0 Stack

To know a bit more about the Forth language, let’s
launch gforth in a terminal.

Here we go:

gforth

Gforth 0.7.2, Copyright (C) 1995-2008
Free Software Foundation, Inc.

Gforth comes with ABSOLUTELY NO WARRANTY;
for details type ‘license’

Type ‘bye’ to exit

Forth uses a Stack as a way to pass parameters to,
and get results from operations. Entering numbers will
put these numbers on the Stack. Enter two numbers.

You can print the number that is currently at the top
of the Stack, using the dot symbol: .

42 ok

17 ok

4807 ok
4807 ok
17 ok
42 ok

Printing the number removes it from the Stack. Put
two numbers on the Stack again. You can enter several
numbers on the same line.

47 150 ok

You can add the two numbers at the top of the Stack
by entering the + sign.

Let’s try:

+ ok
197 ok

Just like numbers, the + and . symbols should be 42 17 +.

. :8: Undefined word
separated by space. Try not separating them and see 42 17 >>>i.<<<

what you get. (We don’t need to know about the trace Backtrace:

information for now). $103D82A08 throw
$103D98C90 no.extensions
$103D82CC8 interpreter—-notfoundl

Other arithmetic operations are available as well. 47 150 - . -103 ok

. . 47 150 * . 7050 ok
They all use the Stack as a container for integer values. 150 47 / . 3 ok
Try them. 4807 47 / . 102 ok
Enter two numbers on the Stack, add them, then OK.
multiply the result by another number.

4807 3 + 42 % . 202020 ok

To get the remainder of a division, use MOD. 4807 42 MOD . 19 ok

o . . .
You can also obtain both quotient and remainder, 4807 7 /MOD ok

using the word /MOD. The quotient will be at the top of . 686 ok

the Stack, and the remainder will be just below the top. . 5 ok

Enter a number, then print its opposite, using 17 NEGATE . ~17 ok
NEGATE.

Print 32% of 4807 (approximately). 4807 32 = 100 / . 1538 ok

Give a more precise result (still using integer val-
ues). You can print the integer part and the fractional 480700 32 % 100 / 100 /MOD . . 1538 24
part separately.

Enter two numbers, then print the greatest number, 42 17 MAX . 42 ok

using MAX.

Enter two numbers, then print the smallest number, 42 17 MIN . 17 ok

using MIN.

Enter four numbers on the Stack, and print the 42 17 255 —13 MAX MAX MAX . 255 ok

greatest number.

— Forth programs are made of numbers and words, separated by space.

— Numbers are pushed on a data Stack, words are interpreted and executed on the fly.
— Numbers enter and leave the Stack in a First In, First Out fashion.

— ., +,etc. are words, as well as MOD or MAX.

— Words consume their arguments, removing them from the Stack.

— Forth uses Reverse Polish Notation for all arithmetic expressions; the order of operations determines
the order of evaluation (no need for parentheses).

1 Arrange

Numbers are usually removed from the Stack by the
words that use them. If you want to keep a number on
the Stack and use it as a parameter for a word, you can
duplicate it, with the word DUP.

Draw the successive states of the Stack to better under-
stand the way it works.

42 DUP ok

'] Find a sequence of words that computes the square
of a number without typing the number twice. Try your
sequence on several values.

42 42 ok
42 DUP
42 DUP * . 1764 ok
-7 DUP * . 49 ok
42 DUP

Ask gforth to compute the value of 2* and 28.

2 DUP DUP DUP * x * .

2 DUP DUP DUP

2 DUP * DUP % DUP x .

2 DUP * DUP

16 ok

256 ok

DUP

When you want a copy of the number just below the
top instead of a copy of the top, use OVER. Try it.

. < 42 17 42 ok

42 17 OVER .
42 17 OVER
‘ 42 ‘ 17 42 17 ‘ 42 ‘
42 17 | | 42
42

Find a sequence of words that given two numbers a
and b, leaves the Stack with the numbers a, a + b.
(Remember that repeating . will print the stack content
in reverse order).

42 17 OVER + . <> 59 42 ok

42 17 OVER +
IENE 42 59 | | 42 |
42 17 | | 42
42

100 99 OVER + . <> 199 100 ok

Sometimes you need to exchange the top of the
Stack with the number just below. That’s when you

use the word SWAP.

Find a sequence of words that given two numbers a
and b, will compute (approximately) %.

100 99 OVER +
‘ 100 ‘ 99 | [100] [199 ‘ 100 ‘
100 | | 99 | | 100
100
42 17 SWAP .« 42 17 ok
42 17 SWAP
IENE 22 | [17]
42 17
42 17 SWAP 100 * SWAP / . <> 247 ok
42 17 SWAP 100 + SWAP [/
‘ 42 ‘ 17 42 | | 100 42@@‘ 17 ‘247‘
42 17 42 17‘ 4200
17
17 42 SWAP 100 % SWAP / . <> 40 ok
17 42 SWAP 100 % SWAP /
[17] [2 17 | [100] [1700] [42 | [49]
17 42 17 42‘ 1700
42
3 9 SWAP 100 # SWAP / . <> 33 ok
3 9 SWAP 100 * SWAP /
‘3‘9 3 100 | [300 9‘33‘
3 9 3 9 300
9

You can also move the value that is in the third po- 123ROT . . . < 1320k

sition to the top of the Stack using ROT.

s ||

2 |

42 17 4807 ROT

. <> 42 4807 17 ok

42 17 4807 ROT
[42] [17] [as07] [(a2 | [aso7] [17]
42 17 | [a8e7]| | 17 ‘
42 17
Using OVER twice duplicates the two numbers at the 42 17 OVER OVER <ok
.. <> 17 42 17 42 ok
top of the Stackﬂ
42 17 OVER OVER
|2][v 42 17 42 17 | | 42]
42 17 42 17 42
42 17 42
42
Using ROT twice rotates the number at the top of the Ok

Stack under the number just below the to;ﬁ 1 2 3 RoT ROT

1 2 3 ROT ROT
[1]]2 3 1 2 1][3]
1 2 3 1 3
1 2 3
42 17 4807 ROT ROT . <> 17 42 4807 ok
42 17 4807 ROT ROT
[a2 | [17] [as07] [22 17 | [42 | [as07]
42 17 4807 42 4807
42 17 | | 4807
Enter three numbers, then print them in the order Easy:
they were entered. 1 2 3 SWAP ROT .« 123 o0k
1 2 3 SWAP ROT
[1]]2 3 2 1 2 | [3]
1 2 3 2 3
1 1 3
42 17 4807 SWAP ROT . < 42 17 4807
42 17 4807 SWAP ROT
[42] [17] [as07] [17] [22 17 | [4807]
42 17 4807 17 4807
42 42 | | 4807

'The word 2DUP is a faster equivalent of OVER OVER.
2The word -ROT is a faster equivalent of ROT ROT.

Enter two numbers, then print them in ascending
order. Test your sequence by entering the numbers in a

different order.

42 17 OVER OVER MAX ROT ROT MIN <ok
.« 17 42 ok

42 17 OVER OVER MAX ROT ROT MIN
|2][17]] « 17 | |42] [a2 17 | | 17
42 17 42 17 42 42 42
42 17 42 17 42
42
17 42 OVER OVER MAX ROT ROT MIN <ok
.« 17 42 ok
17 42 OVER OVER MAX ROT ROT MIN
|17][« 17 | [42 42 17 | [42 17
17 42 17 42 42 17 42
17 42 17 42 42
17
In your last test, replace the sequences OVER OVER 42 17 2DUP MAX -ROT MIN <ok
and ROT ROT with faster words 2DUP and -ROT. o 17 4z ok
42 17 2DUP MAX -ROT MIN
‘ 42 ‘ 17 17 42 17 17
42 42 17 42 42
17 42 42
42
17 42 2DUP MAX -ROT MIN <ok
.« 17 42 ok
17 42 2DUP MAX -ROT MIN
(7] [2][e][e]|e 17
17 17 42 17 42
42 17 42
17
Enter three numbers, then print them in ascending 42 17 4807 <ok
order, using the sequence for sorting two numbers. ;ggp MAX -ROT MIN (42,4807,17) <ok
(4807,17,42) <ok
You can use (and) to comment on what happens on 2DUP MAX -ROT MIN (4807,42,17) <ok
the Stackf] -ROT (17,4807,42) <ok
2DUP MAX -ROT MIN (17,4807,42) <ok
ROT (4807,42,17) <ok
> 17 42 4807 ok
42 17 487 2DUP MAX -ROT 2DUP MAX -ROT MIN -ROT 2DUP MAX -ROT MIN ROT
|42 | | 17 | [a807] [as07] [aso7] [asor] [17 | [42 | [42 | | 42 | | 42 17 | | 42 a2 | |4a807| | 42 | | 42 17
42 17 17 4807 17 4807 17 17 42 17 42 4807 4807 42 4807 4807 42
42 4807 17 4807 42 4807 42 17 42 4807 17 42 4807 4807 17 4807
17 42 42 17 | | 4807 | | 4807 4807 | | 17 17
42 4807 17

There must be less tedious ways to do this!

3Be careful: (is a Forth word, i.e. it must be separated from the first word of comment by a space.

When you don’t need a number on the Stack any 42 17 DROP . 42 ok
more, you can get rid of it with DROP.

"] The word 2DROP is a faster way to execute
DROP DROP in order to eliminate 2 values from the
Stack.

42 17 23 2DROP . 42 ok

— Values on the Stack can be duplicated, exchanged or removed.

— DUP (n -- n,n) : duplicates the top of the Stack.

— DROP (n --) :removes a number from the top of the Stack.

— OVER (a,b -- a,b,a) : copies the value under the top of the Stack.

— SWAP (a,b -- b,a) : exchanges the top of the Stack with the value below the top.

— ROT (a,b,c -- b,c,a) : rotates the value in the third position to the top of the Stack.
— -ROT (a,b,c -- c,b,a) : rotates the top of the Stack to the third position.

— 2DUP (a,b -- a,b,a,b) : duplicates the two values at the top of the Stack.

— 2DROP (a,b --) :removes two numbers from the top of the Stack.

2 Display

We can display characters instead of numbers. The 65 EMIT < A ok
word EMIT consumes the value at the top of the Stack
and prints the corresponding character on the terminal.

We will use the following ASCII codes to represent 35 EMIT # ok

. 36 EMIT $ ok

the elements of the puzzle. Try them if you want. 45 EMIT M

wall 135 crate : 36 43 EMIT + ok

filled goal :42 worker on goal : 43 22 Exi; . 01}:
goal 146 worker 1 64 o

The code for space (or Blank) is frequently used, so BL 32 ok
there is a word for it: BL, and even an equivalent of the SPACE SPACE SPACE ok
sequence BL EMIT, called SPACE.

The word CR sends a Carriage Return on the termi- CR CR CR
nal, forcing the display to start on a new line.

ok
. CHAR N <ok
One way to put a character on the Stack is to enter CHAR A <ok
its ASCII code, if you know that code. Another way is CHAR B <ok
to use the word CHAR. CHAR reads the following word CHAR O <ok
on the entry as the litteral char you want to have on the gﬁ Io< 2]]:
Stack. Try it!. CHAR S <ok
Display the word SOKOBAN on the terminal. CR EMIT EMIT EMIT EMIT EMIT EMIT EMIT < ok
SOKOBAN ok

This takes some work!

Here is a faster way to display characters: use the
word . ", and all the following non space characters in
the flow of entry will be printed until a " is met.

Don’t forget that . " is a word in itself and must be sep-
arated from the rest of the entry.

." SOKOBAN" SOKOBAN ok
." Foo Bar" Foo Bar ok

The terminal can do other actions than just display
characters. For example, the character with code 7 will
ring a bell, and 9 will send a tabulation.

CR 9 EMIT 9 EMIT 35 EMIT

Some complex actions on the terminal are initiated
by the character with code 27 (ESC), followed by a [
and a command.

For example, to clear the entire screen, display the es-
cape character followed by the string [2].

Another terminal escape command allows you to
select the column and row of the terminal where you
want to display the next characters. Try the escape
command 5 ; 3H for example.

ok
27 EMIT ." [2J"
ok
27 EMIT ." [5;3H" 42 EMIT
* ok

The gforth vocabulary includes special words that
use terminal escape commands: PAGE will clean the
screen; AT-XY will take two numbers on the Stack and
use them as the x and y coordinates of the next thing to

PAGE 2 2 AT-XY 46 EMIT 5 3 AT-XY 42 EMIT

) * ok
be displayed.
The gforth word ESC[is doing the same as the se- ESC[." 4m" ." Foo" ESC[." Om" ." Bar"

quence: 27 EMIT 91 EMIT would: it sends these con-
trol characters to the terminal.

For example try to print words using underlined (4m)
mode, and then get back to normal mode (Om).

FooBar ok

The terminal can also print characters in color. Just

. ESC[." 31mFoo" Foo ok
print the escape sequence, then the color number, for CR ESC[." 32mFoo"
instance 31, for red, followed by m. Bar ok
Try to print lines using different colors.
To reset all the terminal display attributes, use the CR ESC[." OmQux"
word ESC[then print the string Om. Qux ok
34 ESC[. CHAR m EMIT ."Foo" Foo

Find a sequence of words that given a color code
on the Stack, like 34 for example, changes the terminal
color. Your sequence should start with ESC[, then print
the number, then a m.

That doesn’t work, because in the sequence
34 . CHAR m EMIT 34 m ok

the . word inserts a space after printing the number.

Try with the word .R (dot-R). This word takes two
numbers n, w and prints n aligned on the right on w
columns. If w columns are not enough to print the num-
ber, .R will display the whole number anyway. The
important thing is that it will do it without adding a

4807 10 .R
42 2 .R 17 2
32 0 .R CHAR

4807 ok
.R 4217 ok
m EMIT 32m ok

trailing space like . does. I see.
Try again this time using ® .R in your sequence. 34 ESC[0 .R 109 EMIT ." Foo" — Foo ok
35 ESC[0 .R CHAR m EMIT ." Foo" Foo ok
32 ESC[0 .R CHAR m EMIT ." Foo" Foo ok
0 ESC[0 .R CHAR m EMIT ." Foo" Foo ok
— EMIT (c --) :displays a character on the terminal.

— PAGE : clears the screen.

— ESC[: starts an escape sequence on the terminal.

— CHAR {c} (-- c) :reads acharacter on the entry and puts its ASCII code on the Stack.

— ." {CCCCC"} : reads a sequence of characters on the entry flow until ", then prints the string.

— AT-XY (x,y --) : sets the position x,y for the next display on the terminal.

— .R (n,w --) : prints the number n aligned on the right on w columns, with no trailing space.

10

3 Define

Forth lets you define your ow words.
Here’s how to create a new word:

— start with : (colon), a space, and the name you

Cool!

: STAR 42 EMIT ; ok
STAR * ok

want to give to your new word, STAR STAR STAR < wxx ok
— write all the Forth words that this definition
should execute,
— finish the definition with ; (semicolon).
Let’s try! Define a word called STAR that will display
the character with the code 42.
Create a definition for a word called SQUARE that Ok!
takes a number n on the top of the Stack and replaces it
ith 2 : SQUARE DUP x ; ok
with n=. 42 SQUARE . 1764 ok
Then create a word called CUBE that takes a number n -7 SQUARE . 49 ok
on the top of the Stack and replaces it with . Use the
previous word you just created. ;zcgsiEDUP SQ;’:?;EB *oli ok
Try your definition with several examples. _3 CUBE . 27 ok

Create a word named SORT2 that given 2 values on
the Stack, sorts them so that the greater value is below
the top, and the smaller value is at the top.

: SORT2 2DUP MAX -ROT MIN ;
42 17 SORT2 17 42 ok
17 42 SORT2 17 42 ok

ok

Create a word named SORT3 that given 3 values on

: SORT3 SORT2 ROT SORT2 —ROT SORT2 ROT ;

the Stack sorts them so that the greatest value is below
the two others on the Stack, and the smallest is at the
top.

42 17 4807 SORT3 .
243 39 -55 SORT3 .

17 42 4807 ok
-55 39 243 ok

11

Create a word named MODE that given a number, That is the sequence I defined some time ago:
sends an escape command to the terminal with that

b : MODE ESC[0 .R CHAR m EMIT ; <ok
number. . . :23: Undefined word
Try your word with different modes. : MODE ESC[0 .R CHAR >>>m<<< EMIT ;

Hey! What’s happening?

Oh. I forgot to mention that CHAR cannot be used OK.
inside a deﬁnitiorﬂ Use instead.
: MODE ESC[0O .R [CHAR] m EMIT ; <ok

31 MODE ok

34 MODE ok

35 MODE ok

0 MODE ok

CR 4 MODE ." Foo" 0 MODE ." Bar"
FooBar ok

That is better!
Create a word BLUE that switches the display color Easy:
to red, and a word NORMAL that restores all display at-
.) : BLUE 34 MODE ; <ok
tributes to normal. . NORMAL 0 MODE ; <ok
CR BLUE STAR SPACE NORMAL STAR
**x ok
You can keep your programs in script files. When That’s cool, now I can write a program!
gforth is launched wiFh the name of a scripF file as an MODE ESC[0 .R m EMIT
argument, the words in the file are automatically exe-
cuted as gforth starts. BLUE 34 MODE
Edit a Forth script file called Sokoban.fs. Enter your
definitions, and execute a simple sequence of actions NORMAL ® MODE
using these definitions. Note that ending the file script
with the word BYE will tell gforth to quit right after BLUE CHAR @ EMIT NORMAL CR BYE
executing the last word, giving us a stand-alone Forth Sokoban.fs

program. Try it!

gforth Sokoban.fs

@
It works!
Comments can be entered after the word \ or be- Ok.
tween (and). Stack comments, like in this instance \ Sokoban.fs A Game of Sokoban in Forth!!
NIP C a,b -- b)
SWAP DROP MODE ESC[® .R m EMIT

are very usual.
BLUE 34 MODE

BLUE CHAR @ (col,chr --)
EMIT (col --)

NORMAL (--)

CR BYE

4Here’s the reason: CHAR reads the entry flow, looking for the next word, and then puts the char value on the Stack, while reads the
entry flow, looking for the next word, and then compiles the char value in the definition that is currently going on. CHAR used inside a definition,
is inactive. Thus the following item in the entry, m causes an Undefined word error.

12

You should keep your definitions small and elegant.
For that purpose, you can always create some helper
words. For example:

— replace [CHAR] m EMIT with a word called .M

— replace ® .R with a word called .N

Note that the gforth vocabulary already includes the
word .N. When executing your script file, gforth will
simply emit a warning and make the new definition re-
place the existing one.

Ok.

\ Sokoban.fs A Game of Sokoban in Forth!!
.M [CHAR] m EMIT ;
.N O .R ;

\ n -- print n w/o trailing space

: MODE ESC[.N .M ; \ N -- print Esc Nm

Create new words to display the elements of the
game. Here they are:

: RED 31 MODE ;
: GREEN 32 MODE ;
: YELLOW 33 MODE ;
: BLUE 34 MODE ;

element display mode : NORMAL @ MODE ;
empty space 0 : DISPLAY-EMPTY NORMAL BL EMIT ;
worker @ 34 : DISPLAY-WORKER BLUE [CHAR] @ EMIT ;
: DISPLAY-ONGOAL BLUE [CHAR] + EMIT ;
worker on goal + 34 . DISPLAY-CRATE GREEN [CHAR] § EMIT ;
walls # 31 . DISPLAY-WALL RED [CHAR] # EMIT ;
crates $ 32 - DISPLAY-GOAL GREEN [CHAR] . EMIT ;
goal . 32 : DISPLAY-FILLED YELLOW [CHAR] * EMIT ;
filled goal 33 \ testing
DISPLAY-WORKER DISPLAY-CRATE
DISPLAY-WALL DISPLAY-EMPTY
DISPLAY-GOAL DISPLAY-FILLED
DISPLAY-ONGOAL BYE
gforth Sokoban.fs <«
@s# . ++
It works!
Your program can be made simpler. Do you see all Ok.
these repeated patterns in the definitions? Instead, we - DISPLAY MODE EMIT : \ chr,col --
can define one general word: DISPLAY that given an
ascii code and a color number, will display that charac-
ter in that color.
Then you can change your DISPLAY-xxx defini- - DISPLAY MODE EMIT ; \ chr,col --
tions so that they call this word : DISPLAY-EMPTY BL O DISPLAY ;
: : DISPLAY-WORKER [CHAR] @ 34 DISPLAY ;
: DISPLAY-ONGOAL [CHAR] + 34 DISPLAY ;
: DISPLAY-WALL [CHAR] # 31 DISPLAY ;
: DISPLAY-CRATE [CHAR] $ 33 DISPLAY ;
: DISPLAY-GOAL [CHAR] . 32 DISPLAY ;
: DISPLAY-FILLED [CHAR] * 35 DISPLAY ;

13

\ testing

DISPLAY-WORKER DISPLAY-CRATE
DISPLAY-WALL DISPLAY-EMPTY
DISPLAY-GOAL DISPLAY-FILLED
DISPLAY-ONGOAL BYE

gforth Sokoban.fs >
@S# . x+

We can simplify the code a bit more. All these
DISPLAY-xxx have the same structure. We can define
specialized words, and use them by combining them
with DISPLAY.

Create words WORKER, ONGOAL, WALL, etc. that will
push the right codes on the Stack.

Ok.

\ Sokoban.fs A Game of Sokoban in Forth!!
.M [CHAR] m EMIT ;
.N® .R; \n --print n w/o trailing space
: MODE ESC[.N .M ; \ N -- print Esc Nm

: DISPLAY MODE EMIT ; \ chr,col --

: WORKER [CHAR] @ 34 ;
: ONGOAL [CHAR] + 34 ;
: WALL [CHAR] # 31

: CRATE [CHAR] $ 33 ;
: GOAL [CHAR] . 32 ;
: FILLED [CHAR] * 35 ;
: EMPTY BL 0
\ testing

WORKER DISPLAY CRATE DISPLAY
WALL DISPLAY EMPTY DISPLAY
GOAL DISPLAY FILLED DISPLAY
ONGOAL DISPLAY BYE

That is much simpler! But having words like RED,
BLUE, etc. instead of numbers would be better.

Words like RED, BLUE, etc. that just push a number
on the Stack can be declared as constants rather than
colon definitions.

The word CONSTANT takes a number on the Stack, and
creates a new definition with the name that follows. Try
it with gforth .

42 CONSTANT ASTERISK <
ASTERISK EMIT <~ * ok

I see.

Since Forth uses space as a delimiter in order to
separate words in the entry, you can use any other sym-
bol to define your words. For instance 34YP! makes a
valid Forth word, albeit not a very clearly named one.
Define all the constants you need in the Sokoban. Place
them at the beginning of the program.

14

\ Sokoban.fs A Game of Sokoban in Forth!!
31 CONSTANT RED 32 CONSTANT GREEN
33 CONSTANT YELLOW 34 CONSTANT BLUE

® CONSTANT NORMAL

: M 109 EMIT ;
.NO® .R; \ n -- print n w/o trailing space

: MODE ESC[.N M ; \ N -- print Esc Nm

: DISPLAY \ c¢,m -- display ¢ c¢ in mode m
MODE EMIT ;

: WORKER [CHAR] @ BLUE ;

: ONGOAL [CHAR] + BLUE ;

: WALL [CHAR] # RED ;

: CRATE [CHAR] $ GREEN ;

: GOAL [CHAR] . GREEN ;

: FILLED [CHAR] * YELLOW ;

: EMPTY BL NORMAL ;

\ testing

WORKER DISPLAY CRATE DISPLAY
WALL DISPLAY EMPTY DISPLAY
GOAL DISPLAY FILLED DISPLAY
ONGOAL DISPLAY BYE

Forth lets you create new words that can be used just like existing words.
({XXX ;}) : creates a new definition named XXX for the following sequence.
At run time, a word created with : will execute the words contained in its definition.
: ends a colon definition.
You can redefine words simply by writing their new definition with : and

{X}) : inside a colon definition, reads the next character on the entry and compiles its
ASCII code in the definition.

({XXX} n --) : defines a constant named XXX for the value n.
At run time, a word created with will put its value on the Stack.
Invoking gforth with a script name executes all the words in the script file.
BYE : leaves gforth .

Create and combine together simple specialized words to avoid big repetitive ones.

15

	Stack
	Arrange
	Display
	Define
	Input
	Conditions
	Loops
	Variables
	Memory
	Motion
	Bitwise Operations
	Lookup Tables
	Defining Words
	Interpret
	Exit and Leave
	Blocks

