
0 Stack

00 To know a bit more about the Forth language, let’s
launch gforth in a terminal.

Here we go:

gforth ←↩
Gforth 0.7.2, Copyright (C) 1995-2008
Free Software Foundation, Inc.
Gforth comes with ABSOLUTELY NO WARRANTY;
for details type ‘license’
Type ‘bye’ to exit

01 Forth uses a Stack as a way to pass parameters to,
and get results from operations. Entering numbers will
put these numbers on the Stack. Enter two numbers.

42 ←↩ok
17 ←↩ok
4807 ←↩ok

02 You can print the number that is currently at the top
of the Stack, using the dot symbol: .

. ←↩ 4807 ok

. ←↩ 17 ok

. ←↩ 42 ok

03 Printing the number removes it from the Stack. Put
two numbers on the Stack again. You can enter several
numbers on the same line.

47 150 ←↩ok

04 You can add the two numbers at the top of the Stack
by entering the + sign.

Let’s try:

+ ←↩ok
. ←↩ 197 ok

1

05 Just like numbers, the + and . symbols should be
separated by space. Try not separating them and see
what you get. (We don’t need to know about the trace
information for now).

42 17 +. ←↩
:8: Undefined word
42 17 >>>+.<<<
Backtrace:
$103D82A08 throw
$103D98C90 no.extensions
$103D82CC8 interpreter-notfound1

06 Other arithmetic operations are available as well.
They all use the Stack as a container for integer values.
Try them.

47 150 - . ←↩ -103 ok
47 150 * . ←↩ 7050 ok
150 47 / . ←↩ 3 ok
4807 47 / . ←↩ 102 ok

07 Enter two numbers on the Stack, add them, then
multiply the result by another number.

OK.

4807 3 + 42 * . ←↩ 202020 ok

08 To get the remainder of a division, use MOD. 4807 42 MOD . ←↩ 19 ok

09 You can also obtain both quotient and remainder,
using the word /MOD. The quotient will be at the top of
the Stack, and the remainder will be just below the top.

4807 7 /MOD ←↩ok
. ←↩ 686 ok
. ←↩ 5 ok

0A Enter a number, then print its opposite, using
NEGATE.

17 NEGATE . ←↩ -17 ok

0B Print 32% of 4807 (approximately). 4807 32 * 100 / . ←↩ 1538 ok

0C Give a more precise result (still using integer val-
ues). You can print the integer part and the fractional
part separately.

480700 32 * 100 / 100 /MOD . . ←↩ 1538 24

0D Enter two numbers, then print the greatest number,
using MAX.

42 17 MAX . ←↩ 42 ok

0E Enter two numbers, then print the smallest number,
using MIN.

42 17 MIN . ←↩ 17 ok

0F Enter four numbers on the Stack, and print the
greatest number.

42 17 255 -13 MAX MAX MAX . ←↩ 255 ok

→ Forth programs are made of numbers and words, separated by space.

→ Numbers are pushed on a data Stack, words are interpreted and executed on the fly.

→ Numbers enter and leave the Stack in a First In, First Out fashion.

→ . , + , etc. are words, as well as MOD or MAX.

→ Words consume their arguments, removing them from the Stack.

→ Forth uses Reverse Polish Notation for all arithmetic expressions; the order of operations determines
the order of evaluation (no need for parentheses).

2

1 Arrange

10 Numbers are usually removed from the Stack by the
words that use them. If you want to keep a number on
the Stack and use it as a parameter for a word, you can
duplicate it, with the word DUP.
Draw the successive states of the Stack to better under-
stand the way it works.

42 DUP ←↩ok
. . ←↩ 42 42 ok

42 DUP . .

42 42 42

42

11 Find a sequence of words that computes the square
of a number without typing the number twice. Try your
sequence on several values.

42 DUP * . ←↩ 1764 ok
-7 DUP * . ←↩ 49 ok

42 DUP * .

42 42 1764

42

12 Ask gforth to compute the value of 24 and 28. 2 DUP DUP DUP * * * . ←↩ 16 ok

2 DUP DUP DUP * * * .

2 2 2 2 4 8 16

2 2 2 2 2

2 2 2

2

2 DUP * DUP * DUP * . ←↩ 256 ok

2 DUP * DUP * DUP * .

2 2 4 4 16 16 256

2 4 16

3

13 When you want a copy of the number just below the
top instead of a copy of the top, use OVER. Try it.

42 17 OVER . . . ←↩ 42 17 42 ok

42 17 OVER . . .

42 17 42 17 42

42 17 42

42

14 Find a sequence of words that given two numbers a
and b, leaves the Stack with the numbers a, a + b.
(Remember that repeating . will print the stack content
in reverse order).

42 17 OVER + . . ←↩ 59 42 ok

42 17 OVER + . .

42 17 42 59 42

42 17 42

42

100 99 OVER + . . ←↩ 199 100 ok

100 99 OVER + . .

100 99 100 199 100

100 99 100

100

15 Sometimes you need to exchange the top of the
Stack with the number just below. That’s when you
use the word SWAP.

42 17 SWAP . . ←↩ 42 17 ok

42 17 SWAP . .

42 17 42 17

42 17

16 Find a sequence of words that given two numbers a
and b, will compute (approximately) 100a

b .
42 17 SWAP 100 * SWAP / . ←↩ 247 ok

42 17 SWAP 100 * SWAP / .

42 17 42 100 4200 17 247

42 17 42 17 4200

17

17 42 SWAP 100 * SWAP / . ←↩ 40 ok

17 42 SWAP 100 * SWAP / .

17 42 17 100 1700 42 40

17 42 17 42 1700

42

3 9 SWAP 100 * SWAP / . ←↩ 33 ok

3 9 SWAP 100 * SWAP / .

3 9 3 100 300 9 33

3 9 3 9 300

9

4

17 You can also move the value that is in the third po-
sition to the top of the Stack using ROT.

1 2 3 ROT . . . ←↩ 1 3 2 ok

1 2 3 rot . . .

1 2 3 1 3 2

1 2 3 2

1 2

42 17 4807 ROT . . . ←↩ 42 4807 17 ok

42 17 4807 ROT . . .

42 17 4807 42 4807 17

42 17 4807 17

42 17

18 Using OVER twice duplicates the two numbers at the
top of the Stack1.

42 17 OVER OVER ←↩ok
. . . . ←↩ 17 42 17 42 ok

42 17 OVER OVER

42 17 42 17 42 17 42

42 17 42 17 42

42 17 42

42

19 Using ROT twice rotates the number at the top of the
Stack under the number just below the top2.

Ok

1 2 3 ROT ROT . . . ←↩ 2 1 3 ok

1 2 3 ROT ROT . . .

1 2 3 1 2 1 3

1 2 3 1 3

1 2 3

42 17 4807 ROT ROT . . . ←↩ 17 42 4807 ok

42 17 4807 ROT ROT . . .

42 17 4807 42 17 42 4807

42 17 4807 42 4807

42 17 4807

1A Enter three numbers, then print them in the order
they were entered.

Easy:
1 2 3 SWAP ROT . . . ←↩ 1 2 3 ok

1 2 3 SWAP ROT . . .

1 2 3 2 1 2 3

1 2 3 2 3

1 1 3

42 17 4807 SWAP ROT . . . ←↩ 42 17 4807

42 17 4807 SWAP ROT . . .

42 17 4807 17 42 17 4807

42 17 4807 17 4807

42 42 4807

1The word 2DUP is a faster equivalent of OVER OVER.
2The word -ROT is a faster equivalent of ROT ROT.

5

1B Enter two numbers, then print them in ascending
order. Test your sequence by entering the numbers in a
different order.

42 17 OVER OVER MAX ROT ROT MIN ←↩ok
. . ←↩ 17 42 ok

42 17 OVER OVER MAX ROT ROT MIN

42 17 42 17 42 42 17 17

42 17 42 17 42 42 42

42 17 42 17 42

42

17 42 OVER OVER MAX ROT ROT MIN ←↩ok
. . ←↩ 17 42 ok

17 42 OVER OVER MAX ROT ROT MIN

17 42 17 42 42 17 42 17

17 42 17 42 42 17 42

17 42 17 42 42

17

1C In your last test, replace the sequences OVER OVER
and ROT ROT with faster words 2DUP and -ROT.

42 17 2DUP MAX -ROT MIN ←↩ok
. . ←↩ 17 42 ok

42 17 2DUP MAX -ROT MIN

42 17 17 42 17 17

42 42 17 42 42

17 42 42

42

17 42 2DUP MAX -ROT MIN ←↩ok
. . ←↩ 17 42 ok

17 42 2DUP MAX -ROT MIN

17 42 42 42 42 17

17 17 42 17 42

42 17 42

17

1D Enter three numbers, then print them in ascending
order, using the sequence for sorting two numbers.
You can use (and) to comment on what happens on
the Stack3.

42 17 4807 ←↩ok
2DUP MAX -ROT MIN (42,4807,17) ←↩ok
ROT (4807,17,42) ←↩ok
2DUP MAX -ROT MIN (4807,42,17) ←↩ok
-ROT (17,4807,42) ←↩ok
2DUP MAX -ROT MIN (17,4807,42) ←↩ok
ROT (4807,42,17) ←↩ok
. . . ←↩ 17 42 4807 ok

42 17 4807 2DUP MAX -ROT MIN ROT 2DUP MAX -ROT MIN -ROT 2DUP MAX -ROT MIN ROT

42 17 4807 4807 4807 4807 17 42 42 42 42 17 42 42 4807 42 42 17

42 17 17 4807 17 4807 17 17 42 17 42 4807 4807 42 4807 4807 42

42 4807 17 4807 42 4807 42 17 42 4807 17 42 4807 4807 17 4807

17 42 42 17 4807 4807 4807 17 17

42 4807 17

There must be less tedious ways to do this!

3Be careful: (is a Forth word, i.e. it must be separated from the first word of comment by a space.

6

1E When you don’t need a number on the Stack any
more, you can get rid of it with DROP.

42 17 DROP . ←↩ 42 ok

1F The word 2DROP is a faster way to execute
DROP DROP in order to eliminate 2 values from the
Stack.

42 17 23 2DROP . ←↩ 42 ok

→ Values on the Stack can be duplicated, exchanged or removed.

→ DUP (n -- n,n) : duplicates the top of the Stack.

→ DROP (n --) : removes a number from the top of the Stack.

→ OVER (a,b -- a,b,a) : copies the value under the top of the Stack.

→ SWAP (a,b -- b,a) : exchanges the top of the Stack with the value below the top.

→ ROT (a,b,c -- b,c,a) : rotates the value in the third position to the top of the Stack.

→ -ROT (a,b,c -- c,b,a) : rotates the top of the Stack to the third position.

→ 2DUP (a,b -- a,b,a,b) : duplicates the two values at the top of the Stack.

→ 2DROP (a,b --) : removes two numbers from the top of the Stack.

7

2 Display

20 We can display characters instead of numbers. The
word EMIT consumes the value at the top of the Stack
and prints the corresponding character on the terminal.

65 EMIT ←↩ A ok

21 We will use the following ASCII codes to represent
the elements of the puzzle. Try them if you want.

wall : 35 crate : 36
filled goal : 42 worker on goal : 43
goal : 46 worker : 64

35 EMIT ←↩ # ok
36 EMIT ←↩ $ ok
42 EMIT ←↩ * ok
43 EMIT ←↩ + ok
46 EMIT ←↩ . ok
64 EMIT ←↩ @ ok

22 The code for space (or Blank) is frequently used, so
there is a word for it: BL, and even an equivalent of the
sequence BL EMIT, called SPACE.

BL . ←↩ 32 ok
SPACE SPACE SPACE ←↩ ok

23 The word CR sends a Carriage Return on the termi-
nal, forcing the display to start on a new line.

CR CR CR ←↩

ok

24 One way to put a character on the Stack is to enter
its ASCII code, if you know that code. Another way is
to use the word CHAR. CHAR reads the following word
on the entry as the litteral char you want to have on the
Stack. Try it!.
Display the word SOKOBAN on the terminal.

CHAR N ←↩ok
CHAR A ←↩ok
CHAR B ←↩ok
CHAR O ←↩ok
CHAR K ←↩ok
CHAR O ←↩ok
CHAR S ←↩ok
CR EMIT EMIT EMIT EMIT EMIT EMIT EMIT ←↩ok
SOKOBAN ok

This takes some work!

8

25 Here is a faster way to display characters: use the
word .", and all the following non space characters in
the flow of entry will be printed until a " is met.
Don’t forget that ." is a word in itself and must be sep-
arated from the rest of the entry.

." SOKOBAN" ←↩ SOKOBAN ok

." Foo Bar" ←↩ Foo Bar ok

26 The terminal can do other actions than just display
characters. For example, the character with code 7 will
ring a bell, and 9 will send a tabulation.

CR 9 EMIT 9 EMIT 35 EMIT ←↩
ok

27 Some complex actions on the terminal are initiated
by the character with code 27 (ESC), followed by a [
and a command.
For example, to clear the entire screen, display the es-
cape character followed by the string [2J.

27 EMIT ." [2J" ←↩

ok

28 Another terminal escape command allows you to
select the column and row of the terminal where you
want to display the next characters. Try the escape
command 5;3H for example.

27 EMIT ." [5;3H" 42 EMIT ←↩

* ok

29 The gforth vocabulary includes special words that
use terminal escape commands: PAGE will clean the
screen; AT-XY will take two numbers on the Stack and
use them as the x and y coordinates of the next thing to
be displayed.

PAGE 2 2 AT-XY 46 EMIT 5 3 AT-XY 42 EMIT ←↩

.
* ok

2A The gforth word ESC[is doing the same as the se-
quence: 27 EMIT 91 EMIT would: it sends these con-
trol characters to the terminal.
For example try to print words using underlined (4m)
mode, and then get back to normal mode (0m).

ESC[." 4m" ." Foo" ESC[." 0m" ." Bar" ←↩
FooBar ok

2B The terminal can also print characters in color. Just
print the escape sequence, then the color number, for
instance 31, for red, followed by m.
Try to print lines using different colors.

ESC[." 31mFoo" ←↩ Foo ok
CR ESC[." 32mFoo" ←↩ Foo ok
CR ESC[." 34mBar" ←↩ Bar ok

2C To reset all the terminal display attributes, use the
word ESC[then print the string 0m.

CR ESC[." 0mQux" ←↩
Qux ok

2D Find a sequence of words that given a color code
on the Stack, like 34 for example, changes the terminal
color. Your sequence should start with ESC[, then print
the number, then a m.

34 ESC[. CHAR m EMIT ."Foo" ←↩ Foo

That doesn’t work, because in the sequence
34 . CHAR m EMIT ←↩ 34 m ok

the . word inserts a space after printing the number.

9

2E Try with the word .R (dot-R). This word takes two
numbers n, w and prints n aligned on the right on w
columns. If w columns are not enough to print the num-
ber, .R will display the whole number anyway. The
important thing is that it will do it without adding a
trailing space like . does.

4807 10 .R ←↩ 4807 ok
42 2 .R 17 2 .R ←↩ 4217 ok
32 0 .R CHAR m EMIT ←↩ 32m ok

I see.

2F Try again this time using 0 .R in your sequence. 34 ESC[0 .R 109 EMIT ." Foo" ←↩ Foo ok
35 ESC[0 .R CHAR m EMIT ." Foo" ←↩ Foo ok
32 ESC[0 .R CHAR m EMIT ." Foo" ←↩ Foo ok
0 ESC[0 .R CHAR m EMIT ." Foo" ←↩ Foo ok

→ EMIT (c --) : displays a character on the terminal.

→ CHAR {c} (-- c) : reads a character on the entry and puts its ASCII code on the Stack.

→ ." {CCCCC"} : reads a sequence of characters on the entry flow until ", then prints the string.

→ PAGE : clears the screen.

→ AT-XY (x,y --) : sets the position x,y for the next display on the terminal.

→ ESC[: starts an escape sequence on the terminal.

→ .R (n,w --) : prints the number n aligned on the right on w columns, with no trailing space.

10

3 Define

30 Forth lets you define your ow words.
Here’s how to create a new word:

→ start with : (colon), a space, and the name you
want to give to your new word,

→ write all the Forth words that this definition
should execute,

→ finish the definition with ; (semicolon).

Let’s try! Define a word called STAR that will display
the character with the code 42.

Cool!

: STAR 42 EMIT ; ←↩ok
STAR ←↩ * ok
STAR STAR STAR ←↩ *** ok

31 Create a definition for a word called SQUARE that
takes a number n on the top of the Stack and replaces it
with n2.
Then create a word called CUBE that takes a number n
on the top of the Stack and replaces it with n3. Use the
previous word you just created.
Try your definition with several examples.

Ok!

: SQUARE DUP * ; ←↩ok
42 SQUARE . ←↩ 1764 ok
-7 SQUARE . ←↩ 49 ok

: CUBE DUP SQUARE * ; ←↩ok
42 CUBE . ←↩ 74088 ok
-3 CUBE . ←↩ -27 ok

32 Create a word named SORT2 that given 2 values on
the Stack, sorts them so that the greater value is below
the top, and the smaller value is at the top.

: SORT2 2DUP MAX -ROT MIN ; ←↩ok
42 17 SORT2 . . ←↩ 17 42 ok
17 42 SORT2 . . ←↩ 17 42 ok

33 Create a word named SORT3 that given 3 values on
the Stack sorts them so that the greatest value is below
the two others on the Stack, and the smallest is at the
top.

: SORT3 SORT2 ROT SORT2 -ROT SORT2 ROT ; ←↩
42 17 4807 SORT3 . . . ←↩ 17 42 4807 ok
243 39 -55 SORT3 . . . ←↩ -55 39 243 ok

11

34 Create a word named MODE that given a number,
sends an escape command to the terminal with that
number.
Try your word with different modes.

That is the sequence I defined some time ago:

: MODE ESC[0 .R CHAR m EMIT ; ←↩ok
:23: Undefined word
: MODE ESC[0 .R CHAR >>>m<<< EMIT ;

Hey! What’s happening?

35 Oh. I forgot to mention that CHAR cannot be used
inside a definition4. Use [CHAR] instead.

OK.

: MODE ESC[0 .R [CHAR] m EMIT ; ←↩ok
31 MODE ←↩ ok
34 MODE ←↩ ok
35 MODE ←↩ ok
0 MODE ←↩ok
CR 4 MODE ." Foo" 0 MODE ." Bar" ←↩
FooBar ok

That is better!

36 Create a word BLUE that switches the display color
to red, and a word NORMAL that restores all display at-
tributes to normal.

Easy:

: BLUE 34 MODE ; ←↩ok
: NORMAL 0 MODE ; ←↩ok

CR BLUE STAR SPACE NORMAL STAR ←↩
** ok

37 You can keep your programs in script files. When
gforth is launched with the name of a script file as an
argument, the words in the file are automatically exe-
cuted as gforth starts.
Edit a Forth script file called Sokoban.fs. Enter your
definitions, and execute a simple sequence of actions
using these definitions. Note that ending the file script
with the word BYE will tell gforth to quit right after
executing the last word, giving us a stand-alone Forth
program. Try it!

That’s cool, now I can write a program!

: MODE ESC[0 .R [CHAR] m EMIT ;

: BLUE 34 MODE ;

: NORMAL 0 MODE ;

BLUE CHAR @ EMIT NORMAL CR BYE

Sokoban.fs

gforth Sokoban.fs ←↩
@

It works!

38 Comments can be entered after the word \ or be-
tween (and). Stack comments, like in this instance
: NIP (a,b -- b)

SWAP DROP ;

are very usual.

Ok.

\ Sokoban.fs A Game of Sokoban in Forth!!

: MODE ESC[0 .R [CHAR] m EMIT ;

: BLUE 34 MODE ;

BLUE CHAR @ (col,chr --)

EMIT (col --)

NORMAL (--)

CR BYE

4Here’s the reason: CHAR reads the entry flow, looking for the next word, and then puts the char value on the Stack, while [CHAR] reads the
entry flow, looking for the next word, and then compiles the char value in the definition that is currently going on. CHAR used inside a definition,
is inactive. Thus the following item in the entry, m causes an Undefined word error.

12

39 You should keep your definitions small and elegant.
For that purpose, you can always create some helper
words. For example:

→ replace [CHAR] m EMIT with a word called .M

→ replace 0 .R with a word called .N

Note that the gforth vocabulary already includes the
word .N. When executing your script file, gforth will
simply emit a warning and make the new definition re-
place the existing one.

Ok.

\ Sokoban.fs A Game of Sokoban in Forth!!

: .M [CHAR] m EMIT ;

: .N 0 .R ; \ n -- print n w/o trailing space

: MODE ESC[.N .M ; \ N -- print Esc Nm

3A Create new words to display the elements of the
game. Here they are:

element display mode
empty space 0
worker @ 34
worker on goal + 34
walls # 31
crates $ 32
goal . 32
filled goal * 33

: RED 31 MODE ;

: GREEN 32 MODE ;

: YELLOW 33 MODE ;

: BLUE 34 MODE ;

: NORMAL 0 MODE ;

: DISPLAY-EMPTY NORMAL BL EMIT ;

: DISPLAY-WORKER BLUE [CHAR] @ EMIT ;

: DISPLAY-ONGOAL BLUE [CHAR] + EMIT ;

: DISPLAY-CRATE GREEN [CHAR] $ EMIT ;

: DISPLAY-WALL RED [CHAR] # EMIT ;

: DISPLAY-GOAL GREEN [CHAR] . EMIT ;

: DISPLAY-FILLED YELLOW [CHAR] * EMIT ;

\ testing

DISPLAY-WORKER DISPLAY-CRATE

DISPLAY-WALL DISPLAY-EMPTY

DISPLAY-GOAL DISPLAY-FILLED

DISPLAY-ONGOAL BYE

gforth Sokoban.fs ←↩
@$# .*+

It works!

3B Your program can be made simpler. Do you see all
these repeated patterns in the definitions? Instead, we
can define one general word: DISPLAY that given an
ascii code and a color number, will display that charac-
ter in that color.

Ok.

: DISPLAY MODE EMIT ; \ chr,col --

3C Then you can change your DISPLAY-xxx defini-
tions so that they call this word.

: DISPLAY MODE EMIT ; \ chr,col --

: DISPLAY-EMPTY BL 0 DISPLAY ;

: DISPLAY-WORKER [CHAR] @ 34 DISPLAY ;

: DISPLAY-ONGOAL [CHAR] + 34 DISPLAY ;

: DISPLAY-WALL [CHAR] # 31 DISPLAY ;

: DISPLAY-CRATE [CHAR] $ 33 DISPLAY ;

: DISPLAY-GOAL [CHAR] . 32 DISPLAY ;

: DISPLAY-FILLED [CHAR] * 35 DISPLAY ;

\ testing

DISPLAY-WORKER DISPLAY-CRATE

DISPLAY-WALL DISPLAY-EMPTY

DISPLAY-GOAL DISPLAY-FILLED

DISPLAY-ONGOAL BYE

gforth Sokoban.fs ←↩
@$# .*+

13

3D We can simplify the code a bit more. All these
DISPLAY-xxx have the same structure. We can define
specialized words, and use them by combining them
with DISPLAY.
Create words WORKER, ONGOAL, WALL, etc. that will
push the right codes on the Stack.

Ok.

\ Sokoban.fs A Game of Sokoban in Forth!!

: .M [CHAR] m EMIT ;

: .N 0 .R ; \ n -- print n w/o trailing space

: MODE ESC[.N .M ; \ N -- print Esc Nm

: DISPLAY MODE EMIT ; \ chr,col --

: WORKER [CHAR] @ 34 ;

: ONGOAL [CHAR] + 34 ;

: WALL [CHAR] # 31 ;

: CRATE [CHAR] $ 33 ;

: GOAL [CHAR] . 32 ;

: FILLED [CHAR] * 35 ;

: EMPTY BL 0 ;

\ testing

WORKER DISPLAY CRATE DISPLAY

WALL DISPLAY EMPTY DISPLAY

GOAL DISPLAY FILLED DISPLAY

ONGOAL DISPLAY BYE

That is much simpler! But having words like RED,
BLUE, etc. instead of numbers would be better.

3E Words like RED, BLUE, etc. that just push a number
on the Stack can be declared as constants rather than
colon definitions.
The word CONSTANT takes a number on the Stack, and
creates a new definition with the name that follows. Try
it with gforth .

42 CONSTANT ASTERISK ←↩
ASTERISK EMIT ←↩ * ok

I see.

3F Since Forth uses space as a delimiter in order to
separate words in the entry, you can use any other sym-
bol to define your words. For instance 34YP! makes a
valid Forth word, albeit not a very clearly named one.
Define all the constants you need in the Sokoban. Place
them at the beginning of the program.

\ Sokoban.fs A Game of Sokoban in Forth!!

31 CONSTANT RED 32 CONSTANT GREEN

33 CONSTANT YELLOW 34 CONSTANT BLUE

0 CONSTANT NORMAL

: M 109 EMIT ;

: .N 0 .R ; \ n -- print n w/o trailing space

: MODE ESC[.N M ; \ N -- print Esc Nm

: DISPLAY \ c,m -- display c c in mode m

MODE EMIT ;

: WORKER [CHAR] @ BLUE ;

: ONGOAL [CHAR] + BLUE ;

: WALL [CHAR] # RED ;

: CRATE [CHAR] $ GREEN ;

: GOAL [CHAR] . GREEN ;

: FILLED [CHAR] * YELLOW ;

: EMPTY BL NORMAL ;

\ testing

WORKER DISPLAY CRATE DISPLAY

WALL DISPLAY EMPTY DISPLAY

GOAL DISPLAY FILLED DISPLAY

ONGOAL DISPLAY BYE

14

→ Forth lets you create new words that can be used just like existing words.

→ : ({XXX ... ;}) : creates a new definition named XXX for the following sequence.

→ At run time, a word created with : will execute the words contained in its definition.

→ ; : ends a colon definition.

→ You can redefine words simply by writing their new definition with : and ;.

→ [CHAR] {X}) : inside a colon definition, reads the next character on the entry and compiles its
ASCII code in the definition.

→ CONSTANT ({XXX} n --) : defines a constant named XXX for the value n.

→ At run time, a word created with CONSTANT will put its value on the Stack.

→ Invoking gforth with a script name executes all the words in the script file.

→ BYE : leaves gforth .

→ Create and combine together simple specialized words to avoid big repetitive ones.

15

	Stack
	Arrange
	Display
	Define
	Input
	Conditions
	Loops
	Variables
	Memory
	Motion
	Bitwise Operations
	Lookup Tables
	Defining Words
	Interpret
	Exit and Leave
	Blocks

