


Front-End Engineer’s Guide to

Computer Networks

Version 1.0.0

Orkhan Huseynli

November 2024



Introduction 4

TCP/IP Model 4

Network access layer 5

Internet layer 7

IP address 7

Subnetting 9

Routing 9

Non-routable addresses 10

Transport layer 11

Protocols 11

UDP protocol 12

TCP protocol 12

Packet details 13

Three-way handshake 13

Closing the connection 14

Application layer 15

Custom protocol 15

Well-known protocols 16

Hypertext Transfer Protocol 17

Unified Resource Locators 17

HTTP request 18

HTTP response 20

Headers 21

Cookies 21

Security 23

TLS handshake 23

WebSocket Protocol 24

Connection persistance 25

Real-time communication protocol 25

Frame format 28

Domain Name Resolution 28

Recursive resolution 29

DNS records 30



Introduction

Understanding the basics of computer networks is important for front-end engineers

who want to create web applications that are fast, secure, and reliable. Every time a user

visits a website, there is a complex process happening behind the scenes. Data travels

across the internet, passing through different layers and following rules set by protocols

like TCP and UDP. Knowing how this works can help engineers improve the

performance of their applications and solve problems when things go wrong, such as

slow loading times or broken connections.

It’s also important for front-end engineers to understand protocols like HTTP and

WebSocket, which they use every day. These protocols manage how data is sent and

received in web applications. Learning about security features like TLS and

understanding how DNS works to resolve domain names can make front-end engineers

utilize browser’s features to make their website faster. This guide explains these

concepts in a simple way, connecting theory to practical examples that will help

engineers make better choices in their work. Whether it’s optimizing how data is loaded

or ensuring real-time communication features work smoothly, this book provides the

essential knowledge front-end engineers need.

TCP/IP Model

Let’s say we have two computers and in a hypothetical world, we want them to send and

receive data between them. The first thing that we need is a transmission medium; a

channel where data can flow. It can be a copper wire, fiber-optic cable or even air. Each

of the computers need to have a network interface to send and receive signals. In

order to properly communicate both of the interfaces need to agree on a set of rules. We

call those sets of rules a protocol. A very basic protocol would be how each computer

encodes and decodes electrical signals. If they don’t agree on a rule, the same electric

signal might mean different things for each device.

We’re going to talk about a handful of protocols, so it might be a good idea to separate

different protocols into abstraction layers and look at each layer independently. Luckily

such abstraction layers already exist and to learn computer networks, all we need to do

is study those layers independently. Introducing the TCP/IP model:



You might have heard about the OSI model which has more layers (7 to be specific),

but for the sake of learning TCP/IP model is more than enough for me. As a front-end

engineer you might have heard people saying “layer 7 proxy” or “layer 3 proxy” so this

has something to do with which layer the proxy operates on. If you don’t know what a

proxy is, don’t worry you’ll understand soon enough.

TCP/IP model is simply an abstraction to easily understand what happens on each layer,

without being forced to understand everything at once. Each layer builds on top of the

bottom layer. For example, the network access layer deals with the transmission

medium whether it is an air hosting radio waves or a copper wire, so when we’re on the

application layer we don’t have to worry about it. Talking about the network access

layer, let’s dive into it in the next section.

Network access layer

As we mentioned before, each device has an interface to send and receive data over the

network. This is a small piece of hardware calledNetwork Interface Card (NIC), and

each of them has a unique identifier called aMAC address (Medium Access Control).

MAC addresses are primarily assigned by device manufacturers, and are therefore often

referred to as the burned-in address, or as hardware address, or physical address. MAC

address is simply a 48 bit number represented as six pairs of hexadecimals.



The first half of the MAC address is unique to each manufacturer and assigned by the

Institute of Electrical and Electronics Engineers, or IEEE. There are some MAC

addresses that do not belong to anyone but are used for special purposes. For example

FF:FF:FF:FF:FF address is called broadcast address. When your phone isn’t connected

to WiFi it broadcasts to FF:FF:FF:FF:FF address that it is looking for a WiFi access

point. WiFi access points that are discoverable will respond to this message so that you

can connect it.

When a device wants to send a message to another device it composes a special packet

called ethernet frame and sends it over the transmission medium. Ethernet frame is a

simple packet that contains sender’s MAC address, receiver’s MAC address, the actual

data and additional information such as checksum calculated to verify integrity of the

package.

Let’s go over the frame’s fields to understand what they are. Preamble is just alternating

0s and 1s to allow the receiver's clock to synchronize with the sender. After that we have

6 bytes destination and 6 bytes source MAC addresses which denote who sent the

message and who is the receiver. Type field is not important for our purposes, but

depending on the value it might show the length of the payload. The data field contains

the actual data and at the end we have 4 bytes of Frame Check Sequence which is an

error detection mechanism to see if data is lost or tampered with during transmission.

In a nutshell, if a device wants to send another device a message, it would simply put it

into an ethernet frame and send it. The receiving side would understand how the frame

is structured and interpret it as such.

What happens in the network access layer is basically a Point-to-Point Protocol.

Network switches are devices that usually operate on the network access layer. If you



send a message to your friend who lives in another country, there are a whole lot of

things that happen. One of which is routing a package to the correct location. Let’s look

at routing in the next section.

Internet layer

Let’s suppose that you’re sending a message from your phone to your friend who is

living in another country. Clearly, you two are not connected directly, so a

Point-to-Point Protocol is not very much useful here. We want our message to be routed

across the internet to where it needs to go. If you’re chatting on WhatsApp, your

message needs to find WhatsApp servers and from there it would go to your friend’s

device. Keep in mind that we’re now one layer above, so we don’t need to worry about

the things that happen at the network access layer. We assume that they just happen to

happen. Let’s look at how a message is routed on the internet.

IP address

When a device is connected to a network, it is assigned a network address, called IP

address. IP has several versions (e.g. v4 and v6), but for simplicity, we’ll talk about IPv4.

In this case the IP address is a 32 bit number and using this number it is easy to route

a message to where it needs to go.

IPv4 addresses are usually written as 4 decimals separated by a dot. Since each number

between dots is 8 bits (8 x 4 = 32), each decimal will be between 0 and 255. For

example, 192.168.1.1 is a private IP address. You’ve probably seen it when you open

your WiFi Modem’s home page on your browser.



Keep in mind that if you are not connected to a network, you don’t get an IP address,

that’s why it’s called a network address. If we are connected to a Local Area Network

(LAN) and we get assigned an IP address. If device A wants to send a message to device

B, it needs to compose an IP packet and send it to the router. After that, it’s the

router's job to send it to the recipient. Here is what an IP packet looks like:

There’re plenty of fields inside an IP packet, but let’s talk about some of the important

ones. You don’t need to know all of them and you can read detailly about them on the

internet if you’re curious. As you might have already guessed, destination and source

addresses are IP addresses of sender and receiver. And the data is the actual data that is

going to be sent. The other important field here is the TTL (Time To Live) field which

is often used as hop count. When a router receives an IP packet, it decrements the hop

count by one and this way avoids the routing loop. Routing loop happens when a

packet’s destination cannot be found, so it keeps looping inside a bunch of routers.



Subnetting

Routers use subnetting to determine where the packet needs to go. Subnetting is simply

dividing the IP address into two parts: network part and host part.

A router uses a subnet mask to determine which is the network part of and which is the

host part. If the router sees that destination IP address is inside the local network, it will

send the packet to the proper device. If the router sees that the destination IP address is

not inside this network it will send it to a default gateway. The default gateway is

another router who will do the same to determine where the packet needs to go.

Routing

Internet Assigned Numbers Authority (IANA) is an organization who controls

which region takes control of which IP prefixes. You can see these regions in the picture

above. Those regions in itself are also divided into few regions leaving a small number of



bits for host addresses. For example, 192.168.100.10/24 means, the first 24 bits

determine the network address, then the last 8 bits determine the host address. It

means there can be only 2
8
host machines on this network. You can see an example

hierarchy in the following picture:

To simplify subnetting and routing let’s look at an example. Let’s say you’re a postman

and you received a packet. You know who sent this message and you see the destination

address. Looking at the prefix of destination address (network portion) you decide if the

recipient is in your neighborhood. If not, you give this packet to some other post office

of your current state. looking at the prefix of the address, they determine if this address

is inside this state. If not, they redirect it to the post office of the country. If the address

is inside this country the packet will be sent to the proper state’s post office. If not…

Well, you got the idea.

Non-routable addresses

Since, IPv4 is only 32 bits long and host addresses are limited, there are some special IP

addresses called non-routable addresses used for only inside private networks. If

you wondered why at every house there is 192.168.1.1 address, it’s because this is in

range of non-routable addresses.

There are three main ranges of non-routable IP addresses specified by the Internet

Engineering Task Force (IETF):



Routers usually use Network Address Translation (NAT) to convert between

private and public IP addresses. This is out of scope of this book but if you’re curious, I

recommend checking out Hussein Nasser’s video on NAT. Your private IP address is

only visible to your router, and anyone in the public knows you by your public IP

address.

Now let’s say the IP packet found its way to the correct device. Inside a device there’re

lots of applications that send and receive messages over the network. For example, on

your laptop you might chat on WhatsApp desktop, visit Twitter using Google Chrome

and be inside a Zoom meeting. How do we know to which application the data belongs?

The answer is using a port number. Let’s look at the transport layer in the next section

to learn the details.

https://youtu.be/RG97rvw1eUo

