Let’s look at the transport layer in the next section
to learn the details.


https://youtu.be/RG97rvw1eUo

