A HANDS-ON GUIDE

TO

LARGE

LANGUAGE

MODELS

WITH PYTORCH & HUGGING FACE

N
i
I
i

W
i

OIGT GODOY

g

0

La

A\
i/

................\\

HIAOO0)
IR0
i)

i

f
Jilh

Z
O
T
O
Ll
a4
O
I
O
O
—
-
-
L

A Hands-On Guide to Fine-Tuning Large
Language Models with PyTorch and
Hugging Face

Daniel Voigt Godoy

Version 1.1

A Hands-On Guide to Fine-Tuning Large Language Models with PyTorch and Hugging Face
by Daniel Voigt Godoy

Copyright © 2025 by Daniel Voigt Godoy. All rights reserved.

January 2025: First Edition

Revision History for the First Edition:

e 2025-01-13:v1.0
e 2025-01-31:v1.0.1

e 2025-10-05:v1.1
For more information, please send an email to contact@dvgodoy.com

Although the author has used his best efforts to ensure that the information and instructions contained in this book are accurate,
under no circumstances shall the author be liable for any loss, damage, liability, or expense incurred or suffered as a consequence,
directly or indirectly, of the use and/or application of any of the contents of this book. Any action you take upon the information
in this book is strictly at your own risk. If any code samples or other technology this book contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights. The author does not have any control over and does not assume any responsibility for third-party
websites or their content. All trademarks are the property of their respective owners. Screenshots are used for illustrative
purposes only.

No part of this book may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or by any information storage and retrieval system without the prior written permission of the copyright
owner, except where permitted by law. Please purchase only authorized electronic editions. Your support of the author’s rights is
appreciated.

Cover background image by Andrea Charlesta on Freepik.

No language models were harmed in the writing of this book.

mailto:contact@dvgodoy.com

"What | cannot create, | do not understand."

Richard P. Feynman

Table of Contents

Preface Xi
100% Human Writing Xii
Acknowledgements Xiv
About the Author XV
Frequently Asked Questions (FAQ) 1
Who Should Read This Book? 1
What Do | Need to Know? 1
Why This Book? 1
Why Fine-Tune LLMs? 2
How Difficult Is It to Fine-Tune an LLM? 3
What about Retrieval-Augmented Generation (RAG)? 3
What Setup Do | Need? 4
Google Colab 4
Runpod.io 4
Optional Libraries 4
Versions Used in This Book 5
How to Read This Book 5
Chapter 0: TL;DR 7
Spoilers 7
Jupyter Notebook 7
Imports 7
Loading a Quantized Base Model 7
Setting Up Low-Rank Adapters (LoRA) 9
Formatting Your Dataset 12
Tokenizer 14
Fine-Tuning with SFTTrainer 15
SFTConfig 16
SFTTrainer 17
Querying the Model 19
Saving the Adapter 21
Chapter 1: Pay Attention to LLMs 23
Spoilers 23
Language Models, Small and Large 23
Transformers 24
Attention Is All You Need 27
No Such Thing As Too Much RAM 31
Flash Attention and SDPA 32
Types of Fine-Tuning 32
Self-Supervised 32

Supervised
Instruction

Preference

Chapter 2: Loading a Quantized Model

Spoilers
Jupyter Notebook
Imports
The Goal
Pre-Reqgs
Previously On "Fine-Tuning LLMs"
Quantization in a Nutshell
Half-Precision Weights
Living on the Edge
The Brain Float
Loading Models
Half-Precision Models (16-bit)
Mixed Precision
BitsAndBytes
8-Bit Quantization
Quantized Linear Layers
11m_int8_skip_modules
8-bit Layers
4-Bit Quantization
The Secret Lives of Dtypes
FP4 vs NF4 Layers
Coming Upin Fine-Tuning LLMs

Chapter 3: Low-Rank Adaptation (LoRA)

Spoilers
Jupyter Notebook
Imports
The Goal
Pre-Reqgs
Previously on "Fine-Tuning LLMs"
Low-Rank Adaptation in a Nutshell
The Road So Far
Parameter Types and Gradients
prepare_model_for_kbit_training()
PEFT
target_modules
The PEFT Model
modules_to_save

33
33
34
35
35
35
35
35
36
37
37
43
45
47
49
51
53
57
58
60
64
65
66
68
73
76
77
77
77
77
77
77
78
79
85
86
86
90
92
93
96

Embeddings
Managing Adapters
Coming Upin "Fine-Tuning LLMs"
Chapter 4: Formatting Your Dataset
Spoilers
Jupyter Notebook
Imports
The Goal
Pre-Reqgs
Previously On "Fine-Tuning LLMs"
Formatting in a Nutshell
The Road So Far
Applying Templates
Supported Format
BYOFF (Bring Your Own Formatting Function)
BYOFD (Bring Your Own Formatted Data)
Showdown
The Tokenizer
Vocabulary
The Tokenizer 7
The EOS Token
The PAD Token
Data Collators
DataCollatorWithPadding
Dude, Where's My Label?
DataCollatorForLanguageModeling
DataCollatorForCompletionOnlyLM
Multiple Interactions
Label Shifting
Packed Dataset
Collators for Packing
DataCollatorWithFlattening
DataCollatorForCompletionOnlyLM
Advanced—BYOT (Bring Your Own Template)
Chat Template
Custom Template
Special Tokens FTW
Coming Up in "Fine-Tuning LLMs"
Chapter 5: Fine-Tuning with SFTTrainer
Spoilers
Jupyter Notebook

97
102
106
107
107
107
107
107
107
109
109
112
113
115
119
121
122
123
124
126
129
130
132
134
134
135
136
138
140
141
145
145
147
149
150
157
160
165
166
166
166

Imports 166

The Goal 166
Pre-Reqgs 167
Previously On "Fine-Tuning LLMs" 168
Training in a Nutshell 169
The Road So Far 178
Fine-Tuning with SFTTrainer 179
Double-Check the Data Loaders 181
The Actual Training 186
SFTConfig 191
Memory Usage Arguments 191
Mixed-Precision Arguments 193
Dataset-Related Arguments 194
Typical Training Parameters 195
Environment and Logging Arguments 196
The Actual Training (For Real!) 198
Saving the Adapter 199
Saving the Full Model 200
Push To Hub 202
Attention 203
Flash Attention 2 210
PyTorch’s SDPA 214
Showdown 214
Studies, Ablation-Style 217
Coming Up in "Fine-Tuning LLMs" 220
Chapter 6: Deploying It Locally 221
Spoilers 221
Jupyter Notebook 221
Imports 221
The Goal 221
Pre-Regs 222
Previously On "Fine-Tuning LLMs" 223
Deploying in a Nutshell 223
The Road So Far 224
Loading Models and Adapters 226
Querying the Model 229
Llama.cpp 233
GGUF File Format 233
Converting Adapters 234
Converting Full Models 235
Using "GGUF My Repo" 236

Using Unsloth 236

Using Docker Images 239

Building llama.cpp 240
Serving Models 241
Ollama 241
Installing Ollama 242
Running Ollamain Colab 242
Model Files 243
Importing Models 245
Querying the Model 248
Llama.cpp 249
Web Interface 251
REST API 252
Thank You! 252
Chapter -1: Troubleshooting 254
Errors 254
Arrowlnvalid—Column 2 named input_ids expected length 2 but got length... 254
AttributeError—'Parameter’ object has no attribute 'quant_state’ 254
AttributeError—'Parameter’ object has no attribute 'SCB' 254
RuntimeError—CUDA error—device-side assert triggered 254
RuntimeError—each element in list of batch should be of equal size. 255
RuntimeError—Error(s) in loading state_dict... 255
RuntimeError—expected scalar type Half but found Float 255
RuntimeError—FlashAttention only support fp16 and bf16 data type. 256
RuntimeError—No executable batch size found, reached zero. 256
TypeError—unsupported operand type(s) for *—'NoneType' and 'float’ 256
ValueError—Asking to pad but the tokenizer does not... 256
ValueError—No adapter layers found in the model, please... 257
ValueError—Please specify target_modules in peft_config 257
ValueError—You cannot perform fine-tuning on purely quantized models... 257
ValueError—You passed packing=False to the SFTTrainer, but you... 257
Warnings 258
UserWarning—Could not find response key... 258
UserWarning—Flash Attention 2.0 only supports torch.float16 and... 258
UserWarning—Input type into Linear4bit is torch.float16, but... 258
UserWarning—MatMul8bitLt—inputs will be cast from torch.float32... 259
UserWarning—Merge lora module to 8-bit/4-bit linear may get different... 259
UserWarning—Model with tie_word_embeddings=True and... 259
UserWarning—Setting save_embedding_layers to True... 259
UserWarning—You are attempting to use Flash Attention 2.0 without... 260
UserWarning—You didn’t pass amax_seq_length argument to... 260

UserWarning—You passed a tokenizer with padding_side not equal to... 260

Appendix A: Setting Up Your GPU Pod
Stopping And Terminating Your Pod
Flash Attention 2 Install
CUDA Toolkit Install
Checking the Installation
Pip Install
Appendix B: Data Types' Internal Representation
Integer Numbers
Floating Point Numbers

261
268
269
270
272
272
274
274
278

Preface

If you're reading this, | probably don’t need to tell you that large language models are pretty much everywhere,
right?

Since the release of ChatGPT in November 2022, it feels almost impossible to keep up with the rapid pace of
developments. Every day, there’s a new technique, a new model, or a groundbreaking announcement. These
are surely exciting times—but they can also feel overwhelming, exhausting and, at times, frustrating.

"Where do | even begin to learn this?" is a perfectly valid question—and a tough one to answer on your own. |
wrote this book as a tentative response to that question. It focuses on key concepts that, in my view, have
proven to be stable and are likely to remain central to the fine-tuning process for the foreseeable future:
guantization, low-rank adapters, and formatting templates.

Mastering these concepts is crucial for understanding the current landscape and will also empower you to
handle future developments. They might also be useful to train or fine-tune a variety of large models, not just
language models. They are essential tools in any data scientist’s toolkit.

This is an intermediate-level book, so to make the most of its content, you need a solid

(r) foundation. If Transformers, attention, Adam, tokens, embeddings, and GPUs do not ring any

- bells, I'd suggest you to start with my beginner-friendly series, Deep Learning with PyTorch
Step-by-Step.

| chose the Hugging Face ecosystem as the foundation for this book because it is the de facto standard for
working with deep learning models, whether they're language models or not. The concepts |
discuss—quantization, adapters, and templates—are neatly implemented and integrated into the ecosystem,
making them relatively straightforward to use. But you have to understand how to configure them effectively
and what those configurations are actually doing under the hood. It wasn’t easy to find out such information
out there, though. | missed a comprehensive overview explaining how these techniques work together in
practice, especially when fine-tuning LLMs on a single GPU. This is the gap | aim to fill with this book.

Originally, its title was "a short guide," but its scope grew so much that | eventually renamed it "a hands-on
guide." It covers a lot of ground, and | truly hope it supports you on your learning journey. Along the way, I've
included plenty of fun examples, made-up quotes, and movie references—after all, | believe learning should be
fun.

There’s nothing cooler than learning about something new, trying it out yourself, and watching it work just fine,
don’t you agree? That’s what you'll do in Chapter O, the "TL;DR" chapter that will guide you through the entire
journey of fine-tuning an LLM: quantization, low-rank adapters, dataset formatting, training, and querying the
model. Next, we'll take a step back and have a brief discussion about language models, Transformers, the
attention mechanism, and the different types of fine-tuning in Chapter 1.

The following chapters, two through six, correspond to the sections introduced in Chapter O. In Chapter 2,
"Loading a Quantized Model," we’'ll discuss 8-bit and 4-bit quantization in more detail, as well as the
BitsAndBytes configuration. In Chapter 3, "Low-Rank Adaptation (LoRA)," we’ll explore the role and usage of
low-rank adapters, including how to configure them using the PEFT package and how to prepare the
(quantized) base model to improve numerical stability during training. Then, in Chapter 4, "Formatting Your

xi | Preface

Dataset," we'll focus on data formatting, chat templates, and the role of tokenizers, padding, packing, and data
collators.

The next step in our journey is Chapter 5, "Fine-Tuning with SFTTrainer," where we'll explore a wide range of
configuration possibilites to maximize the performance of a consumer-grade GPU and effectively fine-tune our
models. We'll also discuss different implementations of the attention mechanism—Flash Attention and
PyTorch’s SDPA—and compare their speed and memory requirements. Chapter 6, "Deploying It Locally," is an
engineering-focused chapter. It covers the details and alternatives for converting your fine-tuned models to
the GGUF format and how to serve your models using either Ollama or llama.cpp.

Every learning journey has its difficulties and pitfalls, and in our case, warnings and raised exceptions. The last
chapter, Chapter -1, "Troubleshooting," serves as a reference to help you understand and solve the typical
errors you may encounter.

Finally, there are also two appendices: the first one, "Appendix A: Setting Up Your GPU Pod," is a step-by-step
tutorial for using a cloud provider (runpod.io, a personal favorite) to spin up a GPU-powered Jupyter
Notebook; the second, "Appendix B: Data Types' Internal Representation," offers an (optional) overview of
how integers and floating-point numbers are internally represented by their bits, for those interested in
understanding the advantages and disadvantages of each data type in more detail.

100% Human Writing

This book is about large language models and, as stated on the cover, was 100% written by me without using an
LLM. Ironic, isn’t it? So, the real question here is: "If you're writing about large language models (LLMs), why aren’t
you using them?"

The answer is simple: LLMs do not reason'?.

If you have a hammer, everything starts looking like a nail. LLMs are incredible hammers; they can be used for a
lot of things—both good and bad—and, just like hammers, they're not the solution to all your needs. They're
great for writing creative or marketing pieces where hallucinations aren’t much of an issue. They’re also great
for producing an overview of a topic and for generating enumerated lists, but none of those comes even close
to what it takes to write a whole technical book. Why not? Because writing a book requires reasoning about the
topic, the target audience, and the narrative or plot (yes, technical books may also have a story arc of sorts).
These models are highly effective and sophisticated pattern-matching machines that operate on a feature
space so high-dimensional that it makes string theory’s eleven dimensions look like a walk in the park—but they
don’t reason.

100% Human Writing | xii

e "What about the latest developments, such as OpenAl’s 01 and 03 models? They certainly
seem capable of applying reasoning to solve complex mathematical problems and puzzles..."

This is, admittedly, a somewhat controversial topic. LLMs do not reason in a human sense, that is. The
latest generation of models uses "simulated reasoning"? built on the concept of Chain-of-Thoughts
(CoT)¥. This approach involves breaking a complex task into a sequence of logical steps and evaluating
these intermediate steps as it progresses. Additionally, these models also rely on brute-forcing tens,
hundreds, or even thousands of response generations. These responses are then evaluated in some sort
of "wisdom of the crowd"? approach (effectively shifting the computational—and cost—burden from
training to inference time).

\. J

Is it possible to write a book using LLMs for most of it? Yes, of course. You can start by outlining a bird’s-eye
view of the topic at hand and ask it to generate a table of contents. Then, you begin drilling down, requesting
increasingly specific details: chapters, sections, paragraphs. You read the output carefully and fact-check any
suspicious statements. In the end, you'll have a book. But was it really written by you? Or were you just
organizing, editing, and revising what the LLMs had generated? There’s no right or wrong answer here.

Personally, | want to fully write my own books, every single word in them. Besides, even if | start with a
tentative table of contents, my actual writing will take me very far away from it. It will be a completely different
book by the time | finish it (by the way, that’s one of the reasons why | self-publish; editors wouldn’t accept
such a major deviation from the initial proposal). For me, the act of writing is a bottom-up and inherently
creative process. There’s no way to replicate that (not that | know of) using LLMs because, first, they don’t
reason, and second, they work better in a top-down fashion. Besides, even if there was a way to make an LLM
write like that, | wouldn’t want to trade my role as an author for that of an LLM'’s editor or publisher.

| truly hope you enjoy reading this book. It's 100% human writing, and yes, humans may also write "delve"®
every now and then. | promise not to use "tapestry" anywhere else other than in this very paragraph, though :-)

[1] https://arxiv.org/abs/2410.05229
[2] https://www.linkedin.com/pulse/99-simulated-reasoning-ezra-eeman-nxmoe/

[3] https://www.ibm.com/think/topics/chain-of-thoughts
[4] https://en.wikipedia.org/wiki/Wisdom of the crowd
[5] https://arstechnica.com/ai/2024/07/the-telltale-words-that-could-identify-generative-ai-text/

xiii | Preface

https://arxiv.org/abs/2410.05229
https://www.linkedin.com/pulse/99-simulated-reasoning-ezra-eeman-nxmoe/
https://www.ibm.com/think/topics/chain-of-thoughts
https://en.wikipedia.org/wiki/Wisdom_of_the_crowd
https://arstechnica.com/ai/2024/07/the-telltale-words-that-could-identify-generative-ai-text/

Acknowledgements

First and foremost, | want to thank YOU, my reader, for supporting my work.

To my good friends Mihail Vieru and Jesius Martinez-Blanco, thank you for dedicating your time to reading,
proofing, and suggesting improvements to my drafts. A special nod to Mihail, who somehow managed to read
absolutely everything | wrote!

| am deeply grateful to the early readers of my book who provided invaluable feedback and suggestions while
reviewing its chapters (in alphabetical order): Shakti Dalabehera, Chintan Gotecha, Mahmud Hasan, Sydney
Lewis, Meetu Malhotra, and Dan Tran—thank you for your insights and encouragement.

| will be forever grateful to my friends José Quesada and David Anderson for introducing me to the world of
data science, first, as a student, and then as a teacher at Data Science Retreat.

I'd also like to thank the Hugging Face team for building such an incredible ecosystem. Your work has made
state-of-the-art models more accessible to countless developers, including me.

Finally, my deepest thanks go to my wife, Jerusa, for her unwavering support throughout this entire process :-)

| xiv

About the Author

Daniel is an Amazon best-selling author, programmer, data scientist, and teacher. He has self-published a
series of technical books, Deep Learning with PyTorch Step-by-Step: A Beginner’'s Guide, which are used as
textbooks at universities in the United States and Spain. His books have also been translated into Simplified
Chinese by China Machine Press.

He has been teaching machine learning, distributed computing technologies, time series, and large language
models at Data Science Retreat, the longest-running Berlin-based bootcamp, since 2016, helping more than
180 students advance their careers.

Daniel is also the author of the edX course PyTorch and Deep Learning for Decision Makers.

His professional background includes 25 years of experience working for companies in several industries:
banking, government, fintech, retail, mobility, and edutech.

xV | About the Author

https://pytorchstepbystep.com
https://www.edx.org/learn/pytorch/the-linux-foundation-pytorch-and-deep-learning-for-decision-makers

Frequently Asked Questions (FAQ)
Who Should Read This Book?

The book targets practitioners of deep learning or, as it's fashionable these days to say, Al. It sits squarely at an
intermediate level: while the book would be challenging to a complete beginner in the field, you should be able
to follow it if you have some experience with Hugging Face and PyTorch (please check the next section for
more details).

The book caters to all readers, both patient and impatient. For those who want to hit the ground running, there
are plenty of "Summary" sections that will offer a condensed view of the most important choices you have to
make regarding your model and configuration. And, if you're really in a hurry, Chapter O offers a summary of
the whole book!

For those taking their time to learn every detail (and maybe a few extra things), the main body of text and the
special asides will hopefully keep you engaged.

What Do | Need to Know?

Have you already trained some models using PyTorch or Hugging Face? Do Transformers, attention, Adam,
tokens, embeddings, and GPUs sound familiar to you? If you've answered yes to both questions, | believe you
should be able to follow this book.

In every chapter, there’s a "Pre-Reqs" section that quickly goes over the concepts you need to know to better
understand what’s being discussed in that chapter. If you have a decent understanding of the contents in the
"Pre-Reqs" sections, you're in a great position to get the most out of this book.

One particular tricky topic is quantization because it relies on a deeper understanding of data types and their
internal representation (as usually covered in Computer Science courses). If this is something completely new
to you (or if you need a refresher), you can always check "Appendix B" for a thorough introduction to the
representation of data types.

If you’re completely new to PyTorch and deep learning, I'd like to suggest starting with my book series, Deep
Learning with PyTorch Step-by-Step: A Beginner's Guide. There, you'll learn all the fundamental concepts that will
prepare you to get the most out of this book.

Why This Book?

The meteoric rise of LLMs' popularity-starting with ChatGPT in November 2022-was followed by a never-
ending stream of releases: models, libraries, tools, and tutorials. While it’s great that new techniques are
quickly implemented and released, it usually breaks examples in the documentation (which, we all know, is often
the last thing to get updated) and in published tutorials.

It took a while for the ecosystem to get relatively stable, and | believe we’re at a point where most concepts
involved (e.g., quantization, LoRA) are here to stay for a couple of years, at least. Once you master these
concepts, it should be easier for you to handle any upcoming small changes to how they’re implemented. The

Who Should Read This Book? | 1

https://pytorchstepbystep.com
https://pytorchstepbystep.com

first goal of this book is to thoroughly explain these concepts.

The second goal of this book is to offer, at the same time, a comprehensive view of the whole process and a
detailed understanding of its key aspects. There’s often so much going on under the hood, and sometimes you
need to take a peek to truly understand why something is behaving in a certain way. We'll be taking the lid off
that hood a few times in this book, and I'll invite you to take a closer look inside it.

Finally, I'd like to keep an informal tone and will try my best to make you feel like we’re having a conversation.
Every now and then, I'll ask a question while pretending to be you, the reader, and then answer it shortly
afterward. This has proven to be a popular and engaging way to learn, according to the awesome feedback |
received from the readers of my Deep Learning with PyTorch Step-by-Step series :-)

| also hope you'll enjoy the pop culture references (movies, TV shows, etc.) because there are quite a few
sprinkled around the book!

Why Fine-Tune LLMs?

The "original" fine-tuning of LLMs was instruction-tuning, which is changing the model’s behavior from filling
in the blanks at the end (the famous next token prediction) to actually answering a question or following an
instruction, hence its name.

Before instruction-tuning, it was the user who had to reframe their question as a "fill in the blanks" statement.
So instead of asking "What is the capital of Argentina?", which the model couldn’t answer well, the user would
have to rephrase it as an incomplete statement "The capital of Argentina is", which would be completed by the
model with "Buenos Aires."

Instruction-tuned models opened the floodgates of LLMs' usage: instead of being a cumbersome task, it
became a fluent "conversation." The widespread adoption of chat models, as instruction-tuned models are also
called, brought a few challenges:

« How can you keep the model’s "knowledge" up to date or, how can you add specialized knowledge to it?

o How can you prevent a model from engaging in toxic, biased, unlawful, harmful, or generally unsafe

behavior?

Can you guess the answers to both questions? Fine-tuning, of course. The first case is a typical example of fine-
tuning using a specialized dataset, which is the main topic we’re covering in this book. Use cases for fine-tuning
include:

o Achatbot designed for internal use within an organization, handling its internal documentation.

¢ Analysis or summarization tasks tailored to a specific domain, such as legal documents.
In both cases, there’s a body of specialized or narrow knowledge, which is well-defined and relatively stable
over time. However, if there’s a need for real-time updates or if the model must handle a vast and diverse body

of knowledge, you may be better off using retrieval-augmented generation (RAG) instead (see the
corresponding section below).

The second case, preventing a model from engaging in undesired behavior, requires a different kind of fine-

2 | Frequently Asked Questions (FAQ)

tuning. Preference tuning (e.g., Reinforcement Learning with Human Feedback, RLHF, or Direct Preference
Optimization, DPO) aims at steering the model’s behavior to prevent it from providing potentially harmful
responses to the user. In other words, it is about aligning the model to the preferences of a person, company, or
institution that’s releasing it. This particular type of fine-tuning will not be covered in this book.

It is also possible to fine-tune LLMs to perform typical supervised learning tasks such as classification. In these
cases, we're using the LLM’s capabilities of understanding natural language to classify text: spam or not spam,
topic modeling, etc. Before using LLMs for these cases, though, it is probably a good idea to check if the same
task can be successfully performed by much smaller models (e.g., BERT and family). Do not use a bazooka to
swat afly.

How Difficult Is It to Fine-Tune an LLM?

It's not that difficult, as long as you:

o Understand how to configure the model and the training loop.

« Have the appropriate hardware (a GPU) to do it.

The more skilled you are in the first, the less you depend on the second. While a naive fine-tuning loop may
require tens of gigabytes of GPU RAM, a craftily configured model and training loop can deliver a similarly
performant fine-tuned model using a tenth of the RAM.

Our goal in this book is to teach you how to get the most out of configuring everything, so you can more easily
fine-tune your models, both more quickly and inexpensively.

We'll cover changes to the model itself in Chapters 2 and 3, and we'll tackle the training loop in Chapter 5.
Needless to say, no matter how easy (or difficult) it is to train a model, its quality ultimately depends on the
data used for training. We’'ll extensively cover proper data formatting in Chapter 4.

What about Retrieval-Augmented Generation (RAG)?

Retrieval-augmented generation, as the name suggests, is designed for retrieving information. The idea is quite
straightforward: you have lots of documents and you’d like to search and extract information from them, as if
you were asking a question to someone who knew the answer or, better yet, someone to whom you had
handed a lot of material to study. When queried, the person wouldn’t just point to where the information is
located within the provided material but would also formulate an appropriate textual response.

In the case of RAG, the "person" is the LLM, the study materials are what we call the context, and the textual
response is the generated (G) output based on the information retrieved (R) from its augmented (A)
knowledge (the study materials or context). Of course, the quality of the response depends on the quality and
quantity of the study materials. The context should contain relevant information but not include too much
irrelevant information. Models tend to focus on what they see first and last, much like regular people. As
contexts grow longer, it becomes increasingly difficult for the model to correctly locate the desired
information. Therefore, one very important step in RAG is to search for the documents most likely to contain
the answer and assemble them into a context, as opposed to throwing everything you have at the LLM.

RAG is a very flexible technique that relies on the capabilities of a general-purpose LLM. Drawing from our

How Difficult Is It to Fine-Tune an LLM? | 3

analogy once again, the LLM works like an educated person who, when prompted to study a particular topic, is
able to answer questions about it. At any time, you can hand them content about a different topic or perhaps an
updated version, and ask about that instead. In this case, the more educated the person, the better their
answers will be, regardless of the topic at hand. In terms of language models, it means you're probably better
off using the largest possible general model (given your budget, of course). For RAG, you want a jack-of-all-
trades.

While RAG is the technique of the generalist, fine-tuning is that of the specialist. Fine-tuned models are laser-
focused on a particular task or topic, and cannot easily (or perhaps, at all) switch to a different one without
further training. They are masters of a single trade, which means we can use much smaller models instead. The
narrower the scope of the task that the model must carry out, the smaller it can be. Smaller models are faster
to run and cheaper to train. However, fine-tuning a model requires assembling an appropriate dataset. which,
although not necessarily large (depending on the task, you may need as few as 1,000 samples), must contain
high-quality data. For this reason, fine-tuning is more suited for use cases where the content used and the task
being performed are relatively stable over time.

What Setup Do | Need?

It would be painfully slow to try fine-tuning LLMs, even the smaller ones, without a GPU. If you have your own
GPU ready to go, you're ready to hit the ground running. Not everyone can afford a GPU, though. If that’s your
case, you can use cloud providers such as Google Colab (which offers a Tesla T4 with 15 GB of RAM in the free
tier) and runpod.io (a paid service and a personal favorite) to follow along and run the code in this book.

Google Colab

The default environment provided by Google Colab already includes the majority of the libraries we’ll be using
here. The only missing requirements are datasets, bitsandbytes, and tr1, which you can easily install:

Ipip install datasets bitsandbytes trl

Runpod.io

You will need to install all other required packages since the Jupyter Notebook template used by RunPod
includes only two of them: numpy and torch. For setup instructions, please check "Appendix A: Setting Up Your
GPU Pod".

Ipip install datasets bitsandbytes trl transformers peft \
huggingface-hub accelerate safetensors pandas matplotlib
Optional Libraries

There are a few more optional libraries: o1lama, unsloth, xformers, and gquf. These packages will only be used
later down the line (in Chapter 6) for converting and serving your fine-tuned model. Depending on the
alternatives you choose for these steps, you may need to install one or more of these libraries.

4 | Frequently Asked Questions (FAQ)

Versions Used in This Book

Library Version Library Version
torch 2.8.0+cul26 safetensors 0.6.2
transformers 4.56.1 trl 0.23.1

peft 0.17.0 bitsandbytes 0.47.0
pandas 222 datasets 4.0.0
huggingface-hub 0.34.4 ollama 0.9.6

numpy 2.0.2 unsloth 2025.8.9
matplotlib 3.10.0 xformers 0.0.32.post2
accelerate 1.10.0 gguf 0.17.1
mistral-common 1.84 protobuf 3.20.1

How to Read This Book

This book is visually different from other books: | really like to make use of visual cues. Although this is not,
strictly speaking, a convention, this is how you can interpret those cues:

o | use bold to highlight what | believe to be the most relevant words in a sentence or paragraph, while
italicized words are considered important too (not important enough to be bold, though)

o Variables, coefficients, and parameters in general, are italicized
e (lasses and methods are written in amonospaced font
o Every code cell is followed by another cell showing the corresponding outputs (if any)

o All code presented in the book is available at its official repository on GitHub:

https://github.com/dvgodoy/FineTuningl LMs

Code cells are meant to be run in sequential order, except for those placed in asides. If there is any output to
the code cell, there will be another code cell depicting the corresponding output so you can check if you
successfully reproduced it or not.

x = [1., 2., 3.]
print(x)

Output

[1.0, 2.0, 3.0]

How to Read This Book | 5

https://github.com/dvgodoy/FineTuningLLMs

| use asides to communicate a variety of things, according to the corresponding icon:

g WARNING
Potential problems or things to look out for.

(,) TIP

- Key aspects | really want you to remember.

o INFORMATION
Important information to pay attention to.

o IMPORTANT
Really important information to pay attention to.

Qﬁ TECHNICAL
e Technical aspects of parameterization or inner workings of algorithms.

QUESTION AND ANSWER

Asking myself questions (pretending to be you, the reader) and answering them, either in
the same block or shortly after.
Really brief discussion on a concept or topic.

LATER

’J DISCUSSION

Important topics that will be covered in more detail later.

SILLY

Jokes, puns, memes, quotes from movies.

6 | Frequently Asked Questions (FAQ)

Chapter 0
TL;DR

Spoilers

In this short chapter, we'll get right to it and fine-tune a small language model, Microsoft’s Phi-3 Mini 4K
Instruct, to translate English into Yoda-speak. You can think of this initial chapter as a recipe you can just
follow. It's a "shoot first, ask questions later" kind of chapter.

You'll learn how to:

¢ Load a quantized model using BitsAndBytes

 Configure low-rank adapters (LoRA) using Hugging Face’s peft

¢ Load and format a dataset

¢ Fine-tune the model using the supervised fine-tuning trainer (SFTTrainer) from Hugging Face’s trl

o Use the fine-tuned model to generate a sentence

Jupyter Notebook

The Jupyter notebook corresponding to Chapter 0¥ is part of the official Fine-Tuning LLMs repository on
GitHub. You can also run it directly in Google Colab'Z.

Imports

For the sake of organization, all libraries needed throughout the code used in any given chapter are imported
atits very start. For this chapter, we’ll need the following imports:

import os

import torch

from contextlib import nullcontext

from datasets import load_dataset

from peft import get_peft_model, LoraConfig, prepare_model_for_kbit_training
from transformers import AutoModelForCausallM, AutoTokenizer, BitsAndBytesConfig
from trl import SFTConfig, SFTTrainer

Loading a Quantized Base Model

We start by loading a quantized model, so it takes up less space in the GPU’s RAM. A quantized model replaces
the original weights with approximate values that are represented by fewer bits. The simplest and most
straightforward way to quantize a model is to turn its weights from 32-bit floating-point (FP32) numbers into
4-bit floating-point numbers (NF4). This simple yet powerful change already reduces the model’s memory
footprint by roughly a factor of eight.

Spoilers | 7

https://github.com/dvgodoy/FineTuningLLMs/blob/main/Chapter0.ipynb
https://colab.research.google.com/github/dvgodoy/FineTuningLLMs/blob/main/Chapter0.ipynb

We can use an instance of BitsAndBytesConfig as the quantization_config argument while loading a model
using the from_pretrained() method. To keep it flexible, so you can try it out with any other model of your
choice, we're using Hugging Face’s AutoMode1ForCausallLM. The repo you choose to use determines the model
being loaded.

Without further ado, here’s our quantized model being loaded:

bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float32
)

repo_id = 'microsoft/Phi-3-mini-4k-instruct’
model = AutoModelForCausallM.from_pretrained(
repo_id, device_map="cuda:0", quantization_config=bnb_config

)

"The Phi-3-Mini-4K-Instruct is a 3.8B parameters, lightweight, state-of-the-art open model trained
with the Phi-3 datasets that includes both synthetic data and the filtered publicly available
websites data with a focus on high-quality and reasoning dense properties. The model belongs to

o the Phi-3 family with the Mini version in two variants 4K and 128K which is the context length (in
tokens) that it can support."

Source: Hugging Face Hub

Once the model is loaded, you can see how much space it occupies in memory using the
get_memory_footprint() method.

print(model.get_memory_footprint()/1e6)

Output

2206.347264

Even though it’s been quantized, the model still takes up a bit more than 2 gigabytes of RAM. The quantization
procedure focuses on the linear layers within the Transformer decoder blocks (also referred to as "layers" in
some cases):

model

8| Chapter O: TL;DR

https://huggingface.co/microsoft/Phi-3-mini-4k-instruct

Output

Phi3ForCausallLM(
(model): Phi3Model(
(embed_tokens): Embedding(32064, 3072, padding_idx=32000)
(embed_dropout): Dropout(p=0.0, inplace=False)
(layers): ModuleList(
(0-31): 32 x Phi3DecoderlLayer(
(self_attn): Phi3Attention(

(o_proj): Linear4bit(in_features=3072, out_features=3072, bias=False) @
(gkv_proj): Lineardbit(in_features=3072, out_features=9216, bias=False) @
(rotary_emb): Phi3RotaryEmbedding()

)

(mlp): Phi3MLP(
(gate_up_proj): Lineardbit(in_features=3072, out_features=16384, bias=False) @
(down_proj): Lineardbit(in_features=8192, out_features=3072, bias=False) @
(activation_fn): SiLU()

)

(input_layernorm): Phi3RMSNorm((3072,), eps=1e-05)

(resid_attn_dropout): Dropout(p=0.0, inplace=False)

(resid_mlp_dropout): Dropout(p=0.0, inplace=False)

(post_attention_layernorm): Phi3RMSNorm((3072,), eps=1e-05)

)
)
(norm): Phi3RMSNorm((3072,), eps=1e-05)
)
(1m_head): Linear(in_features=3072, out features=32064, bias=False)

)

® Quantized layers

A quantized model can be used directly for inference, but it cannot be trained any further. Those pesky
Lineardbit layers take up much less space, which is the whole point of quantization; however, we cannot
update them.

We need to add something else to our mix, a sprinkle of adapters.

Setting Up Low-Rank Adapters (LoRA)

Low-rank adapters can be attached to each and every one of the quantized layers. The adapters are mostly
regular Linear layers that can be easily updated as usual. The clever trick in this case is that these adapters are
significantly smaller than the layers that have been quantized.

Since the quantized layers are frozen (they cannot be updated), setting up LoRA adapters on a quantized
model drastically reduces the total number of trainable parameters to just 1% (or less) of its original size.

We can set up LoRA adaptersin three easy steps:

Setting Up Low-Rank Adapters (LoRA) | 9

o Callprepare_model_for_kbit_training() toimprove numerical stability during training.
o Create aninstance of LoraConfig.

o Apply the configuration to the quantized base model using the get_peft_model() method.

Let’s try it out with our model:

model = prepare_model_for_kbit_training(model)

config = LoraConfig(
#f the rank of the adapter, the lower the fewer parameters you'll need to train
r=8,
lora_alpha=16, # multiplier, usually 2*r
bias="none",
lora_dropout=0.05,
task_type="CAUSAL_LM",
#f Newer models, such as Phi-3 at time of writing, may require
#f manually setting target modules
target_modules=['o_proj', 'gkv_proj', 'gate_up_proj', 'down_proj'],
)
model = get_peft_model(model, config)
model

Output

PeftModelForCausallLM(
(base_model): LoraModel(
(model): Phi3ForCausallLM(
(model): Phi3Model(

(embed_tokens): Embedding(32064, 3072, padding_idx=32000)

(embed_dropout): Dropout(p=0.0, inplace=False)

(Tayers): ModuleList(

(0-31): 32 x Phi3DecoderLayer(
(self_attn): Phi3Attention(
(o_proj): lora.Linear4dbit(©)
(base_layer): Linear4bit(in_features=3072, out_features=3072, bias=False)
(Tora_dropout): ModuleDict((default): Dropout(p=0.05, inplace=False))
(Tora_A): ModuleDict(
(default): Linear(in_features=3072, out_features=8, bias=False)
)
(Tora_B): ModuleDict(
(default): Linear(in_features=8, out_features=3072, bias=False)

)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(Lora_magnitude_vector): ModuleDict()

10 | Chapter 0: TL;DR

(qkv_proj): lora.Linear4bit(...) ©)
(rotary_emb): Phi3RotaryEmbedding()
)
(mlp): Phi3MLP(
(gate_up_proj): lora.Linear4bit(...) @D
(down_proj): lora.Linear4bit(...) @
(activation_fn): SiLU()
)
(input_layernorm): Phi3RMSNorm((3072,), eps=1e-05)
(resid_attn_dropout): Dropout(p=0.0, inplace=False)
(resid_mlp_dropout): Dropout(p=0.0, inplace=False)
(post_attention_layernorm): Phi3RMSNorm((3072,), eps=T1e-05)

)
)
(norm): Phi3RMSNorm((3072,), eps=1e-05)
)
(Im_head): Linear(in_features=3072, out_features=32064, bias=False)

)
)
)

@ LoRA adapters

The output of the other three LoRA layers (gkv_proj, gate_up_proj, and down_proj) was suppressed to shorten
the output.

Did you get the following error?
ValueError: Please specify ‘target_modules' in ‘peft_config'

A Most likely, you don’t need to specify the target_modules if you're using one of the well-
known models. The peft library takes care of it by automatically choosing the appropriate
targets. However, there may be a gap between the time a popular model is released and the
time the library gets updated. So, if you get the error above, look for the quantized layers in
your model and list their names in the target_modules argument.

The quantized layers (Linear4bit) have turned into lora.Linear4bit modules where the quantized layer itself
became the base_layer with some regular Linear layers (lora_A and lora_B) added to the mix.

These extra layers would make the model only slightly larger. However, the model preparation function
(prepare_model_for_kbit_training()) turned every non-quantized layer to full precision (FP32), thus
resulting in a 20% larger model:

print(model.get_memory_footprint()/1e6)

Setting Up Low-Rank Adapters (LoRA) | 11

Output

2651.080704

Since most parameters are frozen, only a tiny fraction of the total number of parameters are currently
trainable, thanks to LoRA!

train_p, tot_p = model.get_nb_trainable_parameters()
print(f'Trainable parameters: {train_p/1e6:.2f}M")
print(f'Total parameters: {tot_p/1e6:.2f}M")
print(f'% of trainable parameters: {100*train_p/tot_p:.2f}%")

Output
Trainable parameters: 12.58M
Total parameters: 3833.66M

% of trainable parameters: 0.33%

The model is ready to be fine-tuned, but we are still missing one key component: our dataset.

Formatting Your Dataset

"Like Yoda, speak, you must. Hrmmm."

Master Yoda

The dataset yoda sentences consists of 720 sentences translated from English to Yoda-speak. The dataset is
hosted on the Hugging Face Hub and we can easily load it using the 1oad_dataset () method from the Hugging
Face datasets library:

dataset = load_dataset("dvgodoy/yoda_sentences", split="train")
dataset

Output
Dataset({
features: ['sentence', 'translation', 'translation_extra'],

num_rows: 720

1))

The dataset has three columns:

« original English sentence (sentence)

12 | Chapter 0: TL;DR

https://huggingface.co/datasets/dvgodoy/yoda_sentences

¢ basic translation to Yoda-speak (translation)

« enhanced translation including typical Yesss and Hrrmm interjections (translation_extra)

dataset[0]

Output

{'sentence': 'The birch canoe slid on the smooth planks.',
"translation': 'On the smooth planks, the birch canoe slid.',
"translation_extra': 'On the smooth planks, the birch canoe slid. Yes, hrrrm.'}

The SFTTrainer we'll be using to fine-tune the model can automatically handle datasets in conversational
format.

{"messages":[
{"role": "system", "content": "<general directives>"},
{"role": "user", "content": "<prompt text>"},
{"role": "assistant", "content": "<ideal generated text>"}

I}

In previous versions, it would suffice to have two columns named prompt and completion, and the dataset
would be automatically converted to the conversational format. This approach isn’'t supported anymore, so
we're better off doing the conversion ourselves. We'll be using the format_dataset() function below, which
was adapted from an earlier version of the tr1 package.

1 # Adapted from trl.extras.dataset_formatting.instructions_formatting_function
2 # Converts dataset from prompt/completion format to the conversational format
3 def format_dataset(examples):

4 if isinstance(examples["prompt"], list):

5 output_texts = []

6 for i in range(len(examples["prompt"])):

7 converted_sample = [

8 {"role": "user", "content": examples["prompt"][i]},

9 {"role": "assistant", "content": examples["completion"][i]},
10]

11 output_texts.append(converted_sample)

12 return {'messages': output_texts}

13 else:

14 converted_sample = [

15 {"role": "user", "content": examples["prompt"]},

16 {"role": "assistant", "content": examples["completion"]},
17]

18 return {'messages’: converted_sample}

Formatting Your Dataset | 13

Notice that the function expects examples with both prompt and completion columns, so we need to rename
some columns before applying it to our dataset.

dataset = dataset.rename_column("sentence", "prompt")
dataset = dataset.rename_column("translation_extra", "completion")
dataset = dataset.map(format_dataset)

dataset = dataset.remove_columns(["prompt", "completion", "translation"])
messages = dataset[0]["messages"”]
messages

Output

[{'role': 'user',
"content': 'The birch canoe slid on the smooth planks.'},
{'role': 'assistant',
"content': 'On the smooth planks, the birch canoe slid. Yes, hrrrm.'}]

That’s it for formatting!

Tokenizer

Before moving into the actual training, we still need to load the tokenizer that corresponds to our model. The
tokenizer is an important part of this process, determining how to convert text into tokens in the same way
used to train the model.

For instruction/chat models, the tokenizer also contains its corresponding chat template that specifies:

o Which special tokens should be used, and where they should be placed.
o Where the system directives, user prompt, and model response should be placed.

¢ What is the generation prompt, that is, the special token that triggers the model’s response (more on that
in the "Querying the Model" section)

It is important to keep the EQS token unique. In some models, such as Phi-3, the EQS token
o also serves as the PAD token, which can cause it to be masked during training and result in
endless token generation. To prevent this, we map the PAD token to UNK instead.

tokenizer = AutoTokenizer.from_pretrained(repo_id)

Assign the UNK token to the PAD token to make EQS token unique
tokenizer.pad_token = tokenizer.unk_token

tokenizer.pad_token_id = tokenizer.unk_token_id

tokenizer.chat_template

14 | Chapter 0: TL;DR

Output

"{% for message in messages %}

{% if message['role'] == 'system' %}

{{"'<|system|>\n" + message['content'] + '<|end|>\n'}}
{% elif message['role'] == "user' %}

{{"'<|user|>\n" + message['content'] + '<|end|>\n'}}
{% elif message['role'] == 'assistant' %}

{{'<|assistant|>\n" + message['content'] + '<|end|>\n'}}
{% endif %}
{% endfor %}
{% if add_generation_prompt %}
{{ '<|assistant|>\n" }}{% else %}{{ eos_token }}
{% endif %}"

Never mind the seemingly overcomplicated template (I have added line breaks and indentation to it so it’s
easier to read). It simply organizes the messages into a coherent block with the appropriate tags, as shown
below (tokenize=False ensures we get readable text back instead of a numeric sequence of token IDs):

print(tokenizer.apply_chat_template(messages, tokenize=False))

Output

<|user|>

The birch canoe slid on the smooth planks.<|end|>
<|assistant|>

On the smooth planks, the birch canoe slid. Yes, hrrrm.<|end|>
<|endoftext|>

Notice that each interaction is wrapped in either <|user|> or <|assistant|> tokens at the beginning and
<|end|> at the end. Moreover, the <|endoftext | > token indicates the end of the whole block.

Different models will have different templates and tokens to indicate the beginning and end of sentences and
blocks.

We're now ready to tackle the actual fine-tuning!

Fine-Tuning with SFTTrainer

Fine-tuning a model, whether large or otherwise, follows exactly the same training procedure as training a
model from scratch. We could write our own training loop in pure PyTorch, or we could use Hugging Face’s
Trainer to fine-tune our model.

It is much easier, however, to use SFTTrainer instead (which uses Trainer underneath, by the way), since it
takes care of most of the nitty-gritty details for us, as long as we provide it with the following four arguments:

Fine-Tuning with SFTTrainer | 15

e amodel
o atokenizer
¢ adataset

¢ aconfiguration object

We've already got the first three elements; let’s work on the last one.

SFTConfig

There are many parameters that we can set in the configuration object. We have divided them into four
groups:

« Memory usage optimization parameters related to gradient accumulation and checkpointing

e Dataset-related arguments, such as the max_seq_length required by your data, and whether you are
packing or not the sequences

¢ Typical training parameters such as the learning_rate and the num_train_epochs

¢ Environment and logging parameters such as output_dir (this will be the name of the model if you choose
to push it to the Hugging Face Hub once it’s trained), logging_dir, and logging_steps.

While the learning rate is a very important parameter (as a starting point, you can try the learning rate used to
train the base model in the first place), it’s actually the maximum sequence length that’s more likely to cause
out-of-memory issues.

Make sure to always pick the shortest possible max_seq_length that makes sense for your use case. In ours, the
sentences—both in English and Yoda-speak—are quite short, and a sequence of 64 tokens is more than enough
to cover the prompt, the completion, and the added special tokens.

x Flash attention, as we’ll see later, allows for more flexibility in working with longer
sequences, avoiding the potential issue of OOM errors.

sft_config = SFTConfig(
GROUP 1: Memory usage
These arguments will squeeze the most out of your GPU's RAM
Checkpointing
gradient_checkpointing=True, # this saves a LOT of memory
#f Set this to avoid exceptions in newer versions of PyTorch
gradient_checkpointing_kwargs={'use_reentrant': False},
#f Gradient Accumulation / Batch size
Actual batch (for updating) is same (1x) as micro-batch size
gradient_accumulation_steps=1,
The initial (micro) batch size to start off with
per_device_train_batch_size=16,
If batch size would cause 00M, halves its size until it works
auto_find_batch_size=True,

16 | Chapter 0: TL;DR

GROUP 2: Dataset-related

max_length=64, # renamed in v0.20

#f Dataset

packing a dataset means no padding is needed
packing=True,

packing_strategy="wrapped', # added in v0.20

##f GROUP 3: These are typical training parameters
num_train_epochs=10,

learning_rate=3e-4,

Optimizer

8-bit Adam optimizer - doesn't help much if you're using LoRA!
optim="paged_adamw_8bit",

GROUP 4: Logging parameters

logging_steps=10,

logging_dir="./logs’,

output_dir="./phi3-mini-yoda-adapter",

report_to="none",

EXTRA

ensures that training in bf16 happens only when it is supported
bf16=torch.cuda.is_bf16_supported(including_emulation=False)

At the time of writing, the current version of trl (0.23.1) enables mixed-precision training
o using the bf16 data type by default, regardless of whether the environment supports it. To
prevent issues, we explicitly set the appropriate bf16 argument in the configuration.

SFTTrainer
"It is training time!"

The Hulk

We can now finally create an instance of the supervised fine-tuning trainer:

trainer = SFTTrainer(
model=model,
processing_class=tokenizer,
args=sft_config,
train_dataset=dataset,

Fine-Tuning with SFTTrainer | 17

Up to version 0.23 of trl, there was a known issue where training failed if the LoRA
configuration had already been applied to the model, as the trainer froze the whole model,
including the adapters.

o If the model already contained the adapters, as in our case, training would only work if the
underlying original model (model.base_model.model) was used together with the
peft_configargument.

This issue was fixed in version 0.23.1 of tr1, released in October 2025.

The SFTTrainer had already preprocessed our dataset, so we can take a look inside and see how each mini-
batch was assembled:

dl = trainer.get_train_dataloader()
batch = next(iter(dl))

Let’s check the labels; after all, we didn’t provide any, did we?
batch["input_ids'][@], batch['labels'][0]

Output

(tensor([1746, 29892, 278, 10435, 3147, 698, 287, 29889, 32007, 32000, 32000,
32010, 10987, 278, 3252, 262, 1058, 380, 1772, 278, 282, 799, 29880,
18873, 1265, 29889, 32007, 32001, 11644, 380, 1772, 278, 282, 799, 29880,
18873, 1265, 29892, 1284, 278, 3252, 262, 29892, 366, 1818, 29889, 3869,
29892, 298, 21478, 1758, 29889, 32007, 32000, 32000, 32010, 315, 329, 278,
13793, 393, 7868, 29879, 278], device='cuda:0'),

tensor ([1746, 29892, 278, 10435, 3147, 698, 287, 29889, 32007, 32000, 32000,
32010, 10987, 278, 3252, 262, 1058, 380, 1772, 278, 282, 799, 29880,
18873, 1265, 29889, 32007, 32001, 11644, 380, 1772, 278, 282, 799, 29880,
18873, 1265, 29892, 1284, 278, 3252, 262, 29892, 366, 1818, 29889, 3869,
29892, 298, 21478, 1758, 29889, 32007, 32000, 32000, 32010, 315, 329, 278,
13793, 393, 7868, 29879, 278], device='cuda:0'))

The labels were added automatically, and they’re exactly the same as the inputs. Thus, this is a case of self-
supervised fine-tuning.

The shifting of the labels will be handled automatically as well; there’s no need to be concerned about it.

18 | Chapter 0: TL;DR

Although this is a 3.8 billion-parameter model, the configuration above allows us to squeeze
training, using a mini-batch of eight, into an old setup with a consumer-grade GPU such as a
’J GTX 1060 with only 6 GB RAM. True story!

It takes about 35 minutes to complete the training process.

Next, we call the train() method and wait:

trainer.train()

Step Training Loss
10 2.990700
20 1.789500
50 1.362300
100 0.607900
150 0.353600
200 0.277500
220 0.252400

Querying the Model
Now, our model should be able to produce a Yoda-like sentence as a response to any short sentence we give it.

So, the model requires its inputs to be properly formatted. We need to build a list of "messages"—ours, from
the user, in this case—and prompt the model to answer by indicating it’s its turn to write.

This is the purpose of the add_generation_prompt argument: it adds <|assistant|> to the end of the
conversation, so the model can predict the next word—and continue doing so until it predicts an <|endoftext |>
token.

The helper function below assembles a message (in the conversational format) and applies the chat template
toit, appending the generation prompt to its end.

Formatted Prompt

1 def gen_prompt(tokenizer, sentence):

2 converted_sample = [{"role": "user", "content": sentence}]
3 prompt = tokenizer.apply_chat_template(converted_sample,

4 tokenize=False, add_generation_prompt=True)

5 return prompt

Querying the Model | 19

Let’s try generating a prompt for an example sentence:

sentence = 'The Force is strong in you!'
prompt = gen_prompt(tokenizer, sentence)
print(prompt)

Output

<|user|>
The Force is strong in you!<|end|>
<|assistant|>

The prompt seems about right; let’s use it to generate a completion. The helper function below does the
following:

o It tokenizes the prompt into a tensor of token IDs (add_special_tokens is set to False because the tokens
were already added by the chat template).

o It sets the model to evaluation mode.
o It calls the model’s generate() method to produce the output (generated token IDs).

o If the model was trained using mixed-precision, we wrap the generation in the autocast() context
manager, which automatically handles conversion between data types.

o It decodes the generated token IDs back into readable text.

Helper Function

1 def generate(model, tokenizer, prompt, max_new_tokens=64, skip_special_tokens=False):
2 tokenized_input = tokenizer(prompt, add_special_tokens=False, return_tensors="pt")
3 tokenized_input = tokenized_input.to(model.device)

4 model.eval()

5 # if it was trained using mixed precision, uses autocast context

6 ctx = torch.autocast(device_type=model.device.type, dtype=model.dtype) \

7 if model.dtype in [torch.float16, torch.bfloat16] else nullcontext()

8

with ctx:
9 gen_output = model.generate(**tokenized_input,
10 eos_token_id=tokenizer.eos_token_id,
11 max_new_tokens=max_new_tokens)
12 output = tokenizer.batch_decode(gen_output, skip_special_tokens=skip_special_tokens)

13 return output[@]

Now, we can finally try out our model and see if it's indeed capable of generating Yoda-speak.

print(generate(model, tokenizer, prompt))

20 | Chapter O: TL;DR

Output

<|user|> The Force is strong in you!<|end|><|assistant|> Strong in you, the Force is. Yes,
hrrmmm.<|end|>

Awesome! It works! Like Yoda, the model speaks. Hrrrmm.
Congratulations, you've fine-tuned your first LLM!

Now, you've got a small adapter that can be loaded into an instance of the Phi-3 Mini 4K Instruct model to turn
itinto a Yoda translator! How cool is that?

Saving the Adapter
Once the training is completed, you can save the adapter (and the tokenizer) to disk by calling the trainer’s
save_model () method. It will save everything to the specified folder:

trainer.save_model('local-phi3-mini-yoda-adapter")

The files that were saved include:

o the adapter configuration (adapter_config.json) and weights (adapter_model.safetensors)—the adapter
itself is just 50 MB in size

e the training arguments (training_args.bin)

o the tokenizer (tokenizer.json and tokenizer.model), its configuration (tokenizer_config.json), and its
special tokens (added_tokens. json and speciak_tokens_map.json)

+ a README file

If you'd like to share your adapter with everyone, you can also push it to the Hugging Face Hub. First, log in
using a token that has permission to write:

from huggingface_hub import login
login()

The code above will ask you to enter an access token:

Querying the Model | 21

L)
__

Copy a token from your Hugging Face tokens page and paste it below.
Immediately click login after copying your token or it might be stored in plain text in

this notebook file.

Token:

[C] Add token as git credential?
Login
Pro Tip: If you don't already have one, you can create a dedicated 'notebooks’ token

with ‘write’ access, that you can then easily reuse for all notebooks.
Figure 0.1 - Logging into the Hugging Face Hub

A successful login should look like this (pay attention to the permissions):

Token is valid (permission: write).
Your token has been saved to /home/dvgodoy/.cache/huggingface/token
Login successful
Figure 0.2 - Successful Login
Then, you can use the trainer’s push_to_hub() method to upload everything to your account in the Hub. The
model will be named after the output_dir argument of the training arguments:
trainer.push_to_hub()

There you go! Our model is out there in the world, and anyone can use it to translate English into Yoda speak.
That’s awrap!

[6] https://github.com/dvgodoy/FineTuningLLMs/blob/main/ChapterQ.ipynb
[7] https://colab.research.google.com/github/dvgodoy/FineTuningLLMs/blob/main/ChapterQ.ipynb

22 | Chapter O: TL;DR

https://github.com/dvgodoy/FineTuningLLMs/blob/main/Chapter0.ipynb
https://colab.research.google.com/github/dvgodoy/FineTuningLLMs/blob/main/Chapter0.ipynb

Chapter 1
Pay Attention to LLMs

Spoilers
In this chapter, we'll:

o Briefly discuss the history of language models
o Understand the basic elements of the Transformer architecture and the attention mechanism

o Understand the different types of fine-tuning

Language Models, Small and Large

Small or large are relative concepts when it comes to language models. A model that was considered huge just a
few years ago is now deemed fairly small. The field has quickly evolved from models having 100 million
parameters (e.g., BERT, some versions of GPT-2) to models with 7 billion, 70 billion, and even 400 billion
parameters (e.g., Llama).

While models have scaled from 70 to 4,000 times their previously typical size, the hardware hasn’t kept pace:
GPUs today do not have 100 times more RAM than they had five years ago. The solution: clusters! Lots and
lots of GPUs put together to train ever-larger models in a distributed fashion. Big tech companies built multi-
million dollar infrastructures to handle these models.

The larger the model, the more data it needs to train, right? But at this scale, we're not talking about thousands
or even millions of tokens—we’re talking billions and trillions. Do you happen to have a couple hundred billion
tokens lying around? | sure don’t. But in 2025, you can actually find datasets with 2 trillion tokens on the
Hugging Face Hub! How cool is that?

Unfortunately, even with access to such massive datasets, we'd still lack the resources—thousands of high-end
GPUs—to make full use of them. Only Big Tech can afford that kind of scale.

The days when regular Joe data scientists could train a language model (as it was possible to do with BERT, for
example) from scratch are dead and gone. Even mid-sized companies can’t keep up with that pace anymore.
What's left for us to do? Fine-tune the models, of course.

We can only fine-tune a model if its weights are publicly available (these are the pre-trained base models
we’re used to downloading from the Hugging Face Hub). And, perhaps more importantly, we can only deploy
and use our own fine-tuned model commercially if the model’s license allows it. Not long ago, these pre-
trained base models had complex and restrictive licenses. Luckily for us, many of today’s state-of-the-art
models have much more permissive licenses (focusing on excluding rival Big Tech companies from commercial
use only).

Before investing your time, energy, and money into fine-tuning an LLM that will power your

o new startup idea, please check if the model’s license allows for commercial use. If you're
unsure, seek appropriate legal counsel.

Spoilers | 23

https://huggingface.co/datasets/PleIAs/common_corpus

We may take the idea of fine-tuning a language model for granted now, but it wasn’t always that way. Transfer
learning—that is, tweaking a model so it can be used on a slightly different task than the one it was originally
trained for—was limited to computer vision models.

Transformers

In 2018, Sebastian Ruder wrote a blog post titled "NLP’s ImageNet moment has arrived€." referencing the
breakthroughs in transfer learning for natural language processing tasks as a result of a newly developed
architecture: the Transformer. Transformers were introduced in a legendary paper titled "Attention Is All You
Need?." The proposed architecture had two main parts, an encoder and a decoder, and it was initially built to
address translation tasks. The first part, the encoder, would take the input sentence and encode it in a long
vector that represents it. That vector, also called the hidden state, would then be passed to the second part,
the decoder. The decoder’s job is to use that hidden state to sequentially produce the translated sentence.

Both encoder and decoder were built by stacking several Transformer blocks, often called "layers," and
connecting them through the passing of those hidden states. The number of stacked "layers" ranges from six in
early-day Transformers to 32 or 48 in more recent models.

Each block or "layer" contained two or three "sub-layers": one or two attention mechanisms (more on that in
the next section) and a feed-forward network (FFN), as depicted in Figure 1.1.

Predictions

Encoder l States 4 Decoder
K | \ ﬂ \ Predictions
"Layer" 3 "Layer" Decoder
- f ~ ~ * < "Sub-Layer"”
(A] Feed-Forward
"Layer" > "Layer" Network
) t . " 1 \
"Layer" > "Layer" Encoder FStates
T T g "Sub-Layer"
"Laver" ." "Laver" 1 Feed-Forward
- Y J L v J Network
) ("Sub-Layer"
"Layer" > "Layer") Masked
)) Multi-Headed Multi-Headed
A I Self-Attention Attention
s ~\ ™
"Layer" — "Layer"
| I
(a) Stacked "Layers" (b) Stacked "Layers" in detail

Figure 1.1 - Transformer’s stacked "layers"

On the left (a), we see a Transformer where both the encoder and decoder consist of six blocks or "layers." On
the right (b), we zoom in on an encoder "layer" (yellow border) and a decoder "layer" (green border), illustrating
their internal "sub-layers."

Each "sub-layer," in turn, implemented both residual (skip) connections and layer normalization for its inputs.
On top of that, the initial inputs to the model had positional encodings added to them. The picture, in full detail,
looked like Figure 1.2.

24 | Chapter 1: Pay Attention to LLMs

The Transformer architecture was a huge success, surpassing previous state-of-the-art models by leaps and
bounds. It didn’t take long for it to completely dominate the NLP landscape. The full Transformer, an encoder-
decoder architecture, was then split into encoder-only and decoder-only models.

Predictions

T

[Linear]

)

Norm

Feed-Forward
Network

1 1
!]
! 1
! 1
| | Feed-Forward !
1 Network :
1

1 :
! 1
! 1
! 1

Nx Nx
"Layers" [, : "Layers"
1
:] :
: : Masked 1
1 Multi-Headed ' Multi-Head_ed :
|| Self-Attention ' Self-Attention :
1 1 X
1 1 .
]] X
1] ,
1 1 .
1 Norm 1 |
1 1 .
’
Positional Positional
Encoding Encoding

Embeddings/
Projections

Embeddings/
Projections

Source Sequence Shifted
Target Sequence

Figure 1.2 - Transformer architecture in detail

Transformers | 25

Above and Beyond Attention

Attention is the star of the Transformer show and even gets a section of its own. But, truth be told, there
is more to the Transformer architecture than meets the eye. I'd like to draw (your) attention to a couple
of components in supporting roles and that may easily be overlooked: layer normalization and the feed-
forward network (FFN, also known as MLP, multi-layer perceptron).

We're so used to normalizing inputs to our models, whether they are features in a tabular dataset or
images, that we may not pay enough attention to normalization layers. Computer vision models
introduced batch normalization to address the famous internal covariate shift, which refers to the fact that
the inputs of layers deep in the model were quite unlikely to remain normalized.

While batch normalization, as the name suggests, works by standardizing individual features across
samples in a mini-batch, layer normalization takes a different approach: it standardizes individual
samples across features. In our case, these features are the token’s embeddings and their
corresponding hidden states produced by each Transformer block.

Throughout the book, you'll see that layer norms are treated with great care: they’re "first-class" layers
and they’re kept in the highest precision data type to ensure the model runs smoothly. In addition to the
traditional LayerNorm, you may also encounter its variant, root mean squared normalization, RMSNorm,
which is used by many recent models, such as Phi-3.

The other supporting component is the well-known feed-forward network. It’s usually composed of a
couple of linear layers with an activation function in between—typical stuff. Here is Phi-3’s MLP.

(mlp): Phi3MLP(
(gate_up_proj): Linear(in_features=3072, out_features=16384, bias=False)
(down_proj): Linear(in_features=8192, out_features=3072, bias=False)
(activation_fn): SiLU()

)

You wouldn'’t think so, but overall, these may actually be more relevant to the model’s performance
than the attention layers. If you start dismantling the model by removing whole "sub-layers" from inside
Transformer blocks, the model can survive (performance-wise) the removal of many attention "sub-
layers," but its performance degrades if FFN "sub-layers" are removed. True story!22

\.

Encoder-only models, such as BERT (Bidirectional Encoder Representations from Transformers), depicted in
Figure 1.3, can be used to generate high-quality contextual word embeddings—the hidden states it produces,
which are numerical representations that capture the semantic meaning of inputs within a given
context—making it much easier to classify text, for example, in sentiment analysis.

26 | Chapter 1: Pay Attention to LLMs

Contextual Word

% (= ()
(ana][] 1)
CICL)
st Layers 0D (LD (0D 00D OO0 00 000 mpm Ul

Hiddenstates [T Tl oo lcr] |)

1 1 1 1 1 1 1 (o) }

BERT = Transformer Encoder (nrew])

v |)

N O A AU N O O N O O A A e
Input IDs [101][1993][1010][2051][2521][2004]2027][2354][1010][202712020][3243][2157][1012][102] C]:]jl
e I D B O R O

Figure 1.3 - Contextual word embeddings from BERT

Decoder-only models, such as GPT (Generative Pretrained Transformer), took a little longer to take off,
though. These models work as next-token predictors: given a sequence of inputs, they will predict the most
likely words (actually, tokens) that follow it. The first two generations (GPT and GPT-2—the only ones that are
publicly available)—were no more than interesting toys for generating whimsical texts. They were still missing
a couple of things to make them really popular: scale and the ability to chat.

Fast-forward a couple of years, and decoder-only models had become several times larger. As it turned out,
these models benefited a lot from scaling up: stacking more "layers" on top of one another and training them on
ever-larger corpora of text. Larger models were indeed more capable of generating text of human-like
quality—at first glance, at least. Scaling up was a necessary requirement to enable these models to encode the
structure of human language. When combined with instruction-tuning, which removed the main obstacle to
interaction, it didn’t take long for "LLM" and "Al" to become household names.

e "That’s awesome! How do they work?"

Simply put, they’re paying attention.

Attention Is All You Need

The attention mechanism, if you ask an LLM to describe it, was a "game-changer." | have to agree with that
assessment, as the paper that introduced it is one of the most consequential papers in the field. The attention
mechanism is simple yet powerful, and it’s represented by the equation below (where queries, keys, and values,
represented by Q, K, and V, respectively, are linear transformations of each token’s embeddings, and d_k is their
number of dimensions):

. - QKT
Attention(Q, x,v) = softmax (Nz) v

Equation 1.1 - Attention formula

The idea, in a nutshell, is to give the model the ability to "choose" where to look or, better yet, which parts of
the input it should pay attention to. It allowed the model to compare every input token with every other

Attention Is All You Need | 27

token in the input and assign scores to each pair.

For example, let’s say the model was trained to translate from English to French, and its input is "the European
economic zone." In French, as in other Romance languages, nouns have genders (zone is feminine). Therefore, in
order to translate the article "the" from English to French, the model needs to know which noun the article
refers to (zone, in this case). If it's masculine, its translation will be "le," if it's feminine, "la," and if it's a plural,
"les."

The attention mechanism allows the model to learn the relationship between elements in the sentence. So it
knows that to effectively translate "the" to "la," it needs to pay attention to both "the" and its context (the word
"zone"), as illustrated in the figure below (the scores are made-up).

European
economic
zone

a
e
)}

Z0ne

économique

européenne

Figure 1.4 - Attention scores
e "What exactly are those queries, keys, and values?"

The naming convention is certainly not intuitive. It originates from a particular type of database known as a
key-value store. We're quite familiar with one specific type of key-value store: a Python dictionary. Whenever
we retrieve something from a dictionary, we're effectively querying it. Of course, this is a rather basic form of
querying: either we find the key (and get the corresponding value back), or we don’t (and an exception is
raised). In the attention mechanism, however, querying is more nuanced: it relies on cosine similarity.

Cosine similarity is a metric used to compare two vectors. If they point in the same direction (the angle
between them is close to zero), their similarity is close to one. If they point in opposite directions (angle close
to 180 degrees), their similarity is close to minus one. And if they are orthogonal to each other (meaning
there’s a right angle between them), their similarity is zero. In Figure 1.5, we're using two-dimensional vectors
(instead of 1,024-dimensional ones, which | can’t draw) to illustrate the concept.

28 | Chapter 1: Pay Attention to LLMs

Query and Keys

1.0 [Q]|=1.10

[|Ko|| = 0.68
cos8y=0.73

X1
o

[IKz]] =1.21
cosf; = —0.93

||K1]| = 0.94
cosf, =0.08

-1.0
-1.0 0 1.0

X0
Figure 1.5 - Querying two-dimensional keys

Let’say there are three keys in our store (in black), and we have a new query (in red). The similarities are
indicated by the cosines of theta (the angle between each key and the query), and each vector also shows its
corresponding norm (their size, essentially). Interestingly, cosine similarity is inherently part of the dot
product: the Q.K in the formula.

cos 0 ||Q[| ||K]| = Q- K

Equation 1.2 - Cosine similarity, norms, and the dot product

By multiplying a query (Q, the vector we're using to "search") by every key (K) in the key-value store, we
compute how similar the query is to each key. These results, often called "alignments," are softmaxed to
produce scores. The higher the score, the more relevant the key is to the query. What's left to do? Fetch the
query’s corresponding value. But, since there’s no perfect one-to-one correspondence (as in a dictionary),
fetching the "value" involves computing a weighted sum of all values (V) in the store, with the scores serving as
weights. The resulting vector is known as the context vector (as shown in Figure 1.5).

9 "That's great, but you haven't really answered my question..."

You're absolutely right. I've described how queries, keys, and values, are used by the attention mechanism, but
not what they are. They are simply linear projections of the tokens' embeddings. Confusing? | get it. Queries,
keys, and values are different projections of the same inputs. For every token in the input, there is a
corresponding embedding vector (the token’s numerical representation). Each embedding vector passes
through three distinct linear layers, producing the outputs we refer to queries, keys, and values. Here’s a
stylized example in code, using a real tokenizer along with made-up parts of a model:

Attention Is All You Need | 29

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F

from transformers import AutoTokenizer

repo_id = 'microsoft/Phi-3-mini-4k-instruct’
tokenizer = AutoTokenizer.from_pretrained(repo_id)
vocab_size = len(tokenizer)

torch.manual_seed(13)

Made-up embedding and projection layers

d_model = 1024

embedding_layer = nn.Embedding(vocab_size, d_model)
linear_query = nn.Linear(d_model, d_model)

linear_key = nn.Linear(d_model, d_model)
linear_value = nn.Linear(d_model, d_model)

The first step is tokenization, that is, encoding the input sentence into a sequence of token IDs.

sentence = 'Just a dummy sentence'
input_ids = tokenizer(sentence, return_tensors="pt')['input_ids']
input_ids

Output

tensor ([[3387, 263, 20254, 10541]])

These token IDs are used as indices to retrieve their corresponding embeddings from the embedding layer.

embeddings = embedding_layer(input_ids)
embeddings.shape

Output

torch.Size([1, 4, 1024])

And there you have it—one sequence, four embeddings, each with 1,024 dimensions. Next, these embeddings
are projected through three distinct layers, giving rise to what we call keys, values, and queries. At this point,
we can apply the first part of the attention formula: the (scaled) dot product followed by the softmax.

30 | Chapter 1: Pay Attention to LLMs

Projections

proj_key = linear_key(embeddings)

proj_value = linear_value(embeddings)

proj_query = linear_query(embeddings)

#f Attention scores

dot_products = torch.matmul(proj_query, proj_key.transpose(-2, -1))
scores = F.softmax(dot_products / np.sqrt(d_model), dim=-1)
scores.shape

Output

torch.Size([1, 4, 4])

Notice the shape of the scores—it’s four by four! Every pair of tokens gets a score, and the softmax function
ensures these scores add up to one for each token. Now, we're ready to use these scores to compute the
weighted sum of the values.

context = torch.matmul(scores, proj_value)
context.shape

Output

torch.Size([1, 4, 1024])

There it is—four context vectors, one for each token. Of course, the actual implementation is more complex
and nuanced (we’ll get back to it in Chapter 5), but this is hopefully enough to get the gist of it.

To sum up, the very same token is represented differently depending on its role—query, key, or value. These
are the projected embeddings, or simply projections, as illustrated in Figure 1.5. What’s even more interesting
is the fact that the model is completely free to learn all these things: the embeddings themselves, and the
three distinct types of projections.

While simple and powerful, this approach has a major bottleneck. Can you guess what it is?

No Such Thing As Too Much RAM

We didn’t use to have a major issue with the GPU RAM. | bought my GTX 1060 with 6 GB of RAM back in 2017
and it was more than enough to train whatever models | wanted to train. But then, Transformers and the
attention mechanism happened. As illustrated in Figure 1.4, attention requires pairwise scores, so their total
number grows quadratically with the sequence length. Ten tokens? One hundred scores. One thousand
tokens? One million scores! And that’s for one attention mechanism alone!

Now, consider that each Transformer block or "layer" has its own attention mechanism. Something’s gotta give,
and that’s the RAM of a single GPU. Training Transformer models from scratch isn't something you can do in

Attention Is All You Need | 31

your backyard anymore; that’s Big Tech’s playground now. That’s why you and | are in the fine-tuning business.

But, even when fine-tuning, the memory-hungry attention mechanism can severely limit our ability to use
longer input sequences. That would be the end of it, if it weren’t for a new kind of attention.

Flash Attention and SDPA

Flash Attention! published in 2022, and Flash Attention 222 published in 2023, introduced a memory-
efficient way of computing attention scores, thus making memory requirements linear on the sequence length.
It doesn’t get much better than that!

Flash Attention itself does not support older GPUs, and it doesn’t work in Google Colab’s free tier, either.
However, another memory-efficient implementation, PyTorch’s own SDPA (Scaled Dot Product Attention),
delivers almost identical performance and it is currently being integrated into Hugging Face models.

We'll dive deeper into these topics and explore ways to get the most out of the GPU’s RAM in Chapter 5.

Types of Fine-Tuning

In this book, we’ll be focusing on supervised fine-tuning and its two "cousins": self-supervised fine-tuning and
instruction-tuning. Their other relative, preference fine-tuning, won’t be covered here.

Self-Supervised

Self-supervised fine-tuning is a subset of supervised fine-tuning where the labels are the same as the inputs.
You're probably wondering why it's placed before supervised fine-tuning, right? I've organized it like that
because self-supervised learning is used to train language models from scratch. In this type of learning, the
goal is to learn the structure of the inputs themselves, that is, the structure of language. Remember, these
models are next-token predictors, so they're fed sequences up to a certain point and asked to predict what
comes next. Then, the actual next token gets disclosed to them, and they make a new prediction, over and over
again.

Self-supervised learning or self-supervised fine-tuning is all about learning the structure of text. Structure, in
this sense, is a loose term, as it can mean either the style of discourse (e.g., talking like a pirate) or the
acquisition of "knowledge" in a specialized field (e.g., agricultural jargon). Notice that | quoted the word
knowledge because it's not truly knowledge in the human sense—LLMs do not reason, as previously
discussed—but rather learning the statistical relationships among different words in a given field.

For example, let’s say we have two wildly different fields—mathematics and fashion—and we’ve fine-tuned the
same pre-trained base model using two different datasets, each containing 1,000 sentences from each of those
fields. Then, we query both models using the very same prompt: "The model used."

The first model, fine-tuned on math topics, could provide one of the following responses:

o "The model used high-dimensional data to improve the accuracy of its predictions."

o "The model used for the analysis was a random forest algorithm, which provided robustness against overfitting
and was capable of handling non-linear relationships within the dataset."

32 | Chapter 1: Pay Attention to LLMs

The second model, fined-tuned on fashion topics, would offer completely different responses:

o "The model used high heels to complete the elegant look on the runway."

o "The model used high-end designer outfits to showcase the new collection."

The same word, model, has completely different meanings in the examples above: a mathematical or machine
learning model in the first example; and an actual person in the second one. By fine-tuning a pre-trained model on
a dataset of typical sentences used in a specific field, we're steering the model towards a point where the
relationship between meaningful words in that field gets stronger. Therefore, when prompting it about
"models," we may get either "high-dimensional data" or "high-end designer outfits" as a response.

The example | used to illustrate the fine-tuning process throughout the book—fine-tuning a model to speak like
Yoda—is also an example of self-supervised fine-tuning. In this particular case, we're teaching the model a
different writing style that reorders the elements in typical English grammar.

Supervised

Supervised fine-tuning is the typical case of using pairs of inputs and their labels. For example, spam or not
spam, positive or negative. Classifying documents based on their main topics is another common application. The
model uses the input text’s corresponding representation (the hidden state or embeddings) as a set of features
to perform a classification task—the role of the model’s head.

In the self-supervised case, where the labels are the same as the inputs, the model’s job is also to perform a
classification. But instead of classifying the inputs into a handful of categories, there are as many categories as
there are tokens in the entire vocabulary: every input token may also be a predicted output.

LLMs can be used for typical classification tasks, but that may be an overkill. Encoder-based models such as
BERT have proven themselves to be quite effective when it comes to these tasks, and they're literally a small
fraction of their bigger brother’s size (which means they’re also cheaper to put into production).

Some people may argue that using "prompt" and "completion” pairs to fine-tune an LLM is not a case of self-
supervision, but basic supervised learning. In my opinion, if the completion itself is also written in natural
language (as opposed to single words such as "positive" or "negative"), it is clearly a case of self-supervised
learning. The only difference is that we're teaching the model how to generate text in the "completion" part
only, and we’re assuming that the "prompt" part does not add any value to it.

Instruction

Instruction-tuning is a very particular case of self-supervised fine-tuning where the model learns how to
follow instructions or answer questions directly. By providing a few thousand examples of question-answer
pairs, the model learns that answers are more likely to follow questions, as opposed to cluster several
questions together (as they would be presented in a test or exam, for example). Instead of placing the burden
on the end user—who had to reframe the question as an unfinished statement to be completed—instruction-
tuning allows the model to learn that there’s an equivalence between the two.

From an instruction-tuned model’s point of view, both prompts below should elicit the same completion
("Buenos Aires"):

Types of Fine-Tuning | 33

o "The capital of Argentina is"

o "What is the capital of Argentina?"

The pre-trained base model, which was trained to learn the structure of languages alone, would correctly
autocomplete the first, but it would probably produce something like "What is the capital of Peru?" next.

Instruction models, as well as chat models, are commonly released together with their basic (pure next-token
predictor) counterparts, so it’s very unlikely that you'll have to instruction-tune a base model yourself. Even if you'd
like to incorporate some fairly specific knowledge by fine-tuning it on, say, some internal company data, it’s
probably better to use an already instruction-tuned model and work on your dataset to fit the corresponding
template than fine-tuning on your data first and instruction-tuning it yourself later.

Preference

The last type of fine-tuning is preference-tuning, which aims to align the model’s responses with a set of
preferences. The preferences are usually expressed as a dataset of response pairs, one considered acceptable
and the other to be avoided. The goal is to minimize the chances of responses containing toxic, biased,
unlawful, harmful, or generally unsafe content. Preference-tuning involves different techniques, such as
Reinforcement Learning with Human Feedback (RLHF) and Direct Preference Optimization (DPO), among
others, and they are outside the scope of this book.

[8] https://www.ruder.io/nlp-imagenet/
[9] https://arxiv.org/abs/1706.03762
[10] https://arxiv.org/abs/2406.15786
[11] https://arxiv.org/abs/2205.14135
[12] https://arxiv.org/abs/2307.08691

34 | Chapter 1: Pay Attention to LLMs

https://www.ruder.io/nlp-imagenet/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2406.15786
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2307.08691

